Synthesis, characterization, conductivity, and gas‐sensing performance of copolymer nanocomposites based on copper alumina and poly(aniline‐co‐pyrrole)
A series of copolymer nanocomposites based on poly(aniline‐co‐pyrrole) (PANI‐co‐PPy) with different contents of copper alumina (Cu‐Al2O3) nanoparticles were synthesized by benign in situ chemical oxidation polymerization. The structural, thermal transition, and morphological interpretations were car...
Saved in:
Published in | Polymer engineering and science Vol. 62; no. 8; pp. 2402 - 2410 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.08.2022
Society of Plastics Engineers, Inc Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0032-3888 1548-2634 |
DOI | 10.1002/pen.26014 |
Cover
Loading…
Abstract | A series of copolymer nanocomposites based on poly(aniline‐co‐pyrrole) (PANI‐co‐PPy) with different contents of copper alumina (Cu‐Al2O3) nanoparticles were synthesized by benign in situ chemical oxidation polymerization. The structural, thermal transition, and morphological interpretations were carried out by Fourier‐transform infrared spectroscopy (FTIR), x‐ray diffraction (XRD), differential scanning calorimetry (DSC), and high‐resolution transmission electron microscope (HR‐TEM). The electrical properties such as alternating current (AC) conductivity and dielectric measurements were performed at room temperature to verify their application in developing new electronic devices. The presence of nanoparticles in the copolymer and the synergistic interaction in the copolymer matrix was confirmed by FTIR and XRD. HR‐TEM indicates the nanosized uniform dispersion of nanofiller in the copolymer matrix. DSC revealed a reduction in the flexibility of polymer with an increase in glass transition temperature of copolymer composites. AC conductivity measurement manifested an increased hopping of charge carriers in nanocomposites when compared with pristine PANI‐co‐PPy. Dielectric properties were maximum for copolymer with 5 wt% Cu‐Al2O3. Excellent gas sensing traits were observed for copolymer nanocomposites due to the electron transfers existing between PANI‐co‐PPy and ammonia gas. The maximum gas‐sensing properties and electrical conductivity were observed for 5 wt% copolymer composites. The magnificent material properties make PANI‐co‐PPy/Cu‐Al2O3 nanocomposites, a promising contender for developing nano‐electronic devices.
The HR‐TEM images of different contents of Cu‐Al2O3 incorporated copolymer nanocomposites showed the presence of spherically shaped nanofillers, which are uniformly distributed in the copolymer matrix at 5 wt% loading. When the loading of nanoparticles reached to 7 wt%, unevenly distributed nanoparticles with agglomerated morphology is visible. |
---|---|
AbstractList | A series of copolymer nanocomposites based on poly(aniline-co-pyrrole) (PANI-co-PPy) with different contents of copper alumina (Cu-[Al.sub.2][O.sub.3]) nanoparticles were synthesized by benign in situ chemical oxidation polymerization. The structural, thermal transition, and morphological interpretations were carried out by Fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), differential scanning calorimetry (DSC), and high-resolution transmission electron microscope (HR-TEM). The electrical properties such as alternating current (AC) conductivity and dielectric measurements were performed at room temperature to verify their application in developing new electronic devices. The presence of nanoparticles in the copolymer and the synergistic interaction in the copolymer matrix was confirmed by FTIR and XRD. HR-TEM indicates the nanosized uniform dispersion of nanofiller in the copolymer matrix. DSC revealed a reduction in the flexibility of polymer with an increase in glass transition temperature of copolymer composites. AC conductivity measurement manifested an increased hopping of charge carriers in nanocomposites when compared with pristine PANI-co-PPy. Dielectric properties were maximum for copolymer with 5 wt% Cu-[Al.sub.2][O.sub.3]. Excellent gas sensing traits were observed for copolymer nanocomposites due to the electron transfers existing between PANI-co-PPy and ammonia gas. The maximum gassensing properties and electrical conductivity were observed for 5 wt% copolymer composites. The magnificent material properties make PANI-co-PPy/Cu[Al.sub.2][O.sub.3] nanocomposites, a promising contender for developing nano-electronic devices. A series of copolymer nanocomposites based on poly(aniline‐ co ‐pyrrole) (PANI‐ co ‐PPy) with different contents of copper alumina (Cu‐Al 2 O 3 ) nanoparticles were synthesized by benign in situ chemical oxidation polymerization. The structural, thermal transition, and morphological interpretations were carried out by Fourier‐transform infrared spectroscopy (FTIR), x‐ray diffraction (XRD), differential scanning calorimetry (DSC), and high‐resolution transmission electron microscope (HR‐TEM). The electrical properties such as alternating current (AC) conductivity and dielectric measurements were performed at room temperature to verify their application in developing new electronic devices. The presence of nanoparticles in the copolymer and the synergistic interaction in the copolymer matrix was confirmed by FTIR and XRD. HR‐TEM indicates the nanosized uniform dispersion of nanofiller in the copolymer matrix. DSC revealed a reduction in the flexibility of polymer with an increase in glass transition temperature of copolymer composites. AC conductivity measurement manifested an increased hopping of charge carriers in nanocomposites when compared with pristine PANI‐ co ‐PPy. Dielectric properties were maximum for copolymer with 5 wt% Cu‐Al 2 O 3 . Excellent gas sensing traits were observed for copolymer nanocomposites due to the electron transfers existing between PANI‐ co ‐PPy and ammonia gas. The maximum gas‐sensing properties and electrical conductivity were observed for 5 wt% copolymer composites. The magnificent material properties make PANI‐ co ‐PPy/Cu‐Al 2 O 3 nanocomposites, a promising contender for developing nano‐electronic devices. A series of copolymer nanocomposites based on poly(aniline-co-pyrrole) (PANI-co-PPy) with different contents of copper alumina (Cu-[Al.sub.2][O.sub.3]) nanoparticles were synthesized by benign in situ chemical oxidation polymerization. The structural, thermal transition, and morphological interpretations were carried out by Fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), differential scanning calorimetry (DSC), and high-resolution transmission electron microscope (HR-TEM). The electrical properties such as alternating current (AC) conductivity and dielectric measurements were performed at room temperature to verify their application in developing new electronic devices. The presence of nanoparticles in the copolymer and the synergistic interaction in the copolymer matrix was confirmed by FTIR and XRD. HR-TEM indicates the nanosized uniform dispersion of nanofiller in the copolymer matrix. DSC revealed a reduction in the flexibility of polymer with an increase in glass transition temperature of copolymer composites. AC conductivity measurement manifested an increased hopping of charge carriers in nanocomposites when compared with pristine PANI-co-PPy. Dielectric properties were maximum for copolymer with 5 wt% Cu-[Al.sub.2][O.sub.3]. Excellent gas sensing traits were observed for copolymer nanocomposites due to the electron transfers existing between PANI-co-PPy and ammonia gas. The maximum gassensing properties and electrical conductivity were observed for 5 wt% copolymer composites. The magnificent material properties make PANI-co-PPy/Cu[Al.sub.2][O.sub.3] nanocomposites, a promising contender for developing nano-electronic devices. KEYWORDS conductivity, copper alumina, dielectric properties, gas sensing, nanocomposites, poly (aniline-co-pyrrole) A series of copolymer nanocomposites based on poly(aniline‐co‐pyrrole) (PANI‐co‐PPy) with different contents of copper alumina (Cu‐Al2O3) nanoparticles were synthesized by benign in situ chemical oxidation polymerization. The structural, thermal transition, and morphological interpretations were carried out by Fourier‐transform infrared spectroscopy (FTIR), x‐ray diffraction (XRD), differential scanning calorimetry (DSC), and high‐resolution transmission electron microscope (HR‐TEM). The electrical properties such as alternating current (AC) conductivity and dielectric measurements were performed at room temperature to verify their application in developing new electronic devices. The presence of nanoparticles in the copolymer and the synergistic interaction in the copolymer matrix was confirmed by FTIR and XRD. HR‐TEM indicates the nanosized uniform dispersion of nanofiller in the copolymer matrix. DSC revealed a reduction in the flexibility of polymer with an increase in glass transition temperature of copolymer composites. AC conductivity measurement manifested an increased hopping of charge carriers in nanocomposites when compared with pristine PANI‐co‐PPy. Dielectric properties were maximum for copolymer with 5 wt% Cu‐Al2O3. Excellent gas sensing traits were observed for copolymer nanocomposites due to the electron transfers existing between PANI‐co‐PPy and ammonia gas. The maximum gas‐sensing properties and electrical conductivity were observed for 5 wt% copolymer composites. The magnificent material properties make PANI‐co‐PPy/Cu‐Al2O3 nanocomposites, a promising contender for developing nano‐electronic devices. A series of copolymer nanocomposites based on poly(aniline‐co‐pyrrole) (PANI‐co‐PPy) with different contents of copper alumina (Cu‐Al2O3) nanoparticles were synthesized by benign in situ chemical oxidation polymerization. The structural, thermal transition, and morphological interpretations were carried out by Fourier‐transform infrared spectroscopy (FTIR), x‐ray diffraction (XRD), differential scanning calorimetry (DSC), and high‐resolution transmission electron microscope (HR‐TEM). The electrical properties such as alternating current (AC) conductivity and dielectric measurements were performed at room temperature to verify their application in developing new electronic devices. The presence of nanoparticles in the copolymer and the synergistic interaction in the copolymer matrix was confirmed by FTIR and XRD. HR‐TEM indicates the nanosized uniform dispersion of nanofiller in the copolymer matrix. DSC revealed a reduction in the flexibility of polymer with an increase in glass transition temperature of copolymer composites. AC conductivity measurement manifested an increased hopping of charge carriers in nanocomposites when compared with pristine PANI‐co‐PPy. Dielectric properties were maximum for copolymer with 5 wt% Cu‐Al2O3. Excellent gas sensing traits were observed for copolymer nanocomposites due to the electron transfers existing between PANI‐co‐PPy and ammonia gas. The maximum gas‐sensing properties and electrical conductivity were observed for 5 wt% copolymer composites. The magnificent material properties make PANI‐co‐PPy/Cu‐Al2O3 nanocomposites, a promising contender for developing nano‐electronic devices. The HR‐TEM images of different contents of Cu‐Al2O3 incorporated copolymer nanocomposites showed the presence of spherically shaped nanofillers, which are uniformly distributed in the copolymer matrix at 5 wt% loading. When the loading of nanoparticles reached to 7 wt%, unevenly distributed nanoparticles with agglomerated morphology is visible. |
Audience | Academic |
Author | Sankar, S. Ramesan, M. T. |
Author_xml | – sequence: 1 givenname: S. surname: Sankar fullname: Sankar, S. organization: University of Calicut – sequence: 2 givenname: M. T. orcidid: 0000-0002-5709-0479 surname: Ramesan fullname: Ramesan, M. T. email: mtramesan@uoc.ac.in organization: University of Calicut |
BookMark | eNp9kt9qFDEUxoNUcNt64RsMeGNhZ5tMMv8uS6laKFasXodM5mQ2ZSYZk0x1vPIRfAFfzicxuyvoyiqBEzj8vi9_zneMjow1gNAzglcE4-x8BLPKCkzYI7QgOavSrKDsCC0wpllKq6p6go69v8eRpXm9QN_vZhPW4LVfJnItnJABnP4igrYmdqxpJxn0gw7zMhGmTTrhf3z95sF4bbpkBKesG4SRkFgV8dH28wAuMcJYaYfReh3AJ43w0CbWbIioSUQ_DdqIreNG8kIY3WsD0VraWMbZOdvD2Sl6rETv4emv_QR9eHn1_vJ1enP76vry4iaVrKQsVW2tSiobQitZYVwXGagcK5VLKNqmYSUGQgALVmeMFkIWgqgcmlxlVMiG1vQEPd_5js5-nMAHfm8nZ-KRPCvqipG6LslvqhM9cG2UDfG_Bu0lvygJq0talWWk0gNUBwac6OOwlI7tPX51gI-rhUHLg4KzPUFkAnwOnZi859d37_bZ5R9sM8WpgY_F624d_E5yyFo6670DxUenB-FmTjDf5IvHfPFtviJ7_hcrddjmJt5f9_9TfIovmv9tzd9evdkpfgIfzOgE |
CitedBy_id | crossref_primary_10_1007_s11581_024_05911_9 crossref_primary_10_1007_s12034_022_02829_8 crossref_primary_10_1007_s11164_022_04881_9 crossref_primary_10_1016_j_sna_2022_114078 crossref_primary_10_1007_s10904_024_03010_w crossref_primary_10_1007_s10924_022_02649_1 crossref_primary_10_1177_14777606221136152 crossref_primary_10_1002_pen_26114 crossref_primary_10_1007_s10904_023_02539_6 crossref_primary_10_1080_02670836_2022_2152924 crossref_primary_10_1002_pen_26623 crossref_primary_10_1002_app_52913 crossref_primary_10_1016_j_jics_2024_101157 crossref_primary_10_1080_10601325_2022_2111262 crossref_primary_10_1016_j_arabjc_2024_105938 crossref_primary_10_1016_j_saa_2023_123712 crossref_primary_10_1002_pc_27159 crossref_primary_10_1016_j_heliyon_2023_e13544 crossref_primary_10_1515_ipp_2022_4270 crossref_primary_10_1002_pc_28777 |
Cites_doi | 10.1002/pen.24659 10.1007/s10973-020-10452-0 10.1016/j.msea.2013.10.074 10.1002/pen.24845 10.1016/j.inoche.2021.109184 10.1002/pen.24933 10.1016/j.ceramint.2015.01.081 10.1002/pc.26031 10.1002/pen.25545 10.1002/pen.23572 10.1002/pen.25318 10.1177/08927057221083495 10.1002/pen.25491 10.1002/pen.24677 10.1002/pc.25559 10.1002/anie.201908060 10.1002/pen.25701 10.1002/pen.25450 10.1002/pen.24868 10.1002/pc.21235 10.1016/j.apcatb.2008.05.019 10.1002/pen.21858 10.1016/j.optmat.2020.109835 10.1177/0967391120960658 10.1016/j.materresbull.2017.11.012 10.1002/pen.24329 10.1002/pc.25421 10.1002/pc.26170 |
ContentType | Journal Article |
Copyright | 2022 Society of Plastics Engineers. COPYRIGHT 2022 Society of Plastics Engineers, Inc. 2022 Society of Plastics Engineers |
Copyright_xml | – notice: 2022 Society of Plastics Engineers. – notice: COPYRIGHT 2022 Society of Plastics Engineers, Inc. – notice: 2022 Society of Plastics Engineers |
DBID | AAYXX CITATION N95 ISR 7SR 8FD JG9 |
DOI | 10.1002/pen.26014 |
DatabaseName | CrossRef Gale Business: Insights Gale In Context: Science Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1548-2634 |
EndPage | 2410 |
ExternalDocumentID | A714973877 10_1002_pen_26014 PEN26014 |
Genre | article |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | -~X .-4 .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 31~ 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8FE 8FG 8G5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABEML ABIJN ABJCF ABJNI ABPVW ABTAH ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AIXEN AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAAKF BAFTC BDRZF BENPR BES BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 DWQXO EBS EJD F00 F01 F04 FEDTE FOJGT G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IAO ICW IEA IOF ISR ITC IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M2Q M6K M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N95 N9A NDZJH NEJ NF~ NNB O66 O9- OIG P2P P2W P2X P4D P62 PALCI PDBOC PQQKQ PROAC PTHSS PV9 Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWL RWM RX1 RXW RYL RZL S0X SAMSI SUPJJ TUS U5U UB1 V2E W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XI7 XV2 ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c4734-fd9f73cb138c800962ef50ff5ce6dbb470e11e0a492436ac6a1f5eb5f23acb393 |
IEDL.DBID | DR2 |
ISSN | 0032-3888 |
IngestDate | Sat Jul 19 13:10:51 EDT 2025 Tue Jun 17 21:09:07 EDT 2025 Thu Jun 12 23:29:38 EDT 2025 Tue Jun 10 20:49:48 EDT 2025 Fri Jun 27 03:57:14 EDT 2025 Fri May 23 02:02:56 EDT 2025 Thu Apr 24 23:08:32 EDT 2025 Tue Jul 01 02:33:55 EDT 2025 Wed Jan 22 16:24:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4734-fd9f73cb138c800962ef50ff5ce6dbb470e11e0a492436ac6a1f5eb5f23acb393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5709-0479 |
PQID | 2698419971 |
PQPubID | 41843 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2698419971 gale_infotracmisc_A714973877 gale_infotracgeneralonefile_A714973877 gale_infotracacademiconefile_A714973877 gale_incontextgauss_ISR_A714973877 gale_businessinsightsgauss_A714973877 crossref_primary_10_1002_pen_26014 crossref_citationtrail_10_1002_pen_26014 wiley_primary_10_1002_pen_26014_PEN26014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Newtown |
PublicationTitle | Polymer engineering and science |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Society of Plastics Engineers, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Society of Plastics Engineers, Inc – name: Blackwell Publishing Ltd |
References | 2021; 42 2021; 145 2020; 41 2022 2020; 60 2021; 29 2015; 41 2019; 59 2011; 51 2019; 58 2011; 32 2014; 591 2020; 102 2018; 60 2021; 61 2008; 84 2018; 99 2018; 59 2018; 58 2014; 54 2016; 56 2022; 136 e_1_2_6_10_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 41 start-page: 6432 year: 2015 publication-title: Ceram. Int. – volume: 51 start-page: 663 year: 2011 publication-title: Polym. Eng. Sci. – volume: 59 start-page: 66 year: 2019 publication-title: Polym. Eng. Sci. – volume: 56 start-page: 995 year: 2016 publication-title: Polym. Eng. Sci. – volume: 58 start-page: 2249 year: 2018 publication-title: Polym. Eng. Sci. – volume: 84 start-page: 651 year: 2008 publication-title: Appl. Catal. B. – volume: 102 year: 2020 publication-title: Opt. Mater. – volume: 54 start-page: 438 year: 2014 publication-title: Polym. Eng. Sci. – volume: 58 start-page: 13989 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 60 start-page: 2529 year: 2018 publication-title: Polym. Eng. Sci. – year: 2022 publication-title: J. Thermoplast. Compos. Mater. – volume: 99 start-page: 152 year: 2018 publication-title: Mater. Res. Bull. – volume: 591 start-page: 46 year: 2014 publication-title: Mater. Sci. Eng., A – volume: 29 start-page: 1200 year: 2021 publication-title: Polym. Polym. Compos. – volume: 59 start-page: 372 year: 2018 publication-title: Polym. Eng. Sci. – volume: 60 start-page: 597 year: 2020 publication-title: Polym. Eng. Sci. – volume: 61 start-page: 1802 year: 2021 publication-title: Polym. Eng. Sci. – volume: 58 start-page: 1033 year: 2018 publication-title: Polym. Eng. Sci. – volume: 145 start-page: 1791 year: 2021 publication-title: J. Therm. Anal. Calorim. – volume: 42 start-page: 4586 year: 2021 publication-title: Polym. Compos. – volume: 41 start-page: 2610 year: 2020 publication-title: Polym. Compos. – volume: 60 start-page: 2034 year: 2020 publication-title: Polym. Eng. Sci. – volume: 32 start-page: 2017 year: 2011 publication-title: Polym. Compos. – volume: 41 start-page: 900 year: 2020 publication-title: Polym. Compos. – volume: 42 start-page: 2982 year: 2021 publication-title: Polym. Compos. – volume: 136 year: 2022 publication-title: Inorg. Chem. Commun. – volume: 60 start-page: 3170 year: 2020 publication-title: Polym. Eng. Sci. – volume: 58 start-page: 1155 year: 2018 publication-title: Polym. Eng. Sci. – ident: e_1_2_6_8_1 doi: 10.1002/pen.24659 – ident: e_1_2_6_14_1 doi: 10.1007/s10973-020-10452-0 – ident: e_1_2_6_13_1 doi: 10.1016/j.msea.2013.10.074 – ident: e_1_2_6_2_1 doi: 10.1002/pen.24845 – ident: e_1_2_6_28_1 doi: 10.1016/j.inoche.2021.109184 – ident: e_1_2_6_5_1 doi: 10.1002/pen.24933 – ident: e_1_2_6_27_1 doi: 10.1016/j.ceramint.2015.01.081 – ident: e_1_2_6_23_1 doi: 10.1002/pc.26031 – ident: e_1_2_6_7_1 doi: 10.1002/pen.25545 – ident: e_1_2_6_10_1 doi: 10.1002/pen.23572 – ident: e_1_2_6_19_1 doi: 10.1002/pen.25318 – ident: e_1_2_6_22_1 doi: 10.1177/08927057221083495 – ident: e_1_2_6_4_1 doi: 10.1002/pen.25491 – ident: e_1_2_6_24_1 doi: 10.1002/pen.24677 – ident: e_1_2_6_25_1 doi: 10.1002/pc.25559 – ident: e_1_2_6_15_1 doi: 10.1002/anie.201908060 – ident: e_1_2_6_12_1 doi: 10.1002/pen.25701 – ident: e_1_2_6_26_1 doi: 10.1002/pen.25450 – ident: e_1_2_6_3_1 doi: 10.1002/pen.24868 – ident: e_1_2_6_6_1 doi: 10.1002/pc.21235 – ident: e_1_2_6_16_1 doi: 10.1016/j.apcatb.2008.05.019 – ident: e_1_2_6_18_1 doi: 10.1002/pen.21858 – ident: e_1_2_6_9_1 doi: 10.1016/j.optmat.2020.109835 – ident: e_1_2_6_20_1 doi: 10.1177/0967391120960658 – ident: e_1_2_6_29_1 doi: 10.1016/j.materresbull.2017.11.012 – ident: e_1_2_6_11_1 doi: 10.1002/pen.24329 – ident: e_1_2_6_17_1 doi: 10.1002/pc.25421 – ident: e_1_2_6_21_1 doi: 10.1002/pc.26170 |
SSID | ssj0002359 |
Score | 2.4694114 |
Snippet | A series of copolymer nanocomposites based on poly(aniline‐co‐pyrrole) (PANI‐co‐PPy) with different contents of copper alumina (Cu‐Al2O3) nanoparticles were... A series of copolymer nanocomposites based on poly(aniline‐ co ‐pyrrole) (PANI‐ co ‐PPy) with different contents of copper alumina (Cu‐Al 2 O 3 ) nanoparticles... A series of copolymer nanocomposites based on poly(aniline-co-pyrrole) (PANI-co-PPy) with different contents of copper alumina (Cu-[Al.sub.2][O.sub.3])... |
SourceID | proquest gale crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2402 |
SubjectTerms | Alternating current Aluminum oxide Ammonia Aniline Chemical synthesis Composition conductivity Copolymers Copper copper alumina Copper compounds Current carriers Design and construction Dielectric properties Dielectrics Differential scanning calorimetry Electrical properties Electrical resistivity Electronic devices Fourier transforms gas sensing Gas sensors Glass transition temperature Hopping conduction Infrared spectroscopy Material properties Materials Methods Nanocomposites Nanoparticles Nanotechnology Oxidation poly(aniline‐co‐pyrrole) Polyanilines Polymerization Room temperature Sensors Transmission electron microscopy |
Title | Synthesis, characterization, conductivity, and gas‐sensing performance of copolymer nanocomposites based on copper alumina and poly(aniline‐co‐pyrrole) |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.26014 https://www.proquest.com/docview/2698419971 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhl7aHJk1bmiYtovQnhXhjW7Jl01MICWmhoSQN5FAwsiwtSxN5We0etqc-Ql-gL5cnyYxs79YhhdKLMd5PQqMdjUZi5htCXoNLC16AkAHs3irgZcTBDnKFuTJ5yJkWoWfX_3ySHp_zTxfJxQr50OXCNPwQiws3XBneXuMCl6XbW5KGwml_gHxYyAWKsVroEJ0uqaNiljSuL4sDBse8jlUojPcWLXt70W2L3PdW_XZztEa-dQNtoky-D2bTcqB-3OJw_E9J1snD1g2l-43ePCIr2m6Qewdd9bcN8uAPosLH5PfZ3IKn6EZul6oFxXOTwQlfaoussb4MxS6VtqJD6a5__nIYHG-HdLxMTqC1Afi4vpxf6Qm10tYY046BY9pR3FErWltEQBsqwXCOrPQ9YpMdaUcoLXStaniM5xMMjnz_hJwfHX49OA7awg6B4oLxwFS5EUyVEctUhoeoWJskNCZROq3KkotQR5EOJYfDIUulSmVkEl0mJmZSlSxnT8mqra1-RqgWMTcCyw3jBZYxWSq40rDt5jn4Qkm1SXa6v7hQLes5Ft-4LBq-5riA2S_87G-SVwvouKH6uAv0BvWkaEuEwsPhJYobyplzxT6MJBcsEwI68zik2LAYw9MAPp6d9kDvWpCpYVBKtikRIBqycvWQb3vIYcNJfhdwuwcErVH9nzv9Llpj5UCwPOM4YRHMllfUv8tffDk88S_P_x26Re7HmDTiwya3yep0MtMvwJWbli_9mr0BJBZI_g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKOZQe-CmgFgpYiJ9WarZJ7MSJxKUqrbbQrlB_pF5Q5Hjt1YrirDa7h-XEI_ACvBxPwoyT7JKqSIhLFGU_W7Z3PDO2Zr4h5BW4tOAFCOmB9VYezwMOepArzJVJfc608B27_kkv7l7wD5fR5RJ51-TCVPwQ8ws33BlOX-MGxwvp3QVrKBz3O0iIxW-R21jRG-sXvD9dkEeFLKqcXxZ6DA56Da-QH-7Om7as0XWd3PZXncE5vEc-N0Ot4ky-dKaTvKO-XWNx_N-53Cd3a0-U7lWi84AsabtGVvabAnBrZPUPrsKH5OfZzIKzWA7LHarmLM9VEid8KSwSx7pKFDtU2j4dyPLX9x8lxsfbAR0t8hNoYQA-Kq5mX_WYWmkLDGvH2DFdUjSqfVpYREAbKkF3Dq10PWKTLWmHOF3oWhXwGM3GGB-5_YhcHB6c73e9uraDp7hg3DP91Aim8oAlKsFzVKhN5BsTKR3385wLXweB9iWH8yGLpYplYCKdRyZkUuUsZY_Jsi2sXidUi5AbgRWH8Q7LmCQWXGmwvGkK7lDU3yBbzX-cqZr4HOtvXGUVZXOYwepnbvU3yMs5dFSxfdwEeo2CktVVQuFR4j1KOZDTssz2YCSpYIkQ0JnDIcuGxTCeCnB0dtoCva1BpoBBKVlnRcDUkJirhXzTQg4qWvKbgJstIEiNav_cCHhW66sSJpYmHBcsgNVykvr3-WefDnru5cm_Q1-Qle75yXF2fNT7-JTcCTGHxEVRbpLlyXiqn4FnN8mfuw38G3IATRg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVKkbg8cCkgCgUsxKVIzTaJnXgjnqrSVctlVfUi9QEpchx7taI40Wb3YXniE_gBfo4vYcZJdklVJMRLFGWPLY93PB5bM2cIeQEuLXgBQnqweyuPZwEHO8gV5sokPmda-I5d_9Mw3j_l78-isxXyts2FqfkhFhduuDKcvcYFXuZme0kaCqf9HvJh8SvkKo9hsaBHdLTkjgpZVPu-LPQYnPNaWiE_3F407WxGF01y1111-83gNvncjrQOM_nSm02znvp2gcTxP0W5Q241fijdqRXnLlnRdo1c323Lv62Rm38wFd4jP4_nFlzFalxtUbXgeK5TOOFLYZE21tWh2KLS5nQkq1_ff1QYHW9HtFxmJ9DCALwszudf9YRaaQsMasfIMV1R3FJzWlhEQBsqwXKOrXQ9YpNNaccoLXStCniU8wlGR765T04Heye7-15T2cFTXDDumTwxgqksYH3Vx1NUqE3kGxMpHedZxoWvg0D7ksPpkMVSxTIwkc4iEzKpMpawB2TVFlY_JFSLkBuB9YbxBsuYfiy40rDvJgk4Q1G-TjbbvzhVDe05Vt84T2vC5jCF2U_d7K-T5wtoWXN9XAZ6iXqSNjVC4VHhLUo1krOqSndgJIlgfSGgM4dDjg2LQTw14OD4qAN63YBMAYNSssmJANGQlquDfNVBjmpS8suAGx0gaI3q_tzqd9pYqwoES_ocJyyA2XKK-nf508O9oXt59O_QZ-Ta4btB-vFg-OExuRFiAokLodwgq9PJTD8Bt26aPXXL9zd-yUvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis%2C+characterization%2C+conductivity%2C+and+gas%E2%80%90sensing+performance+of+copolymer+nanocomposites+based+on+copper+alumina+and+poly%28aniline%E2%80%90co%E2%80%90pyrrole%29&rft.jtitle=Polymer+engineering+and+science&rft.au=Sankar%2C+S&rft.au=Ramesan%2C+M+T&rft.date=2022-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0032-3888&rft.eissn=1548-2634&rft.volume=62&rft.issue=8&rft.spage=2402&rft.epage=2410&rft_id=info:doi/10.1002%2Fpen.26014&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon |