Development of a protein nanoparticle platform for targeting EGFR expressing cancer cells
BACKGROUND A range of protein‐based nanoparticles has been developed for cancer drug delivery and diagnostics. This includes the E2 protein derived from the pyruvate dehydrogenase complex in Geobacillus stearothermophilus which assembles into a 60‐subunit protein cage structure that is capable of en...
Saved in:
Published in | Journal of chemical technology and biotechnology (1986) Vol. 90; no. 7; pp. 1230 - 1236 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.07.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND
A range of protein‐based nanoparticles has been developed for cancer drug delivery and diagnostics. This includes the E2 protein derived from the pyruvate dehydrogenase complex in Geobacillus stearothermophilus which assembles into a 60‐subunit protein cage structure that is capable of encapsulating cancer therapeutics. In this study antibody fragments targeting the epidermal growth factor receptor (EGFR) were tethered to the surface of E2 protein nanoparticles to determine whether the protein nanoparticles could be specifically targeted to EGFR overexpressing cancer cells.
RESULTS
Variants of the anti‐EGFR antibody fragment and the E2 protein containing specific cysteine residues (E2ΔN17A186C) were conjugated using a maleimide‐specific crosslinker. Electron microscopy and dynamic light scattering analysis indicated that the cysteine modified E2 protein correctly assembled into a 25–30 nm particle. The conjugation of the anti‐EGFR antibody fragment (26 kDa) with a subunit of the E2 protein (26 kDa) was confirmed by mass spectrometry with an estimated molecular weight of 52 kDa. The binding of the conjugated E2 particle to native EGFR on MDA MB 231 cells and recombinant EGFR was confirmed using flow cytometry and biolayer interferometry, respectively.
CONCLUSIONS
In this study, proof‐of‐principle that an EGFR‐targeting scFv can be stably conjugated to the cysteine variant E2ΔN17A186C protein nanoparticle without loss of targeting capability has been demonstrated. Conceptually scFv antibody fragments reactive with other important cancer targets could be utilized and presents the opportunity for generation of multi‐targeted protein nanoparticles by conjugating various scFvs with different specificities on the same particle. © 2014 Society of Chemical Industry |
---|---|
AbstractList | BACKGROUND A range of protein-based nanoparticles has been developed for cancer drug delivery and diagnostics. This includes the E2 protein derived from the pyruvate dehydrogenase complex in Geobacillus stearothermophilus which assembles into a 60-subunit protein cage structure that is capable of encapsulating cancer therapeutics. In this study antibody fragments targeting the epidermal growth factor receptor (EGFR) were tethered to the surface of E2 protein nanoparticles to determine whether the protein nanoparticles could be specifically targeted to EGFR overexpressing cancer cells. RESULTS Variants of the anti-EGFR antibody fragment and the E2 protein containing specific cysteine residues (E2 Delta N17A186C) were conjugated using a maleimide-specific crosslinker. Electron microscopy and dynamic light scattering analysis indicated that the cysteine modified E2 protein correctly assembled into a 25-30nm particle. The conjugation of the anti-EGFR antibody fragment (26 kDa) with a subunit of the E2 protein (26 kDa) was confirmed by mass spectrometry with an estimated molecular weight of 52 kDa. The binding of the conjugated E2 particle to native EGFR on MDA MB 231 cells and recombinant EGFR was confirmed using flow cytometry and biolayer interferometry, respectively. CONCLUSIONS In this study, proof-of-principle that an EGFR-targeting scFv can be stably conjugated to the cysteine variant E2 Delta N17A186C protein nanoparticle without loss of targeting capability has been demonstrated. Conceptually scFv antibody fragments reactive with other important cancer targets could be utilized and presents the opportunity for generation of multi-targeted protein nanoparticles by conjugating various scFvs with different specificities on the same particle. BACKGROUND A range of protein-based nanoparticles has been developed for cancer drug delivery and diagnostics. This includes the E2 protein derived from the pyruvate dehydrogenase complex in Geobacillus stearothermophilus which assembles into a 60-subunit protein cage structure that is capable of encapsulating cancer therapeutics. In this study antibody fragments targeting the epidermal growth factor receptor (EGFR) were tethered to the surface of E2 protein nanoparticles to determine whether the protein nanoparticles could be specifically targeted to EGFR overexpressing cancer cells. RESULTS Variants of the anti-EGFR antibody fragment and the E2 protein containing specific cysteine residues (E2[Delta]N17A186C) were conjugated using a maleimide-specific crosslinker. Electron microscopy and dynamic light scattering analysis indicated that the cysteine modified E2 protein correctly assembled into a 25-30nm particle. The conjugation of the anti-EGFR antibody fragment (26 kDa) with a subunit of the E2 protein (26 kDa) was confirmed by mass spectrometry with an estimated molecular weight of 52 kDa. The binding of the conjugated E2 particle to native EGFR on MDA MB 231 cells and recombinant EGFR was confirmed using flow cytometry and biolayer interferometry, respectively. CONCLUSIONS In this study, proof-of-principle that an EGFR-targeting scFv can be stably conjugated to the cysteine variant E2[Delta]N17A186C protein nanoparticle without loss of targeting capability has been demonstrated. Conceptually scFv antibody fragments reactive with other important cancer targets could be utilized and presents the opportunity for generation of multi-targeted protein nanoparticles by conjugating various scFvs with different specificities on the same particle. © 2014 Society of Chemical Industry BACKGROUND A range of protein‐based nanoparticles has been developed for cancer drug delivery and diagnostics. This includes the E2 protein derived from the pyruvate dehydrogenase complex in Geobacillus stearothermophilus which assembles into a 60‐subunit protein cage structure that is capable of encapsulating cancer therapeutics. In this study antibody fragments targeting the epidermal growth factor receptor (EGFR) were tethered to the surface of E2 protein nanoparticles to determine whether the protein nanoparticles could be specifically targeted to EGFR overexpressing cancer cells. RESULTS Variants of the anti‐EGFR antibody fragment and the E2 protein containing specific cysteine residues (E2ΔN17A186C) were conjugated using a maleimide‐specific crosslinker. Electron microscopy and dynamic light scattering analysis indicated that the cysteine modified E2 protein correctly assembled into a 25–30 nm particle. The conjugation of the anti‐EGFR antibody fragment (26 kDa) with a subunit of the E2 protein (26 kDa) was confirmed by mass spectrometry with an estimated molecular weight of 52 kDa. The binding of the conjugated E2 particle to native EGFR on MDA MB 231 cells and recombinant EGFR was confirmed using flow cytometry and biolayer interferometry, respectively. CONCLUSIONS In this study, proof‐of‐principle that an EGFR‐targeting scFv can be stably conjugated to the cysteine variant E2ΔN17A186C protein nanoparticle without loss of targeting capability has been demonstrated. Conceptually scFv antibody fragments reactive with other important cancer targets could be utilized and presents the opportunity for generation of multi‐targeted protein nanoparticles by conjugating various scFvs with different specificities on the same particle. © 2014 Society of Chemical Industry |
Author | Buecheler, Jakob W. Win, Thinzar Mahler, Stephen M. Lim, Sierin Peng, Tao Goodall, Stephen Jones, Martina L. Chopra, Akhil Howard, Christopher B. Tan, Cher Heng de Bakker, Christopher J. |
Author_xml | – sequence: 1 givenname: Jakob W. surname: Buecheler fullname: Buecheler, Jakob W. organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia – sequence: 2 givenname: Christopher B. surname: Howard fullname: Howard, Christopher B. organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia – sequence: 3 givenname: Christopher J. surname: de Bakker fullname: de Bakker, Christopher J. organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia – sequence: 4 givenname: Stephen surname: Goodall fullname: Goodall, Stephen organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia – sequence: 5 givenname: Martina L. surname: Jones fullname: Jones, Martina L. organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia – sequence: 6 givenname: Thinzar surname: Win fullname: Win, Thinzar organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore – sequence: 7 givenname: Tao surname: Peng fullname: Peng, Tao organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore – sequence: 8 givenname: Cher Heng surname: Tan fullname: Tan, Cher Heng organization: Diagnostic Radiology, Tan Tock Seng Hospital, 308433, Singapore – sequence: 9 givenname: Akhil surname: Chopra fullname: Chopra, Akhil organization: Medical Oncology, Johns Hopkins International Medical Center, 30843, Singapore – sequence: 10 givenname: Stephen M. surname: Mahler fullname: Mahler, Stephen M. organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia – sequence: 11 givenname: Sierin surname: Lim fullname: Lim, Sierin email: SLim@ntu.edu.sg organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore |
BookMark | eNqFkU9v1DAQxS1UJLaFA9_AEhc4pLUd_8sRtt0tVVUQWkCcLMeZVFmydmp7of32ONqqByTEZUYj_d5o5r1jdOSDB4ReU3JKCWFnW5fbUy64eIYWlDSq4lKSI7QgTOqKCSVeoOOUtoQQqZlcoB_n8AvGMO3AZxx6bPEUQ4bBY299mGzMgxsBT6PNfYg7XArONt5CHvwtvlivvmC4nyKkNM_OegcROxjH9BI97-2Y4NVjP0FfVxeb5WV1_Wn9cfn-unJc1aJyVorONdbqrmuVbtu66SlwpbhlVAPvQcmur5XoKONCtawG2kjeta1tpehZfYLeHvaWw-_2kLLZDWm-wHoI-2SoKjYIyhn_Pyob3mhGtCrom7_QbdhHXx4plNaCUcKbQr07UC6GlCL0ZorDzsYHQ4mZ8zBzHmbOo7BnB_b3MMLDv0Fztdx8eFRUB8WQMtw_KWz8aaQqjpjvN2vz-XxzQ7_plbms_wDF1Z25 |
CitedBy_id | crossref_primary_10_1039_D0BM00159G crossref_primary_10_1080_19420862_2018_1451288 crossref_primary_10_1016_j_cocis_2021_101485 crossref_primary_10_1039_C7NR08644J crossref_primary_10_1088_1361_6463_aad41e crossref_primary_10_15406_jnmr_2016_04_00077 crossref_primary_10_1007_s12274_019_2525_2 crossref_primary_10_1016_j_impact_2022_100405 crossref_primary_10_1124_jpet_123_001673 crossref_primary_10_1002_jctb_4689 crossref_primary_10_1021_acs_molpharmaceut_8b00177 |
Cites_doi | 10.1021/nn201822b 10.1021/nl8027069 10.1158/0008-5472.CAN-04-3921 10.1016/S1040-8428(00)00134-7 10.1016/j.biomaterials.2009.07.008 10.1002/adfm.201200052 10.1111/j.1872-034X.2007.00304.x 10.1016/j.canlet.2008.11.029 10.1038/nbt1337 10.1002/bit.21988 10.1016/j.tibtech.2008.06.007 10.1111/j.1365-2036.2008.03717.x 10.1097/CAD.0b013e32800feecb 10.1002/smll.200800714 10.1200/JCO.2005.11.013 10.1021/bm2005438 10.1021/bm201587q 10.1016/S0014-5793(97)00932-0 10.1200/JCO.2005.11.890 10.1158/1078-0432.CCR-07-1441 |
ContentType | Journal Article |
Copyright | 2014 Society of Chemical Industry 2015 Society of Chemical Industry |
Copyright_xml | – notice: 2014 Society of Chemical Industry – notice: 2015 Society of Chemical Industry |
DBID | BSCLL AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
DOI | 10.1002/jctb.4545 |
DatabaseName | Istex CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts Engineering Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4660 |
EndPage | 1236 |
ExternalDocumentID | 3716250171 10_1002_jctb_4545 JCTB4545 ark_67375_WNG_PDTN1V8F_H |
Genre | article |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29K 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F D-I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TUS UAO UB1 V2E V8K W8V W99 WBFHL WBKPD WIB WIH WIK WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 XXG ZXP ZZTAW ~02 ~IA ~KM ~WT AAMNL AAYXX ACRPL ACYXJ CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
ID | FETCH-LOGICAL-c4735-ca65dc9aa8ddb78bb39f1e4774a218e4fe76df375d12457b23e1964dbbab65f23 |
IEDL.DBID | DR2 |
ISSN | 0268-2575 |
IngestDate | Wed Dec 04 07:15:26 EST 2024 Wed Dec 04 05:23:12 EST 2024 Thu Oct 10 19:03:16 EDT 2024 Fri Dec 06 02:33:36 EST 2024 Sat Aug 24 01:04:08 EDT 2024 Wed Oct 30 09:56:12 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4735-ca65dc9aa8ddb78bb39f1e4774a218e4fe76df375d12457b23e1964dbbab65f23 |
Notes | istex:FE78DC48D1524D1A16DD2868CF46767A658A5450 ArticleID:JCTB4545 ark:/67375/WNG-PDTN1V8F-H ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jctb.4545 |
PQID | 1688521049 |
PQPubID | 2034149 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1709751424 proquest_miscellaneous_1694982087 proquest_journals_1688521049 crossref_primary_10_1002_jctb_4545 wiley_primary_10_1002_jctb_4545_JCTB4545 istex_primary_ark_67375_WNG_PDTN1V8F_H |
PublicationCentury | 2000 |
PublicationDate | July 2015 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: July 2015 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
PublicationTitle | Journal of chemical technology and biotechnology (1986) |
PublicationTitleAlternate | J. Chem. Technol. Biotechnol |
PublicationYear | 2015 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | Creixell M, Bohórquez AC, Torres-Lugo M and Rinaldi C, EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5:7124-7129 (2011). Baselga J and Arteaga CL, Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol 23:2445-2459 (2005). Itabashi H, Maesawa C, Oikawa H, Kotani K, Sakurai E and Kato K, Angiotensin II and epidermal growth factor receptor cross-talk mediated by a disintegrin and metalloprotease accelerates tumor cell proliferation of hepatocellular carcinoma cell lines. Hepatol Res 38:601-613 (2008). Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ and Thomas TP, Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65:5317-5324 (2005). Yang L, Mao H, Wang YA, Cao Z, Peng X, Wang X, Duan H, Ni C, Yuan Q, Adams G, Smith MQ, Wood WC, Gao X and Nie S, Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 5:235-243 (2009). Mohanray VJ and Chen Y, Nanoparticles- a review. Tropical J Pharmaceut Res 5:561-573 (2006). Pirollo K and Chang E, Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 26:552-558 (2008). Allen MD and Perham RN, The catalytic domain of dihydrolipoyl acetyltransferase from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Expression, purification and reversible denaturation. FEBS Lett 413:339-343 (1997). Dalmau M, Lim S and Wang SW, Design of a pH-dependent molecular switch in a caged protein platform. Nano Lett 9:160-166 (2009). Ren D, Kratz F and Wang SW, Engineered drug-protein nanoparticle complexes for folate receptor targeting. Biochem Eng J Accepted (2013). Acharya S, Dilnawaz F and Sahoo SK, Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 30:5737-5750 (2009). Peeters M, Balfour J and Arnold D, Review article: panitumumab - a fully human anti-EGFR monoclonal antibody for treatment of metastatic colorectal cancer. Aliment Pharmacol Ther 28:69-281 (2008). Dalmau M, Lim S, Chen HC, Ruiz C and Wang SW, Thermostability and molecular encapsulation within an engineered caged protein scaffold. Biotechnol Bioeng 101:654-664 (2008). Cohenuram M and Saif MW, Panitumumab the first fully human monoclonal antibody: from the bench to the clinic. Anti-Cancer Drugs 18:7-15 (2007). Cho K, Wang X, Nie S, Chen ZG and Shin DM, Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310-1316 (2008). Sanna V, Pala N and Sechi M, Targeted therapy using nanotechnology: focus on cancer. Int J Nanomed 9:467-483 (2014). Ibrahim NK, Samuels B, Page R, Doval D, Patel KM and Rao SC, Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J Clin Oncol 23:6019-6026 (2005). Tobias R and Kumaraswamy S, Biomolecular binding kinetic assays on the octet platform. ForteBio Application Note 14:1-21 (2014). Jakobovits A, Amado RG, Yang X, Roskos L and Schwab G, From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nature Biotechnol 25:1134-1143 (2007). Yang XD, Jia XC, Jose RF, Corvalan PW, and Davis G, Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol/Hematol 38:17-23 (2001). Park EJ, Min HY, Chung HJ, Hong JY, Kang YJ and Hung TM, Down-regulation of c-Src/EGFR-mediated signaling activation is involved in the honokiol-induced cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells. Cancer Lett 277:133-140 (2009). Peng T, Lee H and Lim S, Isolating a trimer intermediate in the self-assembly of E2 protein cage. Biomacromolecules 13:699-705 (2012). Peng T and Lim S, Trimer-based design of pH-responsive protein cage results in soluble disassembled structures. Biomacromolecules 12:3131-3138 (2011). Ren D, Dalmau M, Randall A, Shindel MM, Baldi P and Wang SW, Biomimetic design of protein nano-carriers for hydrophobic molecular transport. Adv Function Mater 22:3170-3180 (2012). 2007; 18 1997; 413 2009; 30 2008; 38 2008; 28 2008; 14 2008; 26 2006; 5 2009; 9 2014; 14 2009; 277 2005; 65 2001; 38 2011; 12 2009; 5 2013 2014; 9 2008; 101 2012; 13 2011; 5 2012; 22 2005; 23 2007; 25 e_1_2_6_21_1 e_1_2_6_10_1 e_1_2_6_20_1 Mohanray VJ (e_1_2_6_2_1) 2006; 5 Sanna V (e_1_2_6_5_1) 2014; 9 Tobias R (e_1_2_6_23_1) 2014; 14 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_25_1 e_1_2_6_14_1 Ren D (e_1_2_6_22_1) 2013 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – volume: 5 start-page: 235 year: 2009 end-page: 243 article-title: Single chain epidermal growth factor receptor antibody conjugated nanoparticles for tumor targeting and imaging publication-title: Small – volume: 13 start-page: 699 year: 2012 end-page: 705 article-title: Isolating a trimer intermediate in the self‐assembly of E2 protein cage publication-title: Biomacromolecules – volume: 14 start-page: 1310 year: 2008 end-page: 1316 article-title: Therapeutic nanoparticles for drug delivery in cancer publication-title: Clin Cancer Res – volume: 101 start-page: 654 year: 2008 end-page: 664 article-title: Thermostability and molecular encapsulation within an engineered caged protein scaffold publication-title: Biotechnol Bioeng – volume: 28 start-page: 69 year: 2008 end-page: 281 article-title: Review article: panitumumab – a fully human anti‐EGFR monoclonal antibody for treatment of metastatic colorectal cancer publication-title: Aliment Pharmacol Ther – volume: 5 start-page: 7124 year: 2011 end-page: 7129 article-title: EGFR‐targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise publication-title: ACS Nano – volume: 9 start-page: 160 year: 2009 end-page: 166 article-title: Design of a pH‐dependent molecular switch in a caged protein platform publication-title: Nano Lett – volume: 65 start-page: 5317 year: 2005 end-page: 5324 article-title: Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer publication-title: Cancer Res – volume: 12 start-page: 3131 year: 2011 end-page: 3138 article-title: Trimer‐based design of pH‐responsive protein cage results in soluble disassembled structures publication-title: Biomacromolecules – volume: 23 start-page: 2445 year: 2005 end-page: 2459 article-title: Critical update and emerging trends in epidermal growth factor receptor targeting in cancer publication-title: J Clin Oncol – volume: 14 start-page: 1 year: 2014 end-page: 21 article-title: Biomolecular binding kinetic assays on the octet platform publication-title: ForteBio Application Note – volume: 23 start-page: 6019 year: 2005 end-page: 6026 article-title: Multicenter phase II trial of ABI‐007, an albumin‐bound paclitaxel, in women with metastatic breast cancer publication-title: J Clin Oncol – volume: 413 start-page: 339 year: 1997 end-page: 343 article-title: The catalytic domain of dihydrolipoyl acetyltransferase from the pyruvate dehydrogenase multienzyme complex of . Expression, purification and reversible denaturation publication-title: FEBS Lett – volume: 18 start-page: 7 year: 2007 end-page: 15 article-title: Panitumumab the first fully human monoclonal antibody: from the bench to the clinic publication-title: Anti‐Cancer Drugs – volume: 26 start-page: 552 year: 2008 end-page: 558 article-title: Does a targeting ligand influence nanoparticle tumor localization or uptake? publication-title: Trends Biotechnol – volume: 38 start-page: 601 year: 2008 end-page: 613 article-title: Angiotensin II and epidermal growth factor receptor cross‐talk mediated by a disintegrin and metalloprotease accelerates tumor cell proliferation of hepatocellular carcinoma cell lines publication-title: Hepatol Res – volume: 38 start-page: 17 year: 2001 end-page: 23 article-title: Development of ABX‐EGF, a fully human anti‐EGF receptor monoclonal antibody, for cancer therapy publication-title: Crit Rev Oncol/Hematol – volume: 9 start-page: 467 year: 2014 end-page: 483 article-title: Targeted therapy using nanotechnology: focus on cancer publication-title: Int J Nanomed – volume: 30 start-page: 5737 year: 2009 end-page: 5750 article-title: Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy publication-title: Biomaterials – volume: 25 start-page: 1134 year: 2007 end-page: 1143 article-title: From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice publication-title: Nature Biotechnol – volume: 277 start-page: 133 year: 2009 end-page: 140 article-title: Down‐regulation of c‐Src/EGFR‐mediated signaling activation is involved in the honokiol‐induced cell cycle arrest and apoptosis in MDA‐MB‐231 human breast cancer cells publication-title: Cancer Lett – volume: 5 start-page: 561 year: 2006 end-page: 573 article-title: Nanoparticles‐ a review publication-title: Tropical J Pharmaceut Res – volume: 22 start-page: 3170 year: 2012 end-page: 3180 article-title: Biomimetic design of protein nano‐carriers for hydrophobic molecular transport publication-title: Adv Function Mater – year: 2013 article-title: Engineered drug‐protein nanoparticle complexes for folate receptor targeting publication-title: Biochem Eng J – ident: e_1_2_6_13_1 doi: 10.1021/nn201822b – ident: e_1_2_6_20_1 doi: 10.1021/nl8027069 – ident: e_1_2_6_8_1 doi: 10.1158/0008-5472.CAN-04-3921 – ident: e_1_2_6_14_1 doi: 10.1016/S1040-8428(00)00134-7 – ident: e_1_2_6_12_1 doi: 10.1016/j.biomaterials.2009.07.008 – ident: e_1_2_6_19_1 doi: 10.1002/adfm.201200052 – ident: e_1_2_6_25_1 doi: 10.1111/j.1872-034X.2007.00304.x – ident: e_1_2_6_24_1 doi: 10.1016/j.canlet.2008.11.029 – volume: 14 start-page: 1 year: 2014 ident: e_1_2_6_23_1 article-title: Biomolecular binding kinetic assays on the octet platform publication-title: ForteBio Application Note contributor: fullname: Tobias R – ident: e_1_2_6_16_1 doi: 10.1038/nbt1337 – ident: e_1_2_6_18_1 doi: 10.1002/bit.21988 – year: 2013 ident: e_1_2_6_22_1 article-title: Engineered drug‐protein nanoparticle complexes for folate receptor targeting publication-title: Biochem Eng J contributor: fullname: Ren D – volume: 9 start-page: 467 year: 2014 ident: e_1_2_6_5_1 article-title: Targeted therapy using nanotechnology: focus on cancer publication-title: Int J Nanomed contributor: fullname: Sanna V – ident: e_1_2_6_7_1 doi: 10.1016/j.tibtech.2008.06.007 – ident: e_1_2_6_10_1 doi: 10.1111/j.1365-2036.2008.03717.x – ident: e_1_2_6_15_1 doi: 10.1097/CAD.0b013e32800feecb – ident: e_1_2_6_11_1 doi: 10.1002/smll.200800714 – ident: e_1_2_6_6_1 doi: 10.1200/JCO.2005.11.013 – ident: e_1_2_6_21_1 doi: 10.1021/bm2005438 – ident: e_1_2_6_4_1 doi: 10.1021/bm201587q – ident: e_1_2_6_17_1 doi: 10.1016/S0014-5793(97)00932-0 – volume: 5 start-page: 561 year: 2006 ident: e_1_2_6_2_1 article-title: Nanoparticles‐ a review publication-title: Tropical J Pharmaceut Res contributor: fullname: Mohanray VJ – ident: e_1_2_6_9_1 doi: 10.1200/JCO.2005.11.890 – ident: e_1_2_6_3_1 doi: 10.1158/1078-0432.CCR-07-1441 |
SSID | ssj0006826 |
Score | 2.238421 |
Snippet | BACKGROUND
A range of protein‐based nanoparticles has been developed for cancer drug delivery and diagnostics. This includes the E2 protein derived from the... BACKGROUND A range of protein-based nanoparticles has been developed for cancer drug delivery and diagnostics. This includes the E2 protein derived from the... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 1230 |
SubjectTerms | Antibodies antibody targeting Cancer cancer therapeutic Cysteine drug delivery epidermal growth factor receptor Flow cytometry Fragments Geobacillus Nanoparticles Nanostructure protein nanoparticle Proteins |
Title | Development of a protein nanoparticle platform for targeting EGFR expressing cancer cells |
URI | https://api.istex.fr/ark:/67375/WNG-PDTN1V8F-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjctb.4545 https://www.proquest.com/docview/1688521049 https://search.proquest.com/docview/1694982087 https://search.proquest.com/docview/1709751424 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD6IvtQHq61iqpVpEfElupvNXEKfvK2L4FJkvYEwzGQm4IWs7AWkv77nZDbrWmiRvoSEnAmTc5n5TnLmG4BtnIMzm_A8VqnDBMU0VGycT-JCOGJDd5mt1lecd0XnMj274Tdz8KNeCxP4IaYf3CgyqvGaAtzY4f4raehDPrJ7KQIAHH-bLUnlfMcXr9RRQlVbrWGKgZ6AmKRmFWok-9OWb-aiBVLryxugOQtXq_mm_RHu6p6GMpPHvTE-LP_1B4njf77KMixNcCg7CI6zAnO-_ASLM-yEn-F2pqCI9QtmWEXqcF-y0pSYa4em7PnJjAj5MjywUFiOzdnJafuC-ZdQZ4vXObnXgNGPguEqXLZPekedeLITQ5zT1sRxbgR3eWaMcs5KZW0rK5o-RehoECL4tPBSuAKN4BAucGmTlieiL2etsYIXSWsN5st-6deBCS6ldzzDxMwgGPJZiogUQYWRwrqCmwi-1zbRz4FwQwdq5USTnjTpKYKdylpTCTN4pAo1yfV191T_PO51m1eqrTsRbNbm1JPgHOqmUApRC-ZGEXyb3sawIhWY0vfHJIM9RHSk5D9kZCOTnJYKRrBb2ffvPdZnR71DOvnyftEN-IDwjIfi4E2YHw3G_itCoJHdqnz9N0XUAvM |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7a1ge2B-7TAgO8CSFe0rVpfInEC3TruluFpo6NB2TZsSONoXTqWmni13NO3HQdEgjxEiXKceScS_wd5_gzwFscgzOb8DxWqcMExbRUbJxP4kI4YkN3ma3WV5wMRP8sPbzgF0vwoV4LE_gh5hNuFBnV95oCnCakd-5YQ7_nE9tMEQEsQwPDvU0FXbund-RRQlWbrWGSgb6AqKTmFWolO_Om90ajBin29h7UXASs1YjTewTf6r6GQpOr5hQflv_8jcbxf1_mMTycQVH2MfjOE1jy5VNYWyAofAZfF2qK2KhghlW8DpclK02J6XZoyq5_mAmBX4YHFmrLsTnb2--dMn8bSm3xOicPGzP6V3DzHM56e8NuP55txhDntDtxnBvBXZ4Zo5yzUlnbyYq2TxE9GkQJPi28FK7oSO4QMXBpk44nri9nrbGCF0lnHVbKUek3gAkupXc8w9zMIB7yWYqgFHGFkcK6gpsItmuj6OvAuaEDu3KiSU-a9BTBu8pccwkzvqIiNcn1-WBff94dDtpfVE_3I9is7aln8Xmj20IpBC6YHkWwNb-NkUUqMKUfTUkGe4gAScm_yMhWJjmtFozgfWXgP_dYH3aHn-jkxb-LvoEH_eHJsT4-GBy9hFVEazzUCm_CymQ89a8QEU3s68rxfwF2gwcU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMdPY5MQPACDIQJjGDQhXrK1afwj4omty7rBqmnqxpCQLDt2pG0orbpWmvjruYubrkMCIV6qVLEjx76LP5ecvwbYxDk4swkvYpU6DFBMS8XG-SQuhSM1dJfZen3FUV_0TtPDc36-BB-btTBBH2L-wo08o35ek4OPXLl9Kxp6WUzsVooAcA9WUpFkJJzfPbnVjhKq3msNYww0BYSSRlaolWzPq96ZjFaoX2_ukOYir9YTTv4YvjdNDXkmV1tTvFjx8zcVx_-8lyfwaAai7FOwnFVY8tVTeLggT_gMvi1kFLFhyQyrVR0uKlaZCoPtUJWNfpgJoS_DHxYyy7E629vPT5i_CYm2-L8g-xoz-lJwvQan-d5gtxfPtmKIC9qbOC6M4K7IjFHOWams7WRl26fIjgYZwaell8KVHckd8gKXNul4Uvpy1horeJl0nsNyNaz8C2CCS-kdzzAyM0hDPksRSZEqjBTWldxE8K4ZEz0Kihs6aCsnmvpJUz9F8L4erXkJM76iFDXJ9df-vj7uDvrtM5XrXgTrzXDqmXde67ZQCrEFg6MI3s5Po19RF5jKD6dUBluIeKTkX8rIViY5rRWM4EM9vn9usT7cHezQwct_L_oG7h93c_3loP_5FTxAVOMhUXgdlifjqX-NODSxG7XZ_wJkCgXD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+protein+nanoparticle+platform+for+targeting+EGFR+expressing+cancer+cells&rft.jtitle=Journal+of+chemical+technology+and+biotechnology+%281986%29&rft.au=Buecheler%2C+Jakob+W&rft.au=Howard%2C+Christopher+B&rft.au=de+Bakker%2C+Christopher+J&rft.au=Goodall%2C+Stephen&rft.date=2015-07-01&rft.issn=0268-2575&rft.eissn=1097-4660&rft.volume=90&rft.issue=7&rft.spage=1230&rft.epage=1236&rft_id=info:doi/10.1002%2Fjctb.4545&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2575&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2575&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2575&client=summon |