Predicting the Mechanical Properties of RCA-Based Concrete Using Supervised Machine Learning Algorithms
Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhil...
Saved in:
Published in | Materials Vol. 15; no. 2; p. 647 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
15.01.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhile, construction waste continues to grow at a high rate as older buildings are destroyed and demolished. As a result, the use of recycled materials may contribute to improving the quality of life and preventing environmental damage. Additionally, the application of recycled coarse aggregate (RCA) in concrete is essential for minimizing environmental issues. The compressive strength (CS) and splitting tensile strength (STS) of concrete containing RCA are predicted in this article using decision tree (DT) and AdaBoost machine learning (ML) techniques. A total of 344 data points with nine input variables (water, cement, fine aggregate, natural coarse aggregate, RCA, superplasticizers, water absorption of RCA and maximum size of RCA, density of RCA) were used to run the models. The data was validated using k-fold cross-validation and the coefficient correlation coefficient (R2), mean square error (MSE), mean absolute error (MAE), and root mean square error values (RMSE). However, the model’s performance was assessed using statistical checks. Additionally, sensitivity analysis was used to determine the impact of each variable on the forecasting of mechanical properties. |
---|---|
AbstractList | Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhile, construction waste continues to grow at a high rate as older buildings are destroyed and demolished. As a result, the use of recycled materials may contribute to improving the quality of life and preventing environmental damage. Additionally, the application of recycled coarse aggregate (RCA) in concrete is essential for minimizing environmental issues. The compressive strength (CS) and splitting tensile strength (STS) of concrete containing RCA are predicted in this article using decision tree (DT) and AdaBoost machine learning (ML) techniques. A total of 344 data points with nine input variables (water, cement, fine aggregate, natural coarse aggregate, RCA, superplasticizers, water absorption of RCA and maximum size of RCA, density of RCA) were used to run the models. The data was validated using k-fold cross-validation and the coefficient correlation coefficient (R2), mean square error (MSE), mean absolute error (MAE), and root mean square error values (RMSE). However, the model’s performance was assessed using statistical checks. Additionally, sensitivity analysis was used to determine the impact of each variable on the forecasting of mechanical properties. Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhile, construction waste continues to grow at a high rate as older buildings are destroyed and demolished. As a result, the use of recycled materials may contribute to improving the quality of life and preventing environmental damage. Additionally, the application of recycled coarse aggregate (RCA) in concrete is essential for minimizing environmental issues. The compressive strength (CS) and splitting tensile strength (STS) of concrete containing RCA are predicted in this article using decision tree (DT) and AdaBoost machine learning (ML) techniques. A total of 344 data points with nine input variables (water, cement, fine aggregate, natural coarse aggregate, RCA, superplasticizers, water absorption of RCA and maximum size of RCA, density of RCA) were used to run the models. The data was validated using k-fold cross-validation and the coefficient correlation coefficient (R 2 ), mean square error (MSE), mean absolute error (MAE), and root mean square error values (RMSE). However, the model’s performance was assessed using statistical checks. Additionally, sensitivity analysis was used to determine the impact of each variable on the forecasting of mechanical properties. Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhile, construction waste continues to grow at a high rate as older buildings are destroyed and demolished. As a result, the use of recycled materials may contribute to improving the quality of life and preventing environmental damage. Additionally, the application of recycled coarse aggregate (RCA) in concrete is essential for minimizing environmental issues. The compressive strength (CS) and splitting tensile strength (STS) of concrete containing RCA are predicted in this article using decision tree (DT) and AdaBoost machine learning (ML) techniques. A total of 344 data points with nine input variables (water, cement, fine aggregate, natural coarse aggregate, RCA, superplasticizers, water absorption of RCA and maximum size of RCA, density of RCA) were used to run the models. The data was validated using k-fold cross-validation and the coefficient correlation coefficient (R ), mean square error (MSE), mean absolute error (MAE), and root mean square error values (RMSE). However, the model's performance was assessed using statistical checks. Additionally, sensitivity analysis was used to determine the impact of each variable on the forecasting of mechanical properties. Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhile, construction waste continues to grow at a high rate as older buildings are destroyed and demolished. As a result, the use of recycled materials may contribute to improving the quality of life and preventing environmental damage. Additionally, the application of recycled coarse aggregate (RCA) in concrete is essential for minimizing environmental issues. The compressive strength (CS) and splitting tensile strength (STS) of concrete containing RCA are predicted in this article using decision tree (DT) and AdaBoost machine learning (ML) techniques. A total of 344 data points with nine input variables (water, cement, fine aggregate, natural coarse aggregate, RCA, superplasticizers, water absorption of RCA and maximum size of RCA, density of RCA) were used to run the models. The data was validated using k-fold cross-validation and the coefficient correlation coefficient (R2), mean square error (MSE), mean absolute error (MAE), and root mean square error values (RMSE). However, the model's performance was assessed using statistical checks. Additionally, sensitivity analysis was used to determine the impact of each variable on the forecasting of mechanical properties.Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhile, construction waste continues to grow at a high rate as older buildings are destroyed and demolished. As a result, the use of recycled materials may contribute to improving the quality of life and preventing environmental damage. Additionally, the application of recycled coarse aggregate (RCA) in concrete is essential for minimizing environmental issues. The compressive strength (CS) and splitting tensile strength (STS) of concrete containing RCA are predicted in this article using decision tree (DT) and AdaBoost machine learning (ML) techniques. A total of 344 data points with nine input variables (water, cement, fine aggregate, natural coarse aggregate, RCA, superplasticizers, water absorption of RCA and maximum size of RCA, density of RCA) were used to run the models. The data was validated using k-fold cross-validation and the coefficient correlation coefficient (R2), mean square error (MSE), mean absolute error (MAE), and root mean square error values (RMSE). However, the model's performance was assessed using statistical checks. Additionally, sensitivity analysis was used to determine the impact of each variable on the forecasting of mechanical properties. |
Author | Majka, Tomasz M. Joyklad, Panuwat Ostrowski, Krzysztof Adam Aslam, Fahid Li, Hejun Shang, Meijun Ahmad, Ayaz Ahmad, Waqas |
AuthorAffiliation | 3 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan; waqasahmad@cuiatd.edu.pk 6 Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok 26120, Thailand; panuwatj@g.swu.ac.th 5 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa 1 School of Architetrue and Civil Engineering, Changchun Sci-Tech Unversity, Changchun 130600, China 7 Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; tomasz.majka@pk.edu.pl 2 Jilin Northeast Architectural and Municipal Engineering Design Institute Co., Ltd., Changchun 130062, China; lihejun0720@sina.com 4 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; krzysztof.ostrowski.1@pk.edu.pl |
AuthorAffiliation_xml | – name: 6 Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok 26120, Thailand; panuwatj@g.swu.ac.th – name: 3 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan; waqasahmad@cuiatd.edu.pk – name: 1 School of Architetrue and Civil Engineering, Changchun Sci-Tech Unversity, Changchun 130600, China – name: 2 Jilin Northeast Architectural and Municipal Engineering Design Institute Co., Ltd., Changchun 130062, China; lihejun0720@sina.com – name: 4 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; krzysztof.ostrowski.1@pk.edu.pl – name: 5 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa – name: 7 Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; tomasz.majka@pk.edu.pl |
Author_xml | – sequence: 1 givenname: Meijun surname: Shang fullname: Shang, Meijun – sequence: 2 givenname: Hejun surname: Li fullname: Li, Hejun – sequence: 3 givenname: Ayaz orcidid: 0000-0002-0312-2965 surname: Ahmad fullname: Ahmad, Ayaz – sequence: 4 givenname: Waqas orcidid: 0000-0002-1668-7607 surname: Ahmad fullname: Ahmad, Waqas – sequence: 5 givenname: Krzysztof Adam orcidid: 0000-0001-5047-5862 surname: Ostrowski fullname: Ostrowski, Krzysztof Adam – sequence: 6 givenname: Fahid orcidid: 0000-0003-2863-3283 surname: Aslam fullname: Aslam, Fahid – sequence: 7 givenname: Panuwat orcidid: 0000-0003-1069-1653 surname: Joyklad fullname: Joyklad, Panuwat – sequence: 8 givenname: Tomasz M. orcidid: 0000-0002-7913-0750 surname: Majka fullname: Majka, Tomasz M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35057364$$D View this record in MEDLINE/PubMed |
BookMark | eNptkd9r1TAcxYNM3Jx78Q-Qgi9D6PwmadP0Rbhe_DG4w6HuOeSm395mtMk1SQf7703ZpnOYlwTO5xxOOC_JgfMOCXlN4YzzFt5PmtbAQFTNM3JE21aUtK2qg0fvQ3IS4zXkwzmVrH1BDnkNdcNFdUR2lwE7a5J1uyINWFygGbSzRo_FZfB7DMliLHxffF-vyo86YlesvTMBExZXcXH9mDN1YxflQpvBOiw2qINbtNW488GmYYqvyPNejxFP7u9jcvX508_113Lz7cv5erUpTdWwVKLYcm26njIjaF1pJikyCoLVFEwjTcdoT-ttLt8C1LrqEORWyh5At6B5z4_Jh7vc_bydsDPoUtCj2gc76XCrvLbqX8XZQe38jZJNI5kQOeD0PiD4XzPGpCYbDY6jdujnqJhgjEnRCJ7Rt0_Qaz8Hl7-3UJTn0g1k6s3jRn-qPGyQAbgDTPAxBuyVsUkn65eCdlQU1LK0-rt0trx7YnlI_Q_8G1ZMqBE |
CitedBy_id | crossref_primary_10_1016_j_autcon_2024_105380 crossref_primary_10_1016_j_jobe_2023_106595 crossref_primary_10_1007_s41939_024_00601_5 crossref_primary_10_3390_app12199766 crossref_primary_10_1016_j_istruc_2023_105559 crossref_primary_10_1016_j_cscm_2022_e01759 crossref_primary_10_1080_19648189_2024_2335343 crossref_primary_10_1007_s41939_024_00668_0 crossref_primary_10_1007_s41024_024_00458_8 crossref_primary_10_3390_polym14153065 crossref_primary_10_1007_s42107_023_00922_9 crossref_primary_10_3390_ma15217800 crossref_primary_10_1007_s41062_024_01471_z crossref_primary_10_3390_brainsci13091255 crossref_primary_10_3390_ma15051950 crossref_primary_10_1007_s13726_024_01434_2 crossref_primary_10_1016_j_cscm_2022_e01239 crossref_primary_10_3390_app13021227 crossref_primary_10_1016_j_cscm_2023_e02063 crossref_primary_10_1016_j_engappai_2023_105843 crossref_primary_10_1016_j_jobe_2023_108369 crossref_primary_10_1007_s42107_024_01131_8 crossref_primary_10_3390_ma15155232 crossref_primary_10_3390_ma15134512 crossref_primary_10_1016_j_jmrt_2022_10_153 crossref_primary_10_3390_ma15103523 crossref_primary_10_1016_j_cscm_2023_e02418 crossref_primary_10_3390_ma15124164 crossref_primary_10_1016_j_cscm_2024_e03849 crossref_primary_10_3389_fmats_2022_1114510 crossref_primary_10_1016_j_conbuildmat_2023_131420 crossref_primary_10_1016_j_conbuildmat_2023_134212 crossref_primary_10_1016_j_asoc_2024_111956 crossref_primary_10_1016_j_conbuildmat_2023_134092 crossref_primary_10_3390_cryst12050569 crossref_primary_10_1016_j_mtcomm_2024_108141 crossref_primary_10_3390_chemosensors11100528 crossref_primary_10_3389_fmats_2022_1098304 crossref_primary_10_3390_ma15196928 crossref_primary_10_1016_j_jmrt_2023_03_037 crossref_primary_10_1016_j_mtcomm_2025_112149 crossref_primary_10_1016_j_eiar_2025_107889 crossref_primary_10_1007_s40996_024_01502_w crossref_primary_10_3390_computation13010014 crossref_primary_10_3390_ma15207344 crossref_primary_10_3390_ma15124194 crossref_primary_10_7717_peerj_cs_1853 crossref_primary_10_1007_s43503_024_00033_7 crossref_primary_10_1016_j_conbuildmat_2023_134443 crossref_primary_10_1038_s41598_025_92253_9 crossref_primary_10_1016_j_jobe_2023_107932 crossref_primary_10_3390_app14177540 crossref_primary_10_3390_app132111991 crossref_primary_10_1007_s41939_025_00796_1 crossref_primary_10_1016_j_jcomc_2024_100529 crossref_primary_10_1016_j_heliyon_2023_e16288 crossref_primary_10_1016_j_cscm_2024_e03510 crossref_primary_10_1007_s41939_025_00740_3 crossref_primary_10_1515_rams_2025_0097 crossref_primary_10_3390_math10132245 crossref_primary_10_1080_23311916_2024_2376914 crossref_primary_10_3390_cryst14100830 crossref_primary_10_3390_ma15228111 crossref_primary_10_1016_j_compstruct_2022_116357 crossref_primary_10_1016_j_heliyon_2024_e32856 crossref_primary_10_1038_s41598_024_65905_5 crossref_primary_10_3390_jcs7090364 crossref_primary_10_1016_j_spc_2022_12_002 crossref_primary_10_1016_j_cscm_2023_e02836 crossref_primary_10_1016_j_matpr_2022_08_218 crossref_primary_10_3390_ma15072400 crossref_primary_10_1016_j_cscm_2022_e01243 crossref_primary_10_3390_ma15124108 crossref_primary_10_1016_j_cscm_2023_e02278 crossref_primary_10_1016_j_cscm_2024_e03869 |
Cites_doi | 10.3390/su12229322 10.1007/s00521-017-3007-7 10.1016/j.conbuildmat.2016.08.118 10.1016/j.conbuildmat.2011.04.037 10.1016/j.conbuildmat.2013.09.003 10.1016/j.conbuildmat.2014.07.003 10.1016/j.jclepro.2020.122922 10.1016/j.aej.2017.04.007 10.1016/S0008-8846(97)00190-7 10.3390/buildings11080324 10.1016/j.conbuildmat.2019.03.189 10.3390/ma14143829 10.3390/su12030830 10.3390/cryst10090741 10.1016/j.conbuildmat.2020.119057 10.1007/s00521-018-3575-1 10.1016/j.wasman.2010.04.012 10.1016/j.conbuildmat.2019.117000 10.1016/j.jclepro.2021.126032 10.1016/j.jobe.2021.103447 10.1065/lca2007.05.327 10.3390/ma14164518 10.1016/j.conbuildmat.2019.117021 10.3390/app10207330 10.3390/ma14195762 10.3390/ma14092297 10.1016/j.conbuildmat.2021.125021 10.1016/j.conbuildmat.2013.01.023 10.1016/j.conbuildmat.2012.07.004 10.1007/s00366-019-00808-y 10.3390/ma14040794 10.1007/s13369-020-04927-3 10.1016/0950-0618(90)90039-4 10.1007/s00521-016-2368-7 10.1016/j.conbuildmat.2019.116883 10.3390/ma13081821 10.1016/j.conbuildmat.2016.10.114 10.3390/ma14154222 10.1016/j.conbuildmat.2020.118271 10.1061/(ASCE)ST.1943-541X.0001443 10.1155/2020/8850535 10.3390/polym13193389 10.1016/j.neucom.2017.09.099 10.1016/j.jclepro.2012.07.020 10.1016/j.cemconres.2003.12.019 10.1186/s40069-018-0246-7 10.1016/j.conbuildmat.2020.119323 10.1007/s00521-019-04267-w 10.1016/j.aei.2020.101126 10.3390/cryst10090737 10.1016/j.conbuildmat.2014.06.032 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma15020647 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC8778266 35057364 10_3390_ma15020647 |
Genre | Journal Article |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS GROUPED_DOAJ NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c472t-e6b3acdf12c6154a281e21062510c78cd21f15b5739005a4de08b88f00a90a3f3 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 14:08:13 EDT 2025 Thu Jul 10 17:57:13 EDT 2025 Fri Jul 25 11:51:59 EDT 2025 Wed Feb 19 02:27:15 EST 2025 Thu Apr 24 22:56:40 EDT 2025 Tue Jul 01 03:42:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | compressive strength concrete fiber mechanical properties aggregate split tensile strength |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-e6b3acdf12c6154a281e21062510c78cd21f15b5739005a4de08b88f00a90a3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7913-0750 0000-0003-1069-1653 0000-0002-1668-7607 0000-0002-0312-2965 0000-0001-5047-5862 0000-0003-2863-3283 |
OpenAccessLink | https://www.proquest.com/docview/2621325170?pq-origsite=%requestingapplication% |
PMID | 35057364 |
PQID | 2621325170 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8778266 proquest_miscellaneous_2622286763 proquest_journals_2621325170 pubmed_primary_35057364 crossref_citationtrail_10_3390_ma15020647 crossref_primary_10_3390_ma15020647 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220115 |
PublicationDateYYYYMMDD | 2022-01-15 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220115 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Erdem (ref_1) 2011; 25 ref_50 Zhang (ref_57) 2020; 273 Flower (ref_10) 2007; 12 Asteris (ref_36) 2019; 31 Feng (ref_54) 2016; 142 ref_53 Dong (ref_13) 2017; 130 ref_51 Han (ref_24) 2020; 244 (ref_7) 1997; 27 Elaty (ref_43) 2017; 56 Thomas (ref_12) 2009; 162 (ref_8) 2014; 68 (ref_6) 2004; 34 ref_15 Radonjanin (ref_2) 2010; 30 Sarir (ref_28) 2021; 37 Behera (ref_3) 2014; 68 ref_25 Nematzadeh (ref_49) 2020; 252 Ding (ref_4) 2012; 36 ref_22 ref_21 Feng (ref_55) 2020; 45 Ahmad (ref_16) 2021; 15 ref_26 Balf (ref_29) 2021; 46 Song (ref_52) 2021; 308 Zhang (ref_38) 2019; 210 Vakhshouri (ref_41) 2018; 280 Li (ref_18) 2021; 45 Bairagi (ref_19) 1990; 4 ref_35 ref_34 Feng (ref_20) 2020; 230 ref_30 Marie (ref_5) 2012; 37 Huang (ref_27) 2021; 1 Farooq (ref_45) 2021; 292 Shahmansouri (ref_33) 2019; 229 Selvaraj (ref_37) 2019; 31 Duan (ref_17) 2020; 254 Kaveh (ref_39) 2018; 62 Pakzad (ref_31) 2020; 230 Turner (ref_11) 2013; 43 ref_47 ref_46 ref_44 Ahmad (ref_56) 2021; 16 Saha (ref_32) 2020; 32 Sathyan (ref_40) 2018; 12 Younis (ref_9) 2013; 49 Gholampour (ref_23) 2017; 130 ref_48 Ahmad (ref_14) 2021; 15 Douma (ref_42) 2017; 28 |
References_xml | – ident: ref_48 doi: 10.3390/su12229322 – volume: 31 start-page: 409 year: 2019 ident: ref_36 article-title: Self-compacting concrete strength prediction using surrogate models publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3007-7 – volume: 130 start-page: 241 year: 2017 ident: ref_13 article-title: Material properties of basalt fibre reinforced concrete made with recycled earthquake waste publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.08.118 – volume: 25 start-page: 4025 year: 2011 ident: ref_1 article-title: Microstructure-linked strength properties and impact response of conventional and recycled concrete reinforced with steel and synthetic macro fibres publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.04.037 – volume: 49 start-page: 688 year: 2013 ident: ref_9 article-title: Strength prediction model and methods for improving recycled aggregate concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.09.003 – volume: 68 start-page: 501 year: 2014 ident: ref_3 article-title: Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.07.003 – volume: 273 start-page: 122922 year: 2020 ident: ref_57 article-title: A hybrid intelligent system for designing optimal proportions of recycled aggregate concrete publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.122922 – volume: 56 start-page: 523 year: 2017 ident: ref_43 article-title: Predicting the ingredients of self compacting concrete using artificial neural network publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2017.04.007 – volume: 27 start-page: 1817 year: 1997 ident: ref_7 article-title: Physical and mechanical properties of concretes produced with waste concrete publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(97)00190-7 – ident: ref_25 doi: 10.3390/buildings11080324 – volume: 210 start-page: 713 year: 2019 ident: ref_38 article-title: Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.03.189 – volume: 162 start-page: 135 year: 2009 ident: ref_12 article-title: Estimating carbon dioxide emissions for aggregate use publication-title: Proc. Inst. Civ. Eng. Eng. Sustain. – ident: ref_15 doi: 10.3390/ma14143829 – ident: ref_21 doi: 10.3390/su12030830 – volume: 15 start-page: e00698 year: 2021 ident: ref_16 article-title: Sustainable approach of using sugarcane bagasse ash in cement-based composites: A systematic review publication-title: Case Stud. Constr. Mater. – ident: ref_47 doi: 10.3390/cryst10090741 – volume: 252 start-page: 119057 year: 2020 ident: ref_49 article-title: Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: Optimization and prediction via RSM and GEP publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119057 – volume: 31 start-page: 1365 year: 2019 ident: ref_37 article-title: Prediction model for optimized self-compacting concrete with fly ash using response surface method based on fuzzy classification publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3575-1 – volume: 30 start-page: 2255 year: 2010 ident: ref_2 article-title: Comparative environmental assessment of natural and recycled aggregate concrete publication-title: Waste Manag. doi: 10.1016/j.wasman.2010.04.012 – volume: 230 start-page: 117000 year: 2020 ident: ref_20 article-title: Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117000 – volume: 292 start-page: 126032 year: 2021 ident: ref_45 article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126032 – volume: 45 start-page: 103447 year: 2021 ident: ref_18 article-title: A systematic review of waste materials in cement-based composites for construction applications publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2021.103447 – volume: 12 start-page: 282 year: 2007 ident: ref_10 article-title: Green house gas emissions due to concrete manufacture publication-title: Int. J. Life Cycle Assess. doi: 10.1065/lca2007.05.327 – ident: ref_50 doi: 10.3390/ma14164518 – volume: 1 start-page: 3 year: 2021 ident: ref_27 article-title: Reduction of computational error by optimizing SVR kernel coefficients to simulate concrete compressive strength through the use of a human learning optimization algorithm publication-title: Eng. Comput. – volume: 230 start-page: 117021 year: 2020 ident: ref_31 article-title: Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117021 – ident: ref_35 doi: 10.3390/app10207330 – ident: ref_53 doi: 10.3390/ma14195762 – ident: ref_30 doi: 10.3390/ma14092297 – volume: 308 start-page: 125021 year: 2021 ident: ref_52 article-title: Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125021 – volume: 43 start-page: 125 year: 2013 ident: ref_11 article-title: Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.01.023 – volume: 15 start-page: e00683 year: 2021 ident: ref_14 article-title: A scientometric review of waste material utilization in concrete for sustainable construction publication-title: Case Stud. Constr. Mater. – volume: 36 start-page: 1048 year: 2012 ident: ref_4 article-title: Are geopolymers more suitable than Portland cement to produce high volume recycled aggregates HPC? publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.07.004 – volume: 37 start-page: 1 year: 2021 ident: ref_28 article-title: Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns publication-title: Eng. Comput. doi: 10.1007/s00366-019-00808-y – ident: ref_44 doi: 10.3390/ma14040794 – volume: 46 start-page: 4439 year: 2021 ident: ref_29 article-title: A New Method for Predicting the Ingredients of Self-Compacting Concrete (SCC) Including Fly Ash (FA) Using Data Envelopment Analysis (DEA) publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04927-3 – volume: 4 start-page: 188 year: 1990 ident: ref_19 article-title: Mix design procedure for recycled aggregate concrete publication-title: Constr. Build. Mater. doi: 10.1016/0950-0618(90)90039-4 – volume: 16 start-page: e00840 year: 2021 ident: ref_56 article-title: Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques publication-title: Case Stud. Constr. Mater. – volume: 28 start-page: 707 year: 2017 ident: ref_42 article-title: Prediction of properties of self-compacting concrete containing fly ash using artificial neural network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2368-7 – volume: 229 start-page: 116883 year: 2019 ident: ref_33 article-title: Predicting compressive strength and electrical resistivity of eco-friendly concrete containing natural zeolite via GEP algorithm publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.116883 – ident: ref_46 doi: 10.3390/ma13081821 – volume: 130 start-page: 122 year: 2017 ident: ref_23 article-title: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.10.114 – ident: ref_51 doi: 10.3390/ma14154222 – volume: 244 start-page: 118271 year: 2020 ident: ref_24 article-title: An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118271 – volume: 142 start-page: 04015163 year: 2016 ident: ref_54 article-title: Stochastic Nonlinear Behavior of Reinforced Concrete Frames. II: Numerical Simulation publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0001443 – ident: ref_34 doi: 10.1155/2020/8850535 – volume: 62 start-page: 281 year: 2018 ident: ref_39 article-title: M5’ and Mars Based Prediction Models for Properties of Self-compacting Concrete Containing Fly Ash publication-title: Period. Polytech. Civ. Eng. – ident: ref_26 doi: 10.3390/polym13193389 – volume: 280 start-page: 13 year: 2018 ident: ref_41 article-title: Prediction of compressive strength of self-compacting concrete by ANFIS models publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.099 – volume: 37 start-page: 243 year: 2012 ident: ref_5 article-title: Closed-loop recycling of recycled concrete aggregates publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2012.07.020 – volume: 34 start-page: 1307 year: 2004 ident: ref_6 article-title: Properties of concretes produced with waste concrete aggregate publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2003.12.019 – volume: 12 start-page: 24 year: 2018 ident: ref_40 article-title: Modeling the Fresh and Hardened Stage Properties of Self-Compacting Concrete using Random Kitchen Sink Algorithm publication-title: Int. J. Concr. Struct. Mater. doi: 10.1186/s40069-018-0246-7 – volume: 254 start-page: 119323 year: 2020 ident: ref_17 article-title: Combined use of recycled powder and recycled coarse aggregate derived from construction and demolition waste in self-compacting concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119323 – volume: 32 start-page: 7995 year: 2020 ident: ref_32 article-title: Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04267-w – volume: 45 start-page: 101126 year: 2020 ident: ref_55 article-title: Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2020.101126 – ident: ref_22 doi: 10.3390/cryst10090737 – volume: 68 start-page: 17 year: 2014 ident: ref_8 article-title: Experimental analysis of properties of recycled coarse aggregate (RCA) concrete with mineral additives publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.06.032 |
SSID | ssj0000331829 |
Score | 2.5703676 |
Snippet | Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 647 |
SubjectTerms | Accuracy Aggregates Algorithms Classification Compressive strength Concrete Construction materials Correlation coefficients Damage prevention Data points Decision trees Environmental impact Machine learning Mechanical properties Monte Carlo simulation Natural resources Recycled materials Root-mean-square errors Sensitivity analysis Software Statistical analysis Superplasticizers Tensile strength Water absorption |
Title | Predicting the Mechanical Properties of RCA-Based Concrete Using Supervised Machine Learning Algorithms |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35057364 https://www.proquest.com/docview/2621325170 https://www.proquest.com/docview/2622286763 https://pubmed.ncbi.nlm.nih.gov/PMC8778266 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_W9GV7GPuet66obC97MJVkWZafRhqalkJK6FbIm7FlOR20dpY4___uHMVtttLHIIHDnXT63dfvAL7p1ORSFlFYWu2oJYeHqbQ2RPDslCmVkt2YzsmlPr9WF7N45gNuK19WubWJnaEuG0sx8mOpJTpOsUj4j8WfkKZGUXbVj9DYg300wcYMYP_k9HJ61UdZeIRnVqYbXtII_fvjuxwhkKQWy92X6D94-W-V5INnZ_wKXnq8yIYbBb-GZ65-Ay8esAi-hfl0SdkWql9mCOfYxFE3LwmfTSnUviTOVNZU7Go0DE_w1SrZqKkRLbaOdRUD7Od6QSaDViZdcaVjnnd1zoa3cxRDe3O3egfX49Nfo_PQz08IrUpkGzpdRLktKyEt4haVSyMcenjo8QhuE2NLKSoRF3GCcuFxrkrHTWFMxXme8jyqovcwqJvafQRW5Oi3UQrWukS5FC-1tOiqOW0jWaKqA_i-lWVmPbk4zbi4zdDJILln93IP4Gu_d7Gh1Hh018FWJZm_Vqvs_hAEcNQv44WgLEdeu2bd7ZHSaLSbAXzYaLD_TETuWKRVAMmObvsNRLa9u1L_vulIt02CWErrT0__rc_wXFJ_BBehiA9g0C7X7guilrY4hD0zPjv0BxR_nc3EX0I871Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAouAAwer67G9Xh8QCoGQ0qaqoJV6M_Z6kyK1dkgcIf4Uv5EZv9oA4tbzjvyYmZ2Zb3ceAC9VrFPEzHdzoyyX5Eg3RmNcCp5toPMgwHpM52RfjY-CT8fh8Qb86mphOK2ys4m1oc5Lw2fk26iQgFPoRfLt_LvLU6P4drUbodGoxa79-YMg2_LNznuS7yvE0YfD4dhtpwq4Joiwcq3K_NTkUw8NefMgRe1Zwj2EAzxpIm1y9KZemIWRH5OGpkFupc60nkqZxjL1pz499wpcpd-KGezp0cf-TEf6tEMwbrqg0rrcPksp4EIu6Fz3e38Fs3_mZF5wcqNbcLONTsWgUafbsGGLO3DjQs_CuzA7WPDdDmdLCwoexcRy7TCLWhzwwf6CO7SKcio-DwfuO_KRuRiWBcWmlRV1foL4spqzgeKVSZ3KaUXb5XUmBqczYnp1cra8B0eXwtf7sFmUhX0IIksJJfKFr7FRYGMyIWgIGFplfMxJsRx43fEyMW0rc56ocZoQpGG-J-d8d-BFTztvGnj8k2qrE0nSbuJlcq5yDjzvl2n78Z1KWthyVdMgakVW2oEHjQT71_gM_nwVOBCtybYn4Nbe6yvFt5O6xbeOKHJT6tH_P-sZXBsfTvaSvZ393cdwHbkyQ3quF27BZrVY2ScUL1XZ01pJBXy97F3xG0LOJ8g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgEHDhYsWfttX1AKE0btZREUaFSb8Zer1Ok1g6JI8Rf49cxYztuA4hbz7taW_P-ducB8EZFYYKYSjvTynBJjmNHqLVNwbPxwszzsB7TOZ6ogxPv46l_ugW_1rUwnFa5tom1oc5KzXfkfVRIwMl3A6eft2kR073Rh_l3mydI8UvrepxGIyJH5ucPgm_L94d7xOu3iKP9L8MDu50wYGsvwMo2KpWJznIXNXl2L8HQNYSBCBO4jg5CnaGbu37qBzIiaU28zDhhGoa54ySRk8hc0rk3YDtgVNSD7d39yfS4u-FxJOkLRk1PVEkn9C8SCr-Qyzs3veBfoe2fGZpXXN7oLtxpY1UxaITrHmyZ4j7cvtLB8AHMpgt-6eHcaUGhpBgbriRmxospX_MvuF-rKHNxPBzYu-QxMzEsC4pUKyPqbAXxeTVnc8Ur4zqx04i25-tMDM5nRPbq7GL5EE6uhbKPoFeUhXkCIk0IM_LzrzaBZyIyKKgJJhqlJWYkZha8W9My1m1jc56vcR4TwGG6x5d0t-B1t3fetPP4566dNUviVqWX8aUAWvCqWyZl5BeWpDDlqt6DGCqy2RY8bjjYfUYyFJTKsyDY4G23gRt9b64U387qht9hQHGcUk___1sv4SZpRPzpcHL0DG4hl2k4ru36O9CrFivznIKnKn3RSqmAr9etGL8B2HwtWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+Mechanical+Properties+of+RCA-Based+Concrete+Using+Supervised+Machine+Learning+Algorithms&rft.jtitle=Materials&rft.au=Shang%2C+Meijun&rft.au=Li%2C+Hejun&rft.au=Ayaz%2C+Ahmad&rft.au=Ahmad%2C+Waqas&rft.date=2022-01-15&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=15&rft.issue=2&rft.spage=647&rft_id=info:doi/10.3390%2Fma15020647&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |