Fungal biosynthesis of gold nanoparticles: mechanism and scale up
Summary Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable m...
Saved in:
Published in | Microbial biotechnology Vol. 8; no. 6; pp. 904 - 917 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Ltd
01.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell‐free extracts is an environmentally friendly and low‐cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis.
Recent studies on AuNPs biosynthesis in fungi are comprehensively reviewed.The mechanisms of AuNPs biosynthesis in fungal biomass and cell‐free extracts are critically discussedBioreactors configurations and method for scale‐up of AuNP biosynthesis are proposed |
---|---|
AbstractList | Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis. Recent studies on AuNPs biosynthesis in fungi are comprehensively reviewed.The mechanisms of AuNPs biosynthesis in fungal biomass and cell-free extracts are critically discussedBioreactors configurations and method for scale-up of AuNP biosynthesis are proposed Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis.Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis. Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis. Summary Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell‐free extracts is an environmentally friendly and low‐cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis. Recent studies on AuNPs biosynthesis in fungi are comprehensively reviewed.The mechanisms of AuNPs biosynthesis in fungal biomass and cell‐free extracts are critically discussedBioreactors configurations and method for scale‐up of AuNP biosynthesis are proposed Gold nanoparticles ( AuNPs ) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell‐free extracts is an environmentally friendly and low‐cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis. |
Author | Ramani, Meghana Kitching, Michael Marsili, Enrico |
Author_xml | – sequence: 1 givenname: Michael surname: Kitching fullname: Kitching, Michael organization: Dublin City University – sequence: 2 givenname: Meghana surname: Ramani fullname: Ramani, Meghana organization: SRM University – sequence: 3 givenname: Enrico surname: Marsili fullname: Marsili, Enrico organization: Nanyang Technological University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25154648$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtP3DAUha2KqjzX7Kosuxnw9SN2WFQCVGglqm7o2rrjsWdcOfYQJ6D5900YQFCpar25lu93jo589slOyskRcgz0BMZzCkrCTDUgT4CBhHdk7-Vl59V9l-yX8ovSmlLJPpBdJkGKWug9cn41pCXGah5y2aR-5UooVfbVMsdFlTDlNXZ9sNGVs6p1doUplLbCtKiKxeiqYX1I3nuMxR09zQPy8-rL7eXX2c2P62-X5zczKxSHmZaayzkDzykXvGaNt8qB18rXqCjHZswvvHNaAXJtlW8sFVRyWCBwjcgPyOet73qYt25hXeo7jGbdhRa7jckYzNtNCiuzzPdG1AyEEKPBpyeDLt8NrvSmDcW6GDG5PBQDiqm60dCo_0ElZULpCf34OtZLnucvHgG5BWyXS-mcNzb02Ic8pQzRADVTlWYqy0xlmccqR93pH7pn678r6q3iIUS3-Rduvl_csq3wNy-erZA |
CitedBy_id | crossref_primary_10_1039_D3NR00863K crossref_primary_10_1016_j_porgcoat_2021_106650 crossref_primary_10_3389_fmicb_2016_01984 crossref_primary_10_2217_nnm_2020_0324 crossref_primary_10_1142_S108842461930012X crossref_primary_10_1016_j_envres_2021_111963 crossref_primary_10_1007_s00253_017_8250_4 crossref_primary_10_1007_s13205_024_04110_7 crossref_primary_10_1007_s11696_022_02602_5 crossref_primary_10_1007_s42649_019_0004_6 crossref_primary_10_1007_s00253_016_7756_5 crossref_primary_10_3390_ma16124261 crossref_primary_10_3390_jof8060597 crossref_primary_10_1039_D0NA00472C crossref_primary_10_3389_fmicb_2021_638003 crossref_primary_10_1038_s41598_024_54460_8 crossref_primary_10_1016_j_micpath_2025_107314 crossref_primary_10_3390_jof8050439 crossref_primary_10_3390_catal12111442 crossref_primary_10_1016_j_foodchem_2021_130513 crossref_primary_10_1016_j_pmpp_2023_102023 crossref_primary_10_1016_j_btre_2024_e00828 crossref_primary_10_1007_s00253_021_11277_z crossref_primary_10_7717_peerj_5237 crossref_primary_10_1007_s10311_017_0656_9 crossref_primary_10_1007_s13762_016_1062_8 crossref_primary_10_1021_acssuschemeng_9b05084 crossref_primary_10_1002_slct_202402447 crossref_primary_10_1088_2053_1591_ab0155 crossref_primary_10_1007_s11356_017_1050_7 crossref_primary_10_1016_j_ccr_2020_213540 crossref_primary_10_1186_s13568_016_0268_y crossref_primary_10_1039_D1CS01111A crossref_primary_10_3390_molecules27020458 crossref_primary_10_3390_bioengineering4010014 crossref_primary_10_1016_j_jenvman_2018_09_073 crossref_primary_10_1016_j_nanoso_2024_101342 crossref_primary_10_1016_j_procbio_2024_02_002 crossref_primary_10_2217_nnm_2017_0235 crossref_primary_10_1002_adom_202001368 crossref_primary_10_1016_j_tgchem_2023_100021 crossref_primary_10_1007_s12011_021_03078_2 crossref_primary_10_1134_S1995078020020202 crossref_primary_10_1007_s13204_021_02047_4 crossref_primary_10_1007_s00449_019_02210_w crossref_primary_10_1007_s00449_024_03053_w crossref_primary_10_29328_journal_aac_1001028 crossref_primary_10_3390_ijms22030989 crossref_primary_10_1016_j_envres_2022_113140 crossref_primary_10_1016_j_jcis_2021_01_103 crossref_primary_10_1016_j_susmat_2023_e00809 crossref_primary_10_2174_1573413717666210322114205 crossref_primary_10_2217_nnm_2018_0409 crossref_primary_10_1016_j_ibiod_2019_104724 crossref_primary_10_1016_j_colsurfb_2018_01_009 crossref_primary_10_3390_molecules27041181 crossref_primary_10_1088_1757_899X_1221_1_012035 crossref_primary_10_1007_s13204_021_01766_y crossref_primary_10_1016_j_heliyon_2021_e07250 crossref_primary_10_1016_j_cis_2024_103277 crossref_primary_10_2217_nnm_2022_0092 crossref_primary_10_1080_10408398_2022_2046543 crossref_primary_10_3390_molecules26123657 crossref_primary_10_3390_pharmaceutics15071868 crossref_primary_10_1002_slct_202002385 crossref_primary_10_1016_j_matlet_2018_09_122 crossref_primary_10_1016_j_tibtech_2017_05_005 crossref_primary_10_1186_s11671_016_1311_2 crossref_primary_10_1021_acsnano_6b00142 crossref_primary_10_1039_D0RA05271J crossref_primary_10_1038_s41598_024_81855_4 crossref_primary_10_1007_s00216_017_0414_7 crossref_primary_10_1016_j_jhazmat_2020_124797 crossref_primary_10_1016_j_molliq_2021_116040 crossref_primary_10_1002_btpr_2531 crossref_primary_10_1039_C5RA19388E crossref_primary_10_1007_s00775_019_01721_x crossref_primary_10_1007_s12668_021_00825_6 crossref_primary_10_1007_s00253_019_09675_5 crossref_primary_10_1111_lam_13055 crossref_primary_10_1016_j_enzmictec_2017_10_007 crossref_primary_10_1007_s00253_016_7893_x crossref_primary_10_1016_j_ceramint_2024_05_114 crossref_primary_10_1016_j_biori_2018_09_003 crossref_primary_10_1016_j_micron_2019_03_001 crossref_primary_10_1039_D4EN00403E crossref_primary_10_1016_j_heliyon_2023_e21678 crossref_primary_10_1002_nano_202100255 crossref_primary_10_2174_18742106_v17_e230922_2023_70 crossref_primary_10_1016_j_jddst_2024_106084 crossref_primary_10_1007_s11356_017_9684_z crossref_primary_10_1016_j_mtcomm_2022_103914 crossref_primary_10_1515_epoly_2023_0049 crossref_primary_10_1002_gch2_202300187 crossref_primary_10_1016_j_colsurfb_2023_113275 crossref_primary_10_1007_s40097_018_0285_2 crossref_primary_10_1039_D0NR01690J crossref_primary_10_1016_j_cis_2019_101989 crossref_primary_10_1080_10826068_2022_2122065 crossref_primary_10_4103_JVBD_JVBD_175_23 crossref_primary_10_1016_j_scitotenv_2021_149990 crossref_primary_10_1038_s41598_020_76402_w crossref_primary_10_1080_24701556_2020_1783313 crossref_primary_10_1016_j_foodchem_2024_139311 crossref_primary_10_1016_j_mssp_2019_104610 crossref_primary_10_1016_j_cplett_2015_12_019 crossref_primary_10_1021_acsomega_0c05263 crossref_primary_10_1016_j_arabjc_2016_09_020 crossref_primary_10_1007_s40089_017_0207_1 crossref_primary_10_1039_D4NR00624K crossref_primary_10_1155_2021_5598924 crossref_primary_10_2174_2210681208666180328154926 crossref_primary_10_3389_fchem_2021_613343 crossref_primary_10_3389_fmicb_2021_636588 crossref_primary_10_1016_j_plana_2023_100032 crossref_primary_10_1080_17518253_2019_1687762 crossref_primary_10_1016_j_chemosphere_2022_134465 crossref_primary_10_1016_j_wpi_2023_102196 crossref_primary_10_15406_hij_2020_04_00170 crossref_primary_10_1016_j_mimet_2022_106517 crossref_primary_10_1515_gps_2020_0031 crossref_primary_10_3390_jfb12040070 crossref_primary_10_1021_jacs_3c02484 crossref_primary_10_1080_07388551_2017_1414141 crossref_primary_10_3390_catal13040642 crossref_primary_10_1007_s11696_025_03952_6 crossref_primary_10_1016_j_chemosphere_2020_128306 crossref_primary_10_1016_j_jece_2021_106590 crossref_primary_10_1038_s41598_023_39177_4 crossref_primary_10_3390_en16124610 crossref_primary_10_1007_s11164_023_05026_2 crossref_primary_10_2147_IJN_S487188 crossref_primary_10_3389_fbioe_2023_1159193 crossref_primary_10_1016_j_heliyon_2021_e08480 crossref_primary_10_1007_s43621_025_00855_0 crossref_primary_10_1088_2053_1591_ab5f72 crossref_primary_10_1080_01904167_2023_2179923 crossref_primary_10_3390_ijms25105116 crossref_primary_10_1016_j_jiec_2017_02_021 crossref_primary_10_1007_s10904_022_02406_w crossref_primary_10_3389_fmicb_2022_813511 crossref_primary_10_1016_j_colsurfa_2016_02_033 crossref_primary_10_1016_j_scp_2018_08_001 crossref_primary_10_2147_IJN_S363282 crossref_primary_10_1016_j_envres_2021_112202 crossref_primary_10_1016_j_lfs_2024_123154 crossref_primary_10_3390_ma13020279 crossref_primary_10_1016_j_crbiot_2022_07_004 crossref_primary_10_1007_s00203_022_03325_7 crossref_primary_10_1088_2043_6254_ab2867 crossref_primary_10_1016_j_colsurfa_2016_08_072 crossref_primary_10_1016_j_optmat_2023_113970 crossref_primary_10_1080_19396368_2022_2140087 crossref_primary_10_3390_app112311559 crossref_primary_10_1016_j_jes_2016_09_007 crossref_primary_10_1021_acsanm_3c01351 crossref_primary_10_14233_ajchem_2022_23525 crossref_primary_10_1016_j_fbr_2021_07_003 crossref_primary_10_1016_j_scitotenv_2022_160476 crossref_primary_10_3390_molecules24142558 crossref_primary_10_1111_php_12733 crossref_primary_10_3390_nano7120417 crossref_primary_10_3390_nano10071251 crossref_primary_10_1038_s41598_018_22112_3 crossref_primary_10_1039_C9RA02225B crossref_primary_10_1080_00103624_2024_2358854 crossref_primary_10_1142_S1793292024300032 crossref_primary_10_2147_IJN_S322900 crossref_primary_10_1007_s13213_018_1434_z crossref_primary_10_1016_j_ijfoodmicro_2022_109833 crossref_primary_10_1016_j_jenvman_2018_04_032 crossref_primary_10_1039_D1NA00155H crossref_primary_10_3390_app13042158 crossref_primary_10_1016_j_bcab_2023_102805 crossref_primary_10_1016_j_enzmictec_2016_08_007 crossref_primary_10_1002_wnan_1363 crossref_primary_10_1016_j_envres_2023_116870 crossref_primary_10_1016_j_oregeorev_2021_104595 crossref_primary_10_1021_acsnano_2c12191 crossref_primary_10_1186_s40104_019_0368_z crossref_primary_10_1016_j_enmm_2022_100769 crossref_primary_10_1016_j_plana_2023_100036 crossref_primary_10_1007_s12668_020_00776_4 crossref_primary_10_1016_j_envres_2021_111700 crossref_primary_10_1007_s10876_022_02287_6 crossref_primary_10_1016_j_jhazmat_2021_128033 crossref_primary_10_1016_j_heliyon_2024_e31352 crossref_primary_10_1016_j_semcancer_2021_03_009 crossref_primary_10_1080_07388551_2016_1235011 crossref_primary_10_1155_2023_4838043 crossref_primary_10_1007_s11033_021_06824_w crossref_primary_10_1016_j_biotechadv_2018_11_012 crossref_primary_10_1002_adma_201907833 crossref_primary_10_1016_j_jclepro_2020_122880 crossref_primary_10_1080_07388551_2023_2225131 crossref_primary_10_1016_j_jiec_2024_12_046 crossref_primary_10_1016_j_jece_2020_104365 crossref_primary_10_1080_10934529_2017_1340754 crossref_primary_10_3390_ijms23126770 |
Cites_doi | 10.1186/1556-276X-6-261 10.1039/b922571d 10.1128/AEM.70.5.2966-2973.2004 10.1016/S0960-8524(03)00010-5 10.1007/s002530051433 10.1007/s00284-007-9007-6 10.1016/j.matlet.2007.01.018 10.1016/j.tsf.2013.10.165 10.1007/s11095-007-9257-9 10.1016/j.actbio.2011.01.023 10.2174/15734137113099990092 10.1039/b712170a 10.1016/j.procbio.2012.01.017 10.1023/B:JSST.0000047970.32053.bb 10.1039/b702825n 10.1016/j.bej.2011.02.014 10.1111/j.1462-2920.2007.01438.x 10.1016/j.jhazmat.2009.12.066 10.1007/BF01024641 10.1128/AEM.02085-10 10.1016/j.hydromet.2010.03.016 10.1155/2014/653198 10.4236/aces.2011.13023 10.1088/0957-4484/19/49/495101 10.1016/j.nano.2009.07.002 10.1002/ceat.200800647 10.1002/ep.11949 10.1021/nn301502s 10.1007/s00449-011-0646-4 10.1021/am200443j 10.1016/j.elecom.2007.01.007 10.1016/j.jconrel.2009.12.006 10.1016/j.colsurfb.2009.07.040 10.1002/jobm.201100157 10.1007/s10482-013-9892-6 10.1007/s11157-010-9188-5 10.1007/s00253-011-3556-0 10.1016/j.gca.2006.04.018 10.1021/ja0558241 10.1021/ar8002706 10.1039/b413074j 10.1007/s11837-010-0168-6 10.1038/nmat2911 10.1016/j.seppur.2003.10.002 10.1039/b303808b 10.1016/j.memsci.2005.04.014 10.1128/AEM.02551-13 10.1007/s11274-011-0719-1 10.1016/j.polymer.2007.12.033 10.1016/j.matlet.2013.10.020 10.1021/la900585p 10.1186/1477-3155-11-2 10.1016/j.copbio.2009.10.009 10.1049/iet-nbt.2012.0041 10.1016/S1001-0742(12)60239-3 10.1007/s12613-013-0755-y 10.1105/tpc.114.123588 10.1006/jsbi.1999.4132 10.1002/anie.200904359 10.1002/pmic.201200282 10.1016/j.colsurfb.2010.05.021 10.1039/b9nr00317g 10.3390/cancers3011081 10.1063/1.1462610 10.1074/mcp.M500174-MCP200 10.1021/bp0703174 10.1007/s00253-011-3249-8 10.1016/j.ica.2005.03.037 10.1016/j.enzmictec.2013.07.005 10.1016/j.cej.2011.09.041 10.1021/la062623h 10.1016/j.addr.2008.03.013 10.1126/science.291.5512.2370 10.1149/1.1582466 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K 10.1016/j.mseb.2007.03.020 10.1128/AEM.01387-07 10.3109/07388551.2010.550568 10.1016/j.matchemphys.2011.09.050 10.1016/j.biomaterials.2012.02.033 10.1039/C3NR05033E 10.1016/j.addr.2008.03.016 10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X 10.1039/C3RA46520A 10.1016/j.ibiod.2013.03.012 10.1007/s11051-008-9378-z 10.1021/la703650d 10.1007/s10876-011-0412-4 10.1007/s10295-010-0777-7 10.1007/s10529-010-0473-8 10.1016/j.snb.2007.04.027 10.1016/j.saa.2009.02.037 10.1016/j.hydromet.2005.09.006 10.1016/j.watres.2013.06.007 10.1186/1475-2859-11-86 10.1002/btpr.199 10.1016/j.jhazmat.2011.02.069 10.1016/j.biortech.2013.01.073 10.1039/c1gc15309a 10.1016/j.matlet.2006.11.090 10.1039/c1jm12113h 10.1021/cr2001178 10.1021/la0513712 10.1021/jp0037091 10.1016/j.saa.2006.09.028 10.1142/S0218863508004032 10.2323/jgam.54.295 10.1166/jbn.2011.1285 10.1016/j.bios.2003.08.014 10.1016/j.aca.2008.01.033 10.1016/j.biortech.2014.04.085 10.1128/JB.01277-09 10.1007/s11051-010-0165-2 10.1016/j.cis.2010.02.001 10.1016/j.colsurfa.2011.02.042 10.1016/j.tibtech.2009.12.004 10.1021/ja904307n 10.1088/0960-1317/18/3/035019 10.1016/j.colsurfb.2010.10.035 10.1007/s00572-006-0075-4 10.1166/jnn.2013.7666 10.1021/es061040r 10.1088/0957-4484/19/11/115608 10.1016/j.colsurfb.2012.06.005 10.1016/j.biotechadv.2013.05.001 10.1038/30211 10.1002/jctb.4124 10.1080/10601325.2011.528307 10.1039/c2gc16676c 10.1073/pnas.0805135105 10.1007/s11051-009-9733-8 10.2323/jgam.50.221 |
ContentType | Journal Article |
Copyright | 2014 The Authors. published by John Wiley & Sons Ltd and Society for Applied Microbiology. 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. Journal compilation © 2015 John Wiley & Sons Ltd and Society for Applied Microbiology 2015 |
Copyright_xml | – notice: 2014 The Authors. published by John Wiley & Sons Ltd and Society for Applied Microbiology. – notice: 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. – notice: Journal compilation © 2015 John Wiley & Sons Ltd and Society for Applied Microbiology 2015 |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7ST 7T7 7U6 8FD C1K FR3 M7N P64 5PM |
DOI | 10.1111/1751-7915.12151 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Sustainability Science Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-7915 |
EndPage | 917 |
ExternalDocumentID | PMC4621444 25154648 10_1111_1751_7915_12151 MBT212151 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Irish Research Council (Embark Initiative) |
GroupedDBID | --- 0R~ 123 1OC 24P 29M 31~ 4.4 53G 5DZ 5VS 7X7 8-1 8FE 8FG 8FH 8FI 8FJ A8Z AAHHS AANHP AAZKR ABDBF ABJCF ABUWG ACBWZ ACCFJ ACCMX ACGFO ACIWK ACPRK ACRPL ACUHS ACXQS ACYXJ ADBBV ADKYN ADNMO ADPDF ADRAZ ADZMN AEEZP AEGXH AENEX AEQDE AEUYN AFKRA AFRAH AHMBA AIAGR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS ASPBG AVUZU AVWKF AZFZN BAWUL BBNVY BCNDV BDRZF BENPR BGLVJ BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 D-9 DIK EBD EBS EJD EMOBN ESX F5P FEDTE FYUFA GODZA GROUPED_DOAJ GX1 HCIFZ HMCUK HVGLF HYE IAO IHR ITC KQ8 L6V LH4 LK8 LW6 M48 M7P M7S ML0 MM. O9- OIG OK1 OVD OVEED P2P PIMPY PQQKQ PROAC PTHSS RNS RPM SV3 TEORI TUS UKHRP WIN AAYXX AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 7X8 7QO 7ST 7T7 7U6 8FD C1K FR3 M7N P64 5PM |
ID | FETCH-LOGICAL-c4731-85835b21f30343629fc7e1f87f6a703a92154fee871a38c7f9c040531da138aa3 |
IEDL.DBID | M48 |
ISSN | 1751-7915 |
IngestDate | Thu Aug 21 14:01:34 EDT 2025 Fri Jul 11 05:20:24 EDT 2025 Fri Jul 11 01:35:34 EDT 2025 Mon Jul 21 06:06:22 EDT 2025 Tue Jul 01 03:37:55 EDT 2025 Thu Apr 24 23:05:19 EDT 2025 Wed Jan 22 16:27:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/3.0 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4731-85835b21f30343629fc7e1f87f6a703a92154fee871a38c7f9c040531da138aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Funding Information Michael Kitching was funded by the Irish Research Council (Embark Initiative). |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/1751-7915.12151 |
PMID | 25154648 |
PQID | 1725024787 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4621444 proquest_miscellaneous_1727698197 proquest_miscellaneous_1725024787 pubmed_primary_25154648 crossref_citationtrail_10_1111_1751_7915_12151 crossref_primary_10_1111_1751_7915_12151 wiley_primary_10_1111_1751_7915_12151_MBT212151 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2015 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: November 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Chichester, UK |
PublicationTitle | Microbial biotechnology |
PublicationTitleAlternate | Microb Biotechnol |
PublicationYear | 2015 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | 2010; 12 2010; 103 2014; 26 2003; 150 2012b; 47 2008; 37 2011; 55 2008; 105 2013; 7 2012; 11 1998; 393 2001; 40 2013; 9 2009; 11 2004; 31 2010; 20 2011b; 189 2004; 38 2010; 28 2013; 53 2007; 9 2008; 24 2007; 61 2007; 2 2010; 192 1999; 51 2010; 2 2007; 67 2010; 6 2010; 9 2011; 1 2005; 236 2005; 358 2011; 83 2013; 85 1988; 10 2013; 101 2011; 77 2013; 103 2002; 3 2008; 54 2014; 2014 2014; 550 2011; 3 2012; 35 2011; 6 2012; 33 2012; 32 2011; 7 2011; 131 2011; 149 2010; 49 2009; 74 2004; 50 2009; 73 2012; 112 2006; 40 2013; 79 2011; 90 2011; 92 2008; 49 2005; 15 2006; 70 2013; 25 2009; 42 2007; 140 2010a; 177 2013; 20 2011a; 380 2008; 9 2003; 13 2008; 7 2002; 116 2005; 21 2011; 13 2008; 6 2008; 74 1999; 126 2010b; 79 2010; 62 2001; 105 2014; 4 2004; 70 2013; 11 2013; 13 2001; 291 2010; 156 2011; 22 2011; 21 2003; 1 2011; 27 2014; 166 2008; 60 2006; 128 2007; 23 2014; 6 2003; 88 2009; 25 2013; 47 2007; 127 2009; 20 2011 2008; 18 2008; 19 2006; 17 2008; 17 2006; 5 2011; 33 2008; 10 1999; 1 2011; 38 2007; 55 2014; 89 2014; 115 2011; 175 2006; 81 2012a; 14 2009; 32 2004; 19 2011; 51 2013; 31 2010; 132 2013; 133 2014 2011; 48 2012b; 6 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_129_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_121_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_73_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_132_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_112_1 e_1_2_6_135_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 Schüler D. (e_1_2_6_103_1) 1999; 1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 Sawle B.D. (e_1_2_6_102_1) 2008; 9 e_1_2_6_108_1 Lovley D.R. (e_1_2_6_68_1) 2003; 1 e_1_2_6_100_1 e_1_2_6_123_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_75_1 e_1_2_6_138_1 Chauhan A. (e_1_2_6_18_1) 2011; 6 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_119_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_130_1 e_1_2_6_111_1 e_1_2_6_134_1 Steinmetz N.F. (e_1_2_6_113_1) 2011 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_126_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_122_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – year: 2011 – volume: 6 start-page: 257 year: 2010 end-page: 262 article-title: Biological synthesis of metallic nanoparticles publication-title: Nanomedicine – volume: 13 start-page: 597 year: 2013 end-page: 608 article-title: Secretomes: the fungal strike force publication-title: Proteomics – volume: 5 start-page: 182 year: 2006 end-page: 193 article-title: Identification of proteins from a cell wall fraction of the diatom . Insights into silica structure formation publication-title: Mol Cell Proteomics – volume: 6 start-page: 2305 year: 2011 end-page: 2319 article-title: Fungus‐mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer publication-title: Int J Nanomedicine – volume: 62 start-page: 45 year: 2010 end-page: 48 article-title: Extracellular microbial synthesis of gold nanoparticles using fungus publication-title: JOM – volume: 24 start-page: 476 year: 2008 end-page: 480 article-title: Biological synthesis of gold nanowires using extract of publication-title: Biotechnol Prog – volume: 6 start-page: 142 year: 2008 end-page: 148 article-title: Facile synthesis and functionalization of water‐soluble gold nanoparticles for a bioprobe publication-title: Anal Chim Acta – volume: 150 start-page: G412 year: 2003 end-page: G417 article-title: Plastic‐compatible low resistance printable gold nanoparticle conductors for flexible electronics publication-title: J Electrochem Soc – volume: 19 start-page: 495101 year: 2008 article-title: Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin publication-title: Nanotechnology – volume: 13 start-page: 921 year: 2011 end-page: 930 article-title: Rapid extra‐/intracellular biosynthesis of gold nanoparticles by the fungus sp publication-title: J Nanopart Res – volume: 31 start-page: 915 year: 2013 end-page: 924 article-title: Production of bioelectricity, bio‐hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms publication-title: Biotechnol Adv – volume: 9 start-page: 960 year: 2010 end-page: 961 article-title: A crystal‐clear view publication-title: Nature Mater – volume: 1 start-page: 79 year: 1999 end-page: 86 article-title: Formation of magnetosomes in magnetotactic bacteria publication-title: J Mol Microbiol Biotechnol – volume: 11 start-page: 2 year: 2013 article-title: 3, 4‐dihydroxy‐L‐phenylalanine‐derived melanin from mediates the synthesis of silver and gold nanostructures publication-title: J Nanobiotechnology – volume: 33 start-page: 4166 year: 2012 end-page: 4186 article-title: A review of glycosylated carriers for drug delivery publication-title: Biomaterials – volume: 103 start-page: 180 year: 2010 end-page: 189 article-title: Recovery of precious metals through biosorption – a review publication-title: Hydrometallurgy – volume: 48 start-page: 42 year: 2011 end-page: 46 article-title: Synthesis and characterization of nano‐silica/polyacrylate composite emulsions by sol‐gel method and in‐situ emulsion polymerization publication-title: J Macromol Sci A – volume: 49 start-page: 1145 year: 2008 end-page: 1153 article-title: Coating of gold nanoparticles by thermosensitive poly (N‐isopropylacrylamide) end‐capped by biotin publication-title: Polymer – volume: 12 start-page: 1777 year: 2010 end-page: 1786 article-title: Investigation of the role of NaBH in the chemical synthesis of gold nanorods publication-title: J Nanopart Res – volume: 70 start-page: 2966 year: 2004 end-page: 2973 article-title: Metal toxicity affects fungal and bacterial activities in soil differently publication-title: Appl Environ Microbiol – volume: 9 start-page: 1165 year: 2007 end-page: 1170 article-title: Biosynthesis of gold nanoparticles assisted by DH5a and its application on direct electrochemistry of haemoglobin publication-title: Electrochem Comm – year: 2014 article-title: Exploration on green synthesis of gold nanoparticles by a marine‐derived fungus publication-title: Environ Prog Sustain Energy – volume: 7 start-page: 2148 year: 2011 end-page: 2152 article-title: Biofabrication of discrete spherical gold nanoparticles using the metal‐reducing bacterium publication-title: Acta Biomater – volume: 19 start-page: 875 year: 2004 end-page: 883 article-title: Gold nanoparticle‐based detection of genomic DNA targets on microarrays using a novel optical detection system publication-title: Biosens Bioelectron – volume: 1 start-page: 35 year: 2003 end-page: 44 article-title: Cleaning up with genomes: applying molecular biology to bioremediation publication-title: Nature Rev – volume: 25 start-page: 8192 year: 2009 end-page: 8199 article-title: Gold nanoparticles: microbial synthesis and application in water hygiene management publication-title: Langmuir – volume: 6 start-page: 6165 year: 2012b end-page: 6173 article-title: Biomineralization mechanism of gold by zygomycete fungi publication-title: ACS Nano – volume: 15 start-page: 749 year: 2005 end-page: 753 article-title: Viral templates for gold nanoparticle synthesis publication-title: J Mater Chem – volume: 131 start-page: 331 year: 2011 end-page: 335 article-title: Microwave synthesis of gold nanoparticles: effect of applied microwave power and solution pH publication-title: Mater Chem Phys – volume: 42 start-page: 1063 year: 2009 end-page: 1072 article-title: Surface science investigations of oxidative chemistry on gold publication-title: Acc Chem Res – volume: 85 start-page: 483 year: 2013 end-page: 490 article-title: Removal of bisphenol A and diclofenac by a novel fungal membrane bioreactor operated under non‐sterile conditions publication-title: Int Biodeter Biodegr – volume: 10 start-page: 137 year: 1988 end-page: 142 article-title: Biosorbents for recovery of metals from industrial solutions publication-title: Biotechnol Lett – volume: 60 start-page: 1289 year: 2008 end-page: 1306 article-title: Biological properties of ‘naked’ metal nanoparticles publication-title: Adv Drug Deliv Rev – volume: 92 start-page: 617 year: 2011 end-page: 630 article-title: Microbial synthesis of gold nanoparticles using the fungus and their cytotoxic effects against mouse mayo blast cancer C2C12 cells publication-title: Appl Microbiol Biotechnol – volume: 14 start-page: 1322 year: 2012a end-page: 1344 article-title: Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with protein extract publication-title: Green Chem – volume: 26 start-page: 1360 year: 2014 end-page: 1376 article-title: N‐glycosylation of effector proteins by an α‐1,3‐mannosyltransferase is required for the rice blast fungus to evade host innate immunity publication-title: Plant Cell – volume: 116 start-page: 6755 year: 2002 end-page: 6759 article-title: Shape effects in plasmon resonance of individual colloidal silver nanoparticles publication-title: J Chem Phys – volume: 70 start-page: 3646 year: 2006 end-page: 3661 article-title: Bioaccumulation of gold by sulfate‐reducing bacteria cultured in the presence of gold (I)‐thiosulfate complex publication-title: Geochim Cosmochim Acta – volume: 73 start-page: 374 year: 2009 end-page: 381 article-title: Biosynthesis of Au, Ag and Au‐Ag nanoparticles using edible mushroom extract publication-title: Spectrochim Acta Mol Biomol Spectrosc – volume: 40 start-page: 3585 year: 2001 end-page: 3588 article-title: Bioreduction of AuCl ions by the fungus, sp. and surface trapping of the gold nanoparticles formed publication-title: Angew Chem Int Ed Engl – volume: 2 start-page: 582 year: 2010 end-page: 586 article-title: Preparation of functionalized gold nanoparticles as a targeted X‐ray contrast agent for damaged bone tissue publication-title: Nanoscale – volume: 115 start-page: 42 year: 2014 end-page: 44 article-title: Biosynthesis of gold nanoparticles by extracellular molecules produced by the phytopathogenic fungus publication-title: Materials Lett – volume: 9 start-page: 576 year: 2013 end-page: 587 article-title: Potential role of biological systems in formation of nanoparticles: mechanism of synthesis and biomedical applications publication-title: Curr Nanosci – volume: 74 start-page: 615 year: 2008 end-page: 623 article-title: Secretion of flavins by species and their role in extracellular electron transfer publication-title: Appl Environ Microbiol – volume: 38 start-page: 1 year: 2004 end-page: 9 article-title: Purification of nanoparticle suspensions by a concentration/diafiltration process publication-title: Sep Purif Technol – volume: 47 start-page: 5200 year: 2013 end-page: 5210 article-title: Degradation of pharmaceuticals in non‐sterileurban wastewater by r in a fluidized bed bioreactor publication-title: Water Res – volume: 32 start-page: 49 year: 2012 end-page: 73 article-title: Green approach for nanoparticle biosynthesis by fungi: current trends and applications publication-title: Crit Rev Biotechnol – volume: 2014 start-page: 653198 year: 2014 article-title: Controlled synthesis of gold nanoparticles using IF0 and its antibacterial potential against Gram negative pathogenic bacteria publication-title: J Nanotechnol – volume: 189 start-page: 519 year: 2011b end-page: 525 article-title: Synthesis and characterization of nano‐gold composite using and its heterogeneous catalysis in the degradation of 4‐nitrophenol publication-title: J Hazard Mater – volume: 105 start-page: 14265 year: 2008 end-page: 14270 article-title: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 749 year: 2014 end-page: 752 article-title: In situ synthesis of large‐area single sub‐10nm nanoparticle arrays by polymer pen lithography publication-title: Nanoscale – volume: 17 start-page: 185 year: 2008 end-page: 192 article-title: Conformational study of citrates adsorbed on gold nanoparticles using Fourier transform infrared spectroscopy publication-title: J Nonlinear Opt Phys Mater – volume: 83 start-page: 42 year: 2011 end-page: 48 article-title: Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus publication-title: Colloids Surf B Biointerfaces – volume: 67 start-page: 1003 year: 2007 end-page: 1006 article-title: Biosynthesis of gold nanoparticles using publication-title: Spectrochim Acta Mol Biomol Spectrosc – volume: 90 start-page: 1609 year: 2011 end-page: 1624 article-title: Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants publication-title: Appl Microbiol Biotechnol – volume: 21 start-page: 10644 year: 2005 end-page: 10654 article-title: Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview publication-title: Langmuir – volume: 3 start-page: 461 year: 2002 end-page: 463 article-title: Extracellular synthesis of gold nanoparticles by the fungus publication-title: Chembiochem – volume: 133 start-page: 301 year: 2013 end-page: 306 article-title: Production of protein‐rich fungal biomass in an airlift bioreactor using vinasse as substrate publication-title: Bioresour Technol – volume: 358 start-page: 4229 year: 2005 end-page: 4236 article-title: Synthesis and size regulation of gold nanoparticles by controlled thermolysis of ammonium gold (I) thiolate in the absence or presence of amines publication-title: Inorg Chim Acta – volume: 103 start-page: 1113 year: 2013 end-page: 1123 article-title: Biosynthesis of extracellular and intracellular gold nanoparticles by and publication-title: Anton Leeuw – volume: 1 start-page: 154 year: 2011 end-page: 162 article-title: Enzymatic formation of gold nanoparticles using publication-title: Adv Chem Eng Sci – volume: 54 start-page: 295 year: 2008 end-page: 303 article-title: Cr(VI) reduction from contaminated soils by sp N2 and sp. N3 isolated from chromium deposits publication-title: J Gen Appl Microbiol – volume: 4 start-page: 3472 year: 2014 end-page: 3481 article-title: A ferritin mediated photochemical method to synthesize biocompatible catalytically active gold nanoparticles: size control synthesis for small (∼ 2 nm), medium (∼ 7 nm) or large (∼ 17 nm) nanoparticles publication-title: RSC Adv – volume: 55 start-page: 1 year: 2011 end-page: 6 article-title: Time dependent formation of gold nanoparticles in yeast cells: a comparative study publication-title: Biochem Eng J – volume: 2 start-page: 1415 year: 2007 end-page: 1426 article-title: Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin publication-title: Pharm Res – volume: 77 start-page: 3132 year: 2011 end-page: 3136 article-title: Heavy metal tolerance of Fe(III)‐reducing microbial communities in contaminated creek bank soils publication-title: Appl Environ Microbiol – volume: 550 start-page: 190 year: 2014 end-page: 198 article-title: Ultrashort‐pulse laser ablation of gold thin film targets: theory and experiment publication-title: Thin Solid Films – volume: 49 start-page: 3280 year: 2010 end-page: 3294 article-title: Gold nanoparticles for biology and medicine publication-title: Angew Chem Int Ed Engl – volume: 18 start-page: 035019 year: 2008 article-title: Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system publication-title: J Micromec Microeng – volume: 37 start-page: 1896 year: 2008 end-page: 1908 article-title: Biological applications of gold nanoparticles publication-title: Chem Soc Rev – volume: 7 start-page: 109 year: 2013 end-page: 116 article-title: Biological synthesis of metallic nanoparticles using algae publication-title: IET Nanobiotechnol – volume: 393 start-page: 152 year: 1998 end-page: 155 article-title: Host/guest encapsulation of materials by assembled virus protein cages publication-title: Nature – volume: 166 start-page: 235 year: 2014 end-page: 242 article-title: Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by publication-title: Bioresour Technol – volume: 17 start-page: 1 year: 2006 end-page: 10 article-title: Identification of heavy metal‐induced genes encoding glutathione S‐transferases in the arbuscular mycorrhizal fungus publication-title: Mycorrhiza – volume: 53 start-page: 331 year: 2013 end-page: 338 article-title: High production of cold‐tolerant chitinases on shrimp wastes in bench‐top bioreactor by the Antarctic fungus Lecanicillium muscarium CCFEE 5003: bioprocess optimization and characterization of two main enzymes publication-title: Enzyme Microb Technol – volume: 7 start-page: 2403 year: 2008 end-page: 2412 article-title: Biodirected synthesis and assembly of nanomaterials publication-title: Chem Soc Rev – volume: 175 start-page: 70 year: 2011 end-page: 75 article-title: Biosynthesis of gold nanoparticles by biosorption using MSR‐1 publication-title: Chem Eng J – volume: 31 start-page: 109 year: 2004 end-page: 112 article-title: Preparation of Au‐TiO hybrid nano particles in silicate film made by sol‐gel method publication-title: J Sol‐Gel Sci Technol – volume: 20 start-page: 2290 year: 2010 end-page: 2301 article-title: Au(I): an alternative and potentially better precursor than Au(III) for the synthesis of Au nanostructures publication-title: J Mater Chem – volume: 3 start-page: 1081 year: 2011 end-page: 1110 article-title: Gold nanostructures as a platform for combinational therapy in future cancer therapeutics publication-title: Cancers – volume: 22 start-page: 661 year: 2011 end-page: 665 article-title: Biological synthesis of gold nanoparticles by fungus publication-title: J Clust Sci – volume: 51 start-page: 564 year: 1999 end-page: 571 article-title: Glucose overflow metabolism and mixed‐acid fermentation in aerobic large‐scale fed‐batch processes with publication-title: Appl Microbiol Biotechnol – volume: 35 start-page: 637 year: 2012 end-page: 643 article-title: Mycogenesis of gold nanoparticles using a phytopathogen publication-title: Bioprocess Biosyst Eng – volume: 81 start-page: 24 year: 2006 end-page: 29 article-title: Intracellular recovery of gold by microbial reduction of AuCl ions using the anaerobic bacterium publication-title: Hydrometallurgy – volume: 13 start-page: 6079 year: 2013 end-page: 6085 article-title: Positively charged gold nanoparticles synthesized by electrochemically active biofilm‐a biogenic approach publication-title: Nanosci Nanotechnol – volume: 19 start-page: 115608 year: 2008 article-title: Virus‐mediated FCC iron nanoparticle induced synthesis of uranium dioxide nanocrystals publication-title: Nanotechnology – volume: 79 start-page: 531 year: 2010b end-page: 534 article-title: Biocrystallization of silver and gold ions by inactive cell filtrate of publication-title: Colloids Surf B Biointerfaces – volume: 128 start-page: 3190 year: 2006 end-page: 3197 article-title: Rapid purification and size separation of gold nanoparticles via diafiltration publication-title: J Am Chem Soc – volume: 51 start-page: 1 year: 2011 end-page: 6 article-title: Biosynthesis and characterisation of Au‐ nanostructures by metal tolerant fungi publication-title: J Basic Microbiol – volume: 55 start-page: 402 year: 2007 end-page: 408 article-title: Biosorption and bioreduction of trivalent aurum by photosynthetic bacteria publication-title: Curr Microbiol – volume: 101 start-page: 162 year: 2013 end-page: 170 article-title: Size and shape dependant antifungal activity of gold nanoparticles: a case study of publication-title: Colloids Surf B Biointerfaces – volume: 25 start-page: 1260 year: 2009 end-page: 1266 article-title: Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered publication-title: Biotechnol Prog – volume: 40 start-page: 6304 year: 2006 end-page: 6309 article-title: Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)‐chloride complex publication-title: Environ Sci Technol – volume: 61 start-page: 3429 year: 2007 end-page: 3431 article-title: Sonochemical synthesis of gold nanoparticles on chitosan publication-title: Mater Lett – volume: 74 start-page: 309 year: 2009 end-page: 316 article-title: Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast NCIM 3589 publication-title: Colloids Surf B Biointerfaces – volume: 24 start-page: 4421 year: 2008 end-page: 4425 article-title: Radiation‐induced synthesis of gold nanoparticles within lamellar phases. Formation of aligned colloidal gold by radiolysis publication-title: Langmuir – volume: 25 start-page: 1906 year: 2013 end-page: 1912 article-title: Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab‐scale and on a pilot‐scale publication-title: J Environ Sci – volume: 7 start-page: 245 year: 2011 end-page: 254 article-title: Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species publication-title: J Biomed Nanotechnol – volume: 89 start-page: 305 year: 2014 end-page: 311 article-title: Sunlight‐induced biosynthesis of silver nanoparticles by animal and fungus biomass and their characterization publication-title: J Chem Technol Biotechnol – volume: 156 start-page: 1 year: 2010 end-page: 13 article-title: Biological Synthesis of metal nanoparticles by microbes publication-title: Adv Colloid Interface Sci – volume: 11 start-page: 86 year: 2012 end-page: 91 article-title: Exploitation of marine bacteria for production of gold nanoparticles publication-title: Microb Cell Fact – volume: 13 start-page: 1482 year: 2011 end-page: 1485 article-title: Electrochemically active biofilm‐mediated synthesis of silver nanoparticles in water publication-title: Green Chem – volume: 38 start-page: 327 year: 2011 end-page: 335 article-title: Expression and purification of a functionally active class I fungal hydrophobin from the entomopathogenic fungus in publication-title: J Ind Microbiol Biotechnol – volume: 50 start-page: 221 year: 2004 end-page: 228 article-title: Biosorption and recycling of gold using various microorganisms publication-title: J Gen Appl Microbiol – volume: 9 start-page: 199 year: 2010 end-page: 204 article-title: A green chemical approach for the synthesis of gold nanoparticles: characterization and mechanistic aspect publication-title: Rev Environ Sci Biotechnol – volume: 20 start-page: 486 year: 2013 end-page: 493 article-title: Shape control technology during electrochemical synthesis of gold nanoparticles publication-title: Int J Min Met Mater – volume: 6 start-page: 16 year: 2011 end-page: 22 article-title: Biofabrication of anisotropic gold nanotriangles using extract of endophytic as a dual functional reductant and stabilizer publication-title: Nanoscale Res Lett – volume: 236 start-page: 30 year: 2005 end-page: 37 article-title: Immobilisation and biofilm development of on polysulphone and ceramic membranes publication-title: J Membrane Sci – volume: 126 start-page: 195 year: 1999 end-page: 215 article-title: Coccolith ultrastructure and biomineralisation publication-title: J Struct Biol – volume: 127 start-page: 335 year: 2007 end-page: 340 article-title: Gold nanoparticle‐based immunochromatographic assay for the detection of publication-title: Sens Actuators B Chem – volume: 88 start-page: 167 year: 2003 end-page: 177 article-title: Production of mycelium biomass and ethanol from paper pulp sulfite liquor by publication-title: Bioresour Technol – volume: 10 start-page: 125 year: 2008 end-page: 136 article-title: Hydrogenase‐ and outer membrane c‐type cytochrome‐facilitated reduction of technetium (VII) by MR‐1 publication-title: Environ Microbiol – volume: 3 start-page: 1418 year: 2011 end-page: 1425 article-title: Synthesis of gold nanoparticles: an ecofriendly approach using publication-title: ACS Appl Mater Interfaces – volume: 105 start-page: 5114 year: 2001 end-page: 5120 article-title: Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant publication-title: J Phys Chem B – volume: 132 start-page: 139 year: 2010 end-page: 146 article-title: Size‐dependent catalytic activity and dynamics of gold nanoparticles at the single‐molecule level publication-title: J Am Chem Soc – volume: 61 start-page: 3984 year: 2007 end-page: 3987 article-title: Biosynthesis of gold nanoparticles using the bacteria publication-title: Mater Lett – volume: 33 start-page: 469 year: 2011 end-page: 476 article-title: as a multi‐purpose cell factory: current status and perspectives publication-title: Biotechnol Lett – volume: 21 start-page: 14575 year: 2011 end-page: 14580 article-title: Nanoparticle size dependent threshold voltage shifts in organic memory transistors publication-title: J Mater Chem – volume: 177 start-page: 539 year: 2010a end-page: 545 article-title: Bioreduction of trivalent aurum to nano‐crystalline gold particles by active and inactive cells and cell free extract of var. publication-title: J Hazard Mater – volume: 192 start-page: 1143 year: 2010 end-page: 1150 article-title: Impact of silver (I) on the metabolism of publication-title: J Bacteriol – volume: 11 start-page: 279 year: 2009 end-page: 288 article-title: Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route publication-title: J Nanopart Res – volume: 28 start-page: 207 year: 2010 end-page: 213 article-title: Functionalised gold nanoparticles for controlling pathogenic bacteria publication-title: Trends Biotechnol – volume: 149 start-page: 65 year: 2011 end-page: 71 article-title: The forthcoming applications of gold nanoparticles in drug and gene delivery systems publication-title: J Control Release – volume: 9 start-page: 1 year: 2008 end-page: 6 article-title: Biosynthesis and Stabilization of Au and Au‐Ag alloy nanoparticles by fungus, publication-title: Sci Tech Adv Mater – volume: 380 start-page: 156 year: 2011a end-page: 161 article-title: Facile green synthesis of gold nanostructures by NADPH – dependent enzyme from the extract of publication-title: Colloids Surf A – volume: 47 start-page: 701 year: 2012b end-page: 711 article-title: Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from and publication-title: Process Biochem – volume: 140 start-page: 153 year: 2007 end-page: 159 article-title: Photochemical synthesis of colloidal gold nanoparticles publication-title: Mater Sci Eng B – volume: 32 start-page: 1036 year: 2009 end-page: 1041 article-title: Extracellular biosynthesis of gold nanoparticles using ‐ its characterisation and stability publication-title: Chem Eng Technol – volume: 23 start-page: 885 year: 2007 end-page: 895 article-title: Design of polymeric stabilizers for size‐controlled synthesis of monodisperse gold nanoparticles in water publication-title: Langmuir – volume: 27 start-page: 2505 year: 2011 end-page: 2512 article-title: Novel three‐phase bioreactor concept for fatty acid alkyl ester production using as whole cell catalyst publication-title: World J Microbiol Biotechnol – volume: 291 start-page: 2370 year: 2001 end-page: 2376 article-title: Glycosylation and the immune system publication-title: Science – volume: 60 start-page: 1307 year: 2008 end-page: 1315 article-title: Gold Nanoparticles in delivery applications publication-title: Adv Drug Deliv Rev – volume: 79 start-page: 6369 year: 2013 end-page: 6374 article-title: U(VI) reduction by diverse outer surface c‐type cytochromes of publication-title: Appl Environ Microbiol – volume: 112 start-page: 2739 year: 2012 end-page: 2779 article-title: Gold nanoparticles in chemical and biological sensing publication-title: Chem Rev – volume: 13 start-page: 1822 year: 2003 end-page: 1826 article-title: Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes publication-title: J Mater Chem – volume: 20 start-page: 678 year: 2009 end-page: 684 article-title: Pharmacological significance of glycosylation in therapeutic proteins publication-title: Curr Opin Biotechnol – ident: e_1_2_6_121_1 doi: 10.1186/1556-276X-6-261 – ident: e_1_2_6_136_1 doi: 10.1039/b922571d – ident: e_1_2_6_96_1 doi: 10.1128/AEM.70.5.2966-2973.2004 – ident: e_1_2_6_117_1 doi: 10.1016/S0960-8524(03)00010-5 – ident: e_1_2_6_132_1 doi: 10.1007/s002530051433 – ident: e_1_2_6_36_1 doi: 10.1007/s00284-007-9007-6 – ident: e_1_2_6_46_1 doi: 10.1016/j.matlet.2007.01.018 – ident: e_1_2_6_2_1 doi: 10.1016/j.tsf.2013.10.165 – ident: e_1_2_6_9_1 doi: 10.1007/s11095-007-9257-9 – ident: e_1_2_6_115_1 doi: 10.1016/j.actbio.2011.01.023 – ident: e_1_2_6_95_1 doi: 10.2174/15734137113099990092 – volume: 1 start-page: 35 year: 2003 ident: e_1_2_6_68_1 article-title: Cleaning up with genomes: applying molecular biology to bioremediation publication-title: Nature Rev – ident: e_1_2_6_112_1 doi: 10.1039/b712170a – ident: e_1_2_6_75_1 doi: 10.1016/j.procbio.2012.01.017 – ident: e_1_2_6_55_1 doi: 10.1023/B:JSST.0000047970.32053.bb – ident: e_1_2_6_23_1 doi: 10.1039/b702825n – volume: 1 start-page: 79 year: 1999 ident: e_1_2_6_103_1 article-title: Formation of magnetosomes in magnetotactic bacteria publication-title: J Mol Microbiol Biotechnol – ident: e_1_2_6_104_1 doi: 10.1016/j.bej.2011.02.014 – ident: e_1_2_6_71_1 doi: 10.1111/j.1462-2920.2007.01438.x – ident: e_1_2_6_10_1 doi: 10.1016/j.jhazmat.2009.12.066 – ident: e_1_2_6_61_1 doi: 10.1007/BF01024641 – ident: e_1_2_6_12_1 doi: 10.1128/AEM.02085-10 – ident: e_1_2_6_24_1 doi: 10.1016/j.hydromet.2010.03.016 – ident: e_1_2_6_94_1 doi: 10.1155/2014/653198 – ident: e_1_2_6_100_1 doi: 10.4236/aces.2011.13023 – ident: e_1_2_6_59_1 doi: 10.1088/0957-4484/19/49/495101 – ident: e_1_2_6_118_1 doi: 10.1016/j.nano.2009.07.002 – ident: e_1_2_6_7_1 doi: 10.1002/ceat.200800647 – ident: e_1_2_6_120_1 doi: 10.1002/ep.11949 – ident: e_1_2_6_28_1 doi: 10.1021/nn301502s – ident: e_1_2_6_101_1 doi: 10.1007/s00449-011-0646-4 – ident: e_1_2_6_60_1 doi: 10.1021/am200443j – ident: e_1_2_6_33_1 doi: 10.1016/j.elecom.2007.01.007 – ident: e_1_2_6_93_1 doi: 10.1016/j.jconrel.2009.12.006 – ident: e_1_2_6_91_1 doi: 10.1016/j.colsurfb.2009.07.040 – ident: e_1_2_6_44_1 doi: 10.1002/jobm.201100157 – ident: e_1_2_6_43_1 doi: 10.1007/s10482-013-9892-6 – ident: e_1_2_6_25_1 doi: 10.1007/s11157-010-9188-5 – ident: e_1_2_6_74_1 doi: 10.1007/s00253-011-3556-0 – ident: e_1_2_6_62_1 doi: 10.1016/j.gca.2006.04.018 – ident: e_1_2_6_116_1 doi: 10.1021/ja0558241 – ident: e_1_2_6_42_1 doi: 10.1021/ar8002706 – ident: e_1_2_6_111_1 doi: 10.1039/b413074j – ident: e_1_2_6_77_1 doi: 10.1007/s11837-010-0168-6 – volume-title: Viral Nanoparticles: Tools for Materials Science & Biomedicine year: 2011 ident: e_1_2_6_113_1 – ident: e_1_2_6_22_1 doi: 10.1038/nmat2911 – ident: e_1_2_6_65_1 doi: 10.1016/j.seppur.2003.10.002 – ident: e_1_2_6_106_1 doi: 10.1039/b303808b – ident: e_1_2_6_109_1 doi: 10.1016/j.memsci.2005.04.014 – ident: e_1_2_6_88_1 doi: 10.1128/AEM.02551-13 – ident: e_1_2_6_21_1 doi: 10.1007/s11274-011-0719-1 – ident: e_1_2_6_5_1 doi: 10.1016/j.polymer.2007.12.033 – ident: e_1_2_6_16_1 doi: 10.1016/j.matlet.2013.10.020 – ident: e_1_2_6_26_1 doi: 10.1021/la900585p – ident: e_1_2_6_4_1 doi: 10.1186/1477-3155-11-2 – ident: e_1_2_6_64_1 doi: 10.1016/j.copbio.2009.10.009 – ident: e_1_2_6_15_1 doi: 10.1049/iet-nbt.2012.0041 – ident: e_1_2_6_30_1 doi: 10.1016/S1001-0742(12)60239-3 – ident: e_1_2_6_67_1 doi: 10.1007/s12613-013-0755-y – ident: e_1_2_6_19_1 doi: 10.1105/tpc.114.123588 – ident: e_1_2_6_135_1 doi: 10.1006/jsbi.1999.4132 – ident: e_1_2_6_40_1 doi: 10.1002/anie.200904359 – ident: e_1_2_6_41_1 doi: 10.1002/pmic.201200282 – ident: e_1_2_6_11_1 doi: 10.1016/j.colsurfb.2010.05.021 – volume: 6 start-page: 2305 year: 2011 ident: e_1_2_6_18_1 article-title: Fungus‐mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer publication-title: Int J Nanomedicine – ident: e_1_2_6_138_1 doi: 10.1039/b9nr00317g – ident: e_1_2_6_52_1 doi: 10.3390/cancers3011081 – ident: e_1_2_6_78_1 doi: 10.1063/1.1462610 – ident: e_1_2_6_37_1 doi: 10.1074/mcp.M500174-MCP200 – ident: e_1_2_6_47_1 doi: 10.1021/bp0703174 – ident: e_1_2_6_35_1 doi: 10.1007/s00253-011-3249-8 – ident: e_1_2_6_82_1 doi: 10.1016/j.ica.2005.03.037 – ident: e_1_2_6_6_1 doi: 10.1016/j.enzmictec.2013.07.005 – ident: e_1_2_6_13_1 doi: 10.1016/j.cej.2011.09.041 – ident: e_1_2_6_123_1 doi: 10.1021/la062623h – ident: e_1_2_6_8_1 doi: 10.1016/j.addr.2008.03.013 – ident: e_1_2_6_97_1 doi: 10.1126/science.291.5512.2370 – ident: e_1_2_6_48_1 doi: 10.1149/1.1582466 – ident: e_1_2_6_80_1 doi: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K – ident: e_1_2_6_31_1 doi: 10.1016/j.mseb.2007.03.020 – ident: e_1_2_6_14_1 doi: 10.1128/AEM.01387-07 – ident: e_1_2_6_29_1 doi: 10.3109/07388551.2010.550568 – ident: e_1_2_6_105_1 doi: 10.1016/j.matchemphys.2011.09.050 – ident: e_1_2_6_51_1 doi: 10.1016/j.biomaterials.2012.02.033 – ident: e_1_2_6_130_1 doi: 10.1039/C3NR05033E – ident: e_1_2_6_39_1 doi: 10.1016/j.addr.2008.03.016 – ident: e_1_2_6_81_1 doi: 10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X – ident: e_1_2_6_89_1 doi: 10.1039/C3RA46520A – ident: e_1_2_6_133_1 doi: 10.1016/j.ibiod.2013.03.012 – ident: e_1_2_6_128_1 doi: 10.1007/s11051-008-9378-z – ident: e_1_2_6_73_1 doi: 10.1021/la703650d – ident: e_1_2_6_108_1 doi: 10.1007/s10876-011-0412-4 – ident: e_1_2_6_57_1 doi: 10.1007/s10295-010-0777-7 – ident: e_1_2_6_72_1 doi: 10.1007/s10529-010-0473-8 – ident: e_1_2_6_49_1 doi: 10.1016/j.snb.2007.04.027 – ident: e_1_2_6_90_1 doi: 10.1016/j.saa.2009.02.037 – ident: e_1_2_6_58_1 doi: 10.1016/j.hydromet.2005.09.006 – ident: e_1_2_6_79_1 doi: 10.1016/j.watres.2013.06.007 – ident: e_1_2_6_107_1 doi: 10.1186/1475-2859-11-86 – ident: e_1_2_6_20_1 doi: 10.1002/btpr.199 – ident: e_1_2_6_85_1 doi: 10.1016/j.jhazmat.2011.02.069 – ident: e_1_2_6_86_1 doi: 10.1016/j.biortech.2013.01.073 – ident: e_1_2_6_53_1 doi: 10.1039/c1gc15309a – ident: e_1_2_6_87_1 doi: 10.1016/j.matlet.2006.11.090 – ident: e_1_2_6_45_1 doi: 10.1039/c1jm12113h – ident: e_1_2_6_98_1 doi: 10.1021/cr2001178 – ident: e_1_2_6_110_1 doi: 10.1021/la0513712 – ident: e_1_2_6_70_1 doi: 10.1021/jp0037091 – ident: e_1_2_6_50_1 doi: 10.1016/j.saa.2006.09.028 – ident: e_1_2_6_131_1 doi: 10.1142/S0218863508004032 – ident: e_1_2_6_38_1 doi: 10.2323/jgam.54.295 – ident: e_1_2_6_137_1 doi: 10.1166/jbn.2011.1285 – ident: e_1_2_6_114_1 doi: 10.1016/j.bios.2003.08.014 – ident: e_1_2_6_124_1 doi: 10.1016/j.aca.2008.01.033 – ident: e_1_2_6_76_1 doi: 10.1016/j.biortech.2014.04.085 – ident: e_1_2_6_122_1 doi: 10.1128/JB.01277-09 – ident: e_1_2_6_34_1 doi: 10.1007/s11051-010-0165-2 – ident: e_1_2_6_83_1 doi: 10.1016/j.cis.2010.02.001 – ident: e_1_2_6_84_1 doi: 10.1016/j.colsurfa.2011.02.042 – ident: e_1_2_6_92_1 doi: 10.1016/j.tibtech.2009.12.004 – ident: e_1_2_6_139_1 doi: 10.1021/ja904307n – ident: e_1_2_6_129_1 doi: 10.1088/0960-1317/18/3/035019 – ident: e_1_2_6_17_1 doi: 10.1016/j.colsurfb.2010.10.035 – ident: e_1_2_6_126_1 doi: 10.1007/s00572-006-0075-4 – ident: e_1_2_6_56_1 doi: 10.1166/jnn.2013.7666 – ident: e_1_2_6_63_1 doi: 10.1021/es061040r – ident: e_1_2_6_66_1 doi: 10.1088/0957-4484/19/11/115608 – ident: e_1_2_6_125_1 doi: 10.1016/j.colsurfb.2012.06.005 – ident: e_1_2_6_54_1 doi: 10.1016/j.biotechadv.2013.05.001 – volume: 9 start-page: 1 year: 2008 ident: e_1_2_6_102_1 article-title: Biosynthesis and Stabilization of Au and Au‐Ag alloy nanoparticles by fungus, Fusarium semitectum publication-title: Sci Tech Adv Mater – ident: e_1_2_6_32_1 doi: 10.1038/30211 – ident: e_1_2_6_3_1 doi: 10.1016/j.actbio.2011.01.023 – ident: e_1_2_6_127_1 doi: 10.1002/jctb.4124 – ident: e_1_2_6_134_1 doi: 10.1080/10601325.2011.528307 – ident: e_1_2_6_27_1 doi: 10.1039/c2gc16676c – ident: e_1_2_6_69_1 doi: 10.1073/pnas.0805135105 – ident: e_1_2_6_99_1 doi: 10.1007/s11051-009-9733-8 – ident: e_1_2_6_119_1 doi: 10.2323/jgam.50.221 |
SSID | ssj0060052 |
Score | 2.50569 |
SecondaryResourceType | review_article |
Snippet | Summary
Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for... Gold nanoparticles ( AuNPs ) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP... Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 904 |
SubjectTerms | Bioreactors Biotechnology - methods Fungi - metabolism Gold - metabolism Minireview Nanoparticles - metabolism |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQWWBAvCkvGYmBJYATO4nZCqKqkEAMVGKLHNeGSq2DCB3499w5SdVSAWKLlHMS3_l83zm-z4SccqZFHoWDIMKyHs4gT0kjqwKdSMsFM1IaLHC-f4h7fX73LJrdhFgLU_FDTBfc0DP8fI0OrvJyxskh7jEkWxSeIAESoGUssEX6_JA_NpNxjMueviayFq7ZfXAzz7cHzAemBbS5uGlyFsz6aNRdJ2s1jKSdyu4bZMm4TbI6Qy64RTpd8GOQyYdF-ekA55XDkhaWvhSjAXXKQbZcb4q7omODBcDDckyVG9AS7Gbo5G2b9Lu3Tze9oD4wIdA8iViQCsBTecgsxCUOkUlanRhm08TGCjxbSegnt8ZAkqSiVCdWavBh8MKBYlGqVLRDWq5wZo9QyVQo80gxAwhF5FrayzjXnCuRhgaytDY5b7SV6ZpNHA-1GGVNVoHqzVC9mVdvm5xNG7xVRBo_i5406s9gsOMfDOVMMSlBEBBbiHxCv8oksQSgAzK7lcmmLwQwJ2CMwNcnc8acCiDZ9vwdN3z1pNs8RnI53iYX3ux_9SG7v34K_dX-v1sckBWAZaKqeDwkrY_3iTkC6PORH_vB_QViPfYW priority: 102 providerName: Wiley-Blackwell |
Title | Fungal biosynthesis of gold nanoparticles: mechanism and scale up |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1751-7915.12151 https://www.ncbi.nlm.nih.gov/pubmed/25154648 https://www.proquest.com/docview/1725024787 https://www.proquest.com/docview/1727698197 https://pubmed.ncbi.nlm.nih.gov/PMC4621444 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB88fdGHw2_31CWCD75UTZs2jSCi4irCiogL-1bSbKILa-pZF87_3km2XVf8gnsJhU5bMtNhfpNkfgOwzaiK8yjsBZEr62EU85Q0MjJQXBgWUy2EdgXO7avkosMuu3H3rR1QpcDy09TO9ZPqPA12__19OUKHP6xP5WAEpI52MfZUCZgKzWBY4s5L22y8pZC4BVBfHVkJVzw_n7zAEQRjmGeJawo0Ga0-QNCPJyknEa4PUa15-F1hS3I8-hkWYErbRZibYBxcguMWOjfK5P2ifLEI_sp-SQpD7opBj1hpMYWuTsodkAftqoL75QORtkdKNKYmw8dl6LTObk8vgqqLQqAYj2iQxgiy8pAaDFYMw5UwimtqUm4Sie4uBU6ZGa0xc5JRqrgRCh0bXbMnaZRKGa3AtC2sXgMiqAxFHkmqEbbEuRJmP8kVYzJOQ42pWwN2a21lqqIYd50uBlmdajhNZ07Tmdd0A3bGDzyO2DW-Ft2q1Z-hB7htDWl1MSxREGFc6EiGvpXhiUD0gzKrI5ONP1jbugH8nTHHAo6B-_0d27_3TNwscYxzrAF73uw_zSFrn9yG_urPf39rHWYRs8WjcsgNmH5-GupNxEXPeRN-hewaR97lOKat8ybMnJxdXd80_UpD0_vDK3TuCWY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMCAeFOeRmJgCeDETmK2gqgKtBVDkdgix7WhUnEQaQf-PWcnjVIQILZIOSfxnc_3neP7jNAJJZKlgT_wAlvWQwnkKXGghScjrikjinNlC5y7vbD9SO-e2FOtFqbgh6gW3KxnuPnaOrhdkK55OQQ-YtkWmWNIgAxogYZ-ZJ3Tpw_T2Ti0656uKLIULul97G6eLw-YjUzf4Ob3XZN1NOvCUWsVrZQ4EjcLw6-hOWXW0XKNXXADNVvgyCCTDrP8wwDQy4c5zjR-zkYDbISBdLncFXeJX5WtAB7mr1iYAc7BcApP3jbRY-umf932yhMTPEmjgHgxA0CV-kRDYKIQmriWkSI6jnQowLUFh35SrRRkSSKIZaS5BCcGNxwIEsRCBFto3mRG7SDMifB5GgiiAKKwVHJ9EaaSUsFiX0Ga1kBnU20lsqQTt6dajJJpWmHVm1j1Jk69DXRaNXgrmDR-Fj2eqj-B0W5_YQijskkOggDZfEso9KtMFHJAOiCzXZiseiGgOUZDCl8fzRizErBs27N3zPDFsW7D4ILkkzbQuTP7X31Iuld9313t_rvFEVps97udpHPbu99DS4DRWFH-uI_mx-8TdQA4aJweuoH-Cbky-YI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZQJ6HxMG0woBsDI-2Bl7A5sZN4b2UQFVgrHhqE9hI5js0qtU61rA_773eXH1VLxRBvkXJO4juf7zvH95mQU860yAO_8AIs6-EM8pQ4sMrTkbRcMCOlwQLn0TgcpvzbL9HtJsRamIYfYrXghp5Rz9fo4IvCrjk5xD2GZIuiJkiABGgHufJgYO8MfqbXaTcdh7jwWVdFtuItvw9u5_njEZuhaQtvbm-bXIezdTxK9sleCyTpoLH8AXli3HPybI1e8AUZJODJIJNPy-reAdKrphUtLf1dzgrqlIN8ud0Wd0HnBkuAp9WcKlfQCixn6HJxSNLky-Ry6LVHJniaRwHzYgGIKveZhcjEITZJqyPDbBzZUIFvKwn95NYYSJNUEOvISg1eDH5YKBbESgUvSc-VzrwmVDLlyzxQzABGEbmW9jzMNedKxL6BPK1PPnbaynTLJ47HWsyyLq9A9Wao3qxWb598WDVYNFQafxd936k_g-GO_zCUM-WyAkHAbD4yCj0qE4USoA7IvGpMtnohwDnBQw5fH20YcyWAdNubd9z0pqbd5iHSy_E-OavN_q8-ZKNPE7--OvrvFu_I0x-fk-zq6_j7MdkFjCaa8sc3pHd3uzQngIPu8rftSH8AA1r6eg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fungal+biosynthesis+of+gold+nanoparticles%3A+mechanism+and+scale+up&rft.jtitle=Microbial+biotechnology&rft.au=Kitching%2C+Michael&rft.au=Ramani%2C+Meghana&rft.au=Marsili%2C+Enrico&rft.date=2015-11-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1751-7915&rft.eissn=1751-7915&rft.volume=8&rft.issue=6&rft.spage=904&rft.epage=917&rft_id=info:doi/10.1111%2F1751-7915.12151&rft_id=info%3Apmid%2F25154648&rft.externalDocID=PMC4621444 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7915&client=summon |