Wave-canceling acoustic metarod architected with single material building blocks
Preventing elastic waves from traveling down thin structures is a subject of great interest from the point of view of both physics and applications. It represents a problem—mirrored by the case of light in waveguides—that has broad implications. To completely prohibit sound waves in a given frequenc...
Saved in:
Published in | Applied physics letters Vol. 116; no. 24 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
15.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-6951 1077-3118 |
DOI | 10.1063/5.0011319 |
Cover
Loading…
Abstract | Preventing elastic waves from traveling down thin structures is a subject of great interest from the point of view of both physics and applications. It represents a problem—mirrored by the case of light in waveguides—that has broad implications. To completely prohibit sound waves in a given frequency range in rods, for example, all axially propagating acoustic eigenmodes must exhibit strong damping. Here, we demonstrate experimentally and by simulation a metamaterial rod made from a single material that can simultaneously shut out all elastic-wave polarizations, namely longitudinal, flexural, and torsional modes, in a band in the sub-kHz range. We first bond five acrylic building blocks together to make a subwavelength resonator and then fix an array of these inside an acrylic tube to form a cylindrical metarod that inhibits sound transmission in the metamaterial bandgap frequency range. Applications include vibration control and earthquake mitigation. |
---|---|
AbstractList | Preventing elastic waves from traveling down thin structures is a subject of great interest from the point of view of both physics and applications. It represents a problem—mirrored by the case of light in waveguides—that has broad implications. To completely prohibit sound waves in a given frequency range in rods, for example, all axially propagating acoustic eigenmodes must exhibit strong damping. Here, we demonstrate experimentally and by simulation a metamaterial rod made from a single material that can simultaneously shut out all elastic-wave polarizations, namely longitudinal, flexural, and torsional modes, in a band in the sub-kHz range. We first bond five acrylic building blocks together to make a subwavelength resonator and then fix an array of these inside an acrylic tube to form a cylindrical metarod that inhibits sound transmission in the metamaterial bandgap frequency range. Applications include vibration control and earthquake mitigation. |
Author | Ogasawara, Akira Matsuda, Osamu Fujita, Kentaro Tomoda, Motonobu Wright, Oliver B. |
Author_xml | – sequence: 1 givenname: Akira surname: Ogasawara fullname: Ogasawara, Akira organization: Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan – sequence: 2 givenname: Kentaro surname: Fujita fullname: Fujita, Kentaro organization: Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan – sequence: 3 givenname: Motonobu surname: Tomoda fullname: Tomoda, Motonobu organization: Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan – sequence: 4 givenname: Osamu surname: Matsuda fullname: Matsuda, Osamu organization: Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan – sequence: 5 givenname: Oliver B. surname: Wright fullname: Wright, Oliver B. organization: Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan |
BookMark | eNqd0E1LAzEQBuAgFWyrB__BgieFtfnc7B6l-AUFPRQ8hjSZtanbTU2yFf-9W1oRxJOnYeB534EZoUHrW0DonOBrggs2EdcYE8JIdYSGBEuZM0LKARpijFleVIKcoFGMq34VlLEhen7RW8iNbg00rn3NtPFdTM5ka0g6eJvpYJYugUlgsw-XllnsWQPZWicITjfZonON3UUXjTdv8RQd17qJcHaYYzS_u51PH_LZ0_3j9GaWGy5pyq2xBRMFIYJJagFXVAOtsSgtLaSllSl5YYw1ALJmQvAaAwPKpZa855aN0cW-dhP8ewcxqZXvQttfVJQTTjCvStmryV6Z4GMMUCvjkk7Otylo1yiC1e5rSqjD1_rE5a_EJri1Dp9_2qu9jd-t_8NbH36g2tiafQEIQIp5 |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1063_5_0098371 crossref_primary_10_1142_S1758825121501027 crossref_primary_10_1007_s11012_021_01326_2 crossref_primary_10_1016_j_tws_2025_113023 crossref_primary_10_1063_5_0046740 crossref_primary_10_1007_s10483_024_3166_8 crossref_primary_10_1016_j_ijmecsci_2022_107683 |
Cites_doi | 10.1016/j.jsv.2012.09.035 10.1063/1.3675799 10.1103/PhysRevB.84.024305 10.1121/1.386914 10.1103/PhysRevLett.102.194301 10.1038/nmat1644 10.1063/1.5099425 10.1063/1.5117283 10.1016/j.ymssp.2016.02.059 10.1115/1.4028453 10.1063/1.3298643 10.1103/PhysRevLett.108.014301 10.1038/ncomms13536 10.1103/PhysRevB.89.064309 10.1063/1.4824759 10.1126/science.1058847 10.1103/PhysRevLett.112.144301 10.1109/22.798002 10.1016/j.ijmecsci.2017.07.054 10.1126/science.289.5485.1734 10.1016/j.jsv.2014.01.009 10.1088/1367-2630/10/11/115032 10.1016/j.ultras.2016.12.014 10.3390/cryst6070082 10.1121/1.3050288 10.1038/ncomms5130 10.1063/1.2400803 10.1063/1.4861409 10.1038/ncomms6510 10.1088/0022-3727/44/37/375101 10.1088/1367-2630/10/4/043020 10.1186/1556-276X-7-479 10.1088/1361-6463/aaf039 10.1051/epjap/2016160169 10.1088/1361-6463/aaefe6 10.1121/1.5009582 10.1063/1.4803075 10.1088/0022-3727/48/43/435305 10.1016/j.physleta.2015.12.010 10.1088/1361-6463/aa9ec1 |
ContentType | Journal Article |
Copyright | Author(s) 2020 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2020 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0011319 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0011319 apl |
GrantInformation_xml | – fundername: Grant information is valid as stated. |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c472t-dcd6356115372de092ae2f058d267d29c846ccdcee7f3554f0e3e247a742ded3 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 06:35:59 EDT 2025 Thu Apr 24 23:05:02 EDT 2025 Tue Jul 01 01:07:54 EDT 2025 Wed Nov 11 00:04:57 EST 2020 Fri Jun 21 00:19:20 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | 0003-6951/2020/116(24)/241904/5/$30.00 Published under license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c472t-dcd6356115372de092ae2f058d267d29c846ccdcee7f3554f0e3e247a742ded3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0736-1242 0000-0003-3035-0901 0000-0003-2688-0926 0000-0001-6042-5615 |
OpenAccessLink | https://aip.scitation.org/doi/pdf/10.1063/5.0011319 |
PQID | 2414104987 |
PQPubID | 2050678 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2414104987 crossref_citationtrail_10_1063_5_0011319 crossref_primary_10_1063_5_0011319 scitation_primary_10_1063_5_0011319 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200615 2020-06-15 |
PublicationDateYYYYMMDD | 2020-06-15 |
PublicationDate_xml | – month: 06 year: 2020 text: 20200615 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2020 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Wang, Sheng, Qin (c22) 2016 Zhu, Liu, Hu, Sun, Huang (c8) 2014 Li, Lv, Cai, Xie, Chen, Huang (c28) 2019 Feng, Xu, Wu, Xiong, Wang (c37) 2014 Wang, Zhou, Wang, Ouyang, Xu (c30) 2019 Stenger, Wilhelm, Wegener (c11) 2012 Bückmann, Thiel, Kadic, Schittny, Wegener (c12) 2014 Yu, Liu, Wang, Zhao, Qiu (c14) 2006 Pendry, Holden, Robbins, Stewart (c1) 1999 Chen, Li, Chen, Huang (c26) 2017 Lemoult, Kaina, Fink, Lerosey (c6) 2016 Norris (c10) 2009 Wang, Zhou, Xu, Ouyang (c29) 2019 García-Chocano, Christensen, Sánchez-Dehesa (c7) 2014 Nouh, Aldraihem, Baz (c19) 2014 Fujita, Tomoda, Wright, Matsuda (c31) 2019 Zhu, Liu, Hu, Sun, Huang (c18) 2014 Xiao, Wen, Yu, Wen (c16) 2013 Hsu, Lee, Hsu, Huang, Wang, Chang (c32) 2010 Pennec, Rouhani, Li, Escalante, Martínez, Benchabane, Laude, Papanikolaou (c33) 2011 Shelby, Smith, Schultz (c2) 2001 Chen, Huang, Chien (c27) 2017 Liu, Zhang, Mao, Zhu, Yang, Chan, Sheng (c3) 2000 Yang, Ma, Wu, Yang, Sheng (c42) 2014 Mizuno (c34) 2012 Ma, Fu, Wang, Del Hougne, Christensen, Lai, Sheng (c21) 2016 Hsu, Hsu, Huang, Wang, Chang (c35) 2011 Yao, Zhou, Hu (c15) 2008 Jiang, Hu, Laude (c38) 2018 Li, Cai (c23) 2016 Feng, Xu, Wu, Xiong, Wang (c36) 2013 Zhang, Yin, Fang (c4) 2009 Tang, Cheng (c25) 2017 Zigoneanu, Popa, Cummer (c5) 2011 Pendry, Li (c9) 2008 Nagaya (c40) 1981 Zhang, Hui Wu, Hu (c17) 2013 Nobrega, Gautier, Pelat, Dos Santos (c24) 2016 Fang, Xi, Xu, Ambati, Srituravanich, Sun, Zhang (c13) 2006 Zhang, Xiao, Wen, Yu, Wen (c20) 2015 (2023080500255866700_c1) 1999; 47 (2023080500255866700_c33) 2011; 1 (2023080500255866700_c14) 2006; 100 (2023080500255866700_c34) 2012; 7 (2023080500255866700_c24) 2016; 79 (2023080500255866700_c13) 2006; 5 (2023080500255866700_c20) 2015; 48 (2023080500255866700_c3) 2000; 289 (2023080500255866700_c28) 2019; 52 (2023080500255866700_c38) 2018; 51 (2023080500255866700_c41) 2000 (2023080500255866700_c36) 2013; 103 (2023080500255866700_c2) 2001; 292 (2023080500255866700_c25) 2017; 142 (2023080500255866700_c10) 2009; 125 (2023080500255866700_c6) 2016; 6 (2023080500255866700_c7) 2014; 112 (2023080500255866700_c17) 2013; 113 (2023080500255866700_c23) 2016; 75 (2023080500255866700_c42) 2014; 89 (2023080500255866700_c12) 2014; 5 (2023080500255866700_c30) 2019; 114 (2023080500255866700_c22) 2016; 380 (2023080500255866700_c35) 2011; 44 (2023080500255866700_c9) 2008; 10 (2023080500255866700_c26) 2017; 76 (2023080500255866700_c18) 2014; 333 (2023080500255866700_c27) 2017; 131–132 (2023080500255866700_c16) 2013; 332 (2023080500255866700_c21) 2016; 7 2023080500255866700_c39 (2023080500255866700_c29) 2019; 52 (2023080500255866700_c8) 2014; 5 (2023080500255866700_c4) 2009; 102 (2023080500255866700_c15) 2008; 10 (2023080500255866700_c19) 2014; 136 (2023080500255866700_c5) 2011; 84 (2023080500255866700_c37) 2014; 115 (2023080500255866700_c40) 1981; 70 (2023080500255866700_c31) 2019; 115 (2023080500255866700_c11) 2012; 108 (2023080500255866700_c32) 2010; 96 |
References_xml | – start-page: 124901 year: 2006 ident: c14 article-title: Flexural vibration band gaps in Timoshenko beams with locally resonant structures publication-title: J. Appl. Phys. – start-page: 061012 year: 2014 ident: c19 article-title: Vibration characteristics of metamaterial beams with periodic local resonances publication-title: J. Vib. Acoust. – start-page: 192 year: 2016 ident: c24 article-title: Vibration band gaps for elastic metamaterial rods using wave finite element method publication-title: Mech. Syst. Signal Process. – start-page: 1734 year: 2000 ident: c3 article-title: Locally resonant sonic materials publication-title: Science – start-page: 055105 year: 2019 ident: c28 article-title: Low-frequency vibration suppression of a multi-layered elastic metamaterial shaft with discretized scatters publication-title: J. Phys. D – start-page: 194301 year: 2009 ident: c4 article-title: Focusing ultrasound with an acoustic metamaterial network publication-title: Phys. Rev. Lett. – start-page: 839 year: 2009 ident: c10 article-title: Acoustic metafluids publication-title: J. Acoust. Soc. Am. – start-page: 045601 year: 2018 ident: c38 article-title: Low-frequency band gap in cross-like holey phononic crystal strip publication-title: J. Phys. D – start-page: 4130 year: 2014 ident: c12 article-title: An elasto-mechanical unfeelability cloak made of pentamode metamaterials publication-title: Nat. Commun. – start-page: 064309 year: 2014 ident: c42 article-title: Homogenization scheme for acoustic metamaterials publication-title: Phys. Rev. B – start-page: 144301 year: 2014 ident: c7 article-title: Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics publication-title: Phys. Rev. Lett. – start-page: 2802 year: 2017 ident: c25 article-title: Ultrawide band gaps in beams with double-leaf acoustic black hole indentations publication-title: J. Acoust. Soc. Am. – start-page: 10501 year: 2016 ident: c23 article-title: Low-frequency band gap mechanism of torsional vibration of lightweight elastic metamaterial shafts publication-title: Eur. Phys. J. Appl. Phys. – start-page: 151906 year: 2013 ident: c36 article-title: Extending of band gaps in silicon based one-dimensional phononic crystal strips publication-title: Appl. Phys. Lett. – start-page: 014301 year: 2012 ident: c11 article-title: Experiments on elastic cloaking in thin plates publication-title: Phys. Rev. Lett. – start-page: 452 year: 2006 ident: c13 article-title: Ultrasonic metamaterials with negative modulus publication-title: Nat. Mater. – start-page: 375101 year: 2011 ident: c35 article-title: Reducing support loss in micromechanical ring resonators using phononic band-gap structures publication-title: J. Phys. D – start-page: 055104 year: 2019 ident: c29 article-title: Tunable low-frequency torsional-wave band gaps in a meta-shaft publication-title: J. Phys. D – start-page: 2075 year: 1999 ident: c1 article-title: Magnetism from conductors and enhanced nonlinear phenomena publication-title: IEEE Trans. Microwave Theory Tech. – start-page: 043020 year: 2008 ident: c15 article-title: Experimental study on negative effective mass in a 1D mass–spring system publication-title: New J. Phys. – start-page: 867 year: 2013 ident: c16 article-title: Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms publication-title: J. Sound Vib. – start-page: 99 year: 2017 ident: c26 article-title: Wave propagation and absorption of sandwich beams containing interior dissipative multi-resonators publication-title: Ultrasonics – start-page: 024503 year: 2014 ident: c37 article-title: Phononic crystal strip based anchors for reducing anchor loss of micromechanical resonators publication-title: J. Appl. Phys. – start-page: 82 year: 2016 ident: c6 article-title: Soda cans metamaterial: A subwavelength-scaled phononic crystal publication-title: Crystals – start-page: 13536 year: 2016 ident: c21 article-title: Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials publication-title: Nat Commun. – start-page: 479 year: 2012 ident: c34 article-title: Acoustic phonon modes and phononic bandgaps in GaN/AlN nanowire superlattices publication-title: Nanoscale Res. Lett. – start-page: 5510 year: 2014 ident: c8 article-title: Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial publication-title: Nat. Commun. – start-page: 2759 year: 2014 ident: c18 article-title: A chiral elastic metamaterial beam for broadband vibration suppression publication-title: J. Sound Vib. – start-page: 051902 year: 2010 ident: c32 article-title: Acoustic band gaps in phononic crystal strip waveguides publication-title: Appl. Phys. Lett. – start-page: 115032 year: 2008 ident: c9 article-title: An acoustic metafluid: Realizing a broadband acoustic cloak publication-title: New J. Phys. – start-page: 163511 year: 2013 ident: c17 article-title: Low-frequency locally resonant band-gaps in phononic crystal plates with periodic spiral resonators publication-title: J. Appl. Phys. – start-page: 024305 year: 2011 ident: c5 article-title: Design and measurements of a broadband two-dimensional acoustic lens publication-title: Phys. Rev. B – start-page: 500 year: 2017 ident: c27 article-title: Flexural wave propagation in metamaterial beams containing membrane-mass structures publication-title: Int. J. Mech. Sci. – start-page: 251902 year: 2019 ident: c30 article-title: Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: Design and experimental validation publication-title: Appl. Phys. Lett. – start-page: 763 year: 1981 ident: c40 article-title: Dispersion of elastic waves in bars with polygonal cross section publication-title: J. Acoust. Soc. Am. – start-page: 77 year: 2001 ident: c2 article-title: Experimental verification of a negative index of refraction publication-title: Science – start-page: 525 year: 2016 ident: c22 article-title: Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators publication-title: Phys. Lett. A – start-page: 081905 year: 2019 ident: c31 article-title: Perfect acoustic bandgap metabeam based on a quadruple-mode resonator array publication-title: Appl. Phys. Lett. – start-page: 041901 year: 2011 ident: c33 article-title: Band gaps and cavity modes in dual phononic and photonic strip waveguides publication-title: AIP Adv. – start-page: 435305 year: 2015 ident: c20 article-title: Flexural wave band gaps in metamaterial beams with membrane-type resonators: Theory and experiment publication-title: J. Phys. D – volume: 332 start-page: 867 year: 2013 ident: 2023080500255866700_c16 article-title: Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2012.09.035 – volume: 1 start-page: 041901 year: 2011 ident: 2023080500255866700_c33 article-title: Band gaps and cavity modes in dual phononic and photonic strip waveguides publication-title: AIP Adv. doi: 10.1063/1.3675799 – volume: 84 start-page: 024305 year: 2011 ident: 2023080500255866700_c5 article-title: Design and measurements of a broadband two-dimensional acoustic lens publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.024305 – volume: 70 start-page: 763 year: 1981 ident: 2023080500255866700_c40 article-title: Dispersion of elastic waves in bars with polygonal cross section publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.386914 – volume: 102 start-page: 194301 year: 2009 ident: 2023080500255866700_c4 article-title: Focusing ultrasound with an acoustic metamaterial network publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.194301 – volume: 5 start-page: 452 year: 2006 ident: 2023080500255866700_c13 article-title: Ultrasonic metamaterials with negative modulus publication-title: Nat. Mater. doi: 10.1038/nmat1644 – volume: 114 start-page: 251902 year: 2019 ident: 2023080500255866700_c30 article-title: Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: Design and experimental validation publication-title: Appl. Phys. Lett. doi: 10.1063/1.5099425 – volume: 115 start-page: 081905 year: 2019 ident: 2023080500255866700_c31 article-title: Perfect acoustic bandgap metabeam based on a quadruple-mode resonator array publication-title: Appl. Phys. Lett. doi: 10.1063/1.5117283 – volume: 79 start-page: 192 year: 2016 ident: 2023080500255866700_c24 article-title: Vibration band gaps for elastic metamaterial rods using wave finite element method publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.02.059 – volume: 136 start-page: 061012 year: 2014 ident: 2023080500255866700_c19 article-title: Vibration characteristics of metamaterial beams with periodic local resonances publication-title: J. Vib. Acoust. doi: 10.1115/1.4028453 – volume: 96 start-page: 051902 year: 2010 ident: 2023080500255866700_c32 article-title: Acoustic band gaps in phononic crystal strip waveguides publication-title: Appl. Phys. Lett. doi: 10.1063/1.3298643 – volume: 108 start-page: 014301 year: 2012 ident: 2023080500255866700_c11 article-title: Experiments on elastic cloaking in thin plates publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.014301 – volume: 7 start-page: 13536 year: 2016 ident: 2023080500255866700_c21 article-title: Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials publication-title: Nat Commun. doi: 10.1038/ncomms13536 – volume: 89 start-page: 064309 year: 2014 ident: 2023080500255866700_c42 article-title: Homogenization scheme for acoustic metamaterials publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.064309 – volume: 103 start-page: 151906 year: 2013 ident: 2023080500255866700_c36 article-title: Extending of band gaps in silicon based one-dimensional phononic crystal strips publication-title: Appl. Phys. Lett. doi: 10.1063/1.4824759 – volume: 292 start-page: 77 year: 2001 ident: 2023080500255866700_c2 article-title: Experimental verification of a negative index of refraction publication-title: Science doi: 10.1126/science.1058847 – volume: 112 start-page: 144301 year: 2014 ident: 2023080500255866700_c7 article-title: Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.144301 – volume: 47 start-page: 2075 year: 1999 ident: 2023080500255866700_c1 article-title: Magnetism from conductors and enhanced nonlinear phenomena publication-title: IEEE Trans. Microwave Theory Tech. doi: 10.1109/22.798002 – volume: 131–132 start-page: 500 year: 2017 ident: 2023080500255866700_c27 article-title: Flexural wave propagation in metamaterial beams containing membrane-mass structures publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.07.054 – volume: 289 start-page: 1734 year: 2000 ident: 2023080500255866700_c3 article-title: Locally resonant sonic materials publication-title: Science doi: 10.1126/science.289.5485.1734 – volume: 333 start-page: 2759 year: 2014 ident: 2023080500255866700_c18 article-title: A chiral elastic metamaterial beam for broadband vibration suppression publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2014.01.009 – volume: 10 start-page: 115032 year: 2008 ident: 2023080500255866700_c9 article-title: An acoustic metafluid: Realizing a broadband acoustic cloak publication-title: New J. Phys. doi: 10.1088/1367-2630/10/11/115032 – ident: 2023080500255866700_c39 – volume: 76 start-page: 99 year: 2017 ident: 2023080500255866700_c26 article-title: Wave propagation and absorption of sandwich beams containing interior dissipative multi-resonators publication-title: Ultrasonics doi: 10.1016/j.ultras.2016.12.014 – volume: 6 start-page: 82 year: 2016 ident: 2023080500255866700_c6 article-title: Soda cans metamaterial: A subwavelength-scaled phononic crystal publication-title: Crystals doi: 10.3390/cryst6070082 – volume: 125 start-page: 839 year: 2009 ident: 2023080500255866700_c10 article-title: Acoustic metafluids publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3050288 – volume: 5 start-page: 4130 year: 2014 ident: 2023080500255866700_c12 article-title: An elasto-mechanical unfeelability cloak made of pentamode metamaterials publication-title: Nat. Commun. doi: 10.1038/ncomms5130 – volume: 100 start-page: 124901 year: 2006 ident: 2023080500255866700_c14 article-title: Flexural vibration band gaps in Timoshenko beams with locally resonant structures publication-title: J. Appl. Phys. doi: 10.1063/1.2400803 – volume: 115 start-page: 024503 year: 2014 ident: 2023080500255866700_c37 article-title: Phononic crystal strip based anchors for reducing anchor loss of micromechanical resonators publication-title: J. Appl. Phys. doi: 10.1063/1.4861409 – volume: 5 start-page: 5510 year: 2014 ident: 2023080500255866700_c8 article-title: Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial publication-title: Nat. Commun. doi: 10.1038/ncomms6510 – volume: 44 start-page: 375101 year: 2011 ident: 2023080500255866700_c35 article-title: Reducing support loss in micromechanical ring resonators using phononic band-gap structures publication-title: J. Phys. D doi: 10.1088/0022-3727/44/37/375101 – volume: 10 start-page: 043020 year: 2008 ident: 2023080500255866700_c15 article-title: Experimental study on negative effective mass in a 1D mass–spring system publication-title: New J. Phys. doi: 10.1088/1367-2630/10/4/043020 – volume: 7 start-page: 479 year: 2012 ident: 2023080500255866700_c34 article-title: Acoustic phonon modes and phononic bandgaps in GaN/AlN nanowire superlattices publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-7-479 – volume-title: Ultrasonic Waves in Solid Media year: 2000 ident: 2023080500255866700_c41 – volume: 52 start-page: 055104 year: 2019 ident: 2023080500255866700_c29 article-title: Tunable low-frequency torsional-wave band gaps in a meta-shaft publication-title: J. Phys. D doi: 10.1088/1361-6463/aaf039 – volume: 75 start-page: 10501 year: 2016 ident: 2023080500255866700_c23 article-title: Low-frequency band gap mechanism of torsional vibration of lightweight elastic metamaterial shafts publication-title: Eur. Phys. J. Appl. Phys. doi: 10.1051/epjap/2016160169 – volume: 52 start-page: 055105 year: 2019 ident: 2023080500255866700_c28 article-title: Low-frequency vibration suppression of a multi-layered elastic metamaterial shaft with discretized scatters publication-title: J. Phys. D doi: 10.1088/1361-6463/aaefe6 – volume: 142 start-page: 2802 year: 2017 ident: 2023080500255866700_c25 article-title: Ultrawide band gaps in beams with double-leaf acoustic black hole indentations publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5009582 – volume: 113 start-page: 163511 year: 2013 ident: 2023080500255866700_c17 article-title: Low-frequency locally resonant band-gaps in phononic crystal plates with periodic spiral resonators publication-title: J. Appl. Phys. doi: 10.1063/1.4803075 – volume: 48 start-page: 435305 year: 2015 ident: 2023080500255866700_c20 article-title: Flexural wave band gaps in metamaterial beams with membrane-type resonators: Theory and experiment publication-title: J. Phys. D doi: 10.1088/0022-3727/48/43/435305 – volume: 380 start-page: 525 year: 2016 ident: 2023080500255866700_c22 article-title: Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2015.12.010 – volume: 51 start-page: 045601 year: 2018 ident: 2023080500255866700_c38 article-title: Low-frequency band gap in cross-like holey phononic crystal strip publication-title: J. Phys. D doi: 10.1088/1361-6463/aa9ec1 |
SSID | ssj0005233 |
Score | 2.377245 |
Snippet | Preventing elastic waves from traveling down thin structures is a subject of great interest from the point of view of both physics and applications. It... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Acoustic propagation Applied physics Construction materials Damping Elastic waves Frequency ranges Metamaterials Sound transmission Sound waves Vibration control Waveguides |
Title | Wave-canceling acoustic metarod architected with single material building blocks |
URI | http://dx.doi.org/10.1063/5.0011319 https://www.proquest.com/docview/2414104987 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB50i1gfilalq1UG9UFYoslMLpvHUi1FXVtwxb6FycyktN1uSi4V_PWeuSVZu0j1JSzJbDLM-XLynTPngtCbQE7hw8djrwgI90JScI8xsFKimE-p9Akjuk737Gt8-D38dBKd9KG8Orukyd_xX2vzSv5HqnAO5KqyZP9Bst1N4QT8BvnCESQMx1vJ-Ae7lh5XctNJ5aDcdG8u1RaagWKcdLsELsZcOQYWKmS10dOb5LYptopf5xf1kKk6empcH_VkofN-OgZ-dMpq9pNVxi17cVZ16v2gPT8zlPSzikuvyt6RfVkKfWFWAuMs87Z3hzd1ay4d1eyyHboiiOpY45lkzE69Ui9ObQVZaTSqnyhHqFWyTuWa_EqLLZNEfUOXA4ZAAJHeK6JWr67Uy_7jO9ZFF-p99ZhmUWb_ehdtELAiyAht7H2Yffk2iAGi1LVUVPN2padi-r577iph6a2Q-0BRTLTEgJDMH6Ita0ngPQOLR-iOXG6jB4P6ktvo3rER3mN0vAoV7KCCLVTwACpYQQUbqGAHFeyggg1UnqD5wcf5_qFnm2l4PExI4wkuVClCMABoQoT0U8IkKfxoKkicCJJyIKKcC-BMSaE4aOFLKkmYsCSE4YI-RaNluZQ7CAsRxIUE2iyDPAxkmPNUwntdyECkqhTTGL11C5a5JVL9ThbZDcGM0atu6JWprrJu0K5b9cy-fHUGxDMMwLqdJmP0upPE326yZtR1WfUjsitRPLvNfJ6jzR78u2jUVK18Acy0yV9afP0Gcx6O-A |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wave-canceling+acoustic+metarod+architected+with+single+material+building+blocks&rft.jtitle=Applied+physics+letters&rft.au=Ogasawara%2C+Akira&rft.au=Fujita%2C+Kentaro&rft.au=Tomoda%2C+Motonobu&rft.au=Matsuda%2C+Osamu&rft.date=2020-06-15&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=116&rft.issue=24&rft_id=info:doi/10.1063%2F5.0011319&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0011319 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |