Fungal biosynthesis of gold nanoparticles: mechanism and scale up

Summary Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable m...

Full description

Saved in:
Bibliographic Details
Published inMicrobial biotechnology Vol. 8; no. 6; pp. 904 - 917
Main Authors Kitching, Michael, Ramani, Meghana, Marsili, Enrico
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Ltd 01.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell‐free extracts is an environmentally friendly and low‐cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis. Recent studies on AuNPs biosynthesis in fungi are comprehensively reviewed.The mechanisms of AuNPs biosynthesis in fungal biomass and cell‐free extracts are critically discussedBioreactors configurations and method for scale‐up of AuNP biosynthesis are proposed
AbstractList Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis. Recent studies on AuNPs biosynthesis in fungi are comprehensively reviewed.The mechanisms of AuNPs biosynthesis in fungal biomass and cell-free extracts are critically discussedBioreactors configurations and method for scale-up of AuNP biosynthesis are proposed
Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis.Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis.
Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis.
Summary Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell‐free extracts is an environmentally friendly and low‐cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis. Recent studies on AuNPs biosynthesis in fungi are comprehensively reviewed.The mechanisms of AuNPs biosynthesis in fungal biomass and cell‐free extracts are critically discussedBioreactors configurations and method for scale‐up of AuNP biosynthesis are proposed
Gold nanoparticles ( AuNPs ) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell‐free extracts is an environmentally friendly and low‐cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis.
Author Ramani, Meghana
Kitching, Michael
Marsili, Enrico
Author_xml – sequence: 1
  givenname: Michael
  surname: Kitching
  fullname: Kitching, Michael
  organization: Dublin City University
– sequence: 2
  givenname: Meghana
  surname: Ramani
  fullname: Ramani, Meghana
  organization: SRM University
– sequence: 3
  givenname: Enrico
  surname: Marsili
  fullname: Marsili, Enrico
  organization: Nanyang Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25154648$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtP3DAUha2KqjzX7Kosuxnw9SN2WFQCVGglqm7o2rrjsWdcOfYQJ6D5900YQFCpar25lu93jo589slOyskRcgz0BMZzCkrCTDUgT4CBhHdk7-Vl59V9l-yX8ovSmlLJPpBdJkGKWug9cn41pCXGah5y2aR-5UooVfbVMsdFlTDlNXZ9sNGVs6p1doUplLbCtKiKxeiqYX1I3nuMxR09zQPy8-rL7eXX2c2P62-X5zczKxSHmZaayzkDzykXvGaNt8qB18rXqCjHZswvvHNaAXJtlW8sFVRyWCBwjcgPyOet73qYt25hXeo7jGbdhRa7jckYzNtNCiuzzPdG1AyEEKPBpyeDLt8NrvSmDcW6GDG5PBQDiqm60dCo_0ElZULpCf34OtZLnucvHgG5BWyXS-mcNzb02Ic8pQzRADVTlWYqy0xlmccqR93pH7pn678r6q3iIUS3-Rduvl_csq3wNy-erZA
CitedBy_id crossref_primary_10_1039_D3NR00863K
crossref_primary_10_1016_j_porgcoat_2021_106650
crossref_primary_10_3389_fmicb_2016_01984
crossref_primary_10_2217_nnm_2020_0324
crossref_primary_10_1142_S108842461930012X
crossref_primary_10_1016_j_envres_2021_111963
crossref_primary_10_1007_s00253_017_8250_4
crossref_primary_10_1007_s13205_024_04110_7
crossref_primary_10_1007_s11696_022_02602_5
crossref_primary_10_1007_s42649_019_0004_6
crossref_primary_10_1007_s00253_016_7756_5
crossref_primary_10_3390_ma16124261
crossref_primary_10_3390_jof8060597
crossref_primary_10_1039_D0NA00472C
crossref_primary_10_3389_fmicb_2021_638003
crossref_primary_10_1038_s41598_024_54460_8
crossref_primary_10_1016_j_micpath_2025_107314
crossref_primary_10_3390_jof8050439
crossref_primary_10_3390_catal12111442
crossref_primary_10_1016_j_foodchem_2021_130513
crossref_primary_10_1016_j_pmpp_2023_102023
crossref_primary_10_1016_j_btre_2024_e00828
crossref_primary_10_1007_s00253_021_11277_z
crossref_primary_10_7717_peerj_5237
crossref_primary_10_1007_s10311_017_0656_9
crossref_primary_10_1007_s13762_016_1062_8
crossref_primary_10_1021_acssuschemeng_9b05084
crossref_primary_10_1002_slct_202402447
crossref_primary_10_1088_2053_1591_ab0155
crossref_primary_10_1007_s11356_017_1050_7
crossref_primary_10_1016_j_ccr_2020_213540
crossref_primary_10_1186_s13568_016_0268_y
crossref_primary_10_1039_D1CS01111A
crossref_primary_10_3390_molecules27020458
crossref_primary_10_3390_bioengineering4010014
crossref_primary_10_1016_j_jenvman_2018_09_073
crossref_primary_10_1016_j_nanoso_2024_101342
crossref_primary_10_1016_j_procbio_2024_02_002
crossref_primary_10_2217_nnm_2017_0235
crossref_primary_10_1002_adom_202001368
crossref_primary_10_1016_j_tgchem_2023_100021
crossref_primary_10_1007_s12011_021_03078_2
crossref_primary_10_1134_S1995078020020202
crossref_primary_10_1007_s13204_021_02047_4
crossref_primary_10_1007_s00449_019_02210_w
crossref_primary_10_1007_s00449_024_03053_w
crossref_primary_10_29328_journal_aac_1001028
crossref_primary_10_3390_ijms22030989
crossref_primary_10_1016_j_envres_2022_113140
crossref_primary_10_1016_j_jcis_2021_01_103
crossref_primary_10_1016_j_susmat_2023_e00809
crossref_primary_10_2174_1573413717666210322114205
crossref_primary_10_2217_nnm_2018_0409
crossref_primary_10_1016_j_ibiod_2019_104724
crossref_primary_10_1016_j_colsurfb_2018_01_009
crossref_primary_10_3390_molecules27041181
crossref_primary_10_1088_1757_899X_1221_1_012035
crossref_primary_10_1007_s13204_021_01766_y
crossref_primary_10_1016_j_heliyon_2021_e07250
crossref_primary_10_1016_j_cis_2024_103277
crossref_primary_10_2217_nnm_2022_0092
crossref_primary_10_1080_10408398_2022_2046543
crossref_primary_10_3390_molecules26123657
crossref_primary_10_3390_pharmaceutics15071868
crossref_primary_10_1002_slct_202002385
crossref_primary_10_1016_j_matlet_2018_09_122
crossref_primary_10_1016_j_tibtech_2017_05_005
crossref_primary_10_1186_s11671_016_1311_2
crossref_primary_10_1021_acsnano_6b00142
crossref_primary_10_1039_D0RA05271J
crossref_primary_10_1038_s41598_024_81855_4
crossref_primary_10_1007_s00216_017_0414_7
crossref_primary_10_1016_j_jhazmat_2020_124797
crossref_primary_10_1016_j_molliq_2021_116040
crossref_primary_10_1002_btpr_2531
crossref_primary_10_1039_C5RA19388E
crossref_primary_10_1007_s00775_019_01721_x
crossref_primary_10_1007_s12668_021_00825_6
crossref_primary_10_1007_s00253_019_09675_5
crossref_primary_10_1111_lam_13055
crossref_primary_10_1016_j_enzmictec_2017_10_007
crossref_primary_10_1007_s00253_016_7893_x
crossref_primary_10_1016_j_ceramint_2024_05_114
crossref_primary_10_1016_j_biori_2018_09_003
crossref_primary_10_1016_j_micron_2019_03_001
crossref_primary_10_1039_D4EN00403E
crossref_primary_10_1016_j_heliyon_2023_e21678
crossref_primary_10_1002_nano_202100255
crossref_primary_10_2174_18742106_v17_e230922_2023_70
crossref_primary_10_1016_j_jddst_2024_106084
crossref_primary_10_1007_s11356_017_9684_z
crossref_primary_10_1016_j_mtcomm_2022_103914
crossref_primary_10_1515_epoly_2023_0049
crossref_primary_10_1002_gch2_202300187
crossref_primary_10_1016_j_colsurfb_2023_113275
crossref_primary_10_1007_s40097_018_0285_2
crossref_primary_10_1039_D0NR01690J
crossref_primary_10_1016_j_cis_2019_101989
crossref_primary_10_1080_10826068_2022_2122065
crossref_primary_10_4103_JVBD_JVBD_175_23
crossref_primary_10_1016_j_scitotenv_2021_149990
crossref_primary_10_1038_s41598_020_76402_w
crossref_primary_10_1080_24701556_2020_1783313
crossref_primary_10_1016_j_foodchem_2024_139311
crossref_primary_10_1016_j_mssp_2019_104610
crossref_primary_10_1016_j_cplett_2015_12_019
crossref_primary_10_1021_acsomega_0c05263
crossref_primary_10_1016_j_arabjc_2016_09_020
crossref_primary_10_1007_s40089_017_0207_1
crossref_primary_10_1039_D4NR00624K
crossref_primary_10_1155_2021_5598924
crossref_primary_10_2174_2210681208666180328154926
crossref_primary_10_3389_fchem_2021_613343
crossref_primary_10_3389_fmicb_2021_636588
crossref_primary_10_1016_j_plana_2023_100032
crossref_primary_10_1080_17518253_2019_1687762
crossref_primary_10_1016_j_chemosphere_2022_134465
crossref_primary_10_1016_j_wpi_2023_102196
crossref_primary_10_15406_hij_2020_04_00170
crossref_primary_10_1016_j_mimet_2022_106517
crossref_primary_10_1515_gps_2020_0031
crossref_primary_10_3390_jfb12040070
crossref_primary_10_1021_jacs_3c02484
crossref_primary_10_1080_07388551_2017_1414141
crossref_primary_10_3390_catal13040642
crossref_primary_10_1007_s11696_025_03952_6
crossref_primary_10_1016_j_chemosphere_2020_128306
crossref_primary_10_1016_j_jece_2021_106590
crossref_primary_10_1038_s41598_023_39177_4
crossref_primary_10_3390_en16124610
crossref_primary_10_1007_s11164_023_05026_2
crossref_primary_10_2147_IJN_S487188
crossref_primary_10_3389_fbioe_2023_1159193
crossref_primary_10_1016_j_heliyon_2021_e08480
crossref_primary_10_1007_s43621_025_00855_0
crossref_primary_10_1088_2053_1591_ab5f72
crossref_primary_10_1080_01904167_2023_2179923
crossref_primary_10_3390_ijms25105116
crossref_primary_10_1016_j_jiec_2017_02_021
crossref_primary_10_1007_s10904_022_02406_w
crossref_primary_10_3389_fmicb_2022_813511
crossref_primary_10_1016_j_colsurfa_2016_02_033
crossref_primary_10_1016_j_scp_2018_08_001
crossref_primary_10_2147_IJN_S363282
crossref_primary_10_1016_j_envres_2021_112202
crossref_primary_10_1016_j_lfs_2024_123154
crossref_primary_10_3390_ma13020279
crossref_primary_10_1016_j_crbiot_2022_07_004
crossref_primary_10_1007_s00203_022_03325_7
crossref_primary_10_1088_2043_6254_ab2867
crossref_primary_10_1016_j_colsurfa_2016_08_072
crossref_primary_10_1016_j_optmat_2023_113970
crossref_primary_10_1080_19396368_2022_2140087
crossref_primary_10_3390_app112311559
crossref_primary_10_1016_j_jes_2016_09_007
crossref_primary_10_1021_acsanm_3c01351
crossref_primary_10_14233_ajchem_2022_23525
crossref_primary_10_1016_j_fbr_2021_07_003
crossref_primary_10_1016_j_scitotenv_2022_160476
crossref_primary_10_3390_molecules24142558
crossref_primary_10_1111_php_12733
crossref_primary_10_3390_nano7120417
crossref_primary_10_3390_nano10071251
crossref_primary_10_1038_s41598_018_22112_3
crossref_primary_10_1039_C9RA02225B
crossref_primary_10_1080_00103624_2024_2358854
crossref_primary_10_1142_S1793292024300032
crossref_primary_10_2147_IJN_S322900
crossref_primary_10_1007_s13213_018_1434_z
crossref_primary_10_1016_j_ijfoodmicro_2022_109833
crossref_primary_10_1016_j_jenvman_2018_04_032
crossref_primary_10_1039_D1NA00155H
crossref_primary_10_3390_app13042158
crossref_primary_10_1016_j_bcab_2023_102805
crossref_primary_10_1016_j_enzmictec_2016_08_007
crossref_primary_10_1002_wnan_1363
crossref_primary_10_1016_j_envres_2023_116870
crossref_primary_10_1016_j_oregeorev_2021_104595
crossref_primary_10_1021_acsnano_2c12191
crossref_primary_10_1186_s40104_019_0368_z
crossref_primary_10_1016_j_enmm_2022_100769
crossref_primary_10_1016_j_plana_2023_100036
crossref_primary_10_1007_s12668_020_00776_4
crossref_primary_10_1016_j_envres_2021_111700
crossref_primary_10_1007_s10876_022_02287_6
crossref_primary_10_1016_j_jhazmat_2021_128033
crossref_primary_10_1016_j_heliyon_2024_e31352
crossref_primary_10_1016_j_semcancer_2021_03_009
crossref_primary_10_1080_07388551_2016_1235011
crossref_primary_10_1155_2023_4838043
crossref_primary_10_1007_s11033_021_06824_w
crossref_primary_10_1016_j_biotechadv_2018_11_012
crossref_primary_10_1002_adma_201907833
crossref_primary_10_1016_j_jclepro_2020_122880
crossref_primary_10_1080_07388551_2023_2225131
crossref_primary_10_1016_j_jiec_2024_12_046
crossref_primary_10_1016_j_jece_2020_104365
crossref_primary_10_1080_10934529_2017_1340754
crossref_primary_10_3390_ijms23126770
Cites_doi 10.1186/1556-276X-6-261
10.1039/b922571d
10.1128/AEM.70.5.2966-2973.2004
10.1016/S0960-8524(03)00010-5
10.1007/s002530051433
10.1007/s00284-007-9007-6
10.1016/j.matlet.2007.01.018
10.1016/j.tsf.2013.10.165
10.1007/s11095-007-9257-9
10.1016/j.actbio.2011.01.023
10.2174/15734137113099990092
10.1039/b712170a
10.1016/j.procbio.2012.01.017
10.1023/B:JSST.0000047970.32053.bb
10.1039/b702825n
10.1016/j.bej.2011.02.014
10.1111/j.1462-2920.2007.01438.x
10.1016/j.jhazmat.2009.12.066
10.1007/BF01024641
10.1128/AEM.02085-10
10.1016/j.hydromet.2010.03.016
10.1155/2014/653198
10.4236/aces.2011.13023
10.1088/0957-4484/19/49/495101
10.1016/j.nano.2009.07.002
10.1002/ceat.200800647
10.1002/ep.11949
10.1021/nn301502s
10.1007/s00449-011-0646-4
10.1021/am200443j
10.1016/j.elecom.2007.01.007
10.1016/j.jconrel.2009.12.006
10.1016/j.colsurfb.2009.07.040
10.1002/jobm.201100157
10.1007/s10482-013-9892-6
10.1007/s11157-010-9188-5
10.1007/s00253-011-3556-0
10.1016/j.gca.2006.04.018
10.1021/ja0558241
10.1021/ar8002706
10.1039/b413074j
10.1007/s11837-010-0168-6
10.1038/nmat2911
10.1016/j.seppur.2003.10.002
10.1039/b303808b
10.1016/j.memsci.2005.04.014
10.1128/AEM.02551-13
10.1007/s11274-011-0719-1
10.1016/j.polymer.2007.12.033
10.1016/j.matlet.2013.10.020
10.1021/la900585p
10.1186/1477-3155-11-2
10.1016/j.copbio.2009.10.009
10.1049/iet-nbt.2012.0041
10.1016/S1001-0742(12)60239-3
10.1007/s12613-013-0755-y
10.1105/tpc.114.123588
10.1006/jsbi.1999.4132
10.1002/anie.200904359
10.1002/pmic.201200282
10.1016/j.colsurfb.2010.05.021
10.1039/b9nr00317g
10.3390/cancers3011081
10.1063/1.1462610
10.1074/mcp.M500174-MCP200
10.1021/bp0703174
10.1007/s00253-011-3249-8
10.1016/j.ica.2005.03.037
10.1016/j.enzmictec.2013.07.005
10.1016/j.cej.2011.09.041
10.1021/la062623h
10.1016/j.addr.2008.03.013
10.1126/science.291.5512.2370
10.1149/1.1582466
10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K
10.1016/j.mseb.2007.03.020
10.1128/AEM.01387-07
10.3109/07388551.2010.550568
10.1016/j.matchemphys.2011.09.050
10.1016/j.biomaterials.2012.02.033
10.1039/C3NR05033E
10.1016/j.addr.2008.03.016
10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X
10.1039/C3RA46520A
10.1016/j.ibiod.2013.03.012
10.1007/s11051-008-9378-z
10.1021/la703650d
10.1007/s10876-011-0412-4
10.1007/s10295-010-0777-7
10.1007/s10529-010-0473-8
10.1016/j.snb.2007.04.027
10.1016/j.saa.2009.02.037
10.1016/j.hydromet.2005.09.006
10.1016/j.watres.2013.06.007
10.1186/1475-2859-11-86
10.1002/btpr.199
10.1016/j.jhazmat.2011.02.069
10.1016/j.biortech.2013.01.073
10.1039/c1gc15309a
10.1016/j.matlet.2006.11.090
10.1039/c1jm12113h
10.1021/cr2001178
10.1021/la0513712
10.1021/jp0037091
10.1016/j.saa.2006.09.028
10.1142/S0218863508004032
10.2323/jgam.54.295
10.1166/jbn.2011.1285
10.1016/j.bios.2003.08.014
10.1016/j.aca.2008.01.033
10.1016/j.biortech.2014.04.085
10.1128/JB.01277-09
10.1007/s11051-010-0165-2
10.1016/j.cis.2010.02.001
10.1016/j.colsurfa.2011.02.042
10.1016/j.tibtech.2009.12.004
10.1021/ja904307n
10.1088/0960-1317/18/3/035019
10.1016/j.colsurfb.2010.10.035
10.1007/s00572-006-0075-4
10.1166/jnn.2013.7666
10.1021/es061040r
10.1088/0957-4484/19/11/115608
10.1016/j.colsurfb.2012.06.005
10.1016/j.biotechadv.2013.05.001
10.1038/30211
10.1002/jctb.4124
10.1080/10601325.2011.528307
10.1039/c2gc16676c
10.1073/pnas.0805135105
10.1007/s11051-009-9733-8
10.2323/jgam.50.221
ContentType Journal Article
Copyright 2014 The Authors. published by John Wiley & Sons Ltd and Society for Applied Microbiology.
2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Journal compilation © 2015 John Wiley & Sons Ltd and Society for Applied Microbiology 2015
Copyright_xml – notice: 2014 The Authors. published by John Wiley & Sons Ltd and Society for Applied Microbiology.
– notice: 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
– notice: Journal compilation © 2015 John Wiley & Sons Ltd and Society for Applied Microbiology 2015
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7ST
7T7
7U6
8FD
C1K
FR3
M7N
P64
5PM
DOI 10.1111/1751-7915.12151
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Sustainability Science Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE - Academic


MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-7915
EndPage 917
ExternalDocumentID PMC4621444
25154648
10_1111_1751_7915_12151
MBT212151
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Irish Research Council (Embark Initiative)
GroupedDBID ---
0R~
123
1OC
24P
29M
31~
4.4
53G
5DZ
5VS
7X7
8-1
8FE
8FG
8FH
8FI
8FJ
A8Z
AAHHS
AANHP
AAZKR
ABDBF
ABJCF
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFO
ACIWK
ACPRK
ACRPL
ACUHS
ACXQS
ACYXJ
ADBBV
ADKYN
ADNMO
ADPDF
ADRAZ
ADZMN
AEEZP
AEGXH
AENEX
AEQDE
AEUYN
AFKRA
AFRAH
AHMBA
AIAGR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
ASPBG
AVUZU
AVWKF
AZFZN
BAWUL
BBNVY
BCNDV
BDRZF
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
D-9
DIK
EBD
EBS
EJD
EMOBN
ESX
F5P
FEDTE
FYUFA
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HVGLF
HYE
IAO
IHR
ITC
KQ8
L6V
LH4
LK8
LW6
M48
M7P
M7S
ML0
MM.
O9-
OIG
OK1
OVD
OVEED
P2P
PIMPY
PQQKQ
PROAC
PTHSS
RNS
RPM
SV3
TEORI
TUS
UKHRP
WIN
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7X8
7QO
7ST
7T7
7U6
8FD
C1K
FR3
M7N
P64
5PM
ID FETCH-LOGICAL-c4731-85835b21f30343629fc7e1f87f6a703a92154fee871a38c7f9c040531da138aa3
IEDL.DBID M48
ISSN 1751-7915
IngestDate Thu Aug 21 14:01:34 EDT 2025
Fri Jul 11 05:20:24 EDT 2025
Fri Jul 11 01:35:34 EDT 2025
Mon Jul 21 06:06:22 EDT 2025
Tue Jul 01 03:37:55 EDT 2025
Thu Apr 24 23:05:19 EDT 2025
Wed Jan 22 16:27:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
http://creativecommons.org/licenses/by/3.0
2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4731-85835b21f30343629fc7e1f87f6a703a92154fee871a38c7f9c040531da138aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Funding Information Michael Kitching was funded by the Irish Research Council (Embark Initiative).
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/1751-7915.12151
PMID 25154648
PQID 1725024787
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4621444
proquest_miscellaneous_1727698197
proquest_miscellaneous_1725024787
pubmed_primary_25154648
crossref_citationtrail_10_1111_1751_7915_12151
crossref_primary_10_1111_1751_7915_12151
wiley_primary_10_1111_1751_7915_12151_MBT212151
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2015
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Chichester, UK
PublicationTitle Microbial biotechnology
PublicationTitleAlternate Microb Biotechnol
PublicationYear 2015
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References 2010; 12
2010; 103
2014; 26
2003; 150
2012b; 47
2008; 37
2011; 55
2008; 105
2013; 7
2012; 11
1998; 393
2001; 40
2013; 9
2009; 11
2004; 31
2010; 20
2011b; 189
2004; 38
2010; 28
2013; 53
2007; 9
2008; 24
2007; 61
2007; 2
2010; 192
1999; 51
2010; 2
2007; 67
2010; 6
2010; 9
2011; 1
2005; 236
2005; 358
2011; 83
2013; 85
1988; 10
2013; 101
2011; 77
2013; 103
2002; 3
2008; 54
2014; 2014
2014; 550
2011; 3
2012; 35
2011; 6
2012; 33
2012; 32
2011; 7
2011; 131
2011; 149
2010; 49
2009; 74
2004; 50
2009; 73
2012; 112
2006; 40
2013; 79
2011; 90
2011; 92
2008; 49
2005; 15
2006; 70
2013; 25
2009; 42
2007; 140
2010a; 177
2013; 20
2011a; 380
2008; 9
2003; 13
2008; 7
2002; 116
2005; 21
2011; 13
2008; 6
2008; 74
1999; 126
2010b; 79
2010; 62
2001; 105
2014; 4
2004; 70
2013; 11
2013; 13
2001; 291
2010; 156
2011; 22
2011; 21
2003; 1
2011; 27
2014; 166
2008; 60
2006; 128
2007; 23
2014; 6
2003; 88
2009; 25
2013; 47
2007; 127
2009; 20
2011
2008; 18
2008; 19
2006; 17
2008; 17
2006; 5
2011; 33
2008; 10
1999; 1
2011; 38
2007; 55
2014; 89
2014; 115
2011; 175
2006; 81
2012a; 14
2009; 32
2004; 19
2011; 51
2013; 31
2010; 132
2013; 133
2014
2011; 48
2012b; 6
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_129_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_121_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_73_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_132_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_112_1
e_1_2_6_135_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
Schüler D. (e_1_2_6_103_1) 1999; 1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
Sawle B.D. (e_1_2_6_102_1) 2008; 9
e_1_2_6_108_1
Lovley D.R. (e_1_2_6_68_1) 2003; 1
e_1_2_6_100_1
e_1_2_6_123_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_138_1
Chauhan A. (e_1_2_6_18_1) 2011; 6
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_130_1
e_1_2_6_111_1
e_1_2_6_134_1
Steinmetz N.F. (e_1_2_6_113_1) 2011
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_126_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_122_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – year: 2011
– volume: 6
  start-page: 257
  year: 2010
  end-page: 262
  article-title: Biological synthesis of metallic nanoparticles
  publication-title: Nanomedicine
– volume: 13
  start-page: 597
  year: 2013
  end-page: 608
  article-title: Secretomes: the fungal strike force
  publication-title: Proteomics
– volume: 5
  start-page: 182
  year: 2006
  end-page: 193
  article-title: Identification of proteins from a cell wall fraction of the diatom . Insights into silica structure formation
  publication-title: Mol Cell Proteomics
– volume: 6
  start-page: 2305
  year: 2011
  end-page: 2319
  article-title: Fungus‐mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer
  publication-title: Int J Nanomedicine
– volume: 62
  start-page: 45
  year: 2010
  end-page: 48
  article-title: Extracellular microbial synthesis of gold nanoparticles using fungus
  publication-title: JOM
– volume: 24
  start-page: 476
  year: 2008
  end-page: 480
  article-title: Biological synthesis of gold nanowires using extract of
  publication-title: Biotechnol Prog
– volume: 6
  start-page: 142
  year: 2008
  end-page: 148
  article-title: Facile synthesis and functionalization of water‐soluble gold nanoparticles for a bioprobe
  publication-title: Anal Chim Acta
– volume: 150
  start-page: G412
  year: 2003
  end-page: G417
  article-title: Plastic‐compatible low resistance printable gold nanoparticle conductors for flexible electronics
  publication-title: J Electrochem Soc
– volume: 19
  start-page: 495101
  year: 2008
  article-title: Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin
  publication-title: Nanotechnology
– volume: 13
  start-page: 921
  year: 2011
  end-page: 930
  article-title: Rapid extra‐/intracellular biosynthesis of gold nanoparticles by the fungus sp
  publication-title: J Nanopart Res
– volume: 31
  start-page: 915
  year: 2013
  end-page: 924
  article-title: Production of bioelectricity, bio‐hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms
  publication-title: Biotechnol Adv
– volume: 9
  start-page: 960
  year: 2010
  end-page: 961
  article-title: A crystal‐clear view
  publication-title: Nature Mater
– volume: 1
  start-page: 79
  year: 1999
  end-page: 86
  article-title: Formation of magnetosomes in magnetotactic bacteria
  publication-title: J Mol Microbiol Biotechnol
– volume: 11
  start-page: 2
  year: 2013
  article-title: 3, 4‐dihydroxy‐L‐phenylalanine‐derived melanin from mediates the synthesis of silver and gold nanostructures
  publication-title: J Nanobiotechnology
– volume: 33
  start-page: 4166
  year: 2012
  end-page: 4186
  article-title: A review of glycosylated carriers for drug delivery
  publication-title: Biomaterials
– volume: 103
  start-page: 180
  year: 2010
  end-page: 189
  article-title: Recovery of precious metals through biosorption – a review
  publication-title: Hydrometallurgy
– volume: 48
  start-page: 42
  year: 2011
  end-page: 46
  article-title: Synthesis and characterization of nano‐silica/polyacrylate composite emulsions by sol‐gel method and in‐situ emulsion polymerization
  publication-title: J Macromol Sci A
– volume: 49
  start-page: 1145
  year: 2008
  end-page: 1153
  article-title: Coating of gold nanoparticles by thermosensitive poly (N‐isopropylacrylamide) end‐capped by biotin
  publication-title: Polymer
– volume: 12
  start-page: 1777
  year: 2010
  end-page: 1786
  article-title: Investigation of the role of NaBH in the chemical synthesis of gold nanorods
  publication-title: J Nanopart Res
– volume: 70
  start-page: 2966
  year: 2004
  end-page: 2973
  article-title: Metal toxicity affects fungal and bacterial activities in soil differently
  publication-title: Appl Environ Microbiol
– volume: 9
  start-page: 1165
  year: 2007
  end-page: 1170
  article-title: Biosynthesis of gold nanoparticles assisted by DH5a and its application on direct electrochemistry of haemoglobin
  publication-title: Electrochem Comm
– year: 2014
  article-title: Exploration on green synthesis of gold nanoparticles by a marine‐derived fungus
  publication-title: Environ Prog Sustain Energy
– volume: 7
  start-page: 2148
  year: 2011
  end-page: 2152
  article-title: Biofabrication of discrete spherical gold nanoparticles using the metal‐reducing bacterium
  publication-title: Acta Biomater
– volume: 19
  start-page: 875
  year: 2004
  end-page: 883
  article-title: Gold nanoparticle‐based detection of genomic DNA targets on microarrays using a novel optical detection system
  publication-title: Biosens Bioelectron
– volume: 1
  start-page: 35
  year: 2003
  end-page: 44
  article-title: Cleaning up with genomes: applying molecular biology to bioremediation
  publication-title: Nature Rev
– volume: 25
  start-page: 8192
  year: 2009
  end-page: 8199
  article-title: Gold nanoparticles: microbial synthesis and application in water hygiene management
  publication-title: Langmuir
– volume: 6
  start-page: 6165
  year: 2012b
  end-page: 6173
  article-title: Biomineralization mechanism of gold by zygomycete fungi
  publication-title: ACS Nano
– volume: 15
  start-page: 749
  year: 2005
  end-page: 753
  article-title: Viral templates for gold nanoparticle synthesis
  publication-title: J Mater Chem
– volume: 131
  start-page: 331
  year: 2011
  end-page: 335
  article-title: Microwave synthesis of gold nanoparticles: effect of applied microwave power and solution pH
  publication-title: Mater Chem Phys
– volume: 42
  start-page: 1063
  year: 2009
  end-page: 1072
  article-title: Surface science investigations of oxidative chemistry on gold
  publication-title: Acc Chem Res
– volume: 85
  start-page: 483
  year: 2013
  end-page: 490
  article-title: Removal of bisphenol A and diclofenac by a novel fungal membrane bioreactor operated under non‐sterile conditions
  publication-title: Int Biodeter Biodegr
– volume: 10
  start-page: 137
  year: 1988
  end-page: 142
  article-title: Biosorbents for recovery of metals from industrial solutions
  publication-title: Biotechnol Lett
– volume: 60
  start-page: 1289
  year: 2008
  end-page: 1306
  article-title: Biological properties of ‘naked’ metal nanoparticles
  publication-title: Adv Drug Deliv Rev
– volume: 92
  start-page: 617
  year: 2011
  end-page: 630
  article-title: Microbial synthesis of gold nanoparticles using the fungus and their cytotoxic effects against mouse mayo blast cancer C2C12 cells
  publication-title: Appl Microbiol Biotechnol
– volume: 14
  start-page: 1322
  year: 2012a
  end-page: 1344
  article-title: Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with protein extract
  publication-title: Green Chem
– volume: 26
  start-page: 1360
  year: 2014
  end-page: 1376
  article-title: N‐glycosylation of effector proteins by an α‐1,3‐mannosyltransferase is required for the rice blast fungus to evade host innate immunity
  publication-title: Plant Cell
– volume: 116
  start-page: 6755
  year: 2002
  end-page: 6759
  article-title: Shape effects in plasmon resonance of individual colloidal silver nanoparticles
  publication-title: J Chem Phys
– volume: 70
  start-page: 3646
  year: 2006
  end-page: 3661
  article-title: Bioaccumulation of gold by sulfate‐reducing bacteria cultured in the presence of gold (I)‐thiosulfate complex
  publication-title: Geochim Cosmochim Acta
– volume: 73
  start-page: 374
  year: 2009
  end-page: 381
  article-title: Biosynthesis of Au, Ag and Au‐Ag nanoparticles using edible mushroom extract
  publication-title: Spectrochim Acta Mol Biomol Spectrosc
– volume: 40
  start-page: 3585
  year: 2001
  end-page: 3588
  article-title: Bioreduction of AuCl ions by the fungus, sp. and surface trapping of the gold nanoparticles formed
  publication-title: Angew Chem Int Ed Engl
– volume: 2
  start-page: 582
  year: 2010
  end-page: 586
  article-title: Preparation of functionalized gold nanoparticles as a targeted X‐ray contrast agent for damaged bone tissue
  publication-title: Nanoscale
– volume: 115
  start-page: 42
  year: 2014
  end-page: 44
  article-title: Biosynthesis of gold nanoparticles by extracellular molecules produced by the phytopathogenic fungus
  publication-title: Materials Lett
– volume: 9
  start-page: 576
  year: 2013
  end-page: 587
  article-title: Potential role of biological systems in formation of nanoparticles: mechanism of synthesis and biomedical applications
  publication-title: Curr Nanosci
– volume: 74
  start-page: 615
  year: 2008
  end-page: 623
  article-title: Secretion of flavins by species and their role in extracellular electron transfer
  publication-title: Appl Environ Microbiol
– volume: 38
  start-page: 1
  year: 2004
  end-page: 9
  article-title: Purification of nanoparticle suspensions by a concentration/diafiltration process
  publication-title: Sep Purif Technol
– volume: 47
  start-page: 5200
  year: 2013
  end-page: 5210
  article-title: Degradation of pharmaceuticals in non‐sterileurban wastewater by r in a fluidized bed bioreactor
  publication-title: Water Res
– volume: 32
  start-page: 49
  year: 2012
  end-page: 73
  article-title: Green approach for nanoparticle biosynthesis by fungi: current trends and applications
  publication-title: Crit Rev Biotechnol
– volume: 2014
  start-page: 653198
  year: 2014
  article-title: Controlled synthesis of gold nanoparticles using IF0 and its antibacterial potential against Gram negative pathogenic bacteria
  publication-title: J Nanotechnol
– volume: 189
  start-page: 519
  year: 2011b
  end-page: 525
  article-title: Synthesis and characterization of nano‐gold composite using and its heterogeneous catalysis in the degradation of 4‐nitrophenol
  publication-title: J Hazard Mater
– volume: 105
  start-page: 14265
  year: 2008
  end-page: 14270
  article-title: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 749
  year: 2014
  end-page: 752
  article-title: In situ synthesis of large‐area single sub‐10nm nanoparticle arrays by polymer pen lithography
  publication-title: Nanoscale
– volume: 17
  start-page: 185
  year: 2008
  end-page: 192
  article-title: Conformational study of citrates adsorbed on gold nanoparticles using Fourier transform infrared spectroscopy
  publication-title: J Nonlinear Opt Phys Mater
– volume: 83
  start-page: 42
  year: 2011
  end-page: 48
  article-title: Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus
  publication-title: Colloids Surf B Biointerfaces
– volume: 67
  start-page: 1003
  year: 2007
  end-page: 1006
  article-title: Biosynthesis of gold nanoparticles using
  publication-title: Spectrochim Acta Mol Biomol Spectrosc
– volume: 90
  start-page: 1609
  year: 2011
  end-page: 1624
  article-title: Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants
  publication-title: Appl Microbiol Biotechnol
– volume: 21
  start-page: 10644
  year: 2005
  end-page: 10654
  article-title: Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview
  publication-title: Langmuir
– volume: 3
  start-page: 461
  year: 2002
  end-page: 463
  article-title: Extracellular synthesis of gold nanoparticles by the fungus
  publication-title: Chembiochem
– volume: 133
  start-page: 301
  year: 2013
  end-page: 306
  article-title: Production of protein‐rich fungal biomass in an airlift bioreactor using vinasse as substrate
  publication-title: Bioresour Technol
– volume: 358
  start-page: 4229
  year: 2005
  end-page: 4236
  article-title: Synthesis and size regulation of gold nanoparticles by controlled thermolysis of ammonium gold (I) thiolate in the absence or presence of amines
  publication-title: Inorg Chim Acta
– volume: 103
  start-page: 1113
  year: 2013
  end-page: 1123
  article-title: Biosynthesis of extracellular and intracellular gold nanoparticles by and
  publication-title: Anton Leeuw
– volume: 1
  start-page: 154
  year: 2011
  end-page: 162
  article-title: Enzymatic formation of gold nanoparticles using
  publication-title: Adv Chem Eng Sci
– volume: 54
  start-page: 295
  year: 2008
  end-page: 303
  article-title: Cr(VI) reduction from contaminated soils by sp N2 and sp. N3 isolated from chromium deposits
  publication-title: J Gen Appl Microbiol
– volume: 4
  start-page: 3472
  year: 2014
  end-page: 3481
  article-title: A ferritin mediated photochemical method to synthesize biocompatible catalytically active gold nanoparticles: size control synthesis for small (∼ 2 nm), medium (∼ 7 nm) or large (∼ 17 nm) nanoparticles
  publication-title: RSC Adv
– volume: 55
  start-page: 1
  year: 2011
  end-page: 6
  article-title: Time dependent formation of gold nanoparticles in yeast cells: a comparative study
  publication-title: Biochem Eng J
– volume: 2
  start-page: 1415
  year: 2007
  end-page: 1426
  article-title: Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin
  publication-title: Pharm Res
– volume: 77
  start-page: 3132
  year: 2011
  end-page: 3136
  article-title: Heavy metal tolerance of Fe(III)‐reducing microbial communities in contaminated creek bank soils
  publication-title: Appl Environ Microbiol
– volume: 550
  start-page: 190
  year: 2014
  end-page: 198
  article-title: Ultrashort‐pulse laser ablation of gold thin film targets: theory and experiment
  publication-title: Thin Solid Films
– volume: 49
  start-page: 3280
  year: 2010
  end-page: 3294
  article-title: Gold nanoparticles for biology and medicine
  publication-title: Angew Chem Int Ed Engl
– volume: 18
  start-page: 035019
  year: 2008
  article-title: Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system
  publication-title: J Micromec Microeng
– volume: 37
  start-page: 1896
  year: 2008
  end-page: 1908
  article-title: Biological applications of gold nanoparticles
  publication-title: Chem Soc Rev
– volume: 7
  start-page: 109
  year: 2013
  end-page: 116
  article-title: Biological synthesis of metallic nanoparticles using algae
  publication-title: IET Nanobiotechnol
– volume: 393
  start-page: 152
  year: 1998
  end-page: 155
  article-title: Host/guest encapsulation of materials by assembled virus protein cages
  publication-title: Nature
– volume: 166
  start-page: 235
  year: 2014
  end-page: 242
  article-title: Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by
  publication-title: Bioresour Technol
– volume: 17
  start-page: 1
  year: 2006
  end-page: 10
  article-title: Identification of heavy metal‐induced genes encoding glutathione S‐transferases in the arbuscular mycorrhizal fungus
  publication-title: Mycorrhiza
– volume: 53
  start-page: 331
  year: 2013
  end-page: 338
  article-title: High production of cold‐tolerant chitinases on shrimp wastes in bench‐top bioreactor by the Antarctic fungus Lecanicillium muscarium CCFEE 5003: bioprocess optimization and characterization of two main enzymes
  publication-title: Enzyme Microb Technol
– volume: 7
  start-page: 2403
  year: 2008
  end-page: 2412
  article-title: Biodirected synthesis and assembly of nanomaterials
  publication-title: Chem Soc Rev
– volume: 175
  start-page: 70
  year: 2011
  end-page: 75
  article-title: Biosynthesis of gold nanoparticles by biosorption using MSR‐1
  publication-title: Chem Eng J
– volume: 31
  start-page: 109
  year: 2004
  end-page: 112
  article-title: Preparation of Au‐TiO hybrid nano particles in silicate film made by sol‐gel method
  publication-title: J Sol‐Gel Sci Technol
– volume: 20
  start-page: 2290
  year: 2010
  end-page: 2301
  article-title: Au(I): an alternative and potentially better precursor than Au(III) for the synthesis of Au nanostructures
  publication-title: J Mater Chem
– volume: 3
  start-page: 1081
  year: 2011
  end-page: 1110
  article-title: Gold nanostructures as a platform for combinational therapy in future cancer therapeutics
  publication-title: Cancers
– volume: 22
  start-page: 661
  year: 2011
  end-page: 665
  article-title: Biological synthesis of gold nanoparticles by fungus
  publication-title: J Clust Sci
– volume: 51
  start-page: 564
  year: 1999
  end-page: 571
  article-title: Glucose overflow metabolism and mixed‐acid fermentation in aerobic large‐scale fed‐batch processes with
  publication-title: Appl Microbiol Biotechnol
– volume: 35
  start-page: 637
  year: 2012
  end-page: 643
  article-title: Mycogenesis of gold nanoparticles using a phytopathogen
  publication-title: Bioprocess Biosyst Eng
– volume: 81
  start-page: 24
  year: 2006
  end-page: 29
  article-title: Intracellular recovery of gold by microbial reduction of AuCl ions using the anaerobic bacterium
  publication-title: Hydrometallurgy
– volume: 13
  start-page: 6079
  year: 2013
  end-page: 6085
  article-title: Positively charged gold nanoparticles synthesized by electrochemically active biofilm‐a biogenic approach
  publication-title: Nanosci Nanotechnol
– volume: 19
  start-page: 115608
  year: 2008
  article-title: Virus‐mediated FCC iron nanoparticle induced synthesis of uranium dioxide nanocrystals
  publication-title: Nanotechnology
– volume: 79
  start-page: 531
  year: 2010b
  end-page: 534
  article-title: Biocrystallization of silver and gold ions by inactive cell filtrate of
  publication-title: Colloids Surf B Biointerfaces
– volume: 128
  start-page: 3190
  year: 2006
  end-page: 3197
  article-title: Rapid purification and size separation of gold nanoparticles via diafiltration
  publication-title: J Am Chem Soc
– volume: 51
  start-page: 1
  year: 2011
  end-page: 6
  article-title: Biosynthesis and characterisation of Au‐ nanostructures by metal tolerant fungi
  publication-title: J Basic Microbiol
– volume: 55
  start-page: 402
  year: 2007
  end-page: 408
  article-title: Biosorption and bioreduction of trivalent aurum by photosynthetic bacteria
  publication-title: Curr Microbiol
– volume: 101
  start-page: 162
  year: 2013
  end-page: 170
  article-title: Size and shape dependant antifungal activity of gold nanoparticles: a case study of
  publication-title: Colloids Surf B Biointerfaces
– volume: 25
  start-page: 1260
  year: 2009
  end-page: 1266
  article-title: Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered
  publication-title: Biotechnol Prog
– volume: 40
  start-page: 6304
  year: 2006
  end-page: 6309
  article-title: Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)‐chloride complex
  publication-title: Environ Sci Technol
– volume: 61
  start-page: 3429
  year: 2007
  end-page: 3431
  article-title: Sonochemical synthesis of gold nanoparticles on chitosan
  publication-title: Mater Lett
– volume: 74
  start-page: 309
  year: 2009
  end-page: 316
  article-title: Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast NCIM 3589
  publication-title: Colloids Surf B Biointerfaces
– volume: 24
  start-page: 4421
  year: 2008
  end-page: 4425
  article-title: Radiation‐induced synthesis of gold nanoparticles within lamellar phases. Formation of aligned colloidal gold by radiolysis
  publication-title: Langmuir
– volume: 25
  start-page: 1906
  year: 2013
  end-page: 1912
  article-title: Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab‐scale and on a pilot‐scale
  publication-title: J Environ Sci
– volume: 7
  start-page: 245
  year: 2011
  end-page: 254
  article-title: Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species
  publication-title: J Biomed Nanotechnol
– volume: 89
  start-page: 305
  year: 2014
  end-page: 311
  article-title: Sunlight‐induced biosynthesis of silver nanoparticles by animal and fungus biomass and their characterization
  publication-title: J Chem Technol Biotechnol
– volume: 156
  start-page: 1
  year: 2010
  end-page: 13
  article-title: Biological Synthesis of metal nanoparticles by microbes
  publication-title: Adv Colloid Interface Sci
– volume: 11
  start-page: 86
  year: 2012
  end-page: 91
  article-title: Exploitation of marine bacteria for production of gold nanoparticles
  publication-title: Microb Cell Fact
– volume: 13
  start-page: 1482
  year: 2011
  end-page: 1485
  article-title: Electrochemically active biofilm‐mediated synthesis of silver nanoparticles in water
  publication-title: Green Chem
– volume: 38
  start-page: 327
  year: 2011
  end-page: 335
  article-title: Expression and purification of a functionally active class I fungal hydrophobin from the entomopathogenic fungus in
  publication-title: J Ind Microbiol Biotechnol
– volume: 50
  start-page: 221
  year: 2004
  end-page: 228
  article-title: Biosorption and recycling of gold using various microorganisms
  publication-title: J Gen Appl Microbiol
– volume: 9
  start-page: 199
  year: 2010
  end-page: 204
  article-title: A green chemical approach for the synthesis of gold nanoparticles: characterization and mechanistic aspect
  publication-title: Rev Environ Sci Biotechnol
– volume: 20
  start-page: 486
  year: 2013
  end-page: 493
  article-title: Shape control technology during electrochemical synthesis of gold nanoparticles
  publication-title: Int J Min Met Mater
– volume: 6
  start-page: 16
  year: 2011
  end-page: 22
  article-title: Biofabrication of anisotropic gold nanotriangles using extract of endophytic as a dual functional reductant and stabilizer
  publication-title: Nanoscale Res Lett
– volume: 236
  start-page: 30
  year: 2005
  end-page: 37
  article-title: Immobilisation and biofilm development of on polysulphone and ceramic membranes
  publication-title: J Membrane Sci
– volume: 126
  start-page: 195
  year: 1999
  end-page: 215
  article-title: Coccolith ultrastructure and biomineralisation
  publication-title: J Struct Biol
– volume: 127
  start-page: 335
  year: 2007
  end-page: 340
  article-title: Gold nanoparticle‐based immunochromatographic assay for the detection of
  publication-title: Sens Actuators B Chem
– volume: 88
  start-page: 167
  year: 2003
  end-page: 177
  article-title: Production of mycelium biomass and ethanol from paper pulp sulfite liquor by
  publication-title: Bioresour Technol
– volume: 10
  start-page: 125
  year: 2008
  end-page: 136
  article-title: Hydrogenase‐ and outer membrane c‐type cytochrome‐facilitated reduction of technetium (VII) by MR‐1
  publication-title: Environ Microbiol
– volume: 3
  start-page: 1418
  year: 2011
  end-page: 1425
  article-title: Synthesis of gold nanoparticles: an ecofriendly approach using
  publication-title: ACS Appl Mater Interfaces
– volume: 105
  start-page: 5114
  year: 2001
  end-page: 5120
  article-title: Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant
  publication-title: J Phys Chem B
– volume: 132
  start-page: 139
  year: 2010
  end-page: 146
  article-title: Size‐dependent catalytic activity and dynamics of gold nanoparticles at the single‐molecule level
  publication-title: J Am Chem Soc
– volume: 61
  start-page: 3984
  year: 2007
  end-page: 3987
  article-title: Biosynthesis of gold nanoparticles using the bacteria
  publication-title: Mater Lett
– volume: 33
  start-page: 469
  year: 2011
  end-page: 476
  article-title: as a multi‐purpose cell factory: current status and perspectives
  publication-title: Biotechnol Lett
– volume: 21
  start-page: 14575
  year: 2011
  end-page: 14580
  article-title: Nanoparticle size dependent threshold voltage shifts in organic memory transistors
  publication-title: J Mater Chem
– volume: 177
  start-page: 539
  year: 2010a
  end-page: 545
  article-title: Bioreduction of trivalent aurum to nano‐crystalline gold particles by active and inactive cells and cell free extract of var.
  publication-title: J Hazard Mater
– volume: 192
  start-page: 1143
  year: 2010
  end-page: 1150
  article-title: Impact of silver (I) on the metabolism of
  publication-title: J Bacteriol
– volume: 11
  start-page: 279
  year: 2009
  end-page: 288
  article-title: Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route
  publication-title: J Nanopart Res
– volume: 28
  start-page: 207
  year: 2010
  end-page: 213
  article-title: Functionalised gold nanoparticles for controlling pathogenic bacteria
  publication-title: Trends Biotechnol
– volume: 149
  start-page: 65
  year: 2011
  end-page: 71
  article-title: The forthcoming applications of gold nanoparticles in drug and gene delivery systems
  publication-title: J Control Release
– volume: 9
  start-page: 1
  year: 2008
  end-page: 6
  article-title: Biosynthesis and Stabilization of Au and Au‐Ag alloy nanoparticles by fungus,
  publication-title: Sci Tech Adv Mater
– volume: 380
  start-page: 156
  year: 2011a
  end-page: 161
  article-title: Facile green synthesis of gold nanostructures by NADPH – dependent enzyme from the extract of
  publication-title: Colloids Surf A
– volume: 47
  start-page: 701
  year: 2012b
  end-page: 711
  article-title: Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from and
  publication-title: Process Biochem
– volume: 140
  start-page: 153
  year: 2007
  end-page: 159
  article-title: Photochemical synthesis of colloidal gold nanoparticles
  publication-title: Mater Sci Eng B
– volume: 32
  start-page: 1036
  year: 2009
  end-page: 1041
  article-title: Extracellular biosynthesis of gold nanoparticles using ‐ its characterisation and stability
  publication-title: Chem Eng Technol
– volume: 23
  start-page: 885
  year: 2007
  end-page: 895
  article-title: Design of polymeric stabilizers for size‐controlled synthesis of monodisperse gold nanoparticles in water
  publication-title: Langmuir
– volume: 27
  start-page: 2505
  year: 2011
  end-page: 2512
  article-title: Novel three‐phase bioreactor concept for fatty acid alkyl ester production using as whole cell catalyst
  publication-title: World J Microbiol Biotechnol
– volume: 291
  start-page: 2370
  year: 2001
  end-page: 2376
  article-title: Glycosylation and the immune system
  publication-title: Science
– volume: 60
  start-page: 1307
  year: 2008
  end-page: 1315
  article-title: Gold Nanoparticles in delivery applications
  publication-title: Adv Drug Deliv Rev
– volume: 79
  start-page: 6369
  year: 2013
  end-page: 6374
  article-title: U(VI) reduction by diverse outer surface c‐type cytochromes of
  publication-title: Appl Environ Microbiol
– volume: 112
  start-page: 2739
  year: 2012
  end-page: 2779
  article-title: Gold nanoparticles in chemical and biological sensing
  publication-title: Chem Rev
– volume: 13
  start-page: 1822
  year: 2003
  end-page: 1826
  article-title: Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes
  publication-title: J Mater Chem
– volume: 20
  start-page: 678
  year: 2009
  end-page: 684
  article-title: Pharmacological significance of glycosylation in therapeutic proteins
  publication-title: Curr Opin Biotechnol
– ident: e_1_2_6_121_1
  doi: 10.1186/1556-276X-6-261
– ident: e_1_2_6_136_1
  doi: 10.1039/b922571d
– ident: e_1_2_6_96_1
  doi: 10.1128/AEM.70.5.2966-2973.2004
– ident: e_1_2_6_117_1
  doi: 10.1016/S0960-8524(03)00010-5
– ident: e_1_2_6_132_1
  doi: 10.1007/s002530051433
– ident: e_1_2_6_36_1
  doi: 10.1007/s00284-007-9007-6
– ident: e_1_2_6_46_1
  doi: 10.1016/j.matlet.2007.01.018
– ident: e_1_2_6_2_1
  doi: 10.1016/j.tsf.2013.10.165
– ident: e_1_2_6_9_1
  doi: 10.1007/s11095-007-9257-9
– ident: e_1_2_6_115_1
  doi: 10.1016/j.actbio.2011.01.023
– ident: e_1_2_6_95_1
  doi: 10.2174/15734137113099990092
– volume: 1
  start-page: 35
  year: 2003
  ident: e_1_2_6_68_1
  article-title: Cleaning up with genomes: applying molecular biology to bioremediation
  publication-title: Nature Rev
– ident: e_1_2_6_112_1
  doi: 10.1039/b712170a
– ident: e_1_2_6_75_1
  doi: 10.1016/j.procbio.2012.01.017
– ident: e_1_2_6_55_1
  doi: 10.1023/B:JSST.0000047970.32053.bb
– ident: e_1_2_6_23_1
  doi: 10.1039/b702825n
– volume: 1
  start-page: 79
  year: 1999
  ident: e_1_2_6_103_1
  article-title: Formation of magnetosomes in magnetotactic bacteria
  publication-title: J Mol Microbiol Biotechnol
– ident: e_1_2_6_104_1
  doi: 10.1016/j.bej.2011.02.014
– ident: e_1_2_6_71_1
  doi: 10.1111/j.1462-2920.2007.01438.x
– ident: e_1_2_6_10_1
  doi: 10.1016/j.jhazmat.2009.12.066
– ident: e_1_2_6_61_1
  doi: 10.1007/BF01024641
– ident: e_1_2_6_12_1
  doi: 10.1128/AEM.02085-10
– ident: e_1_2_6_24_1
  doi: 10.1016/j.hydromet.2010.03.016
– ident: e_1_2_6_94_1
  doi: 10.1155/2014/653198
– ident: e_1_2_6_100_1
  doi: 10.4236/aces.2011.13023
– ident: e_1_2_6_59_1
  doi: 10.1088/0957-4484/19/49/495101
– ident: e_1_2_6_118_1
  doi: 10.1016/j.nano.2009.07.002
– ident: e_1_2_6_7_1
  doi: 10.1002/ceat.200800647
– ident: e_1_2_6_120_1
  doi: 10.1002/ep.11949
– ident: e_1_2_6_28_1
  doi: 10.1021/nn301502s
– ident: e_1_2_6_101_1
  doi: 10.1007/s00449-011-0646-4
– ident: e_1_2_6_60_1
  doi: 10.1021/am200443j
– ident: e_1_2_6_33_1
  doi: 10.1016/j.elecom.2007.01.007
– ident: e_1_2_6_93_1
  doi: 10.1016/j.jconrel.2009.12.006
– ident: e_1_2_6_91_1
  doi: 10.1016/j.colsurfb.2009.07.040
– ident: e_1_2_6_44_1
  doi: 10.1002/jobm.201100157
– ident: e_1_2_6_43_1
  doi: 10.1007/s10482-013-9892-6
– ident: e_1_2_6_25_1
  doi: 10.1007/s11157-010-9188-5
– ident: e_1_2_6_74_1
  doi: 10.1007/s00253-011-3556-0
– ident: e_1_2_6_62_1
  doi: 10.1016/j.gca.2006.04.018
– ident: e_1_2_6_116_1
  doi: 10.1021/ja0558241
– ident: e_1_2_6_42_1
  doi: 10.1021/ar8002706
– ident: e_1_2_6_111_1
  doi: 10.1039/b413074j
– ident: e_1_2_6_77_1
  doi: 10.1007/s11837-010-0168-6
– volume-title: Viral Nanoparticles: Tools for Materials Science & Biomedicine
  year: 2011
  ident: e_1_2_6_113_1
– ident: e_1_2_6_22_1
  doi: 10.1038/nmat2911
– ident: e_1_2_6_65_1
  doi: 10.1016/j.seppur.2003.10.002
– ident: e_1_2_6_106_1
  doi: 10.1039/b303808b
– ident: e_1_2_6_109_1
  doi: 10.1016/j.memsci.2005.04.014
– ident: e_1_2_6_88_1
  doi: 10.1128/AEM.02551-13
– ident: e_1_2_6_21_1
  doi: 10.1007/s11274-011-0719-1
– ident: e_1_2_6_5_1
  doi: 10.1016/j.polymer.2007.12.033
– ident: e_1_2_6_16_1
  doi: 10.1016/j.matlet.2013.10.020
– ident: e_1_2_6_26_1
  doi: 10.1021/la900585p
– ident: e_1_2_6_4_1
  doi: 10.1186/1477-3155-11-2
– ident: e_1_2_6_64_1
  doi: 10.1016/j.copbio.2009.10.009
– ident: e_1_2_6_15_1
  doi: 10.1049/iet-nbt.2012.0041
– ident: e_1_2_6_30_1
  doi: 10.1016/S1001-0742(12)60239-3
– ident: e_1_2_6_67_1
  doi: 10.1007/s12613-013-0755-y
– ident: e_1_2_6_19_1
  doi: 10.1105/tpc.114.123588
– ident: e_1_2_6_135_1
  doi: 10.1006/jsbi.1999.4132
– ident: e_1_2_6_40_1
  doi: 10.1002/anie.200904359
– ident: e_1_2_6_41_1
  doi: 10.1002/pmic.201200282
– ident: e_1_2_6_11_1
  doi: 10.1016/j.colsurfb.2010.05.021
– volume: 6
  start-page: 2305
  year: 2011
  ident: e_1_2_6_18_1
  article-title: Fungus‐mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer
  publication-title: Int J Nanomedicine
– ident: e_1_2_6_138_1
  doi: 10.1039/b9nr00317g
– ident: e_1_2_6_52_1
  doi: 10.3390/cancers3011081
– ident: e_1_2_6_78_1
  doi: 10.1063/1.1462610
– ident: e_1_2_6_37_1
  doi: 10.1074/mcp.M500174-MCP200
– ident: e_1_2_6_47_1
  doi: 10.1021/bp0703174
– ident: e_1_2_6_35_1
  doi: 10.1007/s00253-011-3249-8
– ident: e_1_2_6_82_1
  doi: 10.1016/j.ica.2005.03.037
– ident: e_1_2_6_6_1
  doi: 10.1016/j.enzmictec.2013.07.005
– ident: e_1_2_6_13_1
  doi: 10.1016/j.cej.2011.09.041
– ident: e_1_2_6_123_1
  doi: 10.1021/la062623h
– ident: e_1_2_6_8_1
  doi: 10.1016/j.addr.2008.03.013
– ident: e_1_2_6_97_1
  doi: 10.1126/science.291.5512.2370
– ident: e_1_2_6_48_1
  doi: 10.1149/1.1582466
– ident: e_1_2_6_80_1
  doi: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K
– ident: e_1_2_6_31_1
  doi: 10.1016/j.mseb.2007.03.020
– ident: e_1_2_6_14_1
  doi: 10.1128/AEM.01387-07
– ident: e_1_2_6_29_1
  doi: 10.3109/07388551.2010.550568
– ident: e_1_2_6_105_1
  doi: 10.1016/j.matchemphys.2011.09.050
– ident: e_1_2_6_51_1
  doi: 10.1016/j.biomaterials.2012.02.033
– ident: e_1_2_6_130_1
  doi: 10.1039/C3NR05033E
– ident: e_1_2_6_39_1
  doi: 10.1016/j.addr.2008.03.016
– ident: e_1_2_6_81_1
  doi: 10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X
– ident: e_1_2_6_89_1
  doi: 10.1039/C3RA46520A
– ident: e_1_2_6_133_1
  doi: 10.1016/j.ibiod.2013.03.012
– ident: e_1_2_6_128_1
  doi: 10.1007/s11051-008-9378-z
– ident: e_1_2_6_73_1
  doi: 10.1021/la703650d
– ident: e_1_2_6_108_1
  doi: 10.1007/s10876-011-0412-4
– ident: e_1_2_6_57_1
  doi: 10.1007/s10295-010-0777-7
– ident: e_1_2_6_72_1
  doi: 10.1007/s10529-010-0473-8
– ident: e_1_2_6_49_1
  doi: 10.1016/j.snb.2007.04.027
– ident: e_1_2_6_90_1
  doi: 10.1016/j.saa.2009.02.037
– ident: e_1_2_6_58_1
  doi: 10.1016/j.hydromet.2005.09.006
– ident: e_1_2_6_79_1
  doi: 10.1016/j.watres.2013.06.007
– ident: e_1_2_6_107_1
  doi: 10.1186/1475-2859-11-86
– ident: e_1_2_6_20_1
  doi: 10.1002/btpr.199
– ident: e_1_2_6_85_1
  doi: 10.1016/j.jhazmat.2011.02.069
– ident: e_1_2_6_86_1
  doi: 10.1016/j.biortech.2013.01.073
– ident: e_1_2_6_53_1
  doi: 10.1039/c1gc15309a
– ident: e_1_2_6_87_1
  doi: 10.1016/j.matlet.2006.11.090
– ident: e_1_2_6_45_1
  doi: 10.1039/c1jm12113h
– ident: e_1_2_6_98_1
  doi: 10.1021/cr2001178
– ident: e_1_2_6_110_1
  doi: 10.1021/la0513712
– ident: e_1_2_6_70_1
  doi: 10.1021/jp0037091
– ident: e_1_2_6_50_1
  doi: 10.1016/j.saa.2006.09.028
– ident: e_1_2_6_131_1
  doi: 10.1142/S0218863508004032
– ident: e_1_2_6_38_1
  doi: 10.2323/jgam.54.295
– ident: e_1_2_6_137_1
  doi: 10.1166/jbn.2011.1285
– ident: e_1_2_6_114_1
  doi: 10.1016/j.bios.2003.08.014
– ident: e_1_2_6_124_1
  doi: 10.1016/j.aca.2008.01.033
– ident: e_1_2_6_76_1
  doi: 10.1016/j.biortech.2014.04.085
– ident: e_1_2_6_122_1
  doi: 10.1128/JB.01277-09
– ident: e_1_2_6_34_1
  doi: 10.1007/s11051-010-0165-2
– ident: e_1_2_6_83_1
  doi: 10.1016/j.cis.2010.02.001
– ident: e_1_2_6_84_1
  doi: 10.1016/j.colsurfa.2011.02.042
– ident: e_1_2_6_92_1
  doi: 10.1016/j.tibtech.2009.12.004
– ident: e_1_2_6_139_1
  doi: 10.1021/ja904307n
– ident: e_1_2_6_129_1
  doi: 10.1088/0960-1317/18/3/035019
– ident: e_1_2_6_17_1
  doi: 10.1016/j.colsurfb.2010.10.035
– ident: e_1_2_6_126_1
  doi: 10.1007/s00572-006-0075-4
– ident: e_1_2_6_56_1
  doi: 10.1166/jnn.2013.7666
– ident: e_1_2_6_63_1
  doi: 10.1021/es061040r
– ident: e_1_2_6_66_1
  doi: 10.1088/0957-4484/19/11/115608
– ident: e_1_2_6_125_1
  doi: 10.1016/j.colsurfb.2012.06.005
– ident: e_1_2_6_54_1
  doi: 10.1016/j.biotechadv.2013.05.001
– volume: 9
  start-page: 1
  year: 2008
  ident: e_1_2_6_102_1
  article-title: Biosynthesis and Stabilization of Au and Au‐Ag alloy nanoparticles by fungus, Fusarium semitectum
  publication-title: Sci Tech Adv Mater
– ident: e_1_2_6_32_1
  doi: 10.1038/30211
– ident: e_1_2_6_3_1
  doi: 10.1016/j.actbio.2011.01.023
– ident: e_1_2_6_127_1
  doi: 10.1002/jctb.4124
– ident: e_1_2_6_134_1
  doi: 10.1080/10601325.2011.528307
– ident: e_1_2_6_27_1
  doi: 10.1039/c2gc16676c
– ident: e_1_2_6_69_1
  doi: 10.1073/pnas.0805135105
– ident: e_1_2_6_99_1
  doi: 10.1007/s11051-009-9733-8
– ident: e_1_2_6_119_1
  doi: 10.2323/jgam.50.221
SSID ssj0060052
Score 2.50569
SecondaryResourceType review_article
Snippet Summary Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for...
Gold nanoparticles ( AuNPs ) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP...
Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 904
SubjectTerms Bioreactors
Biotechnology - methods
Fungi - metabolism
Gold - metabolism
Minireview
Nanoparticles - metabolism
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQWWBAvCkvGYmBJYATO4nZCqKqkEAMVGKLHNeGSq2DCB3499w5SdVSAWKLlHMS3_l83zm-z4SccqZFHoWDIMKyHs4gT0kjqwKdSMsFM1IaLHC-f4h7fX73LJrdhFgLU_FDTBfc0DP8fI0OrvJyxskh7jEkWxSeIAESoGUssEX6_JA_NpNxjMueviayFq7ZfXAzz7cHzAemBbS5uGlyFsz6aNRdJ2s1jKSdyu4bZMm4TbI6Qy64RTpd8GOQyYdF-ekA55XDkhaWvhSjAXXKQbZcb4q7omODBcDDckyVG9AS7Gbo5G2b9Lu3Tze9oD4wIdA8iViQCsBTecgsxCUOkUlanRhm08TGCjxbSegnt8ZAkqSiVCdWavBh8MKBYlGqVLRDWq5wZo9QyVQo80gxAwhF5FrayzjXnCuRhgaytDY5b7SV6ZpNHA-1GGVNVoHqzVC9mVdvm5xNG7xVRBo_i5406s9gsOMfDOVMMSlBEBBbiHxCv8oksQSgAzK7lcmmLwQwJ2CMwNcnc8acCiDZ9vwdN3z1pNs8RnI53iYX3ux_9SG7v34K_dX-v1sckBWAZaKqeDwkrY_3iTkC6PORH_vB_QViPfYW
  priority: 102
  providerName: Wiley-Blackwell
Title Fungal biosynthesis of gold nanoparticles: mechanism and scale up
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1751-7915.12151
https://www.ncbi.nlm.nih.gov/pubmed/25154648
https://www.proquest.com/docview/1725024787
https://www.proquest.com/docview/1727698197
https://pubmed.ncbi.nlm.nih.gov/PMC4621444
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB88fdGHw2_31CWCD75UTZs2jSCi4irCiogL-1bSbKILa-pZF87_3km2XVf8gnsJhU5bMtNhfpNkfgOwzaiK8yjsBZEr62EU85Q0MjJQXBgWUy2EdgXO7avkosMuu3H3rR1QpcDy09TO9ZPqPA12__19OUKHP6xP5WAEpI52MfZUCZgKzWBY4s5L22y8pZC4BVBfHVkJVzw_n7zAEQRjmGeJawo0Ga0-QNCPJyknEa4PUa15-F1hS3I8-hkWYErbRZibYBxcguMWOjfK5P2ifLEI_sp-SQpD7opBj1hpMYWuTsodkAftqoL75QORtkdKNKYmw8dl6LTObk8vgqqLQqAYj2iQxgiy8pAaDFYMw5UwimtqUm4Sie4uBU6ZGa0xc5JRqrgRCh0bXbMnaZRKGa3AtC2sXgMiqAxFHkmqEbbEuRJmP8kVYzJOQ42pWwN2a21lqqIYd50uBlmdajhNZ07Tmdd0A3bGDzyO2DW-Ft2q1Z-hB7htDWl1MSxREGFc6EiGvpXhiUD0gzKrI5ONP1jbugH8nTHHAo6B-_0d27_3TNwscYxzrAF73uw_zSFrn9yG_urPf39rHWYRs8WjcsgNmH5-GupNxEXPeRN-hewaR97lOKat8ybMnJxdXd80_UpD0_vDK3TuCWY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMCAeFOeRmJgCeDETmK2gqgKtBVDkdgix7WhUnEQaQf-PWcnjVIQILZIOSfxnc_3neP7jNAJJZKlgT_wAlvWQwnkKXGghScjrikjinNlC5y7vbD9SO-e2FOtFqbgh6gW3KxnuPnaOrhdkK55OQQ-YtkWmWNIgAxogYZ-ZJ3Tpw_T2Ti0656uKLIULul97G6eLw-YjUzf4Ob3XZN1NOvCUWsVrZQ4EjcLw6-hOWXW0XKNXXADNVvgyCCTDrP8wwDQy4c5zjR-zkYDbISBdLncFXeJX5WtAB7mr1iYAc7BcApP3jbRY-umf932yhMTPEmjgHgxA0CV-kRDYKIQmriWkSI6jnQowLUFh35SrRRkSSKIZaS5BCcGNxwIEsRCBFto3mRG7SDMifB5GgiiAKKwVHJ9EaaSUsFiX0Ga1kBnU20lsqQTt6dajJJpWmHVm1j1Jk69DXRaNXgrmDR-Fj2eqj-B0W5_YQijskkOggDZfEso9KtMFHJAOiCzXZiseiGgOUZDCl8fzRizErBs27N3zPDFsW7D4ILkkzbQuTP7X31Iuld9313t_rvFEVps97udpHPbu99DS4DRWFH-uI_mx-8TdQA4aJweuoH-Cbky-YI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZQJ6HxMG0woBsDI-2Bl7A5sZN4b2UQFVgrHhqE9hI5js0qtU61rA_773eXH1VLxRBvkXJO4juf7zvH95mQU860yAO_8AIs6-EM8pQ4sMrTkbRcMCOlwQLn0TgcpvzbL9HtJsRamIYfYrXghp5Rz9fo4IvCrjk5xD2GZIuiJkiABGgHufJgYO8MfqbXaTcdh7jwWVdFtuItvw9u5_njEZuhaQtvbm-bXIezdTxK9sleCyTpoLH8AXli3HPybI1e8AUZJODJIJNPy-reAdKrphUtLf1dzgrqlIN8ud0Wd0HnBkuAp9WcKlfQCixn6HJxSNLky-Ry6LVHJniaRwHzYgGIKveZhcjEITZJqyPDbBzZUIFvKwn95NYYSJNUEOvISg1eDH5YKBbESgUvSc-VzrwmVDLlyzxQzABGEbmW9jzMNedKxL6BPK1PPnbaynTLJ47HWsyyLq9A9Wao3qxWb598WDVYNFQafxd936k_g-GO_zCUM-WyAkHAbD4yCj0qE4USoA7IvGpMtnohwDnBQw5fH20YcyWAdNubd9z0pqbd5iHSy_E-OavN_q8-ZKNPE7--OvrvFu_I0x-fk-zq6_j7MdkFjCaa8sc3pHd3uzQngIPu8rftSH8AA1r6eg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fungal+biosynthesis+of+gold+nanoparticles%3A+mechanism+and+scale+up&rft.jtitle=Microbial+biotechnology&rft.au=Kitching%2C+Michael&rft.au=Ramani%2C+Meghana&rft.au=Marsili%2C+Enrico&rft.date=2015-11-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1751-7915&rft.eissn=1751-7915&rft.volume=8&rft.issue=6&rft.spage=904&rft.epage=917&rft_id=info:doi/10.1111%2F1751-7915.12151&rft_id=info%3Apmid%2F25154648&rft.externalDocID=PMC4621444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7915&client=summon