Moderate to High Concentrations of High-Density Lipoprotein From Healthy Subjects Paradoxically Impair Human Endothelial Progenitor Cells and Related Angiogenesis by Activating Rho-Associated Kinase Pathways

OBJECTIVE—Recent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of protective effects of HDL at high concentrations. This study aimed to investigate the concentration-related effects of HDL on in vitro and in v...

Full description

Saved in:
Bibliographic Details
Published inArteriosclerosis, Thrombosis, and Vascular Biology Vol. 32; no. 10; pp. 2405 - 2417
Main Authors Huang, Chun-Yao, Lin, Feng-Yen, Shih, Chun-Ming, Au, Heng-Kien, Chang, Yu-Jia, Nakagami, Hironori, Morishita, Ryuichi, Chang, Nen-Chung, Shyu, Kou-Gi, Chen, Jaw-Wen
Format Journal Article
LanguageEnglish
Published Philadelphia, PA Ovid Technologies (Wolters Kluwer Health) 01.10.2012
American Heart Association, Inc
Lippincott Williams & Wilkins
Subjects
Online AccessGet full text

Cover

Loading…
Abstract OBJECTIVE—Recent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of protective effects of HDL at high concentrations. This study aimed to investigate the concentration-related effects of HDL on in vitro and in vivo functions of human endothelial progenitor cells (EPCs) and related angiogenesis. METHODS AND RESULTS—Early and late outgrowth EPCs were generated from human circulating mononuclear cells. Oxidized low-density lipoprotein reduced viability of late outgrowth EPCs, which was reversed dose dependently by HDL. In the absence of oxidized low-density lipoprotein, HDL at low concentrations (5–50 μg/mL, equal to 0.5–5 mg/dL in human) enhanced EPC tube formation by activating phosphatidylinositol-3 kinase/Akt/endothelial NO synthase pathways. Moderate to high concentrations (400–800 μg/mL) of HDL paradoxically enhanced EPC senescence and impaired tube formation by activating Rho-associated kinase (ROCK) and inhibiting phosphatidylinositol-3 kinase/Akt and p38 mitogen-activated protein kinase pathways. Rho-associated kinase inhibitors, either Y27632 or statins, prevented high HDL–induced EPC senescence and improved in vitro tube formation, as well as in vivo capacity of angiogenesis of EPCs. CONCLUSION—While protecting EPCs from the injury of oxidized low-density lipoprotein, moderate to high concentrations of HDL paradoxically impaired EPCs and related angiogenesis in the absence of oxidized low-density lipoprotein by activating Rho-associated kinase pathways, providing mechanistic evidence of potential hazard effects of HDL.
AbstractList Recent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of protective effects of HDL at high concentrations. This study aimed to investigate the concentration-related effects of HDL on in vitro and in vivo functions of human endothelial progenitor cells (EPCs) and related angiogenesis. Early and late outgrowth EPCs were generated from human circulating mononuclear cells. Oxidized low-density lipoprotein reduced viability of late outgrowth EPCs, which was reversed dose dependently by HDL. In the absence of oxidized low-density lipoprotein, HDL at low concentrations (5-50 μg/mL, equal to 0.5-5 mg/dL in human) enhanced EPC tube formation by activating phosphatidylinositol-3 kinase/Akt/endothelial NO synthase pathways. Moderate to high concentrations (400-800 μg/mL) of HDL paradoxically enhanced EPC senescence and impaired tube formation by activating Rho-associated kinase (ROCK) and inhibiting phosphatidylinositol-3 kinase/Akt and p38 mitogen-activated protein kinase pathways. Rho-associated kinase inhibitors, either Y27632 or statins, prevented high HDL-induced EPC senescence and improved in vitro tube formation, as well as in vivo capacity of angiogenesis of EPCs. While protecting EPCs from the injury of oxidized low-density lipoprotein, moderate to high concentrations of HDL paradoxically impaired EPCs and related angiogenesis in the absence of oxidized low-density lipoprotein by activating Rho-associated kinase pathways, providing mechanistic evidence of potential hazard effects of HDL.
Recent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of protective effects of HDL at high concentrations. This study aimed to investigate the concentration-related effects of HDL on in vitro and in vivo functions of human endothelial progenitor cells (EPCs) and related angiogenesis.OBJECTIVERecent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of protective effects of HDL at high concentrations. This study aimed to investigate the concentration-related effects of HDL on in vitro and in vivo functions of human endothelial progenitor cells (EPCs) and related angiogenesis.Early and late outgrowth EPCs were generated from human circulating mononuclear cells. Oxidized low-density lipoprotein reduced viability of late outgrowth EPCs, which was reversed dose dependently by HDL. In the absence of oxidized low-density lipoprotein, HDL at low concentrations (5-50 μg/mL, equal to 0.5-5 mg/dL in human) enhanced EPC tube formation by activating phosphatidylinositol-3 kinase/Akt/endothelial NO synthase pathways. Moderate to high concentrations (400-800 μg/mL) of HDL paradoxically enhanced EPC senescence and impaired tube formation by activating Rho-associated kinase (ROCK) and inhibiting phosphatidylinositol-3 kinase/Akt and p38 mitogen-activated protein kinase pathways. Rho-associated kinase inhibitors, either Y27632 or statins, prevented high HDL-induced EPC senescence and improved in vitro tube formation, as well as in vivo capacity of angiogenesis of EPCs.METHODS AND RESULTSEarly and late outgrowth EPCs were generated from human circulating mononuclear cells. Oxidized low-density lipoprotein reduced viability of late outgrowth EPCs, which was reversed dose dependently by HDL. In the absence of oxidized low-density lipoprotein, HDL at low concentrations (5-50 μg/mL, equal to 0.5-5 mg/dL in human) enhanced EPC tube formation by activating phosphatidylinositol-3 kinase/Akt/endothelial NO synthase pathways. Moderate to high concentrations (400-800 μg/mL) of HDL paradoxically enhanced EPC senescence and impaired tube formation by activating Rho-associated kinase (ROCK) and inhibiting phosphatidylinositol-3 kinase/Akt and p38 mitogen-activated protein kinase pathways. Rho-associated kinase inhibitors, either Y27632 or statins, prevented high HDL-induced EPC senescence and improved in vitro tube formation, as well as in vivo capacity of angiogenesis of EPCs.While protecting EPCs from the injury of oxidized low-density lipoprotein, moderate to high concentrations of HDL paradoxically impaired EPCs and related angiogenesis in the absence of oxidized low-density lipoprotein by activating Rho-associated kinase pathways, providing mechanistic evidence of potential hazard effects of HDL.CONCLUSIONSWhile protecting EPCs from the injury of oxidized low-density lipoprotein, moderate to high concentrations of HDL paradoxically impaired EPCs and related angiogenesis in the absence of oxidized low-density lipoprotein by activating Rho-associated kinase pathways, providing mechanistic evidence of potential hazard effects of HDL.
OBJECTIVE—Recent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of protective effects of HDL at high concentrations. This study aimed to investigate the concentration-related effects of HDL on in vitro and in vivo functions of human endothelial progenitor cells (EPCs) and related angiogenesis. METHODS AND RESULTS—Early and late outgrowth EPCs were generated from human circulating mononuclear cells. Oxidized low-density lipoprotein reduced viability of late outgrowth EPCs, which was reversed dose dependently by HDL. In the absence of oxidized low-density lipoprotein, HDL at low concentrations (5–50 μg/mL, equal to 0.5–5 mg/dL in human) enhanced EPC tube formation by activating phosphatidylinositol-3 kinase/Akt/endothelial NO synthase pathways. Moderate to high concentrations (400–800 μg/mL) of HDL paradoxically enhanced EPC senescence and impaired tube formation by activating Rho-associated kinase (ROCK) and inhibiting phosphatidylinositol-3 kinase/Akt and p38 mitogen-activated protein kinase pathways. Rho-associated kinase inhibitors, either Y27632 or statins, prevented high HDL–induced EPC senescence and improved in vitro tube formation, as well as in vivo capacity of angiogenesis of EPCs. CONCLUSION—While protecting EPCs from the injury of oxidized low-density lipoprotein, moderate to high concentrations of HDL paradoxically impaired EPCs and related angiogenesis in the absence of oxidized low-density lipoprotein by activating Rho-associated kinase pathways, providing mechanistic evidence of potential hazard effects of HDL.
Author Chun Yao Huang
Yu Jia Chang
Hironori Nakagami
Kou Gi Shyu
Nen Chung Chang
Feng Yen Lin
Jaw Wen Chen
Chun Ming Shih
Heng Kien Au
Ryuichi Morishita
AuthorAffiliation From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics (H.N.) and Department of Clinical Gene Therapy (R.M.), Osaka University, Osaka, Japan; Division of Cardiology Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (K.-G.S.); and Department of Medical Education and Research, Taipei Veterans General Hospital, and Institute of Pharmacology, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (J.-W.C.)
AuthorAffiliation_xml – name: From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics (H.N.) and Department of Clinical Gene Therapy (R.M.), Osaka University, Osaka, Japan; Division of Cardiology Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (K.-G.S.); and Department of Medical Education and Research, Taipei Veterans General Hospital, and Institute of Pharmacology, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (J.-W.C.)
Author_xml – sequence: 1
  givenname: Chun-Yao
  surname: Huang
  fullname: Huang, Chun-Yao
  organization: From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics (H.N.) and Department of Clinical Gene Therapy (R.M.), Osaka University, Osaka, Japan; Division of Cardiology Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (K.-G.S.); and Department of Medical Education and Research, Taipei Veterans General Hospital, and Institute of Pharmacology, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (J.-W.C.)
– sequence: 2
  givenname: Feng-Yen
  surname: Lin
  fullname: Lin, Feng-Yen
– sequence: 3
  givenname: Chun-Ming
  surname: Shih
  fullname: Shih, Chun-Ming
– sequence: 4
  givenname: Heng-Kien
  surname: Au
  fullname: Au, Heng-Kien
– sequence: 5
  givenname: Yu-Jia
  surname: Chang
  fullname: Chang, Yu-Jia
– sequence: 6
  givenname: Hironori
  surname: Nakagami
  fullname: Nakagami, Hironori
– sequence: 7
  givenname: Ryuichi
  surname: Morishita
  fullname: Morishita, Ryuichi
– sequence: 8
  givenname: Nen-Chung
  surname: Chang
  fullname: Chang, Nen-Chung
– sequence: 9
  givenname: Kou-Gi
  surname: Shyu
  fullname: Shyu, Kou-Gi
– sequence: 10
  givenname: Jaw-Wen
  surname: Chen
  fullname: Chen, Jaw-Wen
BackLink https://cir.nii.ac.jp/crid/1873679867765924736$$DView record in CiNii
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26354919$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22904272$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARLUN_gAXyAiQ2KX4kTrJMh5apGERVCtvIcW4mBo892E6HfCW_hOdRIbFg4ce1z7mvc58nJ8YaSJKXBF8Qwsk7ER5aMYho0AualZwUT5IzktMszTjjJ_GOiyrNeUZPk3PvVYsxphHMsmfJKaUVzmhBz5Lfn2wHTgRAwaKFWg1obo0EE-KbssYj2--f0_dgvAoTWqqN3TgbQBl07ewaLUDoMEzoy9h-Bxk8uhVOdPaXkkLrCd2sN0I5tBjXwqAr09kwgFZCo1tnV2BUsA7NQWuPhOnQHeiYS4dqs1K7b_DKo3ZCtQzqIWZkVuhusGntvZVqj_yojPAQg4ZhKyb_InnaC-3h_HjOkq_XV_fzRbr8_OFmXi9TmRUMp1XfZlD2WMq8aHNRCoASM8aBZphyyLu2Y0XeY0F6QgW0VclZx6o8J4A5YYTNkrcHv7EXP0fwoVkrL2MdwoAdfUMwq8oyNryK0FdH6NiuoWs2Tq2Fm5pHESLgzREgfGxa74SRyv_FcZZn1d5RecBJZ7130DdShb1MUS2lY8xmNxpNff_tsl7U0aDNYTQilf5DffT-X1J2IG2tDuD8Dz1uwTXDXvAmzlPGOM5Tigkl0cJpXLHuWfL6QDNKxQx3OykLxovYxKLgeUWjBJz9AZ5x2bc
CODEN ATVBFA
CitedBy_id crossref_primary_10_1007_s12020_015_0709_4
crossref_primary_10_1016_j_placenta_2020_10_024
crossref_primary_10_1016_j_bbalip_2021_159058
crossref_primary_10_1177_2047487320914756
crossref_primary_10_1186_s12944_022_01638_6
crossref_primary_10_1053_j_jrn_2024_05_003
crossref_primary_10_1161_ATVBAHA_114_304747
crossref_primary_10_1016_j_ijcme_2014_09_001
crossref_primary_10_1093_ajcn_nqab163
crossref_primary_10_1161_ATVBAHA_118_310991
crossref_primary_10_1186_s12933_018_0720_1
crossref_primary_10_1016_j_atherosclerosis_2019_01_035
crossref_primary_10_1016_j_arr_2024_102294
crossref_primary_10_1016_j_athplu_2023_04_001
crossref_primary_10_1097_CD9_0000000000000130
crossref_primary_10_1016_j_bone_2014_11_001
crossref_primary_10_1016_j_placenta_2014_04_003
crossref_primary_10_1016_j_trsl_2018_09_005
crossref_primary_10_1093_cvr_cvv221
crossref_primary_10_3390_nu15143244
crossref_primary_10_1186_s12891_024_08059_9
crossref_primary_10_3390_kidneydial2030037
crossref_primary_10_1159_000443889
crossref_primary_10_1016_j_jacl_2024_06_002
crossref_primary_10_2215_CJN_00730116
crossref_primary_10_1186_s12944_020_01413_5
crossref_primary_10_14797_mdcj_11_3_160
crossref_primary_10_2217_clp_13_30
crossref_primary_10_1161_JAHA_118_011162
crossref_primary_10_1161_JAHA_120_019060
crossref_primary_10_1016_j_ekir_2021_05_007
crossref_primary_10_3389_fendo_2024_1331603
crossref_primary_10_1186_s12889_024_19532_4
crossref_primary_10_1111_bph_12174
crossref_primary_10_3390_ijms22105210
crossref_primary_10_1111_brv_12866
crossref_primary_10_3389_fcvm_2022_807339
crossref_primary_10_1210_jc_2018_02511
crossref_primary_10_1089_ars_2013_5743
crossref_primary_10_1016_j_kint_2015_12_034
crossref_primary_10_1016_j_trsl_2013_09_004
crossref_primary_10_1016_j_numecd_2023_01_021
crossref_primary_10_2147_RMHP_S272624
crossref_primary_10_1093_ndt_gfu022
crossref_primary_10_1016_j_molmed_2020_07_005
crossref_primary_10_1111_1744_9987_13821
crossref_primary_10_3389_fendo_2022_957728
crossref_primary_10_1016_j_numecd_2022_11_024
crossref_primary_10_1194_jlr_R039297
Cites_doi 10.1038/89986
10.1161/01.CIR.97.12.1129
10.1172/JCI200418004
10.1073/pnas.150242297
10.1002/j.1460-2075.1996.tb00539.x
10.1016/S0140-6736(12)60481-4
10.1074/jbc.270.49.29051
10.1074/jbc.M508759200
10.1016/j.yjmcc.2006.01.011
10.1097/FJC.0b013e318070d1bd
10.1161/01.res.0000251668.39526.c7
10.1038/nrm1128
10.1126/science.271.5248.518
10.1111/j.1440-1681.2004.04022.x
10.1016/0002-9343(77)90874-9
10.1161/01.atv.0000216600.37436.cf
10.1161/01.atv.0000114236.77009.06
10.1161/01.CIR.79.1.8
10.1161/01.atv.0000079011.67194.5a
10.1161/01.res.0000199272.59432.5b
10.1161/01.atv.0000094961.74697.54
10.1016/S0741-5214(94)70030-3
10.1126/science.275.5302.964
10.1056/NEJMoa0706628
10.1161/atvbaha.109.196170
10.1161/01.res.0000070067.64040.7c
10.1056/NEJMoa1107579
10.1161/01.atv.0000066134.79956.58
10.1002/j.1460-2075.1996.tb00574.x
10.1161/atvbaha.107.143875
10.1016/S1388-1981(02)00145-2
10.1161/01.cir.0000013836.85741.17
10.1210/jc.2011-1846
10.1056/NEJMoa064278
10.1097/00005344-200203000-00001
10.1136/heartjnl-2011-301405
10.1074/jbc.M402352200
10.1002/jcb.10431
10.1056/NEJM199511163332001
10.1016/j.atherosclerosis.2006.06.023
10.1161/01.res.0000196564.18314.23
10.2337/db06-1103
10.1016/S0741-5214(05)80019-9
10.1128/MCB.20.24.9247-9261.2000
10.1161/01.atv.0000142813.33538.82
10.1101/gad.11.18.2295
10.1074/jbc.M211394200
10.1097/00004872-200501000-00018
10.1161/atvbaha.107.158741
10.1074/jbc.M103782200
10.1161/01.atv.0000259299.38843.64
10.1074/jbc.M104353200
10.1016/0002-9343(51)90183-0
10.1001/jama.2011.1871
10.1016/S0140-6736(00)04209-4
10.1016/S0959-8049(00)00091-5
10.1016/j.yjmcc.2011.03.008
10.1097/00005344-200303000-00017
10.1126/science.279.5350.509
10.1016/j.tcm.2004.10.001
10.1378/chest.126.4.1032
10.1074/jbc.273.37.24266
10.1194/jlr.R700011-JLR200
10.1194/jlr.R001610
ContentType Journal Article
Copyright 2012 American Heart Association, Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2012 American Heart Association, Inc.
– notice: 2015 INIST-CNRS
DBID RYH
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/atvbaha.112.248617
DatabaseName CiNii Complete
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4636
EndPage 2417
ExternalDocumentID 22904272
26354919
10_1161_ATVBAHA_112_248617
00043605-201210000-00010
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.Z2
01R
0R~
1J1
23N
2WC
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AARTV
AASOK
AAXQO
ABBUW
ABDIG
ABJNI
ABPXF
ABQRW
ABXVJ
ABZAD
ACCJW
ACDDN
ACEWG
ACGFS
ACGOD
ACILI
ACPRK
ACWDW
ACWRI
ACXNZ
ACZKN
ADBBV
ADGGA
ADGHP
ADHPY
ADNKB
AE6
AEETU
AENEX
AFDTB
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
ALKUP
ALMA_UNASSIGNED_HOLDINGS
AMJPA
AMNEI
AYCSE
BAWUL
BOYCO
BQLVK
C45
CS3
DIK
DIWNM
DUNZO
E.X
E3Z
EBS
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
FW0
GX1
H0~
H13
HZ~
IKREB
IKYAY
IN~
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OB2
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWW
OWY
OXXIT
P2P
PQQKQ
PZZ
RAH
RLZ
RYH
S4R
S4S
TEORI
TR2
V2I
VVN
W3M
W8F
WOQ
WOW
X3V
X3W
YFH
ZZMQN
.3C
.55
.GJ
3O-
71W
AAQKA
AASCR
ABASU
ABVCZ
ABZZY
ACLDA
ACXJB
ADFPA
AE3
AFBFQ
AFFNX
AHJKT
AHRYX
AKCTQ
AKULP
ALMTX
AMKUR
AOHHW
AOQMC
BS7
C1A
EEVPB
EJD
ERAAH
GNXGY
GQDEL
HLJTE
IPNFZ
J5H
JF9
JG8
N~M
OCUKA
ODA
ORVUJ
OWU
OWV
OWX
OWZ
P-K
RIG
T8P
TSPGW
X7M
XXN
XYM
ZGI
AAYXX
CITATION
IQODW
ACIJW
AWKKM
CGR
CUY
CVF
ECM
EIF
NPM
OK1
OLW
RHF
7X8
ID FETCH-LOGICAL-c4730-9fb4e8f0cc57b5a8aee80336e24026e5dbd375f0a1f12aeb9863d39551e061313
ISSN 1079-5642
1524-4636
IngestDate Fri Jul 11 12:25:17 EDT 2025
Wed Feb 19 01:48:56 EST 2025
Mon Jul 21 09:14:26 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Tue Jul 01 02:21:48 EDT 2025
Fri May 16 03:46:47 EDT 2025
Fri Jun 27 00:29:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Human
Endothelial cell
Senescence
Enzyme
Transferases
Non-specific serine/threonine protein kinase
high-density lipoprotein
Cardiovascular disease
Statin derivative
Rho-associated protein kinase
Lipoprotein
Vascular disease
Angiogenesis
statin
endothelial progenitor cells
Atherosclerosis
Progenitor cell
Antilipemic agent
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4730-9fb4e8f0cc57b5a8aee80336e24026e5dbd375f0a1f12aeb9863d39551e061313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4494-3601
OpenAccessLink https://cir.nii.ac.jp/crid/1873679867765924736
PMID 22904272
PQID 1039882119
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1039882119
pubmed_primary_22904272
pascalfrancis_primary_26354919
crossref_citationtrail_10_1161_ATVBAHA_112_248617
crossref_primary_10_1161_ATVBAHA_112_248617
wolterskluwer_health_00043605-201210000-00010
nii_cinii_1873679867765924736
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-01
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Arteriosclerosis, Thrombosis, and Vascular Biology
PublicationTitleAlternate Arterioscler Thromb Vasc Biol
PublicationYear 2012
Publisher Ovid Technologies (Wolters Kluwer Health)
American Heart Association, Inc
Lippincott Williams & Wilkins
Publisher_xml – name: Ovid Technologies (Wolters Kluwer Health)
– name: American Heart Association, Inc
– name: Lippincott Williams & Wilkins
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
Pellegatta F (e_1_3_3_28_2) 2006; 17
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
Chen CH (e_1_3_3_22_2) 2010; 26
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_41_2
Stump MM (e_1_3_3_49_2) 1963; 43
e_1_3_3_64_2
References_xml – ident: e_1_3_3_20_2
  doi: 10.1038/89986
– ident: e_1_3_3_65_2
  doi: 10.1161/01.CIR.97.12.1129
– ident: e_1_3_3_33_2
  doi: 10.1172/JCI200418004
– ident: e_1_3_3_31_2
  doi: 10.1073/pnas.150242297
– volume: 43
  start-page: 361
  year: 1963
  ident: e_1_3_3_49_2
  article-title: Endothelium grown from circulating blood on isolated intravascular dacron hub.
  publication-title: Am J Pathol
– ident: e_1_3_3_62_2
  doi: 10.1002/j.1460-2075.1996.tb00539.x
– ident: e_1_3_3_8_2
  doi: 10.1016/S0140-6736(12)60481-4
– volume: 26
  start-page: 94
  year: 2010
  ident: e_1_3_3_22_2
  article-title: Circulating Level of Endothelial Progenitor Cells in Healthy Taiwanese.
  publication-title: Acta Cardiol Sin
– ident: e_1_3_3_48_2
  doi: 10.1074/jbc.270.49.29051
– ident: e_1_3_3_42_2
  doi: 10.1074/jbc.M508759200
– ident: e_1_3_3_53_2
  doi: 10.1016/j.yjmcc.2006.01.011
– ident: e_1_3_3_64_2
  doi: 10.1097/FJC.0b013e318070d1bd
– ident: e_1_3_3_57_2
  doi: 10.1161/01.res.0000251668.39526.c7
– ident: e_1_3_3_63_2
  doi: 10.1038/nrm1128
– ident: e_1_3_3_29_2
  doi: 10.1126/science.271.5248.518
– ident: e_1_3_3_52_2
  doi: 10.1111/j.1440-1681.2004.04022.x
– ident: e_1_3_3_3_2
  doi: 10.1016/0002-9343(77)90874-9
– ident: e_1_3_3_16_2
  doi: 10.1161/01.atv.0000216600.37436.cf
– ident: e_1_3_3_24_2
  doi: 10.1161/01.atv.0000114236.77009.06
– volume: 17
  start-page: 203
  year: 2006
  ident: e_1_3_3_28_2
  article-title: In vitro isolation of circulating endothelial progenitor cells is related to the high density lipoprotein plasma levels.
  publication-title: Int J Mol Med
– ident: e_1_3_3_4_2
  doi: 10.1161/01.CIR.79.1.8
– ident: e_1_3_3_44_2
  doi: 10.1161/01.atv.0000079011.67194.5a
– ident: e_1_3_3_19_2
  doi: 10.1161/01.res.0000199272.59432.5b
– ident: e_1_3_3_37_2
  doi: 10.1161/01.atv.0000094961.74697.54
– ident: e_1_3_3_51_2
  doi: 10.1016/S0741-5214(94)70030-3
– ident: e_1_3_3_21_2
  doi: 10.1126/science.275.5302.964
– ident: e_1_3_3_12_2
  doi: 10.1056/NEJMoa0706628
– ident: e_1_3_3_39_2
  doi: 10.1161/atvbaha.109.196170
– ident: e_1_3_3_32_2
  doi: 10.1161/01.res.0000070067.64040.7c
– ident: e_1_3_3_13_2
  doi: 10.1056/NEJMoa1107579
– ident: e_1_3_3_45_2
  doi: 10.1161/01.atv.0000066134.79956.58
– ident: e_1_3_3_61_2
  doi: 10.1002/j.1460-2075.1996.tb00574.x
– ident: e_1_3_3_15_2
  doi: 10.1161/atvbaha.107.143875
– ident: e_1_3_3_47_2
  doi: 10.1016/S1388-1981(02)00145-2
– ident: e_1_3_3_55_2
  doi: 10.1161/01.cir.0000013836.85741.17
– ident: e_1_3_3_7_2
  doi: 10.1210/jc.2011-1846
– ident: e_1_3_3_10_2
  doi: 10.1056/NEJMoa064278
– ident: e_1_3_3_56_2
  doi: 10.1097/00005344-200203000-00001
– ident: e_1_3_3_6_2
  doi: 10.1136/heartjnl-2011-301405
– ident: e_1_3_3_34_2
  doi: 10.1074/jbc.M402352200
– ident: e_1_3_3_30_2
  doi: 10.1002/jcb.10431
– ident: e_1_3_3_35_2
  doi: 10.1056/NEJM199511163332001
– ident: e_1_3_3_27_2
  doi: 10.1016/j.atherosclerosis.2006.06.023
– ident: e_1_3_3_36_2
  doi: 10.1161/01.res.0000196564.18314.23
– ident: e_1_3_3_25_2
  doi: 10.2337/db06-1103
– ident: e_1_3_3_50_2
  doi: 10.1016/S0741-5214(05)80019-9
– ident: e_1_3_3_46_2
  doi: 10.1128/MCB.20.24.9247-9261.2000
– ident: e_1_3_3_67_2
  doi: 10.1161/01.atv.0000142813.33538.82
– ident: e_1_3_3_60_2
  doi: 10.1101/gad.11.18.2295
– ident: e_1_3_3_38_2
  doi: 10.1074/jbc.M211394200
– ident: e_1_3_3_54_2
  doi: 10.1097/00004872-200501000-00018
– ident: e_1_3_3_18_2
  doi: 10.1161/atvbaha.107.158741
– ident: e_1_3_3_40_2
  doi: 10.1074/jbc.M103782200
– ident: e_1_3_3_17_2
  doi: 10.1161/01.atv.0000259299.38843.64
– ident: e_1_3_3_43_2
  doi: 10.1074/jbc.M104353200
– ident: e_1_3_3_2_2
  doi: 10.1016/0002-9343(51)90183-0
– ident: e_1_3_3_14_2
  doi: 10.1001/jama.2011.1871
– ident: e_1_3_3_11_2
  doi: 10.1016/S0140-6736(00)04209-4
– ident: e_1_3_3_58_2
  doi: 10.1016/S0959-8049(00)00091-5
– ident: e_1_3_3_26_2
  doi: 10.1016/j.yjmcc.2011.03.008
– ident: e_1_3_3_68_2
  doi: 10.1097/00005344-200303000-00017
– ident: e_1_3_3_59_2
  doi: 10.1126/science.279.5350.509
– ident: e_1_3_3_23_2
  doi: 10.1016/j.tcm.2004.10.001
– ident: e_1_3_3_9_2
  doi: 10.1378/chest.126.4.1032
– ident: e_1_3_3_66_2
  doi: 10.1074/jbc.273.37.24266
– ident: e_1_3_3_41_2
  doi: 10.1194/jlr.R700011-JLR200
– ident: e_1_3_3_5_2
  doi: 10.1194/jlr.R001610
SSID ssib000211234
ssib058492308
ssib001163429
ssib044147876
ssib044147794
ssib001191540
ssib046561455
ssj0004220
ssib058574870
Score 2.332182
Snippet OBJECTIVE—Recent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of...
Recent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of protective...
SourceID proquest
pubmed
pascalfrancis
crossref
wolterskluwer
nii
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2405
SubjectTerms Animals
Atherosclerosis (general aspects, experimental research)
Biological and medical sciences
Blood and lymphatic vessels
Blood vessels and receptors
Cardiology. Vascular system
Cell Survival
Cell Survival - drug effects
Cell Survival - physiology
Cells, Cultured
Cellular Senescence
Cellular Senescence - drug effects
Cellular Senescence - physiology
Diabetes Mellitus
Diabetes Mellitus - metabolism
Diabetes Mellitus - physiopathology
Disease Models, Animal
Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous
Dose-Response Relationship, Drug
Endothelium, Vascular
Endothelium, Vascular - cytology
Endothelium, Vascular - drug effects
Fundamental and applied biological sciences. Psychology
Humans
In Vitro Techniques
Lipoproteins, HDL
Lipoproteins, HDL - pharmacology
Lipoproteins, LDL
Lipoproteins, LDL - pharmacology
Male
Medical sciences
Mice
Mice, SCID
Neovascularization, Physiologic
Neovascularization, Physiologic - drug effects
Neovascularization, Physiologic - physiology
Nitric Oxide
Nitric Oxide - metabolism
p38 Mitogen-Activated Protein Kinases
p38 Mitogen-Activated Protein Kinases - drug effects
p38 Mitogen-Activated Protein Kinases - physiology
Phosphatidylinositol 3-Kinases
Phosphatidylinositol 3-Kinases - drug effects
Phosphatidylinositol 3-Kinases - physiology
Proto-Oncogene Proteins c-akt
Proto-Oncogene Proteins c-akt - drug effects
Proto-Oncogene Proteins c-akt - physiology
rho-Associated Kinases
rho-Associated Kinases - drug effects
rho-Associated Kinases - physiology
Signal Transduction
Signal Transduction - drug effects
Signal Transduction - physiology
Stem Cells
Stem Cells - cytology
Stem Cells - drug effects
Vertebrates: cardiovascular system
Young Adult
Title Moderate to High Concentrations of High-Density Lipoprotein From Healthy Subjects Paradoxically Impair Human Endothelial Progenitor Cells and Related Angiogenesis by Activating Rho-Associated Kinase Pathways
URI https://cir.nii.ac.jp/crid/1873679867765924736
https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00043605-201210000-00010
https://www.ncbi.nlm.nih.gov/pubmed/22904272
https://www.proquest.com/docview/1039882119
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW6ISFeEN8U2GQk3iaPOHHc5LFMoIppSIgNbU-R0zhrti6Z1kaj_En-Do_cazsfhYGAl6hNHEfJPc69ds49l5BXys8hjo440znMdETIA6aCSDDpZ2kucxGGyqh9fpCTI_H-ODweDL73WEv1Mt2dfr0xr-R_rAr7wK6YJfsPlm07hR3wG-wLW7AwbP_KxqaQGQSLGECi7jByyC3bsuW34W6WIUsdS0QUl5URZihKm1disyBXO4s6PTO0DlQCz6ovaLn5yqRQFleujp8uM8zWmuMSO7K6NL4MrnZw5d_qPJu0GI3Sr6cFHtaodQLRLaZO4MIv8vxmFVMOENDyvCjBiaK26-xarRb9QHmMVNOiWsAdgx-3QghY0uEibf7hJVserdOS6kDqlsH3ZnXJTlTV8o6sZAJY8ZSddFlwn2bFrG1-0HhzHAe19c3QfL9w7d0aCfdbth24OPde9wVDbbT-i79bWK1bcq17jQuTC36Df5HoX8aHn9-MJ2NMv9r1RSRt9mkPcJcXBnGopS98W5roJ1Xv5tAGueXDBAdrb-x_7Onc-77XpHhJ_vrXC6KItetiLaLaKIsC-b3w-NU8t7VZbpo8QZvrCvkYi3OTjtELqg7vkbtuNkTHFtr3yUCXD8jtA8f3eEi-NQiny4oilOk6wmmV0z7CaQ_hFBFOHcJpg3C6hnBqEU4NwmkP4bRDODUIpwA36hBO-win6Yp2CKfrCKcW4bRB-CNy9O7t4d6EuRIkbCrA97E4T4WOcm86DUdpqCKldeQFgdT4UVLqMEuzYBTmnuI595VO40gGWRDDNERjoMyDx2SzrEr9lNA0ULGMtJKRyESYhnGc8VGaTSEa4Z5QYkh4Y8Zk6vT5sUzMPDHzdMkThwL44ycWBUOy055zadVp_th6C9ABneOWR6MAv8DK0QiZFXC3cki213DTdomCVSLm8ZC8bICUgBfCx69KXdWLBAklMFfn2OaJRVh3tsPpkLA1yCUWAYlhI0gvZDhyzedGlLrg3rPf9vSc3OlG-Quyubyq9RbMDZbpthlGPwAs0BWT
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moderate+to+high+concentrations+of+high-density+lipoprotein+from+healthy+subjects+paradoxically+impair+human+endothelial+progenitor+cells+and+related+angiogenesis+by+activating+Rho-associated+kinase+pathways&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Huang%2C+Chun-Yao&rft.au=Lin%2C+Feng-Yen&rft.au=Shih%2C+Chun-Ming&rft.au=Au%2C+Heng-Kien&rft.date=2012-10-01&rft.eissn=1524-4636&rft.volume=32&rft.issue=10&rft.spage=2405&rft_id=info:doi/10.1161%2FATVBAHA.112.248617&rft_id=info%3Apmid%2F22904272&rft.externalDocID=22904272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon