Moderate to High Concentrations of High-Density Lipoprotein From Healthy Subjects Paradoxically Impair Human Endothelial Progenitor Cells and Related Angiogenesis by Activating Rho-Associated Kinase Pathways
OBJECTIVE—Recent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of protective effects of HDL at high concentrations. This study aimed to investigate the concentration-related effects of HDL on in vitro and in v...
Saved in:
Published in | Arteriosclerosis, Thrombosis, and Vascular Biology Vol. 32; no. 10; pp. 2405 - 2417 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
Ovid Technologies (Wolters Kluwer Health)
01.10.2012
American Heart Association, Inc Lippincott Williams & Wilkins |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | OBJECTIVE—Recent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of protective effects of HDL at high concentrations. This study aimed to investigate the concentration-related effects of HDL on in vitro and in vivo functions of human endothelial progenitor cells (EPCs) and related angiogenesis.
METHODS AND RESULTS—Early and late outgrowth EPCs were generated from human circulating mononuclear cells. Oxidized low-density lipoprotein reduced viability of late outgrowth EPCs, which was reversed dose dependently by HDL. In the absence of oxidized low-density lipoprotein, HDL at low concentrations (5–50 μg/mL, equal to 0.5–5 mg/dL in human) enhanced EPC tube formation by activating phosphatidylinositol-3 kinase/Akt/endothelial NO synthase pathways. Moderate to high concentrations (400–800 μg/mL) of HDL paradoxically enhanced EPC senescence and impaired tube formation by activating Rho-associated kinase (ROCK) and inhibiting phosphatidylinositol-3 kinase/Akt and p38 mitogen-activated protein kinase pathways. Rho-associated kinase inhibitors, either Y27632 or statins, prevented high HDL–induced EPC senescence and improved in vitro tube formation, as well as in vivo capacity of angiogenesis of EPCs.
CONCLUSION—While protecting EPCs from the injury of oxidized low-density lipoprotein, moderate to high concentrations of HDL paradoxically impaired EPCs and related angiogenesis in the absence of oxidized low-density lipoprotein by activating Rho-associated kinase pathways, providing mechanistic evidence of potential hazard effects of HDL. |
---|---|
AbstractList | Recent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of protective effects of HDL at high concentrations. This study aimed to investigate the concentration-related effects of HDL on in vitro and in vivo functions of human endothelial progenitor cells (EPCs) and related angiogenesis.
Early and late outgrowth EPCs were generated from human circulating mononuclear cells. Oxidized low-density lipoprotein reduced viability of late outgrowth EPCs, which was reversed dose dependently by HDL. In the absence of oxidized low-density lipoprotein, HDL at low concentrations (5-50 μg/mL, equal to 0.5-5 mg/dL in human) enhanced EPC tube formation by activating phosphatidylinositol-3 kinase/Akt/endothelial NO synthase pathways. Moderate to high concentrations (400-800 μg/mL) of HDL paradoxically enhanced EPC senescence and impaired tube formation by activating Rho-associated kinase (ROCK) and inhibiting phosphatidylinositol-3 kinase/Akt and p38 mitogen-activated protein kinase pathways. Rho-associated kinase inhibitors, either Y27632 or statins, prevented high HDL-induced EPC senescence and improved in vitro tube formation, as well as in vivo capacity of angiogenesis of EPCs.
While protecting EPCs from the injury of oxidized low-density lipoprotein, moderate to high concentrations of HDL paradoxically impaired EPCs and related angiogenesis in the absence of oxidized low-density lipoprotein by activating Rho-associated kinase pathways, providing mechanistic evidence of potential hazard effects of HDL. Recent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of protective effects of HDL at high concentrations. This study aimed to investigate the concentration-related effects of HDL on in vitro and in vivo functions of human endothelial progenitor cells (EPCs) and related angiogenesis.OBJECTIVERecent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of protective effects of HDL at high concentrations. This study aimed to investigate the concentration-related effects of HDL on in vitro and in vivo functions of human endothelial progenitor cells (EPCs) and related angiogenesis.Early and late outgrowth EPCs were generated from human circulating mononuclear cells. Oxidized low-density lipoprotein reduced viability of late outgrowth EPCs, which was reversed dose dependently by HDL. In the absence of oxidized low-density lipoprotein, HDL at low concentrations (5-50 μg/mL, equal to 0.5-5 mg/dL in human) enhanced EPC tube formation by activating phosphatidylinositol-3 kinase/Akt/endothelial NO synthase pathways. Moderate to high concentrations (400-800 μg/mL) of HDL paradoxically enhanced EPC senescence and impaired tube formation by activating Rho-associated kinase (ROCK) and inhibiting phosphatidylinositol-3 kinase/Akt and p38 mitogen-activated protein kinase pathways. Rho-associated kinase inhibitors, either Y27632 or statins, prevented high HDL-induced EPC senescence and improved in vitro tube formation, as well as in vivo capacity of angiogenesis of EPCs.METHODS AND RESULTSEarly and late outgrowth EPCs were generated from human circulating mononuclear cells. Oxidized low-density lipoprotein reduced viability of late outgrowth EPCs, which was reversed dose dependently by HDL. In the absence of oxidized low-density lipoprotein, HDL at low concentrations (5-50 μg/mL, equal to 0.5-5 mg/dL in human) enhanced EPC tube formation by activating phosphatidylinositol-3 kinase/Akt/endothelial NO synthase pathways. Moderate to high concentrations (400-800 μg/mL) of HDL paradoxically enhanced EPC senescence and impaired tube formation by activating Rho-associated kinase (ROCK) and inhibiting phosphatidylinositol-3 kinase/Akt and p38 mitogen-activated protein kinase pathways. Rho-associated kinase inhibitors, either Y27632 or statins, prevented high HDL-induced EPC senescence and improved in vitro tube formation, as well as in vivo capacity of angiogenesis of EPCs.While protecting EPCs from the injury of oxidized low-density lipoprotein, moderate to high concentrations of HDL paradoxically impaired EPCs and related angiogenesis in the absence of oxidized low-density lipoprotein by activating Rho-associated kinase pathways, providing mechanistic evidence of potential hazard effects of HDL.CONCLUSIONSWhile protecting EPCs from the injury of oxidized low-density lipoprotein, moderate to high concentrations of HDL paradoxically impaired EPCs and related angiogenesis in the absence of oxidized low-density lipoprotein by activating Rho-associated kinase pathways, providing mechanistic evidence of potential hazard effects of HDL. OBJECTIVE—Recent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of protective effects of HDL at high concentrations. This study aimed to investigate the concentration-related effects of HDL on in vitro and in vivo functions of human endothelial progenitor cells (EPCs) and related angiogenesis. METHODS AND RESULTS—Early and late outgrowth EPCs were generated from human circulating mononuclear cells. Oxidized low-density lipoprotein reduced viability of late outgrowth EPCs, which was reversed dose dependently by HDL. In the absence of oxidized low-density lipoprotein, HDL at low concentrations (5–50 μg/mL, equal to 0.5–5 mg/dL in human) enhanced EPC tube formation by activating phosphatidylinositol-3 kinase/Akt/endothelial NO synthase pathways. Moderate to high concentrations (400–800 μg/mL) of HDL paradoxically enhanced EPC senescence and impaired tube formation by activating Rho-associated kinase (ROCK) and inhibiting phosphatidylinositol-3 kinase/Akt and p38 mitogen-activated protein kinase pathways. Rho-associated kinase inhibitors, either Y27632 or statins, prevented high HDL–induced EPC senescence and improved in vitro tube formation, as well as in vivo capacity of angiogenesis of EPCs. CONCLUSION—While protecting EPCs from the injury of oxidized low-density lipoprotein, moderate to high concentrations of HDL paradoxically impaired EPCs and related angiogenesis in the absence of oxidized low-density lipoprotein by activating Rho-associated kinase pathways, providing mechanistic evidence of potential hazard effects of HDL. |
Author | Chun Yao Huang Yu Jia Chang Hironori Nakagami Kou Gi Shyu Nen Chung Chang Feng Yen Lin Jaw Wen Chen Chun Ming Shih Heng Kien Au Ryuichi Morishita |
AuthorAffiliation | From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics (H.N.) and Department of Clinical Gene Therapy (R.M.), Osaka University, Osaka, Japan; Division of Cardiology Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (K.-G.S.); and Department of Medical Education and Research, Taipei Veterans General Hospital, and Institute of Pharmacology, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (J.-W.C.) |
AuthorAffiliation_xml | – name: From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics (H.N.) and Department of Clinical Gene Therapy (R.M.), Osaka University, Osaka, Japan; Division of Cardiology Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (K.-G.S.); and Department of Medical Education and Research, Taipei Veterans General Hospital, and Institute of Pharmacology, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (J.-W.C.) |
Author_xml | – sequence: 1 givenname: Chun-Yao surname: Huang fullname: Huang, Chun-Yao organization: From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics (H.N.) and Department of Clinical Gene Therapy (R.M.), Osaka University, Osaka, Japan; Division of Cardiology Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (K.-G.S.); and Department of Medical Education and Research, Taipei Veterans General Hospital, and Institute of Pharmacology, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (J.-W.C.) – sequence: 2 givenname: Feng-Yen surname: Lin fullname: Lin, Feng-Yen – sequence: 3 givenname: Chun-Ming surname: Shih fullname: Shih, Chun-Ming – sequence: 4 givenname: Heng-Kien surname: Au fullname: Au, Heng-Kien – sequence: 5 givenname: Yu-Jia surname: Chang fullname: Chang, Yu-Jia – sequence: 6 givenname: Hironori surname: Nakagami fullname: Nakagami, Hironori – sequence: 7 givenname: Ryuichi surname: Morishita fullname: Morishita, Ryuichi – sequence: 8 givenname: Nen-Chung surname: Chang fullname: Chang, Nen-Chung – sequence: 9 givenname: Kou-Gi surname: Shyu fullname: Shyu, Kou-Gi – sequence: 10 givenname: Jaw-Wen surname: Chen fullname: Chen, Jaw-Wen |
BackLink | https://cir.nii.ac.jp/crid/1873679867765924736$$DView record in CiNii http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26354919$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22904272$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUjVARLUN_gAXyAiQ2KX4kTrJMh5apGERVCtvIcW4mBo892E6HfCW_hOdRIbFg4ce1z7mvc58nJ8YaSJKXBF8Qwsk7ER5aMYho0AualZwUT5IzktMszTjjJ_GOiyrNeUZPk3PvVYsxphHMsmfJKaUVzmhBz5Lfn2wHTgRAwaKFWg1obo0EE-KbssYj2--f0_dgvAoTWqqN3TgbQBl07ewaLUDoMEzoy9h-Bxk8uhVOdPaXkkLrCd2sN0I5tBjXwqAr09kwgFZCo1tnV2BUsA7NQWuPhOnQHeiYS4dqs1K7b_DKo3ZCtQzqIWZkVuhusGntvZVqj_yojPAQg4ZhKyb_InnaC-3h_HjOkq_XV_fzRbr8_OFmXi9TmRUMp1XfZlD2WMq8aHNRCoASM8aBZphyyLu2Y0XeY0F6QgW0VclZx6o8J4A5YYTNkrcHv7EXP0fwoVkrL2MdwoAdfUMwq8oyNryK0FdH6NiuoWs2Tq2Fm5pHESLgzREgfGxa74SRyv_FcZZn1d5RecBJZ7130DdShb1MUS2lY8xmNxpNff_tsl7U0aDNYTQilf5DffT-X1J2IG2tDuD8Dz1uwTXDXvAmzlPGOM5Tigkl0cJpXLHuWfL6QDNKxQx3OykLxovYxKLgeUWjBJz9AZ5x2bc |
CODEN | ATVBFA |
CitedBy_id | crossref_primary_10_1007_s12020_015_0709_4 crossref_primary_10_1016_j_placenta_2020_10_024 crossref_primary_10_1016_j_bbalip_2021_159058 crossref_primary_10_1177_2047487320914756 crossref_primary_10_1186_s12944_022_01638_6 crossref_primary_10_1053_j_jrn_2024_05_003 crossref_primary_10_1161_ATVBAHA_114_304747 crossref_primary_10_1016_j_ijcme_2014_09_001 crossref_primary_10_1093_ajcn_nqab163 crossref_primary_10_1161_ATVBAHA_118_310991 crossref_primary_10_1186_s12933_018_0720_1 crossref_primary_10_1016_j_atherosclerosis_2019_01_035 crossref_primary_10_1016_j_arr_2024_102294 crossref_primary_10_1016_j_athplu_2023_04_001 crossref_primary_10_1097_CD9_0000000000000130 crossref_primary_10_1016_j_bone_2014_11_001 crossref_primary_10_1016_j_placenta_2014_04_003 crossref_primary_10_1016_j_trsl_2018_09_005 crossref_primary_10_1093_cvr_cvv221 crossref_primary_10_3390_nu15143244 crossref_primary_10_1186_s12891_024_08059_9 crossref_primary_10_3390_kidneydial2030037 crossref_primary_10_1159_000443889 crossref_primary_10_1016_j_jacl_2024_06_002 crossref_primary_10_2215_CJN_00730116 crossref_primary_10_1186_s12944_020_01413_5 crossref_primary_10_14797_mdcj_11_3_160 crossref_primary_10_2217_clp_13_30 crossref_primary_10_1161_JAHA_118_011162 crossref_primary_10_1161_JAHA_120_019060 crossref_primary_10_1016_j_ekir_2021_05_007 crossref_primary_10_3389_fendo_2024_1331603 crossref_primary_10_1186_s12889_024_19532_4 crossref_primary_10_1111_bph_12174 crossref_primary_10_3390_ijms22105210 crossref_primary_10_1111_brv_12866 crossref_primary_10_3389_fcvm_2022_807339 crossref_primary_10_1210_jc_2018_02511 crossref_primary_10_1089_ars_2013_5743 crossref_primary_10_1016_j_kint_2015_12_034 crossref_primary_10_1016_j_trsl_2013_09_004 crossref_primary_10_1016_j_numecd_2023_01_021 crossref_primary_10_2147_RMHP_S272624 crossref_primary_10_1093_ndt_gfu022 crossref_primary_10_1016_j_molmed_2020_07_005 crossref_primary_10_1111_1744_9987_13821 crossref_primary_10_3389_fendo_2022_957728 crossref_primary_10_1016_j_numecd_2022_11_024 crossref_primary_10_1194_jlr_R039297 |
Cites_doi | 10.1038/89986 10.1161/01.CIR.97.12.1129 10.1172/JCI200418004 10.1073/pnas.150242297 10.1002/j.1460-2075.1996.tb00539.x 10.1016/S0140-6736(12)60481-4 10.1074/jbc.270.49.29051 10.1074/jbc.M508759200 10.1016/j.yjmcc.2006.01.011 10.1097/FJC.0b013e318070d1bd 10.1161/01.res.0000251668.39526.c7 10.1038/nrm1128 10.1126/science.271.5248.518 10.1111/j.1440-1681.2004.04022.x 10.1016/0002-9343(77)90874-9 10.1161/01.atv.0000216600.37436.cf 10.1161/01.atv.0000114236.77009.06 10.1161/01.CIR.79.1.8 10.1161/01.atv.0000079011.67194.5a 10.1161/01.res.0000199272.59432.5b 10.1161/01.atv.0000094961.74697.54 10.1016/S0741-5214(94)70030-3 10.1126/science.275.5302.964 10.1056/NEJMoa0706628 10.1161/atvbaha.109.196170 10.1161/01.res.0000070067.64040.7c 10.1056/NEJMoa1107579 10.1161/01.atv.0000066134.79956.58 10.1002/j.1460-2075.1996.tb00574.x 10.1161/atvbaha.107.143875 10.1016/S1388-1981(02)00145-2 10.1161/01.cir.0000013836.85741.17 10.1210/jc.2011-1846 10.1056/NEJMoa064278 10.1097/00005344-200203000-00001 10.1136/heartjnl-2011-301405 10.1074/jbc.M402352200 10.1002/jcb.10431 10.1056/NEJM199511163332001 10.1016/j.atherosclerosis.2006.06.023 10.1161/01.res.0000196564.18314.23 10.2337/db06-1103 10.1016/S0741-5214(05)80019-9 10.1128/MCB.20.24.9247-9261.2000 10.1161/01.atv.0000142813.33538.82 10.1101/gad.11.18.2295 10.1074/jbc.M211394200 10.1097/00004872-200501000-00018 10.1161/atvbaha.107.158741 10.1074/jbc.M103782200 10.1161/01.atv.0000259299.38843.64 10.1074/jbc.M104353200 10.1016/0002-9343(51)90183-0 10.1001/jama.2011.1871 10.1016/S0140-6736(00)04209-4 10.1016/S0959-8049(00)00091-5 10.1016/j.yjmcc.2011.03.008 10.1097/00005344-200303000-00017 10.1126/science.279.5350.509 10.1016/j.tcm.2004.10.001 10.1378/chest.126.4.1032 10.1074/jbc.273.37.24266 10.1194/jlr.R700011-JLR200 10.1194/jlr.R001610 |
ContentType | Journal Article |
Copyright | 2012 American Heart Association, Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: 2012 American Heart Association, Inc. – notice: 2015 INIST-CNRS |
DBID | RYH AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/atvbaha.112.248617 |
DatabaseName | CiNii Complete CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4636 |
EndPage | 2417 |
ExternalDocumentID | 22904272 26354919 10_1161_ATVBAHA_112_248617 00043605-201210000-00010 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .Z2 01R 0R~ 1J1 23N 2WC 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AARTV AASOK AAXQO ABBUW ABDIG ABJNI ABPXF ABQRW ABXVJ ABZAD ACCJW ACDDN ACEWG ACGFS ACGOD ACILI ACPRK ACWDW ACWRI ACXNZ ACZKN ADBBV ADGGA ADGHP ADHPY ADNKB AE6 AEETU AENEX AFDTB AFUWQ AGINI AHMBA AHOMT AHQNM AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW ALKUP ALMA_UNASSIGNED_HOLDINGS AMJPA AMNEI AYCSE BAWUL BOYCO BQLVK C45 CS3 DIK DIWNM DUNZO E.X E3Z EBS EX3 F2K F2L F2M F2N F5P FCALG FL- FRP FW0 GX1 H0~ H13 HZ~ IKREB IKYAY IN~ JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OB2 OL1 OLG OLH OLU OLV OLY OLZ OPUJH OUVQU OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P2P PQQKQ PZZ RAH RLZ RYH S4R S4S TEORI TR2 V2I VVN W3M W8F WOQ WOW X3V X3W YFH ZZMQN .3C .55 .GJ 3O- 71W AAQKA AASCR ABASU ABVCZ ABZZY ACLDA ACXJB ADFPA AE3 AFBFQ AFFNX AHJKT AHRYX AKCTQ AKULP ALMTX AMKUR AOHHW AOQMC BS7 C1A EEVPB EJD ERAAH GNXGY GQDEL HLJTE IPNFZ J5H JF9 JG8 N~M OCUKA ODA ORVUJ OWU OWV OWX OWZ P-K RIG T8P TSPGW X7M XXN XYM ZGI AAYXX CITATION IQODW ACIJW AWKKM CGR CUY CVF ECM EIF NPM OK1 OLW RHF 7X8 |
ID | FETCH-LOGICAL-c4730-9fb4e8f0cc57b5a8aee80336e24026e5dbd375f0a1f12aeb9863d39551e061313 |
ISSN | 1079-5642 1524-4636 |
IngestDate | Fri Jul 11 12:25:17 EDT 2025 Wed Feb 19 01:48:56 EST 2025 Mon Jul 21 09:14:26 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Tue Jul 01 02:21:48 EDT 2025 Fri May 16 03:46:47 EDT 2025 Fri Jun 27 00:29:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Human Endothelial cell Senescence Enzyme Transferases Non-specific serine/threonine protein kinase high-density lipoprotein Cardiovascular disease Statin derivative Rho-associated protein kinase Lipoprotein Vascular disease Angiogenesis statin endothelial progenitor cells Atherosclerosis Progenitor cell Antilipemic agent |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4730-9fb4e8f0cc57b5a8aee80336e24026e5dbd375f0a1f12aeb9863d39551e061313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4494-3601 |
OpenAccessLink | https://cir.nii.ac.jp/crid/1873679867765924736 |
PMID | 22904272 |
PQID | 1039882119 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1039882119 pubmed_primary_22904272 pascalfrancis_primary_26354919 crossref_citationtrail_10_1161_ATVBAHA_112_248617 crossref_primary_10_1161_ATVBAHA_112_248617 wolterskluwer_health_00043605-201210000-00010 nii_cinii_1873679867765924736 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-01 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Arteriosclerosis, Thrombosis, and Vascular Biology |
PublicationTitleAlternate | Arterioscler Thromb Vasc Biol |
PublicationYear | 2012 |
Publisher | Ovid Technologies (Wolters Kluwer Health) American Heart Association, Inc Lippincott Williams & Wilkins |
Publisher_xml | – name: Ovid Technologies (Wolters Kluwer Health) – name: American Heart Association, Inc – name: Lippincott Williams & Wilkins |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 Pellegatta F (e_1_3_3_28_2) 2006; 17 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 Chen CH (e_1_3_3_22_2) 2010; 26 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_41_2 Stump MM (e_1_3_3_49_2) 1963; 43 e_1_3_3_64_2 |
References_xml | – ident: e_1_3_3_20_2 doi: 10.1038/89986 – ident: e_1_3_3_65_2 doi: 10.1161/01.CIR.97.12.1129 – ident: e_1_3_3_33_2 doi: 10.1172/JCI200418004 – ident: e_1_3_3_31_2 doi: 10.1073/pnas.150242297 – volume: 43 start-page: 361 year: 1963 ident: e_1_3_3_49_2 article-title: Endothelium grown from circulating blood on isolated intravascular dacron hub. publication-title: Am J Pathol – ident: e_1_3_3_62_2 doi: 10.1002/j.1460-2075.1996.tb00539.x – ident: e_1_3_3_8_2 doi: 10.1016/S0140-6736(12)60481-4 – volume: 26 start-page: 94 year: 2010 ident: e_1_3_3_22_2 article-title: Circulating Level of Endothelial Progenitor Cells in Healthy Taiwanese. publication-title: Acta Cardiol Sin – ident: e_1_3_3_48_2 doi: 10.1074/jbc.270.49.29051 – ident: e_1_3_3_42_2 doi: 10.1074/jbc.M508759200 – ident: e_1_3_3_53_2 doi: 10.1016/j.yjmcc.2006.01.011 – ident: e_1_3_3_64_2 doi: 10.1097/FJC.0b013e318070d1bd – ident: e_1_3_3_57_2 doi: 10.1161/01.res.0000251668.39526.c7 – ident: e_1_3_3_63_2 doi: 10.1038/nrm1128 – ident: e_1_3_3_29_2 doi: 10.1126/science.271.5248.518 – ident: e_1_3_3_52_2 doi: 10.1111/j.1440-1681.2004.04022.x – ident: e_1_3_3_3_2 doi: 10.1016/0002-9343(77)90874-9 – ident: e_1_3_3_16_2 doi: 10.1161/01.atv.0000216600.37436.cf – ident: e_1_3_3_24_2 doi: 10.1161/01.atv.0000114236.77009.06 – volume: 17 start-page: 203 year: 2006 ident: e_1_3_3_28_2 article-title: In vitro isolation of circulating endothelial progenitor cells is related to the high density lipoprotein plasma levels. publication-title: Int J Mol Med – ident: e_1_3_3_4_2 doi: 10.1161/01.CIR.79.1.8 – ident: e_1_3_3_44_2 doi: 10.1161/01.atv.0000079011.67194.5a – ident: e_1_3_3_19_2 doi: 10.1161/01.res.0000199272.59432.5b – ident: e_1_3_3_37_2 doi: 10.1161/01.atv.0000094961.74697.54 – ident: e_1_3_3_51_2 doi: 10.1016/S0741-5214(94)70030-3 – ident: e_1_3_3_21_2 doi: 10.1126/science.275.5302.964 – ident: e_1_3_3_12_2 doi: 10.1056/NEJMoa0706628 – ident: e_1_3_3_39_2 doi: 10.1161/atvbaha.109.196170 – ident: e_1_3_3_32_2 doi: 10.1161/01.res.0000070067.64040.7c – ident: e_1_3_3_13_2 doi: 10.1056/NEJMoa1107579 – ident: e_1_3_3_45_2 doi: 10.1161/01.atv.0000066134.79956.58 – ident: e_1_3_3_61_2 doi: 10.1002/j.1460-2075.1996.tb00574.x – ident: e_1_3_3_15_2 doi: 10.1161/atvbaha.107.143875 – ident: e_1_3_3_47_2 doi: 10.1016/S1388-1981(02)00145-2 – ident: e_1_3_3_55_2 doi: 10.1161/01.cir.0000013836.85741.17 – ident: e_1_3_3_7_2 doi: 10.1210/jc.2011-1846 – ident: e_1_3_3_10_2 doi: 10.1056/NEJMoa064278 – ident: e_1_3_3_56_2 doi: 10.1097/00005344-200203000-00001 – ident: e_1_3_3_6_2 doi: 10.1136/heartjnl-2011-301405 – ident: e_1_3_3_34_2 doi: 10.1074/jbc.M402352200 – ident: e_1_3_3_30_2 doi: 10.1002/jcb.10431 – ident: e_1_3_3_35_2 doi: 10.1056/NEJM199511163332001 – ident: e_1_3_3_27_2 doi: 10.1016/j.atherosclerosis.2006.06.023 – ident: e_1_3_3_36_2 doi: 10.1161/01.res.0000196564.18314.23 – ident: e_1_3_3_25_2 doi: 10.2337/db06-1103 – ident: e_1_3_3_50_2 doi: 10.1016/S0741-5214(05)80019-9 – ident: e_1_3_3_46_2 doi: 10.1128/MCB.20.24.9247-9261.2000 – ident: e_1_3_3_67_2 doi: 10.1161/01.atv.0000142813.33538.82 – ident: e_1_3_3_60_2 doi: 10.1101/gad.11.18.2295 – ident: e_1_3_3_38_2 doi: 10.1074/jbc.M211394200 – ident: e_1_3_3_54_2 doi: 10.1097/00004872-200501000-00018 – ident: e_1_3_3_18_2 doi: 10.1161/atvbaha.107.158741 – ident: e_1_3_3_40_2 doi: 10.1074/jbc.M103782200 – ident: e_1_3_3_17_2 doi: 10.1161/01.atv.0000259299.38843.64 – ident: e_1_3_3_43_2 doi: 10.1074/jbc.M104353200 – ident: e_1_3_3_2_2 doi: 10.1016/0002-9343(51)90183-0 – ident: e_1_3_3_14_2 doi: 10.1001/jama.2011.1871 – ident: e_1_3_3_11_2 doi: 10.1016/S0140-6736(00)04209-4 – ident: e_1_3_3_58_2 doi: 10.1016/S0959-8049(00)00091-5 – ident: e_1_3_3_26_2 doi: 10.1016/j.yjmcc.2011.03.008 – ident: e_1_3_3_68_2 doi: 10.1097/00005344-200303000-00017 – ident: e_1_3_3_59_2 doi: 10.1126/science.279.5350.509 – ident: e_1_3_3_23_2 doi: 10.1016/j.tcm.2004.10.001 – ident: e_1_3_3_9_2 doi: 10.1378/chest.126.4.1032 – ident: e_1_3_3_66_2 doi: 10.1074/jbc.273.37.24266 – ident: e_1_3_3_41_2 doi: 10.1194/jlr.R700011-JLR200 – ident: e_1_3_3_5_2 doi: 10.1194/jlr.R001610 |
SSID | ssib000211234 ssib058492308 ssib001163429 ssib044147876 ssib044147794 ssib001191540 ssib046561455 ssj0004220 ssib058574870 |
Score | 2.332182 |
Snippet | OBJECTIVE—Recent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of... Recent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of protective... |
SourceID | proquest pubmed pascalfrancis crossref wolterskluwer nii |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2405 |
SubjectTerms | Animals Atherosclerosis (general aspects, experimental research) Biological and medical sciences Blood and lymphatic vessels Blood vessels and receptors Cardiology. Vascular system Cell Survival Cell Survival - drug effects Cell Survival - physiology Cells, Cultured Cellular Senescence Cellular Senescence - drug effects Cellular Senescence - physiology Diabetes Mellitus Diabetes Mellitus - metabolism Diabetes Mellitus - physiopathology Disease Models, Animal Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous Dose-Response Relationship, Drug Endothelium, Vascular Endothelium, Vascular - cytology Endothelium, Vascular - drug effects Fundamental and applied biological sciences. Psychology Humans In Vitro Techniques Lipoproteins, HDL Lipoproteins, HDL - pharmacology Lipoproteins, LDL Lipoproteins, LDL - pharmacology Male Medical sciences Mice Mice, SCID Neovascularization, Physiologic Neovascularization, Physiologic - drug effects Neovascularization, Physiologic - physiology Nitric Oxide Nitric Oxide - metabolism p38 Mitogen-Activated Protein Kinases p38 Mitogen-Activated Protein Kinases - drug effects p38 Mitogen-Activated Protein Kinases - physiology Phosphatidylinositol 3-Kinases Phosphatidylinositol 3-Kinases - drug effects Phosphatidylinositol 3-Kinases - physiology Proto-Oncogene Proteins c-akt Proto-Oncogene Proteins c-akt - drug effects Proto-Oncogene Proteins c-akt - physiology rho-Associated Kinases rho-Associated Kinases - drug effects rho-Associated Kinases - physiology Signal Transduction Signal Transduction - drug effects Signal Transduction - physiology Stem Cells Stem Cells - cytology Stem Cells - drug effects Vertebrates: cardiovascular system Young Adult |
Title | Moderate to High Concentrations of High-Density Lipoprotein From Healthy Subjects Paradoxically Impair Human Endothelial Progenitor Cells and Related Angiogenesis by Activating Rho-Associated Kinase Pathways |
URI | https://cir.nii.ac.jp/crid/1873679867765924736 https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00043605-201210000-00010 https://www.ncbi.nlm.nih.gov/pubmed/22904272 https://www.proquest.com/docview/1039882119 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW6ISFeEN8U2GQk3iaPOHHc5LFMoIppSIgNbU-R0zhrti6Z1kaj_En-Do_cazsfhYGAl6hNHEfJPc69ds49l5BXys8hjo440znMdETIA6aCSDDpZ2kucxGGyqh9fpCTI_H-ODweDL73WEv1Mt2dfr0xr-R_rAr7wK6YJfsPlm07hR3wG-wLW7AwbP_KxqaQGQSLGECi7jByyC3bsuW34W6WIUsdS0QUl5URZihKm1disyBXO4s6PTO0DlQCz6ovaLn5yqRQFleujp8uM8zWmuMSO7K6NL4MrnZw5d_qPJu0GI3Sr6cFHtaodQLRLaZO4MIv8vxmFVMOENDyvCjBiaK26-xarRb9QHmMVNOiWsAdgx-3QghY0uEibf7hJVserdOS6kDqlsH3ZnXJTlTV8o6sZAJY8ZSddFlwn2bFrG1-0HhzHAe19c3QfL9w7d0aCfdbth24OPde9wVDbbT-i79bWK1bcq17jQuTC36Df5HoX8aHn9-MJ2NMv9r1RSRt9mkPcJcXBnGopS98W5roJ1Xv5tAGueXDBAdrb-x_7Onc-77XpHhJ_vrXC6KItetiLaLaKIsC-b3w-NU8t7VZbpo8QZvrCvkYi3OTjtELqg7vkbtuNkTHFtr3yUCXD8jtA8f3eEi-NQiny4oilOk6wmmV0z7CaQ_hFBFOHcJpg3C6hnBqEU4NwmkP4bRDODUIpwA36hBO-win6Yp2CKfrCKcW4bRB-CNy9O7t4d6EuRIkbCrA97E4T4WOcm86DUdpqCKldeQFgdT4UVLqMEuzYBTmnuI595VO40gGWRDDNERjoMyDx2SzrEr9lNA0ULGMtJKRyESYhnGc8VGaTSEa4Z5QYkh4Y8Zk6vT5sUzMPDHzdMkThwL44ycWBUOy055zadVp_th6C9ABneOWR6MAv8DK0QiZFXC3cki213DTdomCVSLm8ZC8bICUgBfCx69KXdWLBAklMFfn2OaJRVh3tsPpkLA1yCUWAYlhI0gvZDhyzedGlLrg3rPf9vSc3OlG-Quyubyq9RbMDZbpthlGPwAs0BWT |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moderate+to+high+concentrations+of+high-density+lipoprotein+from+healthy+subjects+paradoxically+impair+human+endothelial+progenitor+cells+and+related+angiogenesis+by+activating+Rho-associated+kinase+pathways&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Huang%2C+Chun-Yao&rft.au=Lin%2C+Feng-Yen&rft.au=Shih%2C+Chun-Ming&rft.au=Au%2C+Heng-Kien&rft.date=2012-10-01&rft.eissn=1524-4636&rft.volume=32&rft.issue=10&rft.spage=2405&rft_id=info:doi/10.1161%2FATVBAHA.112.248617&rft_id=info%3Apmid%2F22904272&rft.externalDocID=22904272 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon |