Predicting the Mechanical Properties of RCA-Based Concrete Using Supervised Machine Learning Algorithms

Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhil...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 2; p. 647
Main Authors Shang, Meijun, Li, Hejun, Ahmad, Ayaz, Ahmad, Waqas, Ostrowski, Krzysztof Adam, Aslam, Fahid, Joyklad, Panuwat, Majka, Tomasz M.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.01.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhile, construction waste continues to grow at a high rate as older buildings are destroyed and demolished. As a result, the use of recycled materials may contribute to improving the quality of life and preventing environmental damage. Additionally, the application of recycled coarse aggregate (RCA) in concrete is essential for minimizing environmental issues. The compressive strength (CS) and splitting tensile strength (STS) of concrete containing RCA are predicted in this article using decision tree (DT) and AdaBoost machine learning (ML) techniques. A total of 344 data points with nine input variables (water, cement, fine aggregate, natural coarse aggregate, RCA, superplasticizers, water absorption of RCA and maximum size of RCA, density of RCA) were used to run the models. The data was validated using k-fold cross-validation and the coefficient correlation coefficient (R2), mean square error (MSE), mean absolute error (MAE), and root mean square error values (RMSE). However, the model’s performance was assessed using statistical checks. Additionally, sensitivity analysis was used to determine the impact of each variable on the forecasting of mechanical properties.
AbstractList Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhile, construction waste continues to grow at a high rate as older buildings are destroyed and demolished. As a result, the use of recycled materials may contribute to improving the quality of life and preventing environmental damage. Additionally, the application of recycled coarse aggregate (RCA) in concrete is essential for minimizing environmental issues. The compressive strength (CS) and splitting tensile strength (STS) of concrete containing RCA are predicted in this article using decision tree (DT) and AdaBoost machine learning (ML) techniques. A total of 344 data points with nine input variables (water, cement, fine aggregate, natural coarse aggregate, RCA, superplasticizers, water absorption of RCA and maximum size of RCA, density of RCA) were used to run the models. The data was validated using k-fold cross-validation and the coefficient correlation coefficient (R2), mean square error (MSE), mean absolute error (MAE), and root mean square error values (RMSE). However, the model’s performance was assessed using statistical checks. Additionally, sensitivity analysis was used to determine the impact of each variable on the forecasting of mechanical properties.
Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhile, construction waste continues to grow at a high rate as older buildings are destroyed and demolished. As a result, the use of recycled materials may contribute to improving the quality of life and preventing environmental damage. Additionally, the application of recycled coarse aggregate (RCA) in concrete is essential for minimizing environmental issues. The compressive strength (CS) and splitting tensile strength (STS) of concrete containing RCA are predicted in this article using decision tree (DT) and AdaBoost machine learning (ML) techniques. A total of 344 data points with nine input variables (water, cement, fine aggregate, natural coarse aggregate, RCA, superplasticizers, water absorption of RCA and maximum size of RCA, density of RCA) were used to run the models. The data was validated using k-fold cross-validation and the coefficient correlation coefficient (R 2 ), mean square error (MSE), mean absolute error (MAE), and root mean square error values (RMSE). However, the model’s performance was assessed using statistical checks. Additionally, sensitivity analysis was used to determine the impact of each variable on the forecasting of mechanical properties.
Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhile, construction waste continues to grow at a high rate as older buildings are destroyed and demolished. As a result, the use of recycled materials may contribute to improving the quality of life and preventing environmental damage. Additionally, the application of recycled coarse aggregate (RCA) in concrete is essential for minimizing environmental issues. The compressive strength (CS) and splitting tensile strength (STS) of concrete containing RCA are predicted in this article using decision tree (DT) and AdaBoost machine learning (ML) techniques. A total of 344 data points with nine input variables (water, cement, fine aggregate, natural coarse aggregate, RCA, superplasticizers, water absorption of RCA and maximum size of RCA, density of RCA) were used to run the models. The data was validated using k-fold cross-validation and the coefficient correlation coefficient (R ), mean square error (MSE), mean absolute error (MAE), and root mean square error values (RMSE). However, the model's performance was assessed using statistical checks. Additionally, sensitivity analysis was used to determine the impact of each variable on the forecasting of mechanical properties.
Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhile, construction waste continues to grow at a high rate as older buildings are destroyed and demolished. As a result, the use of recycled materials may contribute to improving the quality of life and preventing environmental damage. Additionally, the application of recycled coarse aggregate (RCA) in concrete is essential for minimizing environmental issues. The compressive strength (CS) and splitting tensile strength (STS) of concrete containing RCA are predicted in this article using decision tree (DT) and AdaBoost machine learning (ML) techniques. A total of 344 data points with nine input variables (water, cement, fine aggregate, natural coarse aggregate, RCA, superplasticizers, water absorption of RCA and maximum size of RCA, density of RCA) were used to run the models. The data was validated using k-fold cross-validation and the coefficient correlation coefficient (R2), mean square error (MSE), mean absolute error (MAE), and root mean square error values (RMSE). However, the model's performance was assessed using statistical checks. Additionally, sensitivity analysis was used to determine the impact of each variable on the forecasting of mechanical properties.Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhile, construction waste continues to grow at a high rate as older buildings are destroyed and demolished. As a result, the use of recycled materials may contribute to improving the quality of life and preventing environmental damage. Additionally, the application of recycled coarse aggregate (RCA) in concrete is essential for minimizing environmental issues. The compressive strength (CS) and splitting tensile strength (STS) of concrete containing RCA are predicted in this article using decision tree (DT) and AdaBoost machine learning (ML) techniques. A total of 344 data points with nine input variables (water, cement, fine aggregate, natural coarse aggregate, RCA, superplasticizers, water absorption of RCA and maximum size of RCA, density of RCA) were used to run the models. The data was validated using k-fold cross-validation and the coefficient correlation coefficient (R2), mean square error (MSE), mean absolute error (MAE), and root mean square error values (RMSE). However, the model's performance was assessed using statistical checks. Additionally, sensitivity analysis was used to determine the impact of each variable on the forecasting of mechanical properties.
Author Majka, Tomasz M.
Joyklad, Panuwat
Ostrowski, Krzysztof Adam
Aslam, Fahid
Li, Hejun
Shang, Meijun
Ahmad, Ayaz
Ahmad, Waqas
AuthorAffiliation 3 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan; waqasahmad@cuiatd.edu.pk
6 Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok 26120, Thailand; panuwatj@g.swu.ac.th
5 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa
1 School of Architetrue and Civil Engineering, Changchun Sci-Tech Unversity, Changchun 130600, China
7 Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; tomasz.majka@pk.edu.pl
2 Jilin Northeast Architectural and Municipal Engineering Design Institute Co., Ltd., Changchun 130062, China; lihejun0720@sina.com
4 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; krzysztof.ostrowski.1@pk.edu.pl
AuthorAffiliation_xml – name: 6 Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok 26120, Thailand; panuwatj@g.swu.ac.th
– name: 3 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan; waqasahmad@cuiatd.edu.pk
– name: 1 School of Architetrue and Civil Engineering, Changchun Sci-Tech Unversity, Changchun 130600, China
– name: 2 Jilin Northeast Architectural and Municipal Engineering Design Institute Co., Ltd., Changchun 130062, China; lihejun0720@sina.com
– name: 4 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; krzysztof.ostrowski.1@pk.edu.pl
– name: 5 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa
– name: 7 Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; tomasz.majka@pk.edu.pl
Author_xml – sequence: 1
  givenname: Meijun
  surname: Shang
  fullname: Shang, Meijun
– sequence: 2
  givenname: Hejun
  surname: Li
  fullname: Li, Hejun
– sequence: 3
  givenname: Ayaz
  orcidid: 0000-0002-0312-2965
  surname: Ahmad
  fullname: Ahmad, Ayaz
– sequence: 4
  givenname: Waqas
  orcidid: 0000-0002-1668-7607
  surname: Ahmad
  fullname: Ahmad, Waqas
– sequence: 5
  givenname: Krzysztof Adam
  orcidid: 0000-0001-5047-5862
  surname: Ostrowski
  fullname: Ostrowski, Krzysztof Adam
– sequence: 6
  givenname: Fahid
  orcidid: 0000-0003-2863-3283
  surname: Aslam
  fullname: Aslam, Fahid
– sequence: 7
  givenname: Panuwat
  orcidid: 0000-0003-1069-1653
  surname: Joyklad
  fullname: Joyklad, Panuwat
– sequence: 8
  givenname: Tomasz M.
  orcidid: 0000-0002-7913-0750
  surname: Majka
  fullname: Majka, Tomasz M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35057364$$D View this record in MEDLINE/PubMed
BookMark eNptkd9r1TAcxYNM3Jx78Q-Qgi9D6PwmadP0Rbhe_DG4w6HuOeSm395mtMk1SQf7703ZpnOYlwTO5xxOOC_JgfMOCXlN4YzzFt5PmtbAQFTNM3JE21aUtK2qg0fvQ3IS4zXkwzmVrH1BDnkNdcNFdUR2lwE7a5J1uyINWFygGbSzRo_FZfB7DMliLHxffF-vyo86YlesvTMBExZXcXH9mDN1YxflQpvBOiw2qINbtNW488GmYYqvyPNejxFP7u9jcvX508_113Lz7cv5erUpTdWwVKLYcm26njIjaF1pJikyCoLVFEwjTcdoT-ttLt8C1LrqEORWyh5At6B5z4_Jh7vc_bydsDPoUtCj2gc76XCrvLbqX8XZQe38jZJNI5kQOeD0PiD4XzPGpCYbDY6jdujnqJhgjEnRCJ7Rt0_Qaz8Hl7-3UJTn0g1k6s3jRn-qPGyQAbgDTPAxBuyVsUkn65eCdlQU1LK0-rt0trx7YnlI_Q_8G1ZMqBE
CitedBy_id crossref_primary_10_1016_j_autcon_2024_105380
crossref_primary_10_1016_j_jobe_2023_106595
crossref_primary_10_1007_s41939_024_00601_5
crossref_primary_10_3390_app12199766
crossref_primary_10_1016_j_istruc_2023_105559
crossref_primary_10_1016_j_cscm_2022_e01759
crossref_primary_10_1080_19648189_2024_2335343
crossref_primary_10_1007_s41939_024_00668_0
crossref_primary_10_1007_s41024_024_00458_8
crossref_primary_10_3390_polym14153065
crossref_primary_10_1007_s42107_023_00922_9
crossref_primary_10_3390_ma15217800
crossref_primary_10_1007_s41062_024_01471_z
crossref_primary_10_3390_brainsci13091255
crossref_primary_10_3390_ma15051950
crossref_primary_10_1007_s13726_024_01434_2
crossref_primary_10_1016_j_cscm_2022_e01239
crossref_primary_10_3390_app13021227
crossref_primary_10_1016_j_cscm_2023_e02063
crossref_primary_10_1016_j_engappai_2023_105843
crossref_primary_10_1016_j_jobe_2023_108369
crossref_primary_10_1007_s42107_024_01131_8
crossref_primary_10_3390_ma15155232
crossref_primary_10_3390_ma15134512
crossref_primary_10_1016_j_jmrt_2022_10_153
crossref_primary_10_3390_ma15103523
crossref_primary_10_1016_j_cscm_2023_e02418
crossref_primary_10_3390_ma15124164
crossref_primary_10_1016_j_cscm_2024_e03849
crossref_primary_10_3389_fmats_2022_1114510
crossref_primary_10_1016_j_conbuildmat_2023_131420
crossref_primary_10_1016_j_conbuildmat_2023_134212
crossref_primary_10_1016_j_asoc_2024_111956
crossref_primary_10_1016_j_conbuildmat_2023_134092
crossref_primary_10_3390_cryst12050569
crossref_primary_10_1016_j_mtcomm_2024_108141
crossref_primary_10_3390_chemosensors11100528
crossref_primary_10_3389_fmats_2022_1098304
crossref_primary_10_3390_ma15196928
crossref_primary_10_1016_j_jmrt_2023_03_037
crossref_primary_10_1016_j_mtcomm_2025_112149
crossref_primary_10_1016_j_eiar_2025_107889
crossref_primary_10_1007_s40996_024_01502_w
crossref_primary_10_3390_computation13010014
crossref_primary_10_3390_ma15207344
crossref_primary_10_3390_ma15124194
crossref_primary_10_7717_peerj_cs_1853
crossref_primary_10_1007_s43503_024_00033_7
crossref_primary_10_1016_j_conbuildmat_2023_134443
crossref_primary_10_1038_s41598_025_92253_9
crossref_primary_10_1016_j_jobe_2023_107932
crossref_primary_10_3390_app14177540
crossref_primary_10_3390_app132111991
crossref_primary_10_1007_s41939_025_00796_1
crossref_primary_10_1016_j_jcomc_2024_100529
crossref_primary_10_1016_j_heliyon_2023_e16288
crossref_primary_10_1016_j_cscm_2024_e03510
crossref_primary_10_1007_s41939_025_00740_3
crossref_primary_10_1515_rams_2025_0097
crossref_primary_10_3390_math10132245
crossref_primary_10_1080_23311916_2024_2376914
crossref_primary_10_3390_cryst14100830
crossref_primary_10_3390_ma15228111
crossref_primary_10_1016_j_compstruct_2022_116357
crossref_primary_10_1016_j_heliyon_2024_e32856
crossref_primary_10_1038_s41598_024_65905_5
crossref_primary_10_3390_jcs7090364
crossref_primary_10_1016_j_spc_2022_12_002
crossref_primary_10_1016_j_cscm_2023_e02836
crossref_primary_10_1016_j_matpr_2022_08_218
crossref_primary_10_3390_ma15072400
crossref_primary_10_1016_j_cscm_2022_e01243
crossref_primary_10_3390_ma15124108
crossref_primary_10_1016_j_cscm_2023_e02278
crossref_primary_10_1016_j_cscm_2024_e03869
Cites_doi 10.3390/su12229322
10.1007/s00521-017-3007-7
10.1016/j.conbuildmat.2016.08.118
10.1016/j.conbuildmat.2011.04.037
10.1016/j.conbuildmat.2013.09.003
10.1016/j.conbuildmat.2014.07.003
10.1016/j.jclepro.2020.122922
10.1016/j.aej.2017.04.007
10.1016/S0008-8846(97)00190-7
10.3390/buildings11080324
10.1016/j.conbuildmat.2019.03.189
10.3390/ma14143829
10.3390/su12030830
10.3390/cryst10090741
10.1016/j.conbuildmat.2020.119057
10.1007/s00521-018-3575-1
10.1016/j.wasman.2010.04.012
10.1016/j.conbuildmat.2019.117000
10.1016/j.jclepro.2021.126032
10.1016/j.jobe.2021.103447
10.1065/lca2007.05.327
10.3390/ma14164518
10.1016/j.conbuildmat.2019.117021
10.3390/app10207330
10.3390/ma14195762
10.3390/ma14092297
10.1016/j.conbuildmat.2021.125021
10.1016/j.conbuildmat.2013.01.023
10.1016/j.conbuildmat.2012.07.004
10.1007/s00366-019-00808-y
10.3390/ma14040794
10.1007/s13369-020-04927-3
10.1016/0950-0618(90)90039-4
10.1007/s00521-016-2368-7
10.1016/j.conbuildmat.2019.116883
10.3390/ma13081821
10.1016/j.conbuildmat.2016.10.114
10.3390/ma14154222
10.1016/j.conbuildmat.2020.118271
10.1061/(ASCE)ST.1943-541X.0001443
10.1155/2020/8850535
10.3390/polym13193389
10.1016/j.neucom.2017.09.099
10.1016/j.jclepro.2012.07.020
10.1016/j.cemconres.2003.12.019
10.1186/s40069-018-0246-7
10.1016/j.conbuildmat.2020.119323
10.1007/s00521-019-04267-w
10.1016/j.aei.2020.101126
10.3390/cryst10090737
10.1016/j.conbuildmat.2014.06.032
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma15020647
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC8778266
35057364
10_3390_ma15020647
Genre Journal Article
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c472t-e6b3acdf12c6154a281e21062510c78cd21f15b5739005a4de08b88f00a90a3f3
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 14:08:13 EDT 2025
Thu Jul 10 17:57:13 EDT 2025
Fri Jul 25 11:51:59 EDT 2025
Wed Feb 19 02:27:15 EST 2025
Thu Apr 24 22:56:40 EDT 2025
Tue Jul 01 03:42:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords compressive strength
concrete
fiber
mechanical properties
aggregate
split tensile strength
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-e6b3acdf12c6154a281e21062510c78cd21f15b5739005a4de08b88f00a90a3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7913-0750
0000-0003-1069-1653
0000-0002-1668-7607
0000-0002-0312-2965
0000-0001-5047-5862
0000-0003-2863-3283
OpenAccessLink https://www.proquest.com/docview/2621325170?pq-origsite=%requestingapplication%
PMID 35057364
PQID 2621325170
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8778266
proquest_miscellaneous_2622286763
proquest_journals_2621325170
pubmed_primary_35057364
crossref_citationtrail_10_3390_ma15020647
crossref_primary_10_3390_ma15020647
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220115
PublicationDateYYYYMMDD 2022-01-15
PublicationDate_xml – month: 1
  year: 2022
  text: 20220115
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Erdem (ref_1) 2011; 25
ref_50
Zhang (ref_57) 2020; 273
Flower (ref_10) 2007; 12
Asteris (ref_36) 2019; 31
Feng (ref_54) 2016; 142
ref_53
Dong (ref_13) 2017; 130
ref_51
Han (ref_24) 2020; 244
(ref_7) 1997; 27
Elaty (ref_43) 2017; 56
Thomas (ref_12) 2009; 162
(ref_8) 2014; 68
(ref_6) 2004; 34
ref_15
Radonjanin (ref_2) 2010; 30
Sarir (ref_28) 2021; 37
Behera (ref_3) 2014; 68
ref_25
Nematzadeh (ref_49) 2020; 252
Ding (ref_4) 2012; 36
ref_22
ref_21
Feng (ref_55) 2020; 45
Ahmad (ref_16) 2021; 15
ref_26
Balf (ref_29) 2021; 46
Song (ref_52) 2021; 308
Zhang (ref_38) 2019; 210
Vakhshouri (ref_41) 2018; 280
Li (ref_18) 2021; 45
Bairagi (ref_19) 1990; 4
ref_35
ref_34
Feng (ref_20) 2020; 230
ref_30
Marie (ref_5) 2012; 37
Huang (ref_27) 2021; 1
Farooq (ref_45) 2021; 292
Shahmansouri (ref_33) 2019; 229
Selvaraj (ref_37) 2019; 31
Duan (ref_17) 2020; 254
Kaveh (ref_39) 2018; 62
Pakzad (ref_31) 2020; 230
Turner (ref_11) 2013; 43
ref_47
ref_46
ref_44
Ahmad (ref_56) 2021; 16
Saha (ref_32) 2020; 32
Sathyan (ref_40) 2018; 12
Younis (ref_9) 2013; 49
Gholampour (ref_23) 2017; 130
ref_48
Ahmad (ref_14) 2021; 15
Douma (ref_42) 2017; 28
References_xml – ident: ref_48
  doi: 10.3390/su12229322
– volume: 31
  start-page: 409
  year: 2019
  ident: ref_36
  article-title: Self-compacting concrete strength prediction using surrogate models
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3007-7
– volume: 130
  start-page: 241
  year: 2017
  ident: ref_13
  article-title: Material properties of basalt fibre reinforced concrete made with recycled earthquake waste
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.08.118
– volume: 25
  start-page: 4025
  year: 2011
  ident: ref_1
  article-title: Microstructure-linked strength properties and impact response of conventional and recycled concrete reinforced with steel and synthetic macro fibres
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.04.037
– volume: 49
  start-page: 688
  year: 2013
  ident: ref_9
  article-title: Strength prediction model and methods for improving recycled aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.09.003
– volume: 68
  start-page: 501
  year: 2014
  ident: ref_3
  article-title: Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.07.003
– volume: 273
  start-page: 122922
  year: 2020
  ident: ref_57
  article-title: A hybrid intelligent system for designing optimal proportions of recycled aggregate concrete
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122922
– volume: 56
  start-page: 523
  year: 2017
  ident: ref_43
  article-title: Predicting the ingredients of self compacting concrete using artificial neural network
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2017.04.007
– volume: 27
  start-page: 1817
  year: 1997
  ident: ref_7
  article-title: Physical and mechanical properties of concretes produced with waste concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(97)00190-7
– ident: ref_25
  doi: 10.3390/buildings11080324
– volume: 210
  start-page: 713
  year: 2019
  ident: ref_38
  article-title: Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.03.189
– volume: 162
  start-page: 135
  year: 2009
  ident: ref_12
  article-title: Estimating carbon dioxide emissions for aggregate use
  publication-title: Proc. Inst. Civ. Eng. Eng. Sustain.
– ident: ref_15
  doi: 10.3390/ma14143829
– ident: ref_21
  doi: 10.3390/su12030830
– volume: 15
  start-page: e00698
  year: 2021
  ident: ref_16
  article-title: Sustainable approach of using sugarcane bagasse ash in cement-based composites: A systematic review
  publication-title: Case Stud. Constr. Mater.
– ident: ref_47
  doi: 10.3390/cryst10090741
– volume: 252
  start-page: 119057
  year: 2020
  ident: ref_49
  article-title: Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: Optimization and prediction via RSM and GEP
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119057
– volume: 31
  start-page: 1365
  year: 2019
  ident: ref_37
  article-title: Prediction model for optimized self-compacting concrete with fly ash using response surface method based on fuzzy classification
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3575-1
– volume: 30
  start-page: 2255
  year: 2010
  ident: ref_2
  article-title: Comparative environmental assessment of natural and recycled aggregate concrete
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2010.04.012
– volume: 230
  start-page: 117000
  year: 2020
  ident: ref_20
  article-title: Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117000
– volume: 292
  start-page: 126032
  year: 2021
  ident: ref_45
  article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126032
– volume: 45
  start-page: 103447
  year: 2021
  ident: ref_18
  article-title: A systematic review of waste materials in cement-based composites for construction applications
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2021.103447
– volume: 12
  start-page: 282
  year: 2007
  ident: ref_10
  article-title: Green house gas emissions due to concrete manufacture
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1065/lca2007.05.327
– ident: ref_50
  doi: 10.3390/ma14164518
– volume: 1
  start-page: 3
  year: 2021
  ident: ref_27
  article-title: Reduction of computational error by optimizing SVR kernel coefficients to simulate concrete compressive strength through the use of a human learning optimization algorithm
  publication-title: Eng. Comput.
– volume: 230
  start-page: 117021
  year: 2020
  ident: ref_31
  article-title: Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117021
– ident: ref_35
  doi: 10.3390/app10207330
– ident: ref_53
  doi: 10.3390/ma14195762
– ident: ref_30
  doi: 10.3390/ma14092297
– volume: 308
  start-page: 125021
  year: 2021
  ident: ref_52
  article-title: Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.125021
– volume: 43
  start-page: 125
  year: 2013
  ident: ref_11
  article-title: Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.01.023
– volume: 15
  start-page: e00683
  year: 2021
  ident: ref_14
  article-title: A scientometric review of waste material utilization in concrete for sustainable construction
  publication-title: Case Stud. Constr. Mater.
– volume: 36
  start-page: 1048
  year: 2012
  ident: ref_4
  article-title: Are geopolymers more suitable than Portland cement to produce high volume recycled aggregates HPC?
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.07.004
– volume: 37
  start-page: 1
  year: 2021
  ident: ref_28
  article-title: Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-019-00808-y
– ident: ref_44
  doi: 10.3390/ma14040794
– volume: 46
  start-page: 4439
  year: 2021
  ident: ref_29
  article-title: A New Method for Predicting the Ingredients of Self-Compacting Concrete (SCC) Including Fly Ash (FA) Using Data Envelopment Analysis (DEA)
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-04927-3
– volume: 4
  start-page: 188
  year: 1990
  ident: ref_19
  article-title: Mix design procedure for recycled aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/0950-0618(90)90039-4
– volume: 16
  start-page: e00840
  year: 2021
  ident: ref_56
  article-title: Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques
  publication-title: Case Stud. Constr. Mater.
– volume: 28
  start-page: 707
  year: 2017
  ident: ref_42
  article-title: Prediction of properties of self-compacting concrete containing fly ash using artificial neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2368-7
– volume: 229
  start-page: 116883
  year: 2019
  ident: ref_33
  article-title: Predicting compressive strength and electrical resistivity of eco-friendly concrete containing natural zeolite via GEP algorithm
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.116883
– ident: ref_46
  doi: 10.3390/ma13081821
– volume: 130
  start-page: 122
  year: 2017
  ident: ref_23
  article-title: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.10.114
– ident: ref_51
  doi: 10.3390/ma14154222
– volume: 244
  start-page: 118271
  year: 2020
  ident: ref_24
  article-title: An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118271
– volume: 142
  start-page: 04015163
  year: 2016
  ident: ref_54
  article-title: Stochastic Nonlinear Behavior of Reinforced Concrete Frames. II: Numerical Simulation
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0001443
– ident: ref_34
  doi: 10.1155/2020/8850535
– volume: 62
  start-page: 281
  year: 2018
  ident: ref_39
  article-title: M5’ and Mars Based Prediction Models for Properties of Self-compacting Concrete Containing Fly Ash
  publication-title: Period. Polytech. Civ. Eng.
– ident: ref_26
  doi: 10.3390/polym13193389
– volume: 280
  start-page: 13
  year: 2018
  ident: ref_41
  article-title: Prediction of compressive strength of self-compacting concrete by ANFIS models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.099
– volume: 37
  start-page: 243
  year: 2012
  ident: ref_5
  article-title: Closed-loop recycling of recycled concrete aggregates
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2012.07.020
– volume: 34
  start-page: 1307
  year: 2004
  ident: ref_6
  article-title: Properties of concretes produced with waste concrete aggregate
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2003.12.019
– volume: 12
  start-page: 24
  year: 2018
  ident: ref_40
  article-title: Modeling the Fresh and Hardened Stage Properties of Self-Compacting Concrete using Random Kitchen Sink Algorithm
  publication-title: Int. J. Concr. Struct. Mater.
  doi: 10.1186/s40069-018-0246-7
– volume: 254
  start-page: 119323
  year: 2020
  ident: ref_17
  article-title: Combined use of recycled powder and recycled coarse aggregate derived from construction and demolition waste in self-compacting concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119323
– volume: 32
  start-page: 7995
  year: 2020
  ident: ref_32
  article-title: Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04267-w
– volume: 45
  start-page: 101126
  year: 2020
  ident: ref_55
  article-title: Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2020.101126
– ident: ref_22
  doi: 10.3390/cryst10090737
– volume: 68
  start-page: 17
  year: 2014
  ident: ref_8
  article-title: Experimental analysis of properties of recycled coarse aggregate (RCA) concrete with mineral additives
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.06.032
SSID ssj0000331829
Score 2.5703676
Snippet Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 647
SubjectTerms Accuracy
Aggregates
Algorithms
Classification
Compressive strength
Concrete
Construction materials
Correlation coefficients
Damage prevention
Data points
Decision trees
Environmental impact
Machine learning
Mechanical properties
Monte Carlo simulation
Natural resources
Recycled materials
Root-mean-square errors
Sensitivity analysis
Software
Statistical analysis
Superplasticizers
Tensile strength
Water absorption
Title Predicting the Mechanical Properties of RCA-Based Concrete Using Supervised Machine Learning Algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/35057364
https://www.proquest.com/docview/2621325170
https://www.proquest.com/docview/2622286763
https://pubmed.ncbi.nlm.nih.gov/PMC8778266
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_W9GV7GPuet66obC97MJVkWZafRhqalkJK6FbIm7FlOR20dpY4___uHMVtttLHIIHDnXT63dfvAL7p1ORSFlFYWu2oJYeHqbQ2RPDslCmVkt2YzsmlPr9WF7N45gNuK19WubWJnaEuG0sx8mOpJTpOsUj4j8WfkKZGUXbVj9DYg300wcYMYP_k9HJ61UdZeIRnVqYbXtII_fvjuxwhkKQWy92X6D94-W-V5INnZ_wKXnq8yIYbBb-GZ65-Ay8esAi-hfl0SdkWql9mCOfYxFE3LwmfTSnUviTOVNZU7Go0DE_w1SrZqKkRLbaOdRUD7Od6QSaDViZdcaVjnnd1zoa3cxRDe3O3egfX49Nfo_PQz08IrUpkGzpdRLktKyEt4haVSyMcenjo8QhuE2NLKSoRF3GCcuFxrkrHTWFMxXme8jyqovcwqJvafQRW5Oi3UQrWukS5FC-1tOiqOW0jWaKqA_i-lWVmPbk4zbi4zdDJILln93IP4Gu_d7Gh1Hh018FWJZm_Vqvs_hAEcNQv44WgLEdeu2bd7ZHSaLSbAXzYaLD_TETuWKRVAMmObvsNRLa9u1L_vulIt02CWErrT0__rc_wXFJ_BBehiA9g0C7X7guilrY4hD0zPjv0BxR_nc3EX0I871Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAouAAwer67G9Xh8QCoGQ0qaqoJV6M_Z6kyK1dkgcIf4Uv5EZv9oA4tbzjvyYmZ2Zb3ceAC9VrFPEzHdzoyyX5Eg3RmNcCp5toPMgwHpM52RfjY-CT8fh8Qb86mphOK2ys4m1oc5Lw2fk26iQgFPoRfLt_LvLU6P4drUbodGoxa79-YMg2_LNznuS7yvE0YfD4dhtpwq4Joiwcq3K_NTkUw8NefMgRe1Zwj2EAzxpIm1y9KZemIWRH5OGpkFupc60nkqZxjL1pz499wpcpd-KGezp0cf-TEf6tEMwbrqg0rrcPksp4EIu6Fz3e38Fs3_mZF5wcqNbcLONTsWgUafbsGGLO3DjQs_CuzA7WPDdDmdLCwoexcRy7TCLWhzwwf6CO7SKcio-DwfuO_KRuRiWBcWmlRV1foL4spqzgeKVSZ3KaUXb5XUmBqczYnp1cra8B0eXwtf7sFmUhX0IIksJJfKFr7FRYGMyIWgIGFplfMxJsRx43fEyMW0rc56ocZoQpGG-J-d8d-BFTztvGnj8k2qrE0nSbuJlcq5yDjzvl2n78Z1KWthyVdMgakVW2oEHjQT71_gM_nwVOBCtybYn4Nbe6yvFt5O6xbeOKHJT6tH_P-sZXBsfTvaSvZ393cdwHbkyQ3quF27BZrVY2ScUL1XZ01pJBXy97F3xG0LOJ8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgEHDhYsWfttX1AKE0btZREUaFSb8Zer1Ok1g6JI8Rf49cxYztuA4hbz7taW_P-ducB8EZFYYKYSjvTynBJjmNHqLVNwbPxwszzsB7TOZ6ogxPv46l_ugW_1rUwnFa5tom1oc5KzXfkfVRIwMl3A6eft2kR073Rh_l3mydI8UvrepxGIyJH5ucPgm_L94d7xOu3iKP9L8MDu50wYGsvwMo2KpWJznIXNXl2L8HQNYSBCBO4jg5CnaGbu37qBzIiaU28zDhhGoa54ySRk8hc0rk3YDtgVNSD7d39yfS4u-FxJOkLRk1PVEkn9C8SCr-Qyzs3veBfoe2fGZpXXN7oLtxpY1UxaITrHmyZ4j7cvtLB8AHMpgt-6eHcaUGhpBgbriRmxospX_MvuF-rKHNxPBzYu-QxMzEsC4pUKyPqbAXxeTVnc8Ur4zqx04i25-tMDM5nRPbq7GL5EE6uhbKPoFeUhXkCIk0IM_LzrzaBZyIyKKgJJhqlJWYkZha8W9My1m1jc56vcR4TwGG6x5d0t-B1t3fetPP4566dNUviVqWX8aUAWvCqWyZl5BeWpDDlqt6DGCqy2RY8bjjYfUYyFJTKsyDY4G23gRt9b64U387qht9hQHGcUk___1sv4SZpRPzpcHL0DG4hl2k4ru36O9CrFivznIKnKn3RSqmAr9etGL8B2HwtWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+Mechanical+Properties+of+RCA-Based+Concrete+Using+Supervised+Machine+Learning+Algorithms&rft.jtitle=Materials&rft.au=Shang%2C+Meijun&rft.au=Li%2C+Hejun&rft.au=Ayaz%2C+Ahmad&rft.au=Ahmad%2C+Waqas&rft.date=2022-01-15&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=15&rft.issue=2&rft.spage=647&rft_id=info:doi/10.3390%2Fma15020647&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon