Wave-canceling acoustic metarod architected with single material building blocks

Preventing elastic waves from traveling down thin structures is a subject of great interest from the point of view of both physics and applications. It represents a problem—mirrored by the case of light in waveguides—that has broad implications. To completely prohibit sound waves in a given frequenc...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 116; no. 24
Main Authors Ogasawara, Akira, Fujita, Kentaro, Tomoda, Motonobu, Matsuda, Osamu, Wright, Oliver B.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 15.06.2020
Subjects
Online AccessGet full text
ISSN0003-6951
1077-3118
DOI10.1063/5.0011319

Cover

Loading…
Abstract Preventing elastic waves from traveling down thin structures is a subject of great interest from the point of view of both physics and applications. It represents a problem—mirrored by the case of light in waveguides—that has broad implications. To completely prohibit sound waves in a given frequency range in rods, for example, all axially propagating acoustic eigenmodes must exhibit strong damping. Here, we demonstrate experimentally and by simulation a metamaterial rod made from a single material that can simultaneously shut out all elastic-wave polarizations, namely longitudinal, flexural, and torsional modes, in a band in the sub-kHz range. We first bond five acrylic building blocks together to make a subwavelength resonator and then fix an array of these inside an acrylic tube to form a cylindrical metarod that inhibits sound transmission in the metamaterial bandgap frequency range. Applications include vibration control and earthquake mitigation.
AbstractList Preventing elastic waves from traveling down thin structures is a subject of great interest from the point of view of both physics and applications. It represents a problem—mirrored by the case of light in waveguides—that has broad implications. To completely prohibit sound waves in a given frequency range in rods, for example, all axially propagating acoustic eigenmodes must exhibit strong damping. Here, we demonstrate experimentally and by simulation a metamaterial rod made from a single material that can simultaneously shut out all elastic-wave polarizations, namely longitudinal, flexural, and torsional modes, in a band in the sub-kHz range. We first bond five acrylic building blocks together to make a subwavelength resonator and then fix an array of these inside an acrylic tube to form a cylindrical metarod that inhibits sound transmission in the metamaterial bandgap frequency range. Applications include vibration control and earthquake mitigation.
Author Ogasawara, Akira
Matsuda, Osamu
Fujita, Kentaro
Tomoda, Motonobu
Wright, Oliver B.
Author_xml – sequence: 1
  givenname: Akira
  surname: Ogasawara
  fullname: Ogasawara, Akira
  organization: Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
– sequence: 2
  givenname: Kentaro
  surname: Fujita
  fullname: Fujita, Kentaro
  organization: Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
– sequence: 3
  givenname: Motonobu
  surname: Tomoda
  fullname: Tomoda, Motonobu
  organization: Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
– sequence: 4
  givenname: Osamu
  surname: Matsuda
  fullname: Matsuda, Osamu
  organization: Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
– sequence: 5
  givenname: Oliver B.
  surname: Wright
  fullname: Wright, Oliver B.
  organization: Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
BookMark eNqd0E1LAzEQBuAgFWyrB__BgieFtfnc7B6l-AUFPRQ8hjSZtanbTU2yFf-9W1oRxJOnYeB534EZoUHrW0DonOBrggs2EdcYE8JIdYSGBEuZM0LKARpijFleVIKcoFGMq34VlLEhen7RW8iNbg00rn3NtPFdTM5ka0g6eJvpYJYugUlgsw-XllnsWQPZWicITjfZonON3UUXjTdv8RQd17qJcHaYYzS_u51PH_LZ0_3j9GaWGy5pyq2xBRMFIYJJagFXVAOtsSgtLaSllSl5YYw1ALJmQvAaAwPKpZa855aN0cW-dhP8ewcxqZXvQttfVJQTTjCvStmryV6Z4GMMUCvjkk7Otylo1yiC1e5rSqjD1_rE5a_EJri1Dp9_2qu9jd-t_8NbH36g2tiafQEIQIp5
CODEN APPLAB
CitedBy_id crossref_primary_10_1063_5_0098371
crossref_primary_10_1142_S1758825121501027
crossref_primary_10_1007_s11012_021_01326_2
crossref_primary_10_1016_j_tws_2025_113023
crossref_primary_10_1063_5_0046740
crossref_primary_10_1007_s10483_024_3166_8
crossref_primary_10_1016_j_ijmecsci_2022_107683
Cites_doi 10.1016/j.jsv.2012.09.035
10.1063/1.3675799
10.1103/PhysRevB.84.024305
10.1121/1.386914
10.1103/PhysRevLett.102.194301
10.1038/nmat1644
10.1063/1.5099425
10.1063/1.5117283
10.1016/j.ymssp.2016.02.059
10.1115/1.4028453
10.1063/1.3298643
10.1103/PhysRevLett.108.014301
10.1038/ncomms13536
10.1103/PhysRevB.89.064309
10.1063/1.4824759
10.1126/science.1058847
10.1103/PhysRevLett.112.144301
10.1109/22.798002
10.1016/j.ijmecsci.2017.07.054
10.1126/science.289.5485.1734
10.1016/j.jsv.2014.01.009
10.1088/1367-2630/10/11/115032
10.1016/j.ultras.2016.12.014
10.3390/cryst6070082
10.1121/1.3050288
10.1038/ncomms5130
10.1063/1.2400803
10.1063/1.4861409
10.1038/ncomms6510
10.1088/0022-3727/44/37/375101
10.1088/1367-2630/10/4/043020
10.1186/1556-276X-7-479
10.1088/1361-6463/aaf039
10.1051/epjap/2016160169
10.1088/1361-6463/aaefe6
10.1121/1.5009582
10.1063/1.4803075
10.1088/0022-3727/48/43/435305
10.1016/j.physleta.2015.12.010
10.1088/1361-6463/aa9ec1
ContentType Journal Article
Copyright Author(s)
2020 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2020 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0011319
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0011319
apl
GrantInformation_xml – fundername: Grant information is valid as stated.
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c472t-dcd6356115372de092ae2f058d267d29c846ccdcee7f3554f0e3e247a742ded3
ISSN 0003-6951
IngestDate Mon Jun 30 06:35:59 EDT 2025
Thu Apr 24 23:05:02 EDT 2025
Tue Jul 01 01:07:54 EDT 2025
Wed Nov 11 00:04:57 EST 2020
Fri Jun 21 00:19:20 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License 0003-6951/2020/116(24)/241904/5/$30.00
Published under license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c472t-dcd6356115372de092ae2f058d267d29c846ccdcee7f3554f0e3e247a742ded3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0736-1242
0000-0003-3035-0901
0000-0003-2688-0926
0000-0001-6042-5615
OpenAccessLink https://aip.scitation.org/doi/pdf/10.1063/5.0011319
PQID 2414104987
PQPubID 2050678
PageCount 5
ParticipantIDs proquest_journals_2414104987
crossref_citationtrail_10_1063_5_0011319
crossref_primary_10_1063_5_0011319
scitation_primary_10_1063_5_0011319
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200615
2020-06-15
PublicationDateYYYYMMDD 2020-06-15
PublicationDate_xml – month: 06
  year: 2020
  text: 20200615
  day: 15
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2020
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Wang, Sheng, Qin (c22) 2016
Zhu, Liu, Hu, Sun, Huang (c8) 2014
Li, Lv, Cai, Xie, Chen, Huang (c28) 2019
Feng, Xu, Wu, Xiong, Wang (c37) 2014
Wang, Zhou, Wang, Ouyang, Xu (c30) 2019
Stenger, Wilhelm, Wegener (c11) 2012
Bückmann, Thiel, Kadic, Schittny, Wegener (c12) 2014
Yu, Liu, Wang, Zhao, Qiu (c14) 2006
Pendry, Holden, Robbins, Stewart (c1) 1999
Chen, Li, Chen, Huang (c26) 2017
Lemoult, Kaina, Fink, Lerosey (c6) 2016
Norris (c10) 2009
Wang, Zhou, Xu, Ouyang (c29) 2019
García-Chocano, Christensen, Sánchez-Dehesa (c7) 2014
Nouh, Aldraihem, Baz (c19) 2014
Fujita, Tomoda, Wright, Matsuda (c31) 2019
Zhu, Liu, Hu, Sun, Huang (c18) 2014
Xiao, Wen, Yu, Wen (c16) 2013
Hsu, Lee, Hsu, Huang, Wang, Chang (c32) 2010
Pennec, Rouhani, Li, Escalante, Martínez, Benchabane, Laude, Papanikolaou (c33) 2011
Shelby, Smith, Schultz (c2) 2001
Chen, Huang, Chien (c27) 2017
Liu, Zhang, Mao, Zhu, Yang, Chan, Sheng (c3) 2000
Yang, Ma, Wu, Yang, Sheng (c42) 2014
Mizuno (c34) 2012
Ma, Fu, Wang, Del Hougne, Christensen, Lai, Sheng (c21) 2016
Hsu, Hsu, Huang, Wang, Chang (c35) 2011
Yao, Zhou, Hu (c15) 2008
Jiang, Hu, Laude (c38) 2018
Li, Cai (c23) 2016
Feng, Xu, Wu, Xiong, Wang (c36) 2013
Zhang, Yin, Fang (c4) 2009
Tang, Cheng (c25) 2017
Zigoneanu, Popa, Cummer (c5) 2011
Pendry, Li (c9) 2008
Nagaya (c40) 1981
Zhang, Hui Wu, Hu (c17) 2013
Nobrega, Gautier, Pelat, Dos Santos (c24) 2016
Fang, Xi, Xu, Ambati, Srituravanich, Sun, Zhang (c13) 2006
Zhang, Xiao, Wen, Yu, Wen (c20) 2015
(2023080500255866700_c1) 1999; 47
(2023080500255866700_c33) 2011; 1
(2023080500255866700_c14) 2006; 100
(2023080500255866700_c34) 2012; 7
(2023080500255866700_c24) 2016; 79
(2023080500255866700_c13) 2006; 5
(2023080500255866700_c20) 2015; 48
(2023080500255866700_c3) 2000; 289
(2023080500255866700_c28) 2019; 52
(2023080500255866700_c38) 2018; 51
(2023080500255866700_c41) 2000
(2023080500255866700_c36) 2013; 103
(2023080500255866700_c2) 2001; 292
(2023080500255866700_c25) 2017; 142
(2023080500255866700_c10) 2009; 125
(2023080500255866700_c6) 2016; 6
(2023080500255866700_c7) 2014; 112
(2023080500255866700_c17) 2013; 113
(2023080500255866700_c23) 2016; 75
(2023080500255866700_c42) 2014; 89
(2023080500255866700_c12) 2014; 5
(2023080500255866700_c30) 2019; 114
(2023080500255866700_c22) 2016; 380
(2023080500255866700_c35) 2011; 44
(2023080500255866700_c9) 2008; 10
(2023080500255866700_c26) 2017; 76
(2023080500255866700_c18) 2014; 333
(2023080500255866700_c27) 2017; 131–132
(2023080500255866700_c16) 2013; 332
(2023080500255866700_c21) 2016; 7
2023080500255866700_c39
(2023080500255866700_c29) 2019; 52
(2023080500255866700_c8) 2014; 5
(2023080500255866700_c4) 2009; 102
(2023080500255866700_c15) 2008; 10
(2023080500255866700_c19) 2014; 136
(2023080500255866700_c5) 2011; 84
(2023080500255866700_c37) 2014; 115
(2023080500255866700_c40) 1981; 70
(2023080500255866700_c31) 2019; 115
(2023080500255866700_c11) 2012; 108
(2023080500255866700_c32) 2010; 96
References_xml – start-page: 124901
  year: 2006
  ident: c14
  article-title: Flexural vibration band gaps in Timoshenko beams with locally resonant structures
  publication-title: J. Appl. Phys.
– start-page: 061012
  year: 2014
  ident: c19
  article-title: Vibration characteristics of metamaterial beams with periodic local resonances
  publication-title: J. Vib. Acoust.
– start-page: 192
  year: 2016
  ident: c24
  article-title: Vibration band gaps for elastic metamaterial rods using wave finite element method
  publication-title: Mech. Syst. Signal Process.
– start-page: 1734
  year: 2000
  ident: c3
  article-title: Locally resonant sonic materials
  publication-title: Science
– start-page: 055105
  year: 2019
  ident: c28
  article-title: Low-frequency vibration suppression of a multi-layered elastic metamaterial shaft with discretized scatters
  publication-title: J. Phys. D
– start-page: 194301
  year: 2009
  ident: c4
  article-title: Focusing ultrasound with an acoustic metamaterial network
  publication-title: Phys. Rev. Lett.
– start-page: 839
  year: 2009
  ident: c10
  article-title: Acoustic metafluids
  publication-title: J. Acoust. Soc. Am.
– start-page: 045601
  year: 2018
  ident: c38
  article-title: Low-frequency band gap in cross-like holey phononic crystal strip
  publication-title: J. Phys. D
– start-page: 4130
  year: 2014
  ident: c12
  article-title: An elasto-mechanical unfeelability cloak made of pentamode metamaterials
  publication-title: Nat. Commun.
– start-page: 064309
  year: 2014
  ident: c42
  article-title: Homogenization scheme for acoustic metamaterials
  publication-title: Phys. Rev. B
– start-page: 144301
  year: 2014
  ident: c7
  article-title: Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics
  publication-title: Phys. Rev. Lett.
– start-page: 2802
  year: 2017
  ident: c25
  article-title: Ultrawide band gaps in beams with double-leaf acoustic black hole indentations
  publication-title: J. Acoust. Soc. Am.
– start-page: 10501
  year: 2016
  ident: c23
  article-title: Low-frequency band gap mechanism of torsional vibration of lightweight elastic metamaterial shafts
  publication-title: Eur. Phys. J. Appl. Phys.
– start-page: 151906
  year: 2013
  ident: c36
  article-title: Extending of band gaps in silicon based one-dimensional phononic crystal strips
  publication-title: Appl. Phys. Lett.
– start-page: 014301
  year: 2012
  ident: c11
  article-title: Experiments on elastic cloaking in thin plates
  publication-title: Phys. Rev. Lett.
– start-page: 452
  year: 2006
  ident: c13
  article-title: Ultrasonic metamaterials with negative modulus
  publication-title: Nat. Mater.
– start-page: 375101
  year: 2011
  ident: c35
  article-title: Reducing support loss in micromechanical ring resonators using phononic band-gap structures
  publication-title: J. Phys. D
– start-page: 055104
  year: 2019
  ident: c29
  article-title: Tunable low-frequency torsional-wave band gaps in a meta-shaft
  publication-title: J. Phys. D
– start-page: 2075
  year: 1999
  ident: c1
  article-title: Magnetism from conductors and enhanced nonlinear phenomena
  publication-title: IEEE Trans. Microwave Theory Tech.
– start-page: 043020
  year: 2008
  ident: c15
  article-title: Experimental study on negative effective mass in a 1D mass–spring system
  publication-title: New J. Phys.
– start-page: 867
  year: 2013
  ident: c16
  article-title: Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms
  publication-title: J. Sound Vib.
– start-page: 99
  year: 2017
  ident: c26
  article-title: Wave propagation and absorption of sandwich beams containing interior dissipative multi-resonators
  publication-title: Ultrasonics
– start-page: 024503
  year: 2014
  ident: c37
  article-title: Phononic crystal strip based anchors for reducing anchor loss of micromechanical resonators
  publication-title: J. Appl. Phys.
– start-page: 82
  year: 2016
  ident: c6
  article-title: Soda cans metamaterial: A subwavelength-scaled phononic crystal
  publication-title: Crystals
– start-page: 13536
  year: 2016
  ident: c21
  article-title: Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials
  publication-title: Nat Commun.
– start-page: 479
  year: 2012
  ident: c34
  article-title: Acoustic phonon modes and phononic bandgaps in GaN/AlN nanowire superlattices
  publication-title: Nanoscale Res. Lett.
– start-page: 5510
  year: 2014
  ident: c8
  article-title: Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial
  publication-title: Nat. Commun.
– start-page: 2759
  year: 2014
  ident: c18
  article-title: A chiral elastic metamaterial beam for broadband vibration suppression
  publication-title: J. Sound Vib.
– start-page: 051902
  year: 2010
  ident: c32
  article-title: Acoustic band gaps in phononic crystal strip waveguides
  publication-title: Appl. Phys. Lett.
– start-page: 115032
  year: 2008
  ident: c9
  article-title: An acoustic metafluid: Realizing a broadband acoustic cloak
  publication-title: New J. Phys.
– start-page: 163511
  year: 2013
  ident: c17
  article-title: Low-frequency locally resonant band-gaps in phononic crystal plates with periodic spiral resonators
  publication-title: J. Appl. Phys.
– start-page: 024305
  year: 2011
  ident: c5
  article-title: Design and measurements of a broadband two-dimensional acoustic lens
  publication-title: Phys. Rev. B
– start-page: 500
  year: 2017
  ident: c27
  article-title: Flexural wave propagation in metamaterial beams containing membrane-mass structures
  publication-title: Int. J. Mech. Sci.
– start-page: 251902
  year: 2019
  ident: c30
  article-title: Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: Design and experimental validation
  publication-title: Appl. Phys. Lett.
– start-page: 763
  year: 1981
  ident: c40
  article-title: Dispersion of elastic waves in bars with polygonal cross section
  publication-title: J. Acoust. Soc. Am.
– start-page: 77
  year: 2001
  ident: c2
  article-title: Experimental verification of a negative index of refraction
  publication-title: Science
– start-page: 525
  year: 2016
  ident: c22
  article-title: Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators
  publication-title: Phys. Lett. A
– start-page: 081905
  year: 2019
  ident: c31
  article-title: Perfect acoustic bandgap metabeam based on a quadruple-mode resonator array
  publication-title: Appl. Phys. Lett.
– start-page: 041901
  year: 2011
  ident: c33
  article-title: Band gaps and cavity modes in dual phononic and photonic strip waveguides
  publication-title: AIP Adv.
– start-page: 435305
  year: 2015
  ident: c20
  article-title: Flexural wave band gaps in metamaterial beams with membrane-type resonators: Theory and experiment
  publication-title: J. Phys. D
– volume: 332
  start-page: 867
  year: 2013
  ident: 2023080500255866700_c16
  article-title: Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2012.09.035
– volume: 1
  start-page: 041901
  year: 2011
  ident: 2023080500255866700_c33
  article-title: Band gaps and cavity modes in dual phononic and photonic strip waveguides
  publication-title: AIP Adv.
  doi: 10.1063/1.3675799
– volume: 84
  start-page: 024305
  year: 2011
  ident: 2023080500255866700_c5
  article-title: Design and measurements of a broadband two-dimensional acoustic lens
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.024305
– volume: 70
  start-page: 763
  year: 1981
  ident: 2023080500255866700_c40
  article-title: Dispersion of elastic waves in bars with polygonal cross section
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.386914
– volume: 102
  start-page: 194301
  year: 2009
  ident: 2023080500255866700_c4
  article-title: Focusing ultrasound with an acoustic metamaterial network
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.194301
– volume: 5
  start-page: 452
  year: 2006
  ident: 2023080500255866700_c13
  article-title: Ultrasonic metamaterials with negative modulus
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1644
– volume: 114
  start-page: 251902
  year: 2019
  ident: 2023080500255866700_c30
  article-title: Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: Design and experimental validation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5099425
– volume: 115
  start-page: 081905
  year: 2019
  ident: 2023080500255866700_c31
  article-title: Perfect acoustic bandgap metabeam based on a quadruple-mode resonator array
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5117283
– volume: 79
  start-page: 192
  year: 2016
  ident: 2023080500255866700_c24
  article-title: Vibration band gaps for elastic metamaterial rods using wave finite element method
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.02.059
– volume: 136
  start-page: 061012
  year: 2014
  ident: 2023080500255866700_c19
  article-title: Vibration characteristics of metamaterial beams with periodic local resonances
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4028453
– volume: 96
  start-page: 051902
  year: 2010
  ident: 2023080500255866700_c32
  article-title: Acoustic band gaps in phononic crystal strip waveguides
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3298643
– volume: 108
  start-page: 014301
  year: 2012
  ident: 2023080500255866700_c11
  article-title: Experiments on elastic cloaking in thin plates
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.014301
– volume: 7
  start-page: 13536
  year: 2016
  ident: 2023080500255866700_c21
  article-title: Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials
  publication-title: Nat Commun.
  doi: 10.1038/ncomms13536
– volume: 89
  start-page: 064309
  year: 2014
  ident: 2023080500255866700_c42
  article-title: Homogenization scheme for acoustic metamaterials
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.064309
– volume: 103
  start-page: 151906
  year: 2013
  ident: 2023080500255866700_c36
  article-title: Extending of band gaps in silicon based one-dimensional phononic crystal strips
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4824759
– volume: 292
  start-page: 77
  year: 2001
  ident: 2023080500255866700_c2
  article-title: Experimental verification of a negative index of refraction
  publication-title: Science
  doi: 10.1126/science.1058847
– volume: 112
  start-page: 144301
  year: 2014
  ident: 2023080500255866700_c7
  article-title: Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.144301
– volume: 47
  start-page: 2075
  year: 1999
  ident: 2023080500255866700_c1
  article-title: Magnetism from conductors and enhanced nonlinear phenomena
  publication-title: IEEE Trans. Microwave Theory Tech.
  doi: 10.1109/22.798002
– volume: 131–132
  start-page: 500
  year: 2017
  ident: 2023080500255866700_c27
  article-title: Flexural wave propagation in metamaterial beams containing membrane-mass structures
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.07.054
– volume: 289
  start-page: 1734
  year: 2000
  ident: 2023080500255866700_c3
  article-title: Locally resonant sonic materials
  publication-title: Science
  doi: 10.1126/science.289.5485.1734
– volume: 333
  start-page: 2759
  year: 2014
  ident: 2023080500255866700_c18
  article-title: A chiral elastic metamaterial beam for broadband vibration suppression
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2014.01.009
– volume: 10
  start-page: 115032
  year: 2008
  ident: 2023080500255866700_c9
  article-title: An acoustic metafluid: Realizing a broadband acoustic cloak
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/11/115032
– ident: 2023080500255866700_c39
– volume: 76
  start-page: 99
  year: 2017
  ident: 2023080500255866700_c26
  article-title: Wave propagation and absorption of sandwich beams containing interior dissipative multi-resonators
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2016.12.014
– volume: 6
  start-page: 82
  year: 2016
  ident: 2023080500255866700_c6
  article-title: Soda cans metamaterial: A subwavelength-scaled phononic crystal
  publication-title: Crystals
  doi: 10.3390/cryst6070082
– volume: 125
  start-page: 839
  year: 2009
  ident: 2023080500255866700_c10
  article-title: Acoustic metafluids
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3050288
– volume: 5
  start-page: 4130
  year: 2014
  ident: 2023080500255866700_c12
  article-title: An elasto-mechanical unfeelability cloak made of pentamode metamaterials
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5130
– volume: 100
  start-page: 124901
  year: 2006
  ident: 2023080500255866700_c14
  article-title: Flexural vibration band gaps in Timoshenko beams with locally resonant structures
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2400803
– volume: 115
  start-page: 024503
  year: 2014
  ident: 2023080500255866700_c37
  article-title: Phononic crystal strip based anchors for reducing anchor loss of micromechanical resonators
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4861409
– volume: 5
  start-page: 5510
  year: 2014
  ident: 2023080500255866700_c8
  article-title: Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6510
– volume: 44
  start-page: 375101
  year: 2011
  ident: 2023080500255866700_c35
  article-title: Reducing support loss in micromechanical ring resonators using phononic band-gap structures
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/44/37/375101
– volume: 10
  start-page: 043020
  year: 2008
  ident: 2023080500255866700_c15
  article-title: Experimental study on negative effective mass in a 1D mass–spring system
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/4/043020
– volume: 7
  start-page: 479
  year: 2012
  ident: 2023080500255866700_c34
  article-title: Acoustic phonon modes and phononic bandgaps in GaN/AlN nanowire superlattices
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-7-479
– volume-title: Ultrasonic Waves in Solid Media
  year: 2000
  ident: 2023080500255866700_c41
– volume: 52
  start-page: 055104
  year: 2019
  ident: 2023080500255866700_c29
  article-title: Tunable low-frequency torsional-wave band gaps in a meta-shaft
  publication-title: J. Phys. D
  doi: 10.1088/1361-6463/aaf039
– volume: 75
  start-page: 10501
  year: 2016
  ident: 2023080500255866700_c23
  article-title: Low-frequency band gap mechanism of torsional vibration of lightweight elastic metamaterial shafts
  publication-title: Eur. Phys. J. Appl. Phys.
  doi: 10.1051/epjap/2016160169
– volume: 52
  start-page: 055105
  year: 2019
  ident: 2023080500255866700_c28
  article-title: Low-frequency vibration suppression of a multi-layered elastic metamaterial shaft with discretized scatters
  publication-title: J. Phys. D
  doi: 10.1088/1361-6463/aaefe6
– volume: 142
  start-page: 2802
  year: 2017
  ident: 2023080500255866700_c25
  article-title: Ultrawide band gaps in beams with double-leaf acoustic black hole indentations
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5009582
– volume: 113
  start-page: 163511
  year: 2013
  ident: 2023080500255866700_c17
  article-title: Low-frequency locally resonant band-gaps in phononic crystal plates with periodic spiral resonators
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4803075
– volume: 48
  start-page: 435305
  year: 2015
  ident: 2023080500255866700_c20
  article-title: Flexural wave band gaps in metamaterial beams with membrane-type resonators: Theory and experiment
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/48/43/435305
– volume: 380
  start-page: 525
  year: 2016
  ident: 2023080500255866700_c22
  article-title: Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2015.12.010
– volume: 51
  start-page: 045601
  year: 2018
  ident: 2023080500255866700_c38
  article-title: Low-frequency band gap in cross-like holey phononic crystal strip
  publication-title: J. Phys. D
  doi: 10.1088/1361-6463/aa9ec1
SSID ssj0005233
Score 2.377245
Snippet Preventing elastic waves from traveling down thin structures is a subject of great interest from the point of view of both physics and applications. It...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acoustic propagation
Applied physics
Construction materials
Damping
Elastic waves
Frequency ranges
Metamaterials
Sound transmission
Sound waves
Vibration control
Waveguides
Title Wave-canceling acoustic metarod architected with single material building blocks
URI http://dx.doi.org/10.1063/5.0011319
https://www.proquest.com/docview/2414104987
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB50i1gfilalq1UG9UFYoslMLpvHUi1FXVtwxb6FycyktN1uSi4V_PWeuSVZu0j1JSzJbDLM-XLynTPngtCbQE7hw8djrwgI90JScI8xsFKimE-p9Akjuk737Gt8-D38dBKd9KG8Orukyd_xX2vzSv5HqnAO5KqyZP9Bst1N4QT8BvnCESQMx1vJ-Ae7lh5XctNJ5aDcdG8u1RaagWKcdLsELsZcOQYWKmS10dOb5LYptopf5xf1kKk6empcH_VkofN-OgZ-dMpq9pNVxi17cVZ16v2gPT8zlPSzikuvyt6RfVkKfWFWAuMs87Z3hzd1ay4d1eyyHboiiOpY45lkzE69Ui9ObQVZaTSqnyhHqFWyTuWa_EqLLZNEfUOXA4ZAAJHeK6JWr67Uy_7jO9ZFF-p99ZhmUWb_ehdtELAiyAht7H2Yffk2iAGi1LVUVPN2padi-r577iph6a2Q-0BRTLTEgJDMH6Ita0ngPQOLR-iOXG6jB4P6ktvo3rER3mN0vAoV7KCCLVTwACpYQQUbqGAHFeyggg1UnqD5wcf5_qFnm2l4PExI4wkuVClCMABoQoT0U8IkKfxoKkicCJJyIKKcC-BMSaE4aOFLKkmYsCSE4YI-RaNluZQ7CAsRxIUE2iyDPAxkmPNUwntdyECkqhTTGL11C5a5JVL9ThbZDcGM0atu6JWprrJu0K5b9cy-fHUGxDMMwLqdJmP0upPE326yZtR1WfUjsitRPLvNfJ6jzR78u2jUVK18Acy0yV9afP0Gcx6O-A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wave-canceling+acoustic+metarod+architected+with+single+material+building+blocks&rft.jtitle=Applied+physics+letters&rft.au=Ogasawara%2C+Akira&rft.au=Fujita%2C+Kentaro&rft.au=Tomoda%2C+Motonobu&rft.au=Matsuda%2C+Osamu&rft.date=2020-06-15&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=116&rft.issue=24&rft_id=info:doi/10.1063%2F5.0011319&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0011319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon