Synthesis, characterization, conductivity, and gas‐sensing performance of copolymer nanocomposites based on copper alumina and poly(aniline‐co‐pyrrole)

A series of copolymer nanocomposites based on poly(aniline‐co‐pyrrole) (PANI‐co‐PPy) with different contents of copper alumina (Cu‐Al2O3) nanoparticles were synthesized by benign in situ chemical oxidation polymerization. The structural, thermal transition, and morphological interpretations were car...

Full description

Saved in:
Bibliographic Details
Published inPolymer engineering and science Vol. 62; no. 8; pp. 2402 - 2410
Main Authors Sankar, S., Ramesan, M. T.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.08.2022
Society of Plastics Engineers, Inc
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0032-3888
1548-2634
DOI10.1002/pen.26014

Cover

Loading…
Abstract A series of copolymer nanocomposites based on poly(aniline‐co‐pyrrole) (PANI‐co‐PPy) with different contents of copper alumina (Cu‐Al2O3) nanoparticles were synthesized by benign in situ chemical oxidation polymerization. The structural, thermal transition, and morphological interpretations were carried out by Fourier‐transform infrared spectroscopy (FTIR), x‐ray diffraction (XRD), differential scanning calorimetry (DSC), and high‐resolution transmission electron microscope (HR‐TEM). The electrical properties such as alternating current (AC) conductivity and dielectric measurements were performed at room temperature to verify their application in developing new electronic devices. The presence of nanoparticles in the copolymer and the synergistic interaction in the copolymer matrix was confirmed by FTIR and XRD. HR‐TEM indicates the nanosized uniform dispersion of nanofiller in the copolymer matrix. DSC revealed a reduction in the flexibility of polymer with an increase in glass transition temperature of copolymer composites. AC conductivity measurement manifested an increased hopping of charge carriers in nanocomposites when compared with pristine PANI‐co‐PPy. Dielectric properties were maximum for copolymer with 5 wt% Cu‐Al2O3. Excellent gas sensing traits were observed for copolymer nanocomposites due to the electron transfers existing between PANI‐co‐PPy and ammonia gas. The maximum gas‐sensing properties and electrical conductivity were observed for 5 wt% copolymer composites. The magnificent material properties make PANI‐co‐PPy/Cu‐Al2O3 nanocomposites, a promising contender for developing nano‐electronic devices. The HR‐TEM images of different contents of Cu‐Al2O3 incorporated copolymer nanocomposites showed the presence of spherically shaped nanofillers, which are uniformly distributed in the copolymer matrix at 5 wt% loading. When the loading of nanoparticles reached to 7 wt%, unevenly distributed nanoparticles with agglomerated morphology is visible.
AbstractList A series of copolymer nanocomposites based on poly(aniline-co-pyrrole) (PANI-co-PPy) with different contents of copper alumina (Cu-[Al.sub.2][O.sub.3]) nanoparticles were synthesized by benign in situ chemical oxidation polymerization. The structural, thermal transition, and morphological interpretations were carried out by Fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), differential scanning calorimetry (DSC), and high-resolution transmission electron microscope (HR-TEM). The electrical properties such as alternating current (AC) conductivity and dielectric measurements were performed at room temperature to verify their application in developing new electronic devices. The presence of nanoparticles in the copolymer and the synergistic interaction in the copolymer matrix was confirmed by FTIR and XRD. HR-TEM indicates the nanosized uniform dispersion of nanofiller in the copolymer matrix. DSC revealed a reduction in the flexibility of polymer with an increase in glass transition temperature of copolymer composites. AC conductivity measurement manifested an increased hopping of charge carriers in nanocomposites when compared with pristine PANI-co-PPy. Dielectric properties were maximum for copolymer with 5 wt% Cu-[Al.sub.2][O.sub.3]. Excellent gas sensing traits were observed for copolymer nanocomposites due to the electron transfers existing between PANI-co-PPy and ammonia gas. The maximum gassensing properties and electrical conductivity were observed for 5 wt% copolymer composites. The magnificent material properties make PANI-co-PPy/Cu[Al.sub.2][O.sub.3] nanocomposites, a promising contender for developing nano-electronic devices.
