Characterization of canine filaggrin: gene structure and protein expression in dog skin
Background – Filaggrin (FLG) is a key protein for skin barrier formation and hydration of the stratum corneum. In humans, a strong association between FLG gene mutations and atopic dermatitis has been reported. Although similar pathogenesis and clinical manifestation have been argued in canine atop...
Saved in:
Published in | Veterinary dermatology Vol. 24; no. 1; pp. 25 - e7 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.02.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background – Filaggrin (FLG) is a key protein for skin barrier formation and hydration of the stratum corneum. In humans, a strong association between FLG gene mutations and atopic dermatitis has been reported. Although similar pathogenesis and clinical manifestation have been argued in canine atopic dermatitis, our understanding of canine FLG is limited.
Hypothesis/Objectives – The aim of this study was to determine the structure of the canine FLG gene and to raise anti‐dog FLG antibodies, which will be useful to detect FLG protein in dog skin.
Methods – The structure of the canine FLG gene was determined by analysing the publicly available canine genome DNA sequence. Polyclonal anti‐dog FLG antibodies were raised based on the canine FLG sequence analysis and used for defining the FLG expression pattern in dog skin by western blotting and immunohistochemistry.
Results – Genomic DNA sequence analysis revealed that canine FLG contained four units of repeated sequences corresponding to FLG monomer protein. Western blots probed with anti‐dog FLG monomer detected two bands at 59 and 54 kDa, which were estimated sizes. The results of immunohistochemistry showed that canine FLG was expressed in the stratum granulosum of the epidermis as a granular staining pattern in the cytoplasmic region.
Conclusions and clinical importance – This study revealed the unique gene structure of canine FLG that results in production of FLG monomers larger than those of humans or mice. The anti‐dog FLG antibodies raised in this study identified FLG in dog skin. These antibodies will enable us to screen FLG‐deficient dogs with canine atopic dermatitis or ichthyosis.
Résumé
Contexte – La filaggrine (FLG) est une protéine clé de la formation de la barrière cutanée et de l’hydratation du stratum corneum. Chez l’homme, une forte association entre les mutations du gène FLG et la dermatite atopique a été rapportée. Bien qu’une pathogénie et des manifestations cliniques similaires soient soutenues dans la dermatite atopique canine, notre compréhension de la FLG canine est limitée.
Hypothèse/Objectives – Le but de cette étude était de déterminer la structure du gène FLG canin et de sélectionner des anticorps anti‐FLG canin, qui seront utiles pour détecter les protéines FLG dans la peau du chien.
Méthodes – La structure du gène FLG canin a été déterminée par l’analyse de la séquence d’ADN du génome canin accessible au public. Des anticorps polyclonaux anti‐FLG canin ont été identifiés sur base de l’analyse de séquence de la FLG canine et utilisés pour définir le patron d’expression de la FLG dans la peau de chien par western blot et immunohistochimie.
Résultats – L’analyse de la séquence d’ADN génomique a révélé que la FLG canine contenait quatre unités de séquences répétées correspondant à la protéine monomère FLG. Les Western blots avec des sondes anti‐monomères de FLG ont détectés deux bandes à 59 et 54 kDa, qui étaient les tailles estimées. L’immunohistochimie a montré que la FLG canine est exprimée dans le stratum granulosum de l’épiderme comme un patron de coloration granulaire dans la région cytoplasmique.
Conclusions et importance clinique – Cette étude a révélé la structure génétique unique de la FLG canine qui entraîne la production de monomères de FLG plus gros que ceux des humains ou des souris. Les anticorps anti‐FLG canine identifiés dans notre étude a identifié la FLG dans la peau du chien. Ces anticorps nous permettront d’identifier les chiens déficients en FLG atteints de dermatite atopique canine ou d’ichtyose.
Resumen
Introduccion – la filagrina (FLG) es una proteína dominante para la formación de la barrera de la piel y la hidratación del estrato corneo. En seres humanos se ha indicado la existencia de una asociación marcada entre las mutaciones del gen de FLG y la presencia de dermatitis atópica. Aunque se ha sugerido una patogenia y manifestaciones clínicas similares en la dermatitis atópica canina, nuestra comprensión de la FLG canina es limitada.
Hipótesis/ objetivos – el propósito de este estudio fue determinar la estructura del gen de la FLG canina y producir los anticuerpos frente a la FLG canina, que serán útiles para detectar la proteína FLG en la piel de perro.
Métodos – la estructura del gen de la FLG canina fue determinada analizando la secuencia de dominio público del DNA genómico canino. Anticuerpos policlonales frente a la FLG canina se produjeron basados en la secuencia de la proteína y se utilizaron para definir el patrón de expresión de la FLG en la piel del perro por westernblot e inmunohistoquímica.
Resultados – el análisis de la secuencia del DNA genómico indicó que la FLG canina tenía cuatro unidades de secuencias repetidas correspondiendo al monómero de FLG. El westernblot con anticuerpos frente al monómero de FLG canina detectó dos bandas de 59 y 54 kDa, que fueron tamaños estimados. Los resultados de la inmunohistoquímica demostraron que la FLG canina se expresaba en el estrato granuloso de la epidermis con un patrón granular en la región citoplásmica.
Conclusiones e importancia clínica – este estudio reveló la estructura única del gen de la FLG canina que da lugar a la producción de los monómeros de FLG de mayor tamaño que los de seres humanos o de ratones. Los anticuerpos frente a la FLG canina producidos en este estudio identificaron la FLG en la piel de perro. Estos anticuerpos nos estudiar perros deficientes en FLG con dermatitis atópica o ictiosis caninas.
Zusammenfassung
Hintergrund – Filaggrin (FLG) ist ein Schlüsselprotein für die Bildung der Hautbarriere und der Hydrierung des Stratum Corneum. Beim Menschen wurde ein deutlicher Zusammenhang zwischen FLG Genmutationen und atopischer Dermatitis beschrieben. Obwohl eine ähnliche Pathogenese und klinische Manifestation bei der atopischen Dermatitis des Hundes diskutiert wird, ist unser Verständnis des caninen FLG limitiert.
Hypothese/Ziele – Das Ziel dieser Studie war es, die Struktur des caninen FLG Gens zu bestimmen und Antikörper gegen FLG des Hundes zu produzieren, die beim Auffinden von FLG Protein in der Hundehaut hilfreich sein werden.
Methoden – Die Struktur des caninen FLG Gens wurde unter Verwendung der öffentlich verfügbaren Sequenz des DNA‐Genoms des Hundes bestimmt. Polyklonale anti‐Hund FLG Antikörper wurden basierend auf der Sequenzanalyse des caninen FLG erzeugt und dazu verwendet, das Muster der FLG Exprimierung in der Hundehaut mittels Westernblotting und Immunhistochemie zu definieren.
Ergebnisse – Die Sequenzanalyse der DNA Sequenz des Genoms zeigte, dass canines FLG vier Einheiten einer sich wiederholenden Sequenz beinhaltete, welche mit dem Protein des FLG Monomers übereinstimmte. Westernblots, bei denen als Probe das anti‐Hund FLG Monomer verwendet wurde, zeigten zwei Banden bei 59 und 54 kDa, wobei es sich um geschätzte Größen handelte. Die Ergebnisse der Immunhistochemie zeigten, dass canines FLG im Stratum granulosum der Epidermis in Form eines granulären Farbmusters in der zytoplasmatischen Region exprimiert wurde.
Schlussfolgerungen und klinische Bedeutung – In dieser Studie konnte die einzigartige Genstruktur des caninen FLG dargestellt werden, welches in der Entstehung von FLG Monomeren resultiert, die größer sind als die von Menschen oder Mäusen. Die anti‐Hund Antikörper, die in dieser Studie erzeugt wurden, identifizierten FLG in der Hundehaut. Diese Antikörper werden es uns ermöglichen, Hunde mit FLG Mangel bei atopischer Dermatitis oder Ichthyose herauszufiltern. |
---|---|
AbstractList | BACKGROUNDFilaggrin (FLG) is a key protein for skin barrier formation and hydration of the stratum corneum. In humans, a strong association between FLG gene mutations and atopic dermatitis has been reported. Although similar pathogenesis and clinical manifestation have been argued in canine atopic dermatitis, our understanding of canine FLG is limited.HYPOTHESIS/OBJECTIVESThe aim of this study was to determine the structure of the canine FLG gene and to raise anti-dog FLG antibodies, which will be useful to detect FLG protein in dog skin.METHODSThe structure of the canine FLG gene was determined by analysing the publicly available canine genome DNA sequence. Polyclonal anti-dog FLG antibodies were raised based on the canine FLG sequence analysis and used for defining the FLG expression pattern in dog skin by western blotting and immunohistochemistry.RESULTSGenomic DNA sequence analysis revealed that canine FLG contained four units of repeated sequences corresponding to FLG monomer protein. Western blots probed with anti-dog FLG monomer detected two bands at 59 and 54 kDa, which were estimated sizes. The results of immunohistochemistry showed that canine FLG was expressed in the stratum granulosum of the epidermis as a granular staining pattern in the cytoplasmic region.CONCLUSIONS AND CLINICAL IMPORTANCEThis study revealed the unique gene structure of canine FLG that results in production of FLG monomers larger than those of humans or mice. The anti-dog FLG antibodies raised in this study identified FLG in dog skin. These antibodies will enable us to screen FLG-deficient dogs with canine atopic dermatitis or ichthyosis. Background – Filaggrin (FLG) is a key protein for skin barrier formation and hydration of the stratum corneum. In humans, a strong association between FLG gene mutations and atopic dermatitis has been reported. Although similar pathogenesis and clinical manifestation have been argued in canine atopic dermatitis, our understanding of canine FLG is limited. Hypothesis/Objectives – The aim of this study was to determine the structure of the canine FLG gene and to raise anti‐dog FLG antibodies, which will be useful to detect FLG protein in dog skin. Methods – The structure of the canine FLG gene was determined by analysing the publicly available canine genome DNA sequence. Polyclonal anti‐dog FLG antibodies were raised based on the canine FLG sequence analysis and used for defining the FLG expression pattern in dog skin by western blotting and immunohistochemistry. Results – Genomic DNA sequence analysis revealed that canine FLG contained four units of repeated sequences corresponding to FLG monomer protein. Western blots probed with anti‐dog FLG monomer detected two bands at 59 and 54 kDa, which were estimated sizes. The results of immunohistochemistry showed that canine FLG was expressed in the stratum granulosum of the epidermis as a granular staining pattern in the cytoplasmic region. Conclusions and clinical importance – This study revealed the unique gene structure of canine FLG that results in production of FLG monomers larger than those of humans or mice. The anti‐dog FLG antibodies raised in this study identified FLG in dog skin. These antibodies will enable us to screen FLG‐deficient dogs with canine atopic dermatitis or ichthyosis. Contexte – La filaggrine (FLG) est une protéine clé de la formation de la barrière cutanée et de l’hydratation du stratum corneum. Chez l’homme, une forte association entre les mutations du gène FLG et la dermatite atopique a été rapportée. Bien qu’une pathogénie et des manifestations cliniques similaires soient soutenues dans la dermatite atopique canine, notre compréhension de la FLG canine est limitée. Hypothèse/Objectives – Le but de cette étude était de déterminer la structure du gène FLG canin et de sélectionner des anticorps anti‐FLG canin, qui seront utiles pour détecter les protéines FLG dans la peau du chien. Méthodes – La structure du gène FLG canin a été déterminée par l’analyse de la séquence d’ADN du génome canin accessible au public. Des anticorps polyclonaux anti‐FLG canin ont été identifiés sur base de l’analyse de séquence de la FLG canine et utilisés pour définir le patron d’expression de la FLG dans la peau de chien par western blot et immunohistochimie. Résultats – L’analyse de la séquence d’ADN génomique a révélé que la FLG canine contenait quatre unités de séquences répétées correspondant à la protéine monomère FLG. Les Western blots avec des sondes anti‐monomères de FLG ont détectés deux bandes à 59 et 54 kDa, qui étaient les tailles estimées. L’immunohistochimie a montré que la FLG canine est exprimée dans le stratum granulosum de l’épiderme comme un patron de coloration granulaire dans la région cytoplasmique. Conclusions et importance clinique – Cette étude a révélé la structure génétique unique de la FLG canine qui entraîne la production de monomères de FLG plus gros que ceux des humains ou des souris. Les anticorps anti‐FLG canine identifiés dans notre étude a identifié la FLG dans la peau du chien. Ces anticorps nous permettront d’identifier les chiens déficients en FLG atteints de dermatite atopique canine ou d’ichtyose. Introduccion – la filagrina (FLG) es una proteína dominante para la formación de la barrera de la piel y la hidratación del estrato corneo. En seres humanos se ha indicado la existencia de una asociación marcada entre las mutaciones del gen de FLG y la presencia de dermatitis atópica. Aunque se ha sugerido una patogenia y manifestaciones clínicas similares en la dermatitis atópica canina, nuestra comprensión de la FLG canina es limitada. Hipótesis/ objetivos – el propósito de este estudio fue determinar la estructura del gen de la FLG canina y producir los anticuerpos frente a la FLG canina, que serán útiles para detectar la proteína FLG en la piel de perro. Métodos – la estructura del gen de la FLG canina fue determinada analizando la secuencia de dominio público del DNA genómico canino. Anticuerpos policlonales frente a la FLG canina se produjeron basados en la secuencia de la proteína y se utilizaron para definir el patrón de expresión de la FLG en la piel del perro por westernblot e inmunohistoquímica. Resultados – el análisis de la secuencia del DNA genómico indicó que la FLG canina tenía cuatro unidades de secuencias repetidas correspondiendo al monómero de FLG. El westernblot con anticuerpos frente al monómero de FLG canina detectó dos bandas de 59 y 54 kDa, que fueron tamaños estimados. Los resultados de la inmunohistoquímica demostraron que la FLG canina se expresaba en el estrato granuloso de la epidermis con un patrón granular en la región citoplásmica. Conclusiones e importancia clínica – este estudio reveló la estructura única del gen de la FLG canina que da lugar a la producción de los monómeros de FLG de mayor tamaño que los de seres humanos o de ratones. Los anticuerpos frente a la FLG canina producidos en este estudio identificaron la FLG en la piel de perro. Estos anticuerpos nos estudiar perros deficientes en FLG con dermatitis atópica o ictiosis caninas. Hintergrund – Filaggrin (FLG) ist ein Schlüsselprotein für die Bildung der Hautbarriere und der Hydrierung des Stratum Corneum. Beim Menschen wurde ein deutlicher Zusammenhang zwischen FLG Genmutationen und atopischer Dermatitis beschrieben. Obwohl eine ähnliche Pathogenese und klinische Manifestation bei der atopischen Dermatitis des Hundes diskutiert wird, ist unser Verständnis des caninen FLG limitiert. Hypothese/Ziele – Das Ziel dieser Studie war es, die Struktur des caninen FLG Gens zu bestimmen und Antikörper gegen FLG des Hundes zu produzieren, die beim Auffinden von FLG Protein in der Hundehaut hilfreich sein werden. Methoden – Die Struktur des caninen FLG Gens wurde unter Verwendung der öffentlich verfügbaren Sequenz des DNA‐Genoms des Hundes bestimmt. Polyklonale anti‐Hund FLG Antikörper wurden basierend auf der Sequenzanalyse des caninen FLG erzeugt und dazu verwendet, das Muster der FLG Exprimierung in der Hundehaut mittels Westernblotting und Immunhistochemie zu definieren. Ergebnisse – Die Sequenzanalyse der DNA Sequenz des Genoms zeigte, dass canines FLG vier Einheiten einer sich wiederholenden Sequenz beinhaltete, welche mit dem Protein des FLG Monomers übereinstimmte. Westernblots, bei denen als Probe das anti‐Hund FLG Monomer verwendet wurde, zeigten zwei Banden bei 59 und 54 kDa, wobei es sich um geschätzte Größen handelte. Die Ergebnisse der Immunhistochemie zeigten, dass canines FLG im Stratum granulosum der Epidermis in Form eines granulären Farbmusters in der zytoplasmatischen Region exprimiert wurde. Schlussfolgerungen und klinische Bedeutung – In dieser Studie konnte die einzigartige Genstruktur des caninen FLG dargestellt werden, welches in der Entstehung von FLG Monomeren resultiert, die größer sind als die von Menschen oder Mäusen. Die anti‐Hund Antikörper, die in dieser Studie erzeugt wurden, identifizierten FLG in der Hundehaut. Diese Antikörper werden es uns ermöglichen, Hunde mit FLG Mangel bei atopischer Dermatitis oder Ichthyose herauszufiltern. Filaggrin (FLG) is a key protein for skin barrier formation and hydration of the stratum corneum. In humans, a strong association between FLG gene mutations and atopic dermatitis has been reported. Although similar pathogenesis and clinical manifestation have been argued in canine atopic dermatitis, our understanding of canine FLG is limited. The aim of this study was to determine the structure of the canine FLG gene and to raise anti-dog FLG antibodies, which will be useful to detect FLG protein in dog skin. The structure of the canine FLG gene was determined by analysing the publicly available canine genome DNA sequence. Polyclonal anti-dog FLG antibodies were raised based on the canine FLG sequence analysis and used for defining the FLG expression pattern in dog skin by western blotting and immunohistochemistry. Genomic DNA sequence analysis revealed that canine FLG contained four units of repeated sequences corresponding to FLG monomer protein. Western blots probed with anti-dog FLG monomer detected two bands at 59 and 54 kDa, which were estimated sizes. The results of immunohistochemistry showed that canine FLG was expressed in the stratum granulosum of the epidermis as a granular staining pattern in the cytoplasmic region. This study revealed the unique gene structure of canine FLG that results in production of FLG monomers larger than those of humans or mice. The anti-dog FLG antibodies raised in this study identified FLG in dog skin. These antibodies will enable us to screen FLG-deficient dogs with canine atopic dermatitis or ichthyosis. Background – Filaggrin (FLG) is a key protein for skin barrier formation and hydration of the stratum corneum. In humans, a strong association between FLG gene mutations and atopic dermatitis has been reported. Although similar pathogenesis and clinical manifestation have been argued in canine atopic dermatitis, our understanding of canine FLG is limited. Hypothesis/Objectives – The aim of this study was to determine the structure of the canine FLG gene and to raise anti‐dog FLG antibodies, which will be useful to detect FLG protein in dog skin. Methods – The structure of the canine FLG gene was determined by analysing the publicly available canine genome DNA sequence. Polyclonal anti‐dog FLG antibodies were raised based on the canine FLG sequence analysis and used for defining the FLG expression pattern in dog skin by western blotting and immunohistochemistry. Results – Genomic DNA sequence analysis revealed that canine FLG contained four units of repeated sequences corresponding to FLG monomer protein. Western blots probed with anti‐dog FLG monomer detected two bands at 59 and 54 kDa, which were estimated sizes. The results of immunohistochemistry showed that canine FLG was expressed in the stratum granulosum of the epidermis as a granular staining pattern in the cytoplasmic region. Conclusions and clinical importance – This study revealed the unique gene structure of canine FLG that results in production of FLG monomers larger than those of humans or mice. The anti‐dog FLG antibodies raised in this study identified FLG in dog skin. These antibodies will enable us to screen FLG‐deficient dogs with canine atopic dermatitis or ichthyosis. Résumé Contexte – La filaggrine (FLG) est une protéine clé de la formation de la barrière cutanée et de l’hydratation du stratum corneum. Chez l’homme, une forte association entre les mutations du gène FLG et la dermatite atopique a été rapportée. Bien qu’une pathogénie et des manifestations cliniques similaires soient soutenues dans la dermatite atopique canine, notre compréhension de la FLG canine est limitée. Hypothèse/Objectives – Le but de cette étude était de déterminer la structure du gène FLG canin et de sélectionner des anticorps anti‐FLG canin, qui seront utiles pour détecter les protéines FLG dans la peau du chien. Méthodes – La structure du gène FLG canin a été déterminée par l’analyse de la séquence d’ADN du génome canin accessible au public. Des anticorps polyclonaux anti‐FLG canin ont été identifiés sur base de l’analyse de séquence de la FLG canine et utilisés pour définir le patron d’expression de la FLG dans la peau de chien par western blot et immunohistochimie. Résultats – L’analyse de la séquence d’ADN génomique a révélé que la FLG canine contenait quatre unités de séquences répétées correspondant à la protéine monomère FLG. Les Western blots avec des sondes anti‐monomères de FLG ont détectés deux bandes à 59 et 54 kDa, qui étaient les tailles estimées. L’immunohistochimie a montré que la FLG canine est exprimée dans le stratum granulosum de l’épiderme comme un patron de coloration granulaire dans la région cytoplasmique. Conclusions et importance clinique – Cette étude a révélé la structure génétique unique de la FLG canine qui entraîne la production de monomères de FLG plus gros que ceux des humains ou des souris. Les anticorps anti‐FLG canine identifiés dans notre étude a identifié la FLG dans la peau du chien. Ces anticorps nous permettront d’identifier les chiens déficients en FLG atteints de dermatite atopique canine ou d’ichtyose. Resumen Introduccion – la filagrina (FLG) es una proteína dominante para la formación de la barrera de la piel y la hidratación del estrato corneo. En seres humanos se ha indicado la existencia de una asociación marcada entre las mutaciones del gen de FLG y la presencia de dermatitis atópica. Aunque se ha sugerido una patogenia y manifestaciones clínicas similares en la dermatitis atópica canina, nuestra comprensión de la FLG canina es limitada. Hipótesis/ objetivos – el propósito de este estudio fue determinar la estructura del gen de la FLG canina y producir los anticuerpos frente a la FLG canina, que serán útiles para detectar la proteína FLG en la piel de perro. Métodos – la estructura del gen de la FLG canina fue determinada analizando la secuencia de dominio público del DNA genómico canino. Anticuerpos policlonales frente a la FLG canina se produjeron basados en la secuencia de la proteína y se utilizaron para definir el patrón de expresión de la FLG en la piel del perro por westernblot e inmunohistoquímica. Resultados – el análisis de la secuencia del DNA genómico indicó que la FLG canina tenía cuatro unidades de secuencias repetidas correspondiendo al monómero de FLG. El westernblot con anticuerpos frente al monómero de FLG canina detectó dos bandas de 59 y 54 kDa, que fueron tamaños estimados. Los resultados de la inmunohistoquímica demostraron que la FLG canina se expresaba en el estrato granuloso de la epidermis con un patrón granular en la región citoplásmica. Conclusiones e importancia clínica – este estudio reveló la estructura única del gen de la FLG canina que da lugar a la producción de los monómeros de FLG de mayor tamaño que los de seres humanos o de ratones. Los anticuerpos frente a la FLG canina producidos en este estudio identificaron la FLG en la piel de perro. Estos anticuerpos nos estudiar perros deficientes en FLG con dermatitis atópica o ictiosis caninas. Zusammenfassung Hintergrund – Filaggrin (FLG) ist ein Schlüsselprotein für die Bildung der Hautbarriere und der Hydrierung des Stratum Corneum. Beim Menschen wurde ein deutlicher Zusammenhang zwischen FLG Genmutationen und atopischer Dermatitis beschrieben. Obwohl eine ähnliche Pathogenese und klinische Manifestation bei der atopischen Dermatitis des Hundes diskutiert wird, ist unser Verständnis des caninen FLG limitiert. Hypothese/Ziele – Das Ziel dieser Studie war es, die Struktur des caninen FLG Gens zu bestimmen und Antikörper gegen FLG des Hundes zu produzieren, die beim Auffinden von FLG Protein in der Hundehaut hilfreich sein werden. Methoden – Die Struktur des caninen FLG Gens wurde unter Verwendung der öffentlich verfügbaren Sequenz des DNA‐Genoms des Hundes bestimmt. Polyklonale anti‐Hund FLG Antikörper wurden basierend auf der Sequenzanalyse des caninen FLG erzeugt und dazu verwendet, das Muster der FLG Exprimierung in der Hundehaut mittels Westernblotting und Immunhistochemie zu definieren. Ergebnisse – Die Sequenzanalyse der DNA Sequenz des Genoms zeigte, dass canines FLG vier Einheiten einer sich wiederholenden Sequenz beinhaltete, welche mit dem Protein des FLG Monomers übereinstimmte. Westernblots, bei denen als Probe das anti‐Hund FLG Monomer verwendet wurde, zeigten zwei Banden bei 59 und 54 kDa, wobei es sich um geschätzte Größen handelte. Die Ergebnisse der Immunhistochemie zeigten, dass canines FLG im Stratum granulosum der Epidermis in Form eines granulären Farbmusters in der zytoplasmatischen Region exprimiert wurde. Schlussfolgerungen und klinische Bedeutung – In dieser Studie konnte die einzigartige Genstruktur des caninen FLG dargestellt werden, welches in der Entstehung von FLG Monomeren resultiert, die größer sind als die von Menschen oder Mäusen. Die anti‐Hund Antikörper, die in dieser Studie erzeugt wurden, identifizierten FLG in der Hundehaut. Diese Antikörper werden es uns ermöglichen, Hunde mit FLG Mangel bei atopischer Dermatitis oder Ichthyose herauszufiltern. |
Author | Kanda, Satoko Iwasaki, Toshiroh Sasaki, Takashi Shiohama, Aiko Nishifuji, Koji Kudoh, Jun Amagai, Masayuki |
Author_xml | – sequence: 1 givenname: Satoko surname: Kanda fullname: Kanda, Satoko organization: Laboratory of Veterinary Internal Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan – sequence: 2 givenname: Takashi surname: Sasaki fullname: Sasaki, Takashi organization: Department of Dermatology – sequence: 3 givenname: Aiko surname: Shiohama fullname: Shiohama, Aiko organization: Laboratory of Gene Medicine – sequence: 4 givenname: Koji surname: Nishifuji fullname: Nishifuji, Koji organization: Laboratory of Veterinary Internal Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan – sequence: 5 givenname: Masayuki surname: Amagai fullname: Amagai, Masayuki organization: Department of Dermatology – sequence: 6 givenname: Toshiroh surname: Iwasaki fullname: Iwasaki, Toshiroh organization: Laboratory of Veterinary Internal Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan – sequence: 7 givenname: Jun surname: Kudoh fullname: Kudoh, Jun organization: Laboratory of Gene Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23331676$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkEFPHCEUx4mx0dX6FRqOvcwUBhiWJh7q1mpT26bGukeCzGNlnWVWmElXP32Zrt2zXOCF_-89-B2h_dAFQAhTUtK8PixLympRMFrzsiK0KgmlRJSbPTTZXeyjCVFCFZwrdoiOUloSQqRS7AAdVozliKwnaD67N9HYHqJ_Nr3vAu4ctib4ANj51iwW0YePeAG5Tn0cbD9EwCY0eB27HnzAsFlHSGlEc9V0C5wefHiL3jjTJjh52Y_R7y_nN7PL4urnxdfZp6vCcslEQSuupGw4k44xQZ0EZ6StrWokFbx2FTHubiqoIRVnRFFSU8qUqJ2Q1pHplB2j99u--TmPA6Rer3yy0LYmQDckTSvJJOGMkhydbqM2dilFcHod_crEJ02JHrXqpR7t6dGeHrXqf1r1JqPvXqYMdytoduB_jzlwug388S08vbqxvv18Pp4yX2x5n3rY7HgTH3SdPyD0_MeFvj77fvPtWsz1L_YXEkOWNQ |
CitedBy_id | crossref_primary_10_1136_inp_f6662 crossref_primary_10_2478_fv_2021_0024 crossref_primary_10_1186_s12862_016_0851_5 crossref_primary_10_1111_exd_12681 crossref_primary_10_1111_vde_12443 crossref_primary_10_1111_j_1365_3164_2012_01097_x crossref_primary_10_1369_0022155418798807 crossref_primary_10_1111_vde_12965 crossref_primary_10_1111_vde_13007 crossref_primary_10_3390_ani14030478 crossref_primary_10_1007_s11259_022_09947_y crossref_primary_10_1111_vde_12197 crossref_primary_10_1111_vde_12031 crossref_primary_10_1080_01652176_2020_1758357 |
Cites_doi | 10.1111/j.1396-0296.2004.04S1005.x 10.1016/j.jdermsci.2008.02.009 10.1046/j.0962-1083.2001.01452.x 10.1111/1523-1747.ep12338501 10.1038/ng1743 10.1111/j.1365-2133.2009.09406.x 10.1016/S0021-9258(18)35905-2 10.1016/S0165-2427(01)00297-5 10.1006/geno.1994.1522 10.1038/ng.358 10.1046/j.1523-1747.2002.01831.x 10.1016/0378-1119(95)00714-8 10.1021/bi00492a018 10.1093/nar/25.24.4876 10.1111/j.1346-8138.2010.01136.x 10.1038/jid.2009.98 10.1111/j.1365-3164.2009.00844.x 10.1038/jid.2011.342 10.1038/ng2020 10.1016/S0021-9258(18)94264-X 10.1046/j.1523-1747.2002.00133.x 10.1111/j.1432-0436.1991.tb00241.x 10.1111/j.1600-0625.2010.01109.x |
ContentType | Journal Article |
Copyright | 2013 The Authors. Veterinary Dermatology © 2013 ESVD and ACVD 2013 The Authors. Veterinary Dermatology © 2013 ESVD and ACVD. |
Copyright_xml | – notice: 2013 The Authors. Veterinary Dermatology © 2013 ESVD and ACVD – notice: 2013 The Authors. Veterinary Dermatology © 2013 ESVD and ACVD. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1111/j.1365-3164.2012.01105.x |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Veterinary Medicine |
EISSN | 1365-3164 |
EndPage | e7 |
ExternalDocumentID | 10_1111_j_1365_3164_2012_01105_x 23331676 VDE1105 ark_67375_WNG_RBMTKR5W_Q |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K .3N .GA .Y3 05W 0R~ 10A 123 1B1 1OB 1OC 29Q 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX EYRJQ F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HVLQZ HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M41 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NQ- O66 O9- OIG OVD P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIG RIWAO RJQFR ROL RPZ RX1 SAMSI SUPJJ TEORI UB1 W8V W99 WBKPD WIH WIK WOHZO WOIKV WPGGZ WQJ WRC WXSBR XG1 ZZTAW ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7X8 |
ID | FETCH-LOGICAL-c4735-124977d437f3351f7efa7c6c9d71546f20afb851a024309106113956f57cf0883 |
IEDL.DBID | DR2 |
ISSN | 0959-4493 |
IngestDate | Wed Dec 04 00:29:40 EST 2024 Fri Dec 06 01:57:34 EST 2024 Sat Sep 28 07:52:27 EDT 2024 Sat Aug 24 00:55:04 EDT 2024 Wed Oct 30 09:56:27 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2013 The Authors. Veterinary Dermatology © 2013 ESVD and ACVD. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4735-124977d437f3351f7efa7c6c9d71546f20afb851a024309106113956f57cf0883 |
Notes | istex:D269BAE4D0B3CDDBCD3536A7B1A8908DD1D59E6E ArticleID:VDE1105 ark:/67375/WNG-RBMTKR5W-Q No conflicts of interest have been declared. in vivo Sources of Funding Conflict of Interest Human Metabolomic Systems Biology from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. This work was supported in part by a grant from the Ministry of Health, Labour and Welfare of Japan (Research for Intractable Diseases) and the Global COE Program for ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23331676 |
PQID | 1273704310 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1273704310 crossref_primary_10_1111_j_1365_3164_2012_01105_x pubmed_primary_23331676 wiley_primary_10_1111_j_1365_3164_2012_01105_x_VDE1105 istex_primary_ark_67375_WNG_RBMTKR5W_Q |
PublicationCentury | 2000 |
PublicationDate | February 2013 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: February 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Veterinary dermatology |
PublicationTitleAlternate | Vet Dermatol |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Smith FJ, Irvine AD, Terron-Kwiatkowski A et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 2006; 38: 337-342. Terada Y, Nagata M, Murayama N et al. Clinical comparison of human and canine atopic dermatitis using human diagnostic criteria (Japanese Dermatological Association, 2009): proposal of provisional diagnostic criteria for canine atopic dermatitis. J Dermatol 2011; 38: 784-790. Sasaki T, Kudoh J, Ebihara T et al. Sequence analysis of filaggrin gene by novel shotgun method in Japanese atopic dermatitis. J Dermatol Sci 2008; 51: 113-120. Marsella R, Girolomoni G. Canine models of atopic dermatitis: a useful tool with untapped potential. J Invest Dermatol 2009; 129: 2351-2357. Pearton DJ, Dale BA, Presland RB. Functional analysis of the profilaggrin N-terminal peptide: identification of domains that regulate nuclear and cytoplasmic distribution. J Invest Dermatol 2002; 119: 661-669. Fallon PG, Sasaki T, Sandilands A et al. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat Genet 2009; 41: 602-608. Sousa CA, Marsella R. The ACVD task force on canine atopic dermatitis (II): genetic factors. Vet Immunol Immunopathol 2001; 81: 153-157. Sandilands A, Terron-Kwiatkowski A, Hull PR et al. Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet 2007; 39: 650-654. Mischke D, Korge BP, Marenholz I et al. Genes encoding structural proteins of epidermal cornification and S100 calcium-binding proteins form a gene complex ('epidermal differentiation complex') on human chromosome 1q21. J Invest Dermatol 1996; 106: 989-992. Resing KA, Walsh KA, Haugen-Scofield J et al. Identification of proteolytic cleavage sites in the conversion of profilaggrin to filaggrin in mammalian epidermis. J Biol Chem 1989; 264: 1837-1845. Zhang D, Karunaratne S, Kessler M et al. Characterization of mouse profilaggrin: evidence for nuclear enlargement and translocation of the profilaggrin B-domain during epidermal differentiation. J Invest Dermatol 2002; 119: 905-912. Lindblad-Toh K, Wade CM, Mikkelsen TS et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005; 438: 803-819. Rothnagel JA, Longley MA, Bundman DS et al. Characterization of the mouse loricrin gene: linkage with profilaggrin and the flaky tail and soft coat mutant loci on chromosome 3. Genomics 1994; 23: 450-456. Chervet L, Galichet A, McLean WH et al. Missing C-terminal filaggrin expression, NFkappaB activation and hyperproliferation identify the dog as a putative model to study epidermal dysfunction in atopic dermatitis. Exp Dermatol 2010; 19: e343-e346. Presland RB, Haydock PV, Fleckman P et al. Characterization of the human epidermal profilaggrin gene. Genomic organization and identification of an S-100-like calcium binding domain at the amino terminus. J Biol Chem 1992; 267: 23772-23781. Sonnhammer EL, Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 1995; 167: GC1-GC10. Rawlings AV, Harding CR. Moisturization and skin barrier function. Dermatol Ther 2004; 17(Suppl 1): 43-48. Marsella R, Samuelson D, Harrington L. Immunohistochemical evaluation of filaggrin polyclonal antibodies in atopic and normal beagles. Vet Dermatol 2009; 20: 547-554. Brown SJ, Kroboth K, Sandilands A et al. Intragenic copy number variation within filaggrin contributes to the risk of atopic dermatitis with a dose-dependent effect. J Invest Dermatol 2012; 132: 98-104. Thompson JD, Gibson TJ, Plewniak F et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876-4882. Manabe M, Sanchez M, Sun TT et al. Interaction of filaggrin with keratin filaments during advanced stages of normal human epidermal differentiation and in ichthyosis vulgaris. Differentiation 1991; 48: 43-50. Gan SQ, McBride OW, Idler WW et al. Organization, structure, and polymorphisms of the human profilaggrin gene. Biochemistry 1990; 29: 9432-9440. Nemoto-Hasebe I, Akiyama M, Nomura T et al. FLG mutation p.Lys4021X in the C-terminal imperfect filaggrin repeat in Japanese patients with atopic eczema. Br J Dermatol 2009; 161: 1387-1390. 2007; 39 2001; 81 2009; 41 2012; 132 1991; 48 2009; 20 2010; 19 2004; 17 1990; 29 2006; 38 1992; 267 1997; 25 1989; 264 1994; 23 2005; 438 2009; 161 2002; 119 1995; 167 2009; 129 2011; 38 2008; 51 1996; 106 e_1_2_6_20_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_18_2 e_1_2_6_9_2 e_1_2_6_19_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_12_2 e_1_2_6_24_2 e_1_2_6_13_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_10_2 e_1_2_6_22_2 e_1_2_6_11_2 e_1_2_6_21_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_15_2 |
References_xml | – volume: 267 start-page: 23772 year: 1992 end-page: 23781 article-title: Characterization of the human epidermal profilaggrin gene. Genomic organization and identification of an S‐100‐like calcium binding domain at the amino terminus publication-title: J Biol Chem – volume: 51 start-page: 113 year: 2008 end-page: 120 article-title: Sequence analysis of filaggrin gene by novel shotgun method in Japanese atopic dermatitis publication-title: J Dermatol Sci – volume: 20 start-page: 547 year: 2009 end-page: 554 article-title: Immunohistochemical evaluation of filaggrin polyclonal antibodies in atopic and normal beagles publication-title: Vet Dermatol – volume: 19 start-page: e343 year: 2010 end-page: e346 article-title: Missing C‐terminal filaggrin expression, NFkappaB activation and hyperproliferation identify the dog as a putative model to study epidermal dysfunction in atopic dermatitis publication-title: Exp Dermatol – volume: 38 start-page: 784 year: 2011 end-page: 790 article-title: Clinical comparison of human and canine atopic dermatitis using human diagnostic criteria (Japanese Dermatological Association, 2009): proposal of provisional diagnostic criteria for canine atopic dermatitis publication-title: J Dermatol – volume: 81 start-page: 153 year: 2001 end-page: 157 article-title: The ACVD task force on canine atopic dermatitis (II): genetic factors publication-title: Vet Immunol Immunopathol – volume: 23 start-page: 450 year: 1994 end-page: 456 article-title: Characterization of the mouse loricrin gene: linkage with profilaggrin and the flaky tail and soft coat mutant loci on chromosome 3 publication-title: Genomics – volume: 132 start-page: 98 year: 2012 end-page: 104 article-title: Intragenic copy number variation within filaggrin contributes to the risk of atopic dermatitis with a dose‐dependent effect publication-title: J Invest Dermatol – volume: 39 start-page: 650 year: 2007 end-page: 654 article-title: Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema publication-title: Nat Genet – volume: 29 start-page: 9432 year: 1990 end-page: 9440 article-title: Organization, structure, and polymorphisms of the human profilaggrin gene publication-title: Biochemistry – volume: 161 start-page: 1387 year: 2009 end-page: 1390 article-title: mutation p.Lys4021X in the C‐terminal imperfect filaggrin repeat in Japanese patients with atopic eczema publication-title: Br J Dermatol – volume: 41 start-page: 602 year: 2009 end-page: 608 article-title: A homozygous frameshift mutation in the mouse gene facilitates enhanced percutaneous allergen priming publication-title: Nat Genet – volume: 38 start-page: 337 year: 2006 end-page: 342 article-title: Loss‐of‐function mutations in the gene encoding filaggrin cause ichthyosis vulgaris publication-title: Nat Genet – volume: 129 start-page: 2351 year: 2009 end-page: 2357 article-title: Canine models of atopic dermatitis: a useful tool with untapped potential publication-title: J Invest Dermatol – volume: 119 start-page: 661 year: 2002 end-page: 669 article-title: Functional analysis of the profilaggrin N‐terminal peptide: identification of domains that regulate nuclear and cytoplasmic distribution publication-title: J Invest Dermatol – volume: 17 start-page: 43 issue: Suppl 1 year: 2004 end-page: 48 article-title: Moisturization and skin barrier function publication-title: Dermatol Ther – volume: 106 start-page: 989 year: 1996 end-page: 992 article-title: Genes encoding structural proteins of epidermal cornification and S100 calcium‐binding proteins form a gene complex (‘epidermal differentiation complex’) on human chromosome 1q21 publication-title: J Invest Dermatol – volume: 264 start-page: 1837 year: 1989 end-page: 1845 article-title: Identification of proteolytic cleavage sites in the conversion of profilaggrin to filaggrin in mammalian epidermis publication-title: J Biol Chem – volume: 167 start-page: GC1 year: 1995 end-page: GC10 article-title: A dot‐matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis publication-title: Gene – volume: 25 start-page: 4876 year: 1997 end-page: 4882 article-title: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools publication-title: Nucleic Acids Res – volume: 48 start-page: 43 year: 1991 end-page: 50 article-title: Interaction of filaggrin with keratin filaments during advanced stages of normal human epidermal differentiation and in ichthyosis vulgaris publication-title: Differentiation – volume: 119 start-page: 905 year: 2002 end-page: 912 article-title: Characterization of mouse profilaggrin: evidence for nuclear enlargement and translocation of the profilaggrin B‐domain during epidermal differentiation publication-title: J Invest Dermatol – volume: 438 start-page: 803 year: 2005 end-page: 819 article-title: Genome sequence, comparative analysis and haplotype structure of the domestic dog publication-title: Nature – ident: e_1_2_6_3_2 doi: 10.1111/j.1396-0296.2004.04S1005.x – ident: e_1_2_6_19_2 doi: 10.1016/j.jdermsci.2008.02.009 – ident: e_1_2_6_11_2 doi: 10.1046/j.0962-1083.2001.01452.x – ident: e_1_2_6_15_2 doi: 10.1111/1523-1747.ep12338501 – ident: e_1_2_6_4_2 doi: 10.1038/ng1743 – ident: e_1_2_6_22_2 doi: 10.1111/j.1365-2133.2009.09406.x – ident: e_1_2_6_9_2 doi: 10.1016/S0021-9258(18)35905-2 – ident: e_1_2_6_8_2 doi: 10.1016/S0165-2427(01)00297-5 – ident: e_1_2_6_16_2 doi: 10.1006/geno.1994.1522 – ident: e_1_2_6_14_2 doi: 10.1038/ng.358 – ident: e_1_2_6_21_2 doi: 10.1046/j.1523-1747.2002.01831.x – ident: e_1_2_6_12_2 doi: 10.1016/0378-1119(95)00714-8 – ident: e_1_2_6_17_2 doi: 10.1021/bi00492a018 – ident: e_1_2_6_13_2 doi: 10.1093/nar/25.24.4876 – ident: e_1_2_6_7_2 doi: 10.1111/j.1346-8138.2010.01136.x – ident: e_1_2_6_6_2 doi: 10.1038/jid.2009.98 – ident: e_1_2_6_23_2 doi: 10.1111/j.1365-3164.2009.00844.x – ident: e_1_2_6_20_2 doi: 10.1038/jid.2011.342 – ident: e_1_2_6_5_2 doi: 10.1038/ng2020 – ident: e_1_2_6_18_2 doi: 10.1016/S0021-9258(18)94264-X – ident: e_1_2_6_10_2 doi: 10.1046/j.1523-1747.2002.00133.x – ident: e_1_2_6_2_2 doi: 10.1111/j.1432-0436.1991.tb00241.x – ident: e_1_2_6_24_2 doi: 10.1111/j.1600-0625.2010.01109.x |
SSID | ssj0007993 |
Score | 2.074551 |
Snippet | Background – Filaggrin (FLG) is a key protein for skin barrier formation and hydration of the stratum corneum. In humans, a strong association between FLG... Filaggrin (FLG) is a key protein for skin barrier formation and hydration of the stratum corneum. In humans, a strong association between FLG gene mutations... Background – Filaggrin (FLG) is a key protein for skin barrier formation and hydration of the stratum corneum. In humans, a strong association between FLG... BACKGROUNDFilaggrin (FLG) is a key protein for skin barrier formation and hydration of the stratum corneum. In humans, a strong association between FLG gene... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 25 |
SubjectTerms | Animals Base Sequence Blotting, Western DNA - genetics Dogs Gene Expression Regulation - physiology Genomics Immunohistochemistry - veterinary Intermediate Filament Proteins - genetics Intermediate Filament Proteins - metabolism Molecular Sequence Data Skin - metabolism |
Title | Characterization of canine filaggrin: gene structure and protein expression in dog skin |
URI | https://api.istex.fr/ark:/67375/WNG-RBMTKR5W-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-3164.2012.01105.x https://www.ncbi.nlm.nih.gov/pubmed/23331676 https://search.proquest.com/docview/1273704310 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB5KAqWXPtyX07SoUHpb411JK6u3PBtaHKhJ4tyEVg9jXNYljsHk13dGu3brkkMpve0DidWMRvq0-vQNwIegB30vqkHmpBWZsNJnle_7TGhX6kqFnKdDYsPz8uxSfLmW1y3_ic7CNPoQmx9uFBlpvKYAt9ViO8iJocUR7xNDq-jRTCZ7hCdzrojddzz6pSSltG6zyutMCM23ST33VrQ1U-2S0Vf3wdBtVJumpdMnMFs3qGGjzHrL26rn7v7Qevw_LX4Kj1v0yg6a7vYMHoS6Aw-H7f58BzpXxK5JR3zZ-ulzGB9tVKGbQ59sHhm6FF-yOP1uJxMs8olhVw6s0bNd3gRma8-SisS0ZmHV8nVrhnd-PmGL2bR-AZenJxdHZ1mb0CFzlOE4o0TXSnnBVeRc5lGFaJUrnfYKkVwZi76NFUJASzKJBGTKHAGqLKNULuJwyF_CTj2vw2tgLmjuJLdKh1xUDtfZBffSKusHIQrf70K-dp750eh2mN_WO2hHQ3Y0ZEeT7GhWXfiYvLwpYG9mxHtT0ozPP5vR4fDi60iOzbcuvF93A4PRSFsstg7z5cLkiAYV6RXhB7xq-semtoJzkh0ou1AmL__1d5mr4xO62vvXgm_gUZGyeBALZx920JPhLWKp2-pdipKffdENsQ |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQKwEX2oZXSluMhLhtlF3b65gb9EGgTSSitOnN8voRRak2qG2kqL--M95NSlAPCHHbh7xaz3jsz_bnbwj56FWn7XjRSawwPOFGuKRwbZdwZXNVSJ-yeEis18-75_zHpbis0wHhWZhKH2K14IaREftrDHBckF6PcqRoMQD8SNHKWjiUiRYAyk2I_hT5XUeDBy0pqVSdV14lnCu2Tut59EtrY9Ummn3xGBBdx7VxYDrZIlfLKlV8lGlrflu07N0fao__qc7b5EUNYOmXqsXtkCe-bJCnvXqLvkEaF0iwiad86fLpSzI6XAlDV-c-6SxQ8Cq8pGFyZcZjKPKZQmv2tJK0nV97akpHo5DEpKR-UVN2Swp3bjamN9NJ-YqcnxwPD7tJndMhsZjkOMFc11I6zmRgTKRB-mCkza1yEsBcHrK2CQWgQINKiYhl8hQwqsiDkDZAj8hek41yVvq3hFqvmBXMSOVTXliYamfMCSON6_jAXbtJ0qX39K9KukP_NuUBO2q0o0Y76mhHvWiST9HNqwLmeorUNyn0qP9ND772hqcDMdI_m-TDsh1oCEjcZTGln81vdAqAUKJkEfzAm6qBrL6WMYbKA3mT5NHNf_1f-uLoGK92_7Xge_KsO-yd6bPv_dN35HkWk3ogKWePbIBX_T5Aq9viIIbMPX1-EdI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hVqq4QAmvUB5GQtw2yq5fMTdoGgolEURt05vl9SOKgjZV20gRvx6PdxMI6gEhbvuQrfWMx_68_vwNwBuvel3Hyl5muWEZM9xlpeu6jCkrVCl9TtMhseFIHJ-xzxf8ouE_4VmYWh9i88MNIyON1xjgly5sBzkytGjE-8jQKjo4k_FOxJO7TBQKdfT7419SUlKpJq28yhhTdJvVc2tNW1PVLlp9dRsO3Ya1aV4a3If5ukU1HWXeWd6UHfvjD7HH_9PkfbjXwFfyvu5vD-COr1qwN2w26FvQOkd6TTrjS9ZPH8LkcCMLXZ_6JItAok_jSxJm3810Gou8I7Eve1IL2i6vPDGVI0lGYlYRv2oIuxWJd24xJdfzWfUIzgZHp4fHWZPRIbOY4jjDTNdSOkZloJTnQfpgpBVWORmhnAhF14QyYkCDOomIZEQeESoXgUsb4nhIH8NOtaj8UyDWK2o5NVL5nJU2LrQL6riRxvV8YK7bhnztPH1ZC3fo3xY80Y4a7ajRjjrZUa_a8DZ5eVPAXM2R-Ca5now-6vGH4enJmE_0tza8XncDHcMR91hM5RfLa51HOChRsCh-wJO6f2xqKyhF3QHRBpG8_Nffpc_7R3j17F8LvoK9r_2B_vJpdHIAd4uU0QMZOc9hJzrVv4i46qZ8mQLmJyRYEIE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+canine+filaggrin%3A+gene+structure+and+protein+expression+in+dog+skin&rft.jtitle=Veterinary+dermatology&rft.au=Kanda%2C+Satoko&rft.au=Sasaki%2C+Takashi&rft.au=Shiohama%2C+Aiko&rft.au=Nishifuji%2C+Koji&rft.date=2013-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0959-4493&rft.eissn=1365-3164&rft.volume=24&rft.issue=1&rft.spage=25&rft.epage=e7&rft_id=info:doi/10.1111%2Fj.1365-3164.2012.01105.x&rft.externalDBID=10.1111%252Fj.1365-3164.2012.01105.x&rft.externalDocID=VDE1105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-4493&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-4493&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-4493&client=summon |