A series of copolymer nanocomposites based on poly(aniline‐ co ‐pyrrole) (PANI‐ co ‐PPy) with different contents of copper alumina (Cu‐Al 2 O 3 ) nanoparticles were synthesized by benign in situ chemical oxidation polymerization. The structural, thermal transition, and morphological interpretations were carried out by Fourier‐transform infrared spectroscopy (FTIR), x‐ray diffraction (XRD), differential scanning calorimetry (DSC), and high‐resolution transmission electron microscope (HR‐TEM). The electrical properties such as alternating current (AC) conductivity and dielectric measurements were performed at room temperature to verify their application in developing new electronic devices. The presence of nanoparticles in the copolymer and the synergistic interaction in the copolymer matrix was confirmed by FTIR and XRD. HR‐TEM indicates the nanosized uniform dispersion of nanofiller in the copolymer matrix. DSC revealed a reduction in the flexibility of polymer with an increase in glass transition temperature of copolymer composites. AC conductivity measurement manifested an increased hopping of charge carriers in nanocomposites when compared with pristine PANI‐ co ‐PPy. Dielectric properties were maximum for copolymer with 5 wt% Cu‐Al 2 O 3 . Excellent gas sensing traits were observed for copolymer nanocomposites due to the electron transfers existing between PANI‐ co ‐PPy and ammonia gas. The maximum gas‐sensing properties and electrical conductivity were observed for 5 wt% copolymer composites. The magnificent material properties make PANI‐ co ‐PPy/Cu‐Al 2 O 3 nanocomposites, a promising contender for developing nano‐electronic devices.
A series of copolymer nanocomposites based on poly(aniline-co-pyrrole) (PANI-co-PPy) with different contents of copper alumina (Cu-[Al.sub.2][O.sub.3]) nanoparticles were synthesized by benign in situ chemical oxidation polymerization. The structural, thermal transition, and morphological interpretations were carried out by Fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), differential scanning calorimetry (DSC), and high-resolution transmission electron microscope (HR-TEM). The electrical properties such as alternating current (AC) conductivity and dielectric measurements were performed at room temperature to verify their application in developing new electronic devices. The presence of nanoparticles in the copolymer and the synergistic interaction in the copolymer matrix was confirmed by FTIR and XRD. HR-TEM indicates the nanosized uniform dispersion of nanofiller in the copolymer matrix. DSC revealed a reduction in the flexibility of polymer with an increase in glass transition temperature of copolymer composites. AC conductivity measurement manifested an increased hopping of charge carriers in nanocomposites when compared with pristine PANI-co-PPy. Dielectric properties were maximum for copolymer with 5 wt% Cu-[Al.sub.2][O.sub.3]. Excellent gas sensing traits were observed for copolymer nanocomposites due to the electron transfers existing between PANI-co-PPy and ammonia gas. The maximum gassensing properties and electrical conductivity were observed for 5 wt% copolymer composites. The magnificent material properties make PANI-co-PPy/Cu[Al.sub.2][O.sub.3] nanocomposites, a promising contender for developing nano-electronic devices. KEYWORDS conductivity, copper alumina, dielectric properties, gas sensing, nanocomposites, poly (aniline-co-pyrrole)
A series of copolymer nanocomposites based on poly(aniline‐co‐pyrrole) (PANI‐co‐PPy) with different contents of copper alumina (Cu‐Al2O3) nanoparticles were synthesized by benign in situ chemical oxidation polymerization. The structural, thermal transition, and morphological interpretations were carried out by Fourier‐transform infrared spectroscopy (FTIR), x‐ray diffraction (XRD), differential scanning calorimetry (DSC), and high‐resolution transmission electron microscope (HR‐TEM). The electrical properties such as alternating current (AC) conductivity and dielectric measurements were performed at room temperature to verify their application in developing new electronic devices. The presence of nanoparticles in the copolymer and the synergistic interaction in the copolymer matrix was confirmed by FTIR and XRD. HR‐TEM indicates the nanosized uniform dispersion of nanofiller in the copolymer matrix. DSC revealed a reduction in the flexibility of polymer with an increase in glass transition temperature of copolymer composites. AC conductivity measurement manifested an increased hopping of charge carriers in nanocomposites when compared with pristine PANI‐co‐PPy. Dielectric properties were maximum for copolymer with 5 wt% Cu‐Al2O3. Excellent gas sensing traits were observed for copolymer nanocomposites due to the electron transfers existing between PANI‐co‐PPy and ammonia gas. The maximum gas‐sensing properties and electrical conductivity were observed for 5 wt% copolymer composites. The magnificent material properties make PANI‐co‐PPy/Cu‐Al2O3 nanocomposites, a promising contender for developing nano‐electronic devices.
A series of copolymer nanocomposites based on poly(aniline‐co‐pyrrole) (PANI‐co‐PPy) with different contents of copper alumina (Cu‐Al2O3) nanoparticles were synthesized by benign in situ chemical oxidation polymerization. The structural, thermal transition, and morphological interpretations were carried out by Fourier‐transform infrared spectroscopy (FTIR), x‐ray diffraction (XRD), differential scanning calorimetry (DSC), and high‐resolution transmission electron microscope (HR‐TEM). The electrical properties such as alternating current (AC) conductivity and dielectric measurements were performed at room temperature to verify their application in developing new electronic devices. The presence of nanoparticles in the copolymer and the synergistic interaction in the copolymer matrix was confirmed by FTIR and XRD. HR‐TEM indicates the nanosized uniform dispersion of nanofiller in the copolymer matrix. DSC revealed a reduction in the flexibility of polymer with an increase in glass transition temperature of copolymer composites. AC conductivity measurement manifested an increased hopping of charge carriers in nanocomposites when compared with pristine PANI‐co‐PPy. Dielectric properties were maximum for copolymer with 5 wt% Cu‐Al2O3. Excellent gas sensing traits were observed for copolymer nanocomposites due to the electron transfers existing between PANI‐co‐PPy and ammonia gas. The maximum gas‐sensing properties and electrical conductivity were observed for 5 wt% copolymer composites. The magnificent material properties make PANI‐co‐PPy/Cu‐Al2O3 nanocomposites, a promising contender for developing nano‐electronic devices. The HR‐TEM images of different contents of Cu‐Al2O3 incorporated copolymer nanocomposites showed the presence of spherically shaped nanofillers, which are uniformly distributed in the copolymer matrix at 5 wt% loading. When the loading of nanoparticles reached to 7 wt%, unevenly distributed nanoparticles with agglomerated morphology is visible.
Audience Academic
Author Sankar, S.
Ramesan, M. T.
Author_xml – sequence: 1
  givenname: S.
  surname: Sankar
  fullname: Sankar, S.
  organization: University of Calicut
– sequence: 2
  givenname: M. T.
  orcidid: 0000-0002-5709-0479
  surname: Ramesan
  fullname: Ramesan, M. T.
  email: mtramesan@uoc.ac.in
  organization: University of Calicut
BookMark eNp9kt9qFDEUxoNUcNt64RsMeGNhZ5tMMv8uS6laKFasXodM5mQ2ZSYZk0x1vPIRfAFfzicxuyvoyiqBEzj8vi9_zneMjow1gNAzglcE4-x8BLPKCkzYI7QgOavSrKDsCC0wpllKq6p6go69v8eRpXm9QN_vZhPW4LVfJnItnJABnP4igrYmdqxpJxn0gw7zMhGmTTrhf3z95sF4bbpkBKesG4SRkFgV8dH28wAuMcJYaYfReh3AJ43w0CbWbIioSUQ_DdqIreNG8kIY3WsD0VraWMbZOdvD2Sl6rETv4emv_QR9eHn1_vJ1enP76vry4iaVrKQsVW2tSiobQitZYVwXGagcK5VLKNqmYSUGQgALVmeMFkIWgqgcmlxlVMiG1vQEPd_5js5-nMAHfm8nZ-KRPCvqipG6LslvqhM9cG2UDfG_Bu0lvygJq0talWWk0gNUBwac6OOwlI7tPX51gI-rhUHLg4KzPUFkAnwOnZi859d37_bZ5R9sM8WpgY_F624d_E5yyFo6670DxUenB-FmTjDf5IvHfPFtviJ7_hcrddjmJt5f9_9TfIovmv9tzd9evdkpfgIfzOgE
CitedBy_id crossref_primary_10_1007_s11581_024_05911_9
crossref_primary_10_1007_s12034_022_02829_8
crossref_primary_10_1007_s11164_022_04881_9
crossref_primary_10_1016_j_sna_2022_114078
crossref_primary_10_1007_s10904_024_03010_w
crossref_primary_10_1007_s10924_022_02649_1
crossref_primary_10_1177_14777606221136152
crossref_primary_10_1002_pen_26114
crossref_primary_10_1007_s10904_023_02539_6
crossref_primary_10_1080_02670836_2022_2152924
crossref_primary_10_1002_pen_26623
crossref_primary_10_1002_app_52913
crossref_primary_10_1016_j_jics_2024_101157
crossref_primary_10_1080_10601325_2022_2111262
crossref_primary_10_1016_j_arabjc_2024_105938
crossref_primary_10_1016_j_saa_2023_123712
crossref_primary_10_1002_pc_27159
crossref_primary_10_1016_j_heliyon_2023_e13544
crossref_primary_10_1515_ipp_2022_4270
crossref_primary_10_1002_pc_28777
Cites_doi 10.1002/pen.24659
10.1007/s10973-020-10452-0
10.1016/j.msea.2013.10.074
10.1002/pen.24845
10.1016/j.inoche.2021.109184
10.1002/pen.24933
10.1016/j.ceramint.2015.01.081
10.1002/pc.26031
10.1002/pen.25545
10.1002/pen.23572
10.1002/pen.25318
10.1177/08927057221083495
10.1002/pen.25491
10.1002/pen.24677
10.1002/pc.25559
10.1002/anie.201908060
10.1002/pen.25701
10.1002/pen.25450
10.1002/pen.24868
10.1002/pc.21235
10.1016/j.apcatb.2008.05.019
10.1002/pen.21858
10.1016/j.optmat.2020.109835
10.1177/0967391120960658
10.1016/j.materresbull.2017.11.012
10.1002/pen.24329
10.1002/pc.25421
10.1002/pc.26170
ContentType Journal Article
Copyright 2022 Society of Plastics Engineers.
COPYRIGHT 2022 Society of Plastics Engineers, Inc.
2022 Society of Plastics Engineers
Copyright_xml – notice: 2022 Society of Plastics Engineers.
– notice: COPYRIGHT 2022 Society of Plastics Engineers, Inc.
– notice: 2022 Society of Plastics Engineers
DBID AAYXX
CITATION
N95
ISR
7SR
8FD
JG9
DOI 10.1002/pen.26014
DatabaseName CrossRef
Gale Business: Insights
Gale In Context: Science
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList

CrossRef



Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1548-2634
EndPage 2410
ExternalDocumentID A714973877
10_1002_pen_26014
PEN26014
Genre article
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID -~X
.-4
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8FE
8FG
8G5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABTAH
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AIXEN
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAAKF
BAFTC
BDRZF
BENPR
BES
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IAO
ICW
IEA
IOF
ISR
ITC
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M2Q
M6K
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N95
N9A
NDZJH
NEJ
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PQQKQ
PROAC
PTHSS
PV9
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWL
RWM
RX1
RXW
RYL
RZL
S0X
SAMSI
SUPJJ
TUS
U5U
UB1
V2E
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XI7
XV2
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c4734-fd9f73cb138c800962ef50ff5ce6dbb470e11e0a492436ac6a1f5eb5f23acb393
IEDL.DBID DR2
ISSN 0032-3888
IngestDate Sat Jul 19 13:10:51 EDT 2025
Tue Jun 17 21:09:07 EDT 2025
Thu Jun 12 23:29:38 EDT 2025
Tue Jun 10 20:49:48 EDT 2025
Fri Jun 27 03:57:14 EDT 2025
Fri May 23 02:02:56 EDT 2025
Thu Apr 24 23:08:32 EDT 2025
Tue Jul 01 02:33:55 EDT 2025
Wed Jan 22 16:24:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4734-fd9f73cb138c800962ef50ff5ce6dbb470e11e0a492436ac6a1f5eb5f23acb393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5709-0479
PQID 2698419971
PQPubID 41843
PageCount 9
ParticipantIDs proquest_journals_2698419971
gale_infotracmisc_A714973877
gale_infotracgeneralonefile_A714973877
gale_infotracacademiconefile_A714973877
gale_incontextgauss_ISR_A714973877
gale_businessinsightsgauss_A714973877
crossref_primary_10_1002_pen_26014
crossref_citationtrail_10_1002_pen_26014
wiley_primary_10_1002_pen_26014_PEN26014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Newtown
PublicationTitle Polymer engineering and science
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Society of Plastics Engineers, Inc
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: Society of Plastics Engineers, Inc
– name: Blackwell Publishing Ltd
References 2021; 42
2021; 145
2020; 41
2022
2020; 60
2021; 29
2015; 41
2019; 59
2011; 51
2019; 58
2011; 32
2014; 591
2020; 102
2018; 60
2021; 61
2008; 84
2018; 99
2018; 59
2018; 58
2014; 54
2016; 56
2022; 136
e_1_2_6_10_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 41
  start-page: 6432
  year: 2015
  publication-title: Ceram. Int.
– volume: 51
  start-page: 663
  year: 2011
  publication-title: Polym. Eng. Sci.
– volume: 59
  start-page: 66
  year: 2019
  publication-title: Polym. Eng. Sci.
– volume: 56
  start-page: 995
  year: 2016
  publication-title: Polym. Eng. Sci.
– volume: 58
  start-page: 2249
  year: 2018
  publication-title: Polym. Eng. Sci.
– volume: 84
  start-page: 651
  year: 2008
  publication-title: Appl. Catal. B.
– volume: 102
  year: 2020
  publication-title: Opt. Mater.
– volume: 54
  start-page: 438
  year: 2014
  publication-title: Polym. Eng. Sci.
– volume: 58
  start-page: 13989
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 60
  start-page: 2529
  year: 2018
  publication-title: Polym. Eng. Sci.
– year: 2022
  publication-title: J. Thermoplast. Compos. Mater.
– volume: 99
  start-page: 152
  year: 2018
  publication-title: Mater. Res. Bull.
– volume: 591
  start-page: 46
  year: 2014
  publication-title: Mater. Sci. Eng., A
– volume: 29
  start-page: 1200
  year: 2021
  publication-title: Polym. Polym. Compos.
– volume: 59
  start-page: 372
  year: 2018
  publication-title: Polym. Eng. Sci.
– volume: 60
  start-page: 597
  year: 2020
  publication-title: Polym. Eng. Sci.
– volume: 61
  start-page: 1802
  year: 2021
  publication-title: Polym. Eng. Sci.
– volume: 58
  start-page: 1033
  year: 2018
  publication-title: Polym. Eng. Sci.
– volume: 145
  start-page: 1791
  year: 2021
  publication-title: J. Therm. Anal. Calorim.
– volume: 42
  start-page: 4586
  year: 2021
  publication-title: Polym. Compos.
– volume: 41
  start-page: 2610
  year: 2020
  publication-title: Polym. Compos.
– volume: 60
  start-page: 2034
  year: 2020
  publication-title: Polym. Eng. Sci.
– volume: 32
  start-page: 2017
  year: 2011
  publication-title: Polym. Compos.
– volume: 41
  start-page: 900
  year: 2020
  publication-title: Polym. Compos.
– volume: 42
  start-page: 2982
  year: 2021
  publication-title: Polym. Compos.
– volume: 136
  year: 2022
  publication-title: Inorg. Chem. Commun.
– volume: 60
  start-page: 3170
  year: 2020
  publication-title: Polym. Eng. Sci.
– volume: 58
  start-page: 1155
  year: 2018
  publication-title: Polym. Eng. Sci.
– ident: e_1_2_6_8_1
  doi: 10.1002/pen.24659
– ident: e_1_2_6_14_1
  doi: 10.1007/s10973-020-10452-0
– ident: e_1_2_6_13_1
  doi: 10.1016/j.msea.2013.10.074
– ident: e_1_2_6_2_1
  doi: 10.1002/pen.24845
– ident: e_1_2_6_28_1
  doi: 10.1016/j.inoche.2021.109184
– ident: e_1_2_6_5_1
  doi: 10.1002/pen.24933
– ident: e_1_2_6_27_1
  doi: 10.1016/j.ceramint.2015.01.081
– ident: e_1_2_6_23_1
  doi: 10.1002/pc.26031
– ident: e_1_2_6_7_1
  doi: 10.1002/pen.25545
– ident: e_1_2_6_10_1
  doi: 10.1002/pen.23572
– ident: e_1_2_6_19_1
  doi: 10.1002/pen.25318
– ident: e_1_2_6_22_1
  doi: 10.1177/08927057221083495
– ident: e_1_2_6_4_1
  doi: 10.1002/pen.25491
– ident: e_1_2_6_24_1
  doi: 10.1002/pen.24677
– ident: e_1_2_6_25_1
  doi: 10.1002/pc.25559
– ident: e_1_2_6_15_1
  doi: 10.1002/anie.201908060
– ident: e_1_2_6_12_1
  doi: 10.1002/pen.25701
– ident: e_1_2_6_26_1
  doi: 10.1002/pen.25450
– ident: e_1_2_6_3_1
  doi: 10.1002/pen.24868
– ident: e_1_2_6_6_1
  doi: 10.1002/pc.21235
– ident: e_1_2_6_16_1
  doi: 10.1016/j.apcatb.2008.05.019
– ident: e_1_2_6_18_1
  doi: 10.1002/pen.21858
– ident: e_1_2_6_9_1
  doi: 10.1016/j.optmat.2020.109835
– ident: e_1_2_6_20_1
  doi: 10.1177/0967391120960658
– ident: e_1_2_6_29_1
  doi: 10.1016/j.materresbull.2017.11.012
– ident: e_1_2_6_11_1
  doi: 10.1002/pen.24329
– ident: e_1_2_6_17_1
  doi: 10.1002/pc.25421
– ident: e_1_2_6_21_1
  doi: 10.1002/pc.26170
SSID ssj0002359
Score 2.4694114
Snippet A series of copolymer nanocomposites based on poly(aniline‐co‐pyrrole) (PANI‐co‐PPy) with different contents of copper alumina (Cu‐Al2O3) nanoparticles were...
A series of copolymer nanocomposites based on poly(aniline‐ co ‐pyrrole) (PANI‐ co ‐PPy) with different contents of copper alumina (Cu‐Al 2 O 3 ) nanoparticles...
A series of copolymer nanocomposites based on poly(aniline-co-pyrrole) (PANI-co-PPy) with different contents of copper alumina (Cu-[Al.sub.2][O.sub.3])...
SourceID proquest
gale
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2402
SubjectTerms Alternating current
Aluminum oxide
Ammonia
Aniline
Chemical synthesis
Composition
conductivity
Copolymers
Copper
copper alumina
Copper compounds
Current carriers
Design and construction
Dielectric properties
Dielectrics
Differential scanning calorimetry
Electrical properties
Electrical resistivity
Electronic devices
Fourier transforms
gas sensing
Gas sensors
Glass transition temperature
Hopping conduction
Infrared spectroscopy
Material properties
Materials
Methods
Nanocomposites
Nanoparticles
Nanotechnology
Oxidation
poly(aniline‐co‐pyrrole)
Polyanilines
Polymerization
Room temperature
Sensors
Transmission electron microscopy
Title Synthesis, characterization, conductivity, and gas‐sensing performance of copolymer nanocomposites based on copper alumina and poly(aniline‐co‐pyrrole)
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.26014
https://www.proquest.com/docview/2698419971
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhl7aHJk1bmiYtovQnhXhjW7Jl01MICWmhoSQN5FAwsiwtSxN5We0etqc-Ql-gL5cnyYxs79YhhdKLMd5PQqMdjUZi5htCXoNLC16AkAHs3irgZcTBDnKFuTJ5yJkWoWfX_3ySHp_zTxfJxQr50OXCNPwQiws3XBneXuMCl6XbW5KGwml_gHxYyAWKsVroEJ0uqaNiljSuL4sDBse8jlUojPcWLXt70W2L3PdW_XZztEa-dQNtoky-D2bTcqB-3OJw_E9J1snD1g2l-43ePCIr2m6Qewdd9bcN8uAPosLH5PfZ3IKn6EZul6oFxXOTwQlfaoussb4MxS6VtqJD6a5__nIYHG-HdLxMTqC1Afi4vpxf6Qm10tYY046BY9pR3FErWltEQBsqwXCOrPQ9YpMdaUcoLXStaniM5xMMjnz_hJwfHX49OA7awg6B4oLxwFS5EUyVEctUhoeoWJskNCZROq3KkotQR5EOJYfDIUulSmVkEl0mJmZSlSxnT8mqra1-RqgWMTcCyw3jBZYxWSq40rDt5jn4Qkm1SXa6v7hQLes5Ft-4LBq-5riA2S_87G-SVwvouKH6uAv0BvWkaEuEwsPhJYobyplzxT6MJBcsEwI68zik2LAYw9MAPp6d9kDvWpCpYVBKtikRIBqycvWQb3vIYcNJfhdwuwcErVH9nzv9Llpj5UCwPOM4YRHMllfUv8tffDk88S_P_x26Re7HmDTiwya3yep0MtMvwJWbli_9mr0BJBZI_g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKOZQe-CmgFgpYiJ9WarZJ7MSJxKUqrbbQrlB_pF5Q5Hjt1YrirDa7h-XEI_ACvBxPwoyT7JKqSIhLFGU_W7Z3PDO2Zr4h5BW4tOAFCOmB9VYezwMOepArzJVJfc608B27_kkv7l7wD5fR5RJ51-TCVPwQ8ws33BlOX-MGxwvp3QVrKBz3O0iIxW-R21jRG-sXvD9dkEeFLKqcXxZ6DA56Da-QH-7Om7as0XWd3PZXncE5vEc-N0Ot4ky-dKaTvKO-XWNx_N-53Cd3a0-U7lWi84AsabtGVvabAnBrZPUPrsKH5OfZzIKzWA7LHarmLM9VEid8KSwSx7pKFDtU2j4dyPLX9x8lxsfbAR0t8hNoYQA-Kq5mX_WYWmkLDGvH2DFdUjSqfVpYREAbKkF3Dq10PWKTLWmHOF3oWhXwGM3GGB-5_YhcHB6c73e9uraDp7hg3DP91Aim8oAlKsFzVKhN5BsTKR3385wLXweB9iWH8yGLpYplYCKdRyZkUuUsZY_Jsi2sXidUi5AbgRWH8Q7LmCQWXGmwvGkK7lDU3yBbzX-cqZr4HOtvXGUVZXOYwepnbvU3yMs5dFSxfdwEeo2CktVVQuFR4j1KOZDTssz2YCSpYIkQ0JnDIcuGxTCeCnB0dtoCva1BpoBBKVlnRcDUkJirhXzTQg4qWvKbgJstIEiNav_cCHhW66sSJpYmHBcsgNVykvr3-WefDnru5cm_Q1-Qle75yXF2fNT7-JTcCTGHxEVRbpLlyXiqn4FnN8mfuw38G3IATRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVKkbg8cCkgCgUsxKVIzTaJnXgjnqrSVctlVfUi9QEpchx7taI40Wb3YXniE_gBfo4vYcZJdklVJMRLFGWPLY93PB5bM2cIeQEuLXgBQnqweyuPZwEHO8gV5sokPmda-I5d_9Mw3j_l78-isxXyts2FqfkhFhduuDKcvcYFXuZme0kaCqf9HvJh8SvkKo9hsaBHdLTkjgpZVPu-LPQYnPNaWiE_3F407WxGF01y1111-83gNvncjrQOM_nSm02znvp2gcTxP0W5Q241fijdqRXnLlnRdo1c323Lv62Rm38wFd4jP4_nFlzFalxtUbXgeK5TOOFLYZE21tWh2KLS5nQkq1_ff1QYHW9HtFxmJ9DCALwszudf9YRaaQsMasfIMV1R3FJzWlhEQBsqwXKOrXQ9YpNNaccoLXStCniU8wlGR765T04Heye7-15T2cFTXDDumTwxgqksYH3Vx1NUqE3kGxMpHedZxoWvg0D7ksPpkMVSxTIwkc4iEzKpMpawB2TVFlY_JFSLkBuB9YbxBsuYfiy40rDvJgk4Q1G-TjbbvzhVDe05Vt84T2vC5jCF2U_d7K-T5wtoWXN9XAZ6iXqSNjVC4VHhLUo1krOqSndgJIlgfSGgM4dDjg2LQTw14OD4qAN63YBMAYNSssmJANGQlquDfNVBjmpS8suAGx0gaI3q_tzqd9pYqwoES_ocJyyA2XKK-nf508O9oXt59O_QZ-Ta4btB-vFg-OExuRFiAokLodwgq9PJTD8Bt26aPXXL9zd-yUvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis%2C+characterization%2C+conductivity%2C+and+gas%E2%80%90sensing+performance+of+copolymer+nanocomposites+based+on+copper+alumina+and+poly%28aniline%E2%80%90co%E2%80%90pyrrole%29&rft.jtitle=Polymer+engineering+and+science&rft.au=Sankar%2C+S&rft.au=Ramesan%2C+M+T&rft.date=2022-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0032-3888&rft.eissn=1548-2634&rft.volume=62&rft.issue=8&rft.spage=2402&rft.epage=2410&rft_id=info:doi/10.1002%2Fpen.26014&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon