Rejection and modeling of arsenate by nanofiltration: Contributions of convection, diffusion and electromigration to arsenic transport
Nanofiltration (NF) membranes, DK and DL, were characterized by attenuated total reflection-Fourier transform infrared spectroscopy, surface charge titration, pore size determination and salt rejection. The results showed both membranes have amide I and carbonyl groups on their surfaces, and have th...
Saved in:
Published in | Journal of membrane science Vol. 453; pp. 42 - 51 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.03.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanofiltration (NF) membranes, DK and DL, were characterized by attenuated total reflection-Fourier transform infrared spectroscopy, surface charge titration, pore size determination and salt rejection. The results showed both membranes have amide I and carbonyl groups on their surfaces, and have the same basic structure of polyamide layer sitting on the top of a polysulfone layer. The DK membrane carries more negative charges in the entire pH range investigated. Arsenate rejections by the NF membranes were evaluated with a crossflow test setup. The effects of pH, ionic strength, operating pressure, arsenate initial concentration on the membrane performance were investigated. Mass transfer coefficients of the membranes were determined experimentally. The Donann Steric Pore Model and concentration polarization film theory were applied to calculate the arsenic rejection rate. The rejection mechanism was interpreted by calculating the contributions of convection, diffusion, and electrostatic migration to arsenic transport through the membranes. The calculated results showed that the contribution of diffusive transport dominated at low flux, and convection and electromigrative transport, especially the latter, play an increasingly important role at a high flux.
•As(V) rejection varied when operating parameters changed.•DSPM model and concentration polarization theory well predicted As(V) rejection.•With normalized volume charges |ξ|>10, diffusion dominates at low flux.•Contribution of diffusion decreased with the increasing flux.•The convection and electromigration play an increasing critical role at a high flux. |
---|---|
AbstractList | Nanofiltration (NF) membranes, DK and DL, were characterized by attenuated total reflection-Fourier transform infrared spectroscopy, surface charge titration, pore size determination and salt rejection. The results showed both membranes have amide I and carbonyl groups on their surfaces, and have the same basic structure of polyamide layer sitting on the top of a polysulfone layer. The DK membrane carries more negative charges in the entire pH range investigated. Arsenate rejections by the NF membranes were evaluated with a crossflow test setup. The effects of pH, ionic strength, operating pressure, arsenate initial concentration on the membrane performance were investigated. Mass transfer coefficients of the membranes were determined experimentally. The Donann Steric Pore Model and concentration polarization film theory were applied to calculate the arsenic rejection rate. The rejection mechanism was interpreted by calculating the contributions of convection, diffusion, and electrostatic migration to arsenic transport through the membranes. The calculated results showed that the contribution of diffusive transport dominated at low flux, and convection and electromigrative transport, especially the latter, play an increasingly important role at a high flux. Nanofiltration (NF) membranes, DK and DL, were characterized by attenuated total reflection-Fourier transform infrared spectroscopy, surface charge titration, pore size determination and salt rejection. The results showed both membranes have amide I and carbonyl groups on their surfaces, and have the same basic structure of polyamide layer sitting on the top of a polysulfone layer. The DK membrane carries more negative charges in the entire pH range investigated. Arsenate rejections by the NF membranes were evaluated with a crossflow test setup. The effects of pH, ionic strength, operating pressure, arsenate initial concentration on the membrane performance were investigated. Mass transfer coefficients of the membranes were determined experimentally. The Donann Steric Pore Model and concentration polarization film theory were applied to calculate the arsenic rejection rate. The rejection mechanism was interpreted by calculating the contributions of convection, diffusion, and electrostatic migration to arsenic transport through the membranes. The calculated results showed that the contribution of diffusive transport dominated at low flux, and convection and electromigrative transport, especially the latter, play an increasingly important role at a high flux. •As(V) rejection varied when operating parameters changed.•DSPM model and concentration polarization theory well predicted As(V) rejection.•With normalized volume charges |ξ|>10, diffusion dominates at low flux.•Contribution of diffusion decreased with the increasing flux.•The convection and electromigration play an increasing critical role at a high flux. |
Author | Deng, Baolin Fang, Jun |
Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0002-9239-5833 surname: Fang fullname: Fang, Jun email: jun.fang@dcwater.com organization: OMAP Program at District of Columbia Water and Sewer Authority, Delon Hampton and Associates, Chartered, Washington, DC 20032, USA – sequence: 2 givenname: Baolin surname: Deng fullname: Deng, Baolin email: dengb@missouri.edu organization: Department of Civil and Environmental Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28352147$$DView record in Pascal Francis |
BookMark | eNqNkctKJDEYhbNwwMv4Bi6yEWZh9-TWlZQLYWicCwgDouuQTv5ImqqkJ0kLvoDPbcrSzSzGWYWcfOcQzjlGBzFFQOiMkiUltPu6XY4wFhuWjFDepCVZdQfoiHDZLSRX6hAdl7IlhEqi-iP0fAtbsDWkiE10eEwOhhAfcPLY5ALRVMCbJxxNTD4MNZsJvcTrFGsOm_10KxNsU3yccy6wC97vy3skDE3PaQwPsxnXNEcHi1teLLuU62f0yZuhwOnbeYLuv1_frX8ubn7_-LX-drOwQrK6cL03tudMeKucEqZnoudWES5s1wvP-IYoQ92mk30rw0jw3jVVrkh77gjjJ-jLnLvL6c8eStVjKBaGwURI-6JZs3GqOKcfolQRIgQV_4PKFW3JjE8fOH9DTbFm8K0AG4re5TCa_KSZ4itGhWzc5czZnErJ4LUN9bW_1lkYNCV6mltv9Ty3nuae1DZ3M4u_zO_5H9iuZhu0BR4DZN0IiBZcyG1D7VL4d8ALsqPMRQ |
CODEN | JMESDO |
CitedBy_id | crossref_primary_10_1080_19443994_2016_1140086 crossref_primary_10_1021_acs_iecr_7b01440 crossref_primary_10_1039_C6EW00001K crossref_primary_10_1016_j_cej_2019_122921 crossref_primary_10_1016_j_desal_2016_06_023 crossref_primary_10_1016_j_jwpe_2023_103587 crossref_primary_10_1007_s13762_021_03660_0 crossref_primary_10_1016_j_seppur_2015_02_017 crossref_primary_10_1002_macp_201500433 crossref_primary_10_1021_acs_est_3c02286 crossref_primary_10_5004_dwt_2022_28398 crossref_primary_10_1007_s11696_021_01694_9 crossref_primary_10_1016_j_desal_2022_115740 crossref_primary_10_1002_aic_17865 crossref_primary_10_1016_j_desal_2019_04_028 crossref_primary_10_1016_j_memsci_2020_118631 crossref_primary_10_1039_C8RA00236C crossref_primary_10_3390_membranes10080178 crossref_primary_10_1016_j_memsci_2014_08_045 crossref_primary_10_1016_j_psep_2023_09_036 crossref_primary_10_1016_j_jenvman_2018_06_032 crossref_primary_10_1016_j_cej_2022_138947 crossref_primary_10_1016_j_pnucene_2016_10_005 crossref_primary_10_1186_s40201_015_0217_8 crossref_primary_10_1016_j_cej_2018_03_070 crossref_primary_10_1016_j_memsci_2020_117817 crossref_primary_10_1016_j_seppur_2015_05_027 crossref_primary_10_1016_j_psep_2020_11_033 crossref_primary_10_23939_chcht18_02_187 crossref_primary_10_1016_j_cej_2019_123348 crossref_primary_10_1016_j_jhazmat_2018_07_047 crossref_primary_10_5004_dwt_2017_21051 crossref_primary_10_1007_s11696_021_01990_4 crossref_primary_10_1080_01496395_2017_1279182 crossref_primary_10_1016_j_psep_2017_08_001 crossref_primary_10_1016_j_memsci_2017_09_067 crossref_primary_10_3390_nano10071323 crossref_primary_10_1016_j_scitotenv_2022_154287 crossref_primary_10_1007_s11356_020_11613_2 crossref_primary_10_1016_j_seppur_2020_118248 crossref_primary_10_1590_0104_6632_20190364s20190068 crossref_primary_10_1016_j_jer_2024_01_001 crossref_primary_10_1038_s44221_024_00220_x crossref_primary_10_1016_j_jics_2025_101579 crossref_primary_10_5004_dwt_2019_24604 crossref_primary_10_1016_j_cej_2019_122786 crossref_primary_10_1016_j_memsci_2014_05_040 crossref_primary_10_1016_j_seppur_2022_122308 crossref_primary_10_1007_s11051_019_4665_4 crossref_primary_10_1016_j_memsci_2015_09_062 crossref_primary_10_3390_molecules25214911 crossref_primary_10_1002_wer_1326 crossref_primary_10_1186_s40064_016_2832_y crossref_primary_10_1007_s13369_018_3096_3 crossref_primary_10_1016_j_jhazmat_2020_124129 crossref_primary_10_1016_j_hydromet_2018_04_012 crossref_primary_10_1016_j_jics_2024_101408 crossref_primary_10_1007_s11783_019_1105_8 crossref_primary_10_1038_s41598_020_63356_2 crossref_primary_10_1007_s11356_017_9282_0 crossref_primary_10_1016_j_memsci_2022_120681 crossref_primary_10_1016_j_chemosphere_2022_136987 crossref_primary_10_1021_acs_jced_9b00936 crossref_primary_10_1080_00986445_2018_1503174 crossref_primary_10_1016_j_seppur_2022_120914 crossref_primary_10_3390_membranes12121216 crossref_primary_10_1080_01932691_2016_1263798 crossref_primary_10_1016_j_seppur_2019_01_028 crossref_primary_10_1039_C6RA23061J |
Cites_doi | 10.1016/S0273-1223(98)00554-X 10.1016/j.desal.2004.07.004 10.1016/S0376-7388(99)00314-2 10.1016/j.desal.2006.03.577 10.1089/10928750151132311 10.1021/ie060339f 10.1016/j.memsci.2003.11.003 10.1021/ac60111a017 10.1016/S0011-9164(00)90012-2 10.1016/S0376-7388(01)00458-6 10.1016/j.memsci.2005.01.031 10.1016/S0009-2509(02)00188-4 10.1016/j.jhazmat.2011.11.023 10.1002/j.1551-8833.2004.tb10536.x 10.1016/j.watres.2009.09.007 10.1016/S0376-7388(00)00316-1 10.1016/S1383-5866(02)00107-7 10.2166/wst.2000.0376 10.1016/0376-7388(94)00317-R 10.1016/S0376-7388(02)00328-9 10.1016/S0376-7388(01)00668-8 10.1016/S0376-7388(02)00423-4 10.1016/S0001-8686(02)00094-5 10.1016/S1383-5866(00)00163-5 10.1016/S0376-7388(01)00601-9 10.1016/S0376-7388(02)00356-3 10.1016/j.desal.2008.04.047 10.1021/ac960744o 10.1016/S0011-9164(98)00219-7 10.1016/S0376-7388(02)00050-9 10.1081/SS-100100819 10.1021/es0018724 10.1016/S0376-7388(97)00006-9 10.1016/S0376-7388(97)00125-7 10.1205/026387698525685 10.1016/j.desal.2004.08.027 10.1016/S1383-5866(98)00050-1 10.1016/S0269-7491(02)00308-1 10.1016/0376-7388(95)00302-9 10.1002/aic.690440811 10.1016/S0011-9164(02)00420-4 10.1016/0006-3002(58)90330-5 10.1080/01496390500423706 10.1021/es0008620 10.1016/S0376-7388(96)00276-1 10.1016/j.memsci.2006.03.045 10.1016/j.memsci.2004.05.012 10.1016/S0011-9164(00)00091-6 10.1021/es048179r 10.1016/j.polymer.2006.12.046 10.1016/S0043-1354(02)00037-4 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7QH 7UA C1K F1W H97 L.G 7SR 8BQ 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.memsci.2013.10.056 |
DatabaseName | CrossRef Pascal-Francis Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EndPage | 51 |
ExternalDocumentID | 28352147 10_1016_j_memsci_2013_10_056 S0376738813008685 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ABXDB ABXRA ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFPUW AFRZQ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHPOS AIEXJ AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSH SSM SSZ T5K XPP Y6R ZMT ~G- 29L AAQXK AAYXX ABWVN ACNNM ACRPL ADMUD ADNMO AFJKZ AGQPQ AI. AIGII APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ AACTN IQODW 7QH 7UA C1K F1W H97 L.G 7SR 8BQ 8FD JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c472t-d9fac9324fc8d84a92493c8034c694f23b08a1db679101a7effdf237506946023 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Fri Jul 11 09:29:39 EDT 2025 Fri Jul 11 04:39:31 EDT 2025 Fri Jul 11 06:34:25 EDT 2025 Wed Apr 02 07:26:30 EDT 2025 Thu Apr 24 22:58:52 EDT 2025 Tue Jul 01 03:37:55 EDT 2025 Thu Jul 17 02:00:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electromigration Nanofiltration Transport Diffusion Arsenate Convection Membrane separation Arsenic Arsenates Membrane Modeling |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-d9fac9324fc8d84a92493c8034c694f23b08a1db679101a7effdf237506946023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9239-5833 |
PQID | 1751210232 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2101318331 proquest_miscellaneous_1800441431 proquest_miscellaneous_1751210232 pascalfrancis_primary_28352147 crossref_citationtrail_10_1016_j_memsci_2013_10_056 crossref_primary_10_1016_j_memsci_2013_10_056 elsevier_sciencedirect_doi_10_1016_j_memsci_2013_10_056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-01 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of membrane science |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Schaep, Vandecasteele, Mohammad, Bowen (bib40) 1999; 34 Oh, Urase, Kitawaki, Rahman, Rhahman, Yamamoto (bib23) 2000; 42 Freger, Gilron, Belfer (bib43) 2002; 209 Szymczyk, Labbez, Fievet, Vidonne, Foissy, Pagetti (bib22) 2003; 103 Bowen, Mukhtar (bib13) 1996; 112 Gu, Fang, Deng (bib39) 2005; 39 Schaep, Vandecasteele, Mohammad, Bowen (bib18) 2001; 22,23 Belfer, Fainchtain, Purinson, Kedem (bib44) 2000; 172 Ghurye, Clifford (bib32) 2004; 96 Gomes, Goncalves, Norberta de Pinho (bib3) 2005; 255 Garba, Taha, Gondrexon, Cabon, Dorange (bib5) 2000; 168 Sheth, Qin, Sirkar, Baltzis (bib2) 2003; 211 Vasudevan, Mohan, Sozhan, Raghavendran, Murugan (bib33) 2006; 45 Wang, Chung (bib6) 2006; 281 Le, Ma, Wong (bib38) 1996; 68 Stumm, Morgan (bib45) 1996 Bowen, Mohammad (bib52) 1998; 44 Capelle, Moulin, Charbit, Gallo (bib1) 2002; 196 Geraldes, Semiao, de Pinho (bib14) 2001; 191 Seidel, Waypa, Elimelech (bib25) 2001; 18 Figoli, Cassano, Criscuoli, Mozumder, Uddin, Islam, Drioli (bib29) 2010; 44 Vrijenhoek, Waypa (bib24) 2000; 130 Kedem, Katchalsky (bib11) 1958; 27 Wang, Tsuru, Nakao, Kimura (bib12) 1995; 103 Sutzkover, Hasson, Semiat (bib37) 2000; 131 Bowen, Mohammad, Hilal (bib17) 1997; 126 Garba, Taha, Cabon, Dorange (bib20) 2003; 211 Nguyen, Bang, Cho, Kim (bib28) 2009; 245 Thanuttamavong, Yamamoto, Oh, Choo, Choi (bib9) 2002; 145 Chaabane, Taha, Taleb Ahmed, Maachi, Dorange (bib53) 2007; 206 Van der Bruggen, Vandecasteele (bib10) 2003; 122 Paugam, Taha, Dorange, Jaouen, Quemeneur (bib48) 2004; 231 Lee, Lueptow (bib19) 2001; 35 Zydney (bib36) 1997; 130 Coates (bib41) 2000 Saitua, Campderros, Cerutti, Padilla (bib27) 2005; 172 Dubois, Gilles, Hamilton, Rebers, Smith (bib35) 1956; 28 Mohammad, Othaman, Hilal (bib8) 2004; 168 Labbez, Fievet, Szymczyk, Vidonne, Foissy, Pagetti (bib21) 2003; 30 Sato, Kang, Kamei, Magara (bib26) 2002; 36 Kang, Liu, Lin, Cao, Yuan (bib42) 2007; 48 Criscuoli, Majumdar, Figoli, Sahoo, Bafaro, Bandyopadhyay, Drioli (bib34) 2012; 211–212 Bowen, Mohammad (bib55) 1998; 76 Fievet, Labbez, Szymczyk, Vidonne, Foissy, Pagetti (bib54) 2002; 57 Lastra, Gomez, Romero, Francisco, Luque, Alvarez (bib7) 2004; 242 Wang, Zhang, Ouyang (bib51) 2002; 204 J.G. Hering, M. Elimelech, Arsenic Removal by Enhanced Coagulation and Membrane Processes, 1997, 188 pp. Wang, Tsuru, Nakao, Kimura (bib16) 1997; 135 Hagmeyer, Gimbel (bib46) 1999; 15 Vellenga, Traegardh (bib50) 1998; 120 Garba, Taha, Gondrexon, Dorange (bib4) 1998; 38 Fang, Deng (bib30) 2012 Diawara, Paugam, Pontie (bib49) 2005; 40 Yaroshchuk (bib15) 2002; 198 Childress, Elimelech (bib47) 2000; 34 Criscuoli (10.1016/j.memsci.2013.10.056_bib34) 2012; 211–212 Saitua (10.1016/j.memsci.2013.10.056_bib27) 2005; 172 Fang (10.1016/j.memsci.2013.10.056_bib30) 2012 Kedem (10.1016/j.memsci.2013.10.056_bib11) 1958; 27 Coates (10.1016/j.memsci.2013.10.056_bib41) 2000 Mohammad (10.1016/j.memsci.2013.10.056_bib8) 2004; 168 Labbez (10.1016/j.memsci.2013.10.056_bib21) 2003; 30 Wang (10.1016/j.memsci.2013.10.056_bib16) 1997; 135 Lee (10.1016/j.memsci.2013.10.056_bib19) 2001; 35 Van der Bruggen (10.1016/j.memsci.2013.10.056_bib10) 2003; 122 Garba (10.1016/j.memsci.2013.10.056_bib4) 1998; 38 Bowen (10.1016/j.memsci.2013.10.056_bib13) 1996; 112 Garba (10.1016/j.memsci.2013.10.056_bib20) 2003; 211 Paugam (10.1016/j.memsci.2013.10.056_bib48) 2004; 231 Nguyen (10.1016/j.memsci.2013.10.056_bib28) 2009; 245 Chaabane (10.1016/j.memsci.2013.10.056_bib53) 2007; 206 Vasudevan (10.1016/j.memsci.2013.10.056_bib33) 2006; 45 Wang (10.1016/j.memsci.2013.10.056_bib6) 2006; 281 Ghurye (10.1016/j.memsci.2013.10.056_bib32) 2004; 96 Sutzkover (10.1016/j.memsci.2013.10.056_bib37) 2000; 131 Vellenga (10.1016/j.memsci.2013.10.056_bib50) 1998; 120 Diawara (10.1016/j.memsci.2013.10.056_bib49) 2005; 40 Sato (10.1016/j.memsci.2013.10.056_bib26) 2002; 36 Yaroshchuk (10.1016/j.memsci.2013.10.056_bib15) 2002; 198 Vrijenhoek (10.1016/j.memsci.2013.10.056_bib24) 2000; 130 Garba (10.1016/j.memsci.2013.10.056_bib5) 2000; 168 Szymczyk (10.1016/j.memsci.2013.10.056_bib22) 2003; 103 Childress (10.1016/j.memsci.2013.10.056_bib47) 2000; 34 Bowen (10.1016/j.memsci.2013.10.056_bib52) 1998; 44 Zydney (10.1016/j.memsci.2013.10.056_bib36) 1997; 130 Schaep (10.1016/j.memsci.2013.10.056_bib40) 1999; 34 Schaep (10.1016/j.memsci.2013.10.056_bib18) 2001; 22,23 Stumm (10.1016/j.memsci.2013.10.056_bib45) 1996 Le (10.1016/j.memsci.2013.10.056_bib38) 1996; 68 Hagmeyer (10.1016/j.memsci.2013.10.056_bib46) 1999; 15 Wang (10.1016/j.memsci.2013.10.056_bib12) 1995; 103 Kang (10.1016/j.memsci.2013.10.056_bib42) 2007; 48 Bowen (10.1016/j.memsci.2013.10.056_bib17) 1997; 126 Seidel (10.1016/j.memsci.2013.10.056_bib25) 2001; 18 Oh (10.1016/j.memsci.2013.10.056_bib23) 2000; 42 Figoli (10.1016/j.memsci.2013.10.056_bib29) 2010; 44 Thanuttamavong (10.1016/j.memsci.2013.10.056_bib9) 2002; 145 Capelle (10.1016/j.memsci.2013.10.056_bib1) 2002; 196 Dubois (10.1016/j.memsci.2013.10.056_bib35) 1956; 28 Freger (10.1016/j.memsci.2013.10.056_bib43) 2002; 209 Wang (10.1016/j.memsci.2013.10.056_bib51) 2002; 204 10.1016/j.memsci.2013.10.056_bib31 Belfer (10.1016/j.memsci.2013.10.056_bib44) 2000; 172 Gomes (10.1016/j.memsci.2013.10.056_bib3) 2005; 255 Fievet (10.1016/j.memsci.2013.10.056_bib54) 2002; 57 Gu (10.1016/j.memsci.2013.10.056_bib39) 2005; 39 Bowen (10.1016/j.memsci.2013.10.056_bib55) 1998; 76 Lastra (10.1016/j.memsci.2013.10.056_bib7) 2004; 242 Sheth (10.1016/j.memsci.2013.10.056_bib2) 2003; 211 Geraldes (10.1016/j.memsci.2013.10.056_bib14) 2001; 191 |
References_xml | – volume: 168 start-page: 241 year: 2004 end-page: 252 ident: bib8 article-title: Potential use of nanofiltration membranes in treatment of industrial wastewater from Ni–P electroless plating publication-title: Desalination – volume: 42 start-page: 173 year: 2000 end-page: 180 ident: bib23 article-title: Modeling of arsenic rejection considering affinity and steric hindrance effect in nanofiltration membranes publication-title: Water Sci. Technol. – volume: 198 start-page: 285 year: 2002 end-page: 297 ident: bib15 article-title: Rejection of single salts versus transmembrane volume flow in RO/NF: thermodynamic properties, model of constant coefficients, and its modification publication-title: J. Membr. Sci. – volume: 38 start-page: 529 year: 1998 end-page: 535 ident: bib4 article-title: Cadmium salts transport through a nanofiltration membrane: experimental results and model predictions publication-title: Water Sci. Technol. – volume: 211 start-page: 51 year: 2003 end-page: 58 ident: bib20 article-title: Modeling of cadmium salts rejection through a nanofiltration membrane: relationships between solute concentration and transport parameters publication-title: J. Membr. Sci. – volume: 112 start-page: 263 year: 1996 end-page: 274 ident: bib13 article-title: Characterization and prediction of separation performance of nanofiltration membranes publication-title: J. Membr. Sci. – volume: 172 start-page: 173 year: 2005 end-page: 180 ident: bib27 article-title: Effect of operating conditions in removal of arsenic from water by nanofiltration membrane publication-title: Desalination – volume: 103 start-page: 117 year: 1995 end-page: 133 ident: bib12 article-title: Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell–Meyer–Sievers model publication-title: J. Membr. Sci. – start-page: 10815 year: 2000 end-page: 10837 ident: bib41 article-title: Interpretation of infrared spectra, a practical approach publication-title: Encyclopedia of Analytical Chemistry – volume: 172 start-page: 113 year: 2000 end-page: 124 ident: bib44 article-title: Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled publication-title: J. Membr. Sci. – volume: 45 start-page: 7729 year: 2006 end-page: 7732 ident: bib33 article-title: Studies on the oxidation of As(III) to As(V) by in-situ generated hypochlorite publication-title: Ind. Eng. Chem. Res. – volume: 68 start-page: 4501 year: 1996 end-page: 4506 ident: bib38 article-title: Speciation of arsenic compounds using HPLC at elevated temperature and selective hydride-generation atomic fluorescence detection publication-title: Anal. Chem. – start-page: 1022 year: 1996 ident: bib45 article-title: Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters – volume: 57 start-page: 2921 year: 2002 end-page: 2931 ident: bib54 article-title: Electrolyte transport through amphoteric nanofiltration membranes publication-title: Chem. Eng. Sci. – volume: 126 start-page: 91 year: 1997 end-page: 105 ident: bib17 article-title: Characterization of nanofiltration membranes for predictive purposes—use of salts, uncharged solutes and atomic force microscopy publication-title: J. Membr. Sci. – volume: 204 start-page: 271 year: 2002 end-page: 281 ident: bib51 article-title: The possibility of separating saccharides from a NaCl solution by using nanofiltration in diafiltration mode publication-title: Journal of Membrane Science – volume: 145 start-page: 257 year: 2002 end-page: 264 ident: bib9 article-title: Rejection characteristics of organic and inorganic pollutants by ultra low-pressure nanofiltration of surface water for drinking water treatment publication-title: Desalination – volume: 122 start-page: 435 year: 2003 end-page: 445 ident: bib10 article-title: Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry publication-title: Environ. Pollut. – volume: 27 start-page: 229 year: 1958 end-page: 246 ident: bib11 article-title: Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes publication-title: Biochim. Biophys. Acta – volume: 28 start-page: 350 year: 1956 end-page: 356 ident: bib35 article-title: Colorimetric method for determination of sugars and related substances publication-title: Anal. Chem. – volume: 255 start-page: 157 year: 2005 end-page: 165 ident: bib3 article-title: The role of adsorption on nanofiltration of azo dyes publication-title: J. Membr. Sci. – volume: 245 start-page: 82 year: 2009 end-page: 94 ident: bib28 article-title: Performance and mechanism of arsenic removal from water by a nanofiltration membrane publication-title: Desalination – volume: 39 start-page: 3833 year: 2005 end-page: 3843 ident: bib39 article-title: Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal publication-title: Environ. Sci. Technol. – volume: 196 start-page: 125 year: 2002 end-page: 141 ident: bib1 article-title: Purification of heterocyclic drug derivatives from concentrated saline solution by nanofiltration publication-title: J. Membr. Sci. – volume: 211 start-page: 251 year: 2003 end-page: 261 ident: bib2 article-title: Nanofiltration-based diafiltration process for solvent exchange in pharmaceutical manufacturing publication-title: J. Membr. Sci. – volume: 135 start-page: 19 year: 1997 end-page: 32 ident: bib16 article-title: The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes publication-title: J. Membr. Sci. – volume: 130 start-page: 275 year: 1997 end-page: 281 ident: bib36 article-title: Stagnant film model for concentration polarization in membrane systems publication-title: J. Membr. Sci. – volume: 231 start-page: 37 year: 2004 end-page: 46 ident: bib48 article-title: Mechanism of nitrate ions transfer in nanofiltration depending on pressure, pH, concentration and medium composition publication-title: J. Membr. Sci. – volume: 22,23 start-page: 169 year: 2001 end-page: 179 ident: bib18 article-title: Modeling the retention of ionic components for different nanofiltration membranes publication-title: Sep. Purif. Technol. – volume: 211–212 start-page: 281 year: 2012 end-page: 287 ident: bib34 article-title: As(III) oxidation by MnO2 coated PEEK-WC nanostructured capsules publication-title: J. Hazard. Mater. – volume: 130 start-page: 265 year: 2000 end-page: 277 ident: bib24 article-title: Arsenic removal from drinking water by a "loose" nanofiltration membrane publication-title: Desalination – volume: 40 start-page: 3339 year: 2005 end-page: 3347 ident: bib49 article-title: Influence of chloride, nitrate, and sulphate on the removal of fluoride ions by using nanofiltration membranes publication-title: Sep. Sci. Technol. – volume: 44 start-page: 1799 year: 1998 end-page: 1812 ident: bib52 article-title: Diafiltration by nanofiltration: prediction and optimization publication-title: AIChE J. – volume: 44 start-page: 97 year: 2010 end-page: 104 ident: bib29 article-title: Influence of operating parameters on the arsenic removal by nanofiltration publication-title: Water Res. – volume: 35 start-page: 3008 year: 2001 end-page: 3018 ident: bib19 article-title: Membrane rejection of nitrogen compounds publication-title: Environ. Sci. Technol. – volume: 120 start-page: 211 year: 1998 end-page: 220 ident: bib50 article-title: Nanofiltration of combined salt and sugar solutions: coupling between retentions publication-title: Desalination – volume: 34 start-page: 3710 year: 2000 end-page: 3716 ident: bib47 article-title: Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics publication-title: Environ. Sci. Technol. – volume: 281 start-page: 307 year: 2006 end-page: 315 ident: bib6 article-title: Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate publication-title: J. Membr. Sci. – volume: 76 start-page: 885 year: 1998 end-page: 893 ident: bib55 article-title: Characterization and prediction of nanofiltration membrane performance—a general assessment publication-title: Chem. Eng. Res. Des. – volume: 34 start-page: 3009 year: 1999 end-page: 3030 ident: bib40 article-title: Analysis of the salt retention of nanofiltration membranes using the Donnan-steric partitioning pore model publication-title: Sep. Sci. Technol. – volume: 30 start-page: 47 year: 2003 end-page: 55 ident: bib21 article-title: Retention of mineral salts by a polyamide nanofiltration membrane publication-title: Sep. Purif. Technol. – volume: 18 start-page: 105 year: 2001 end-page: 113 ident: bib25 article-title: Role of charge (Donnan) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane publication-title: Environ. Eng. Sci. – reference: J.G. Hering, M. Elimelech, Arsenic Removal by Enhanced Coagulation and Membrane Processes, 1997, 188 pp. – start-page: 348 year: 2012 end-page: 381 ident: bib30 article-title: Arsenic removal by membrane processes: modeling and applications publication-title: Membrane Technology and Environmental Applications – volume: 168 start-page: 135 year: 2000 end-page: 141 ident: bib5 article-title: Mechanisms involved in cadmium salts transport through a nanofiltration membrane. Characterization and distribution publication-title: J. Membr. Sci. – volume: 36 start-page: 3371 year: 2002 end-page: 3377 ident: bib26 article-title: Performance of nanofiltration for arsenic removal publication-title: Water Res. – volume: 15 start-page: 19 year: 1999 end-page: 30 ident: bib46 article-title: Modelling the rejection of nanofiltration membrane using zeta potential measurements publication-title: Sep. Purif. Technol. – volume: 48 start-page: 1165 year: 2007 end-page: 1170 ident: bib42 article-title: A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly (ethylene glycol) publication-title: Polymer – volume: 209 start-page: 283 year: 2002 end-page: 292 ident: bib43 article-title: TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study publication-title: J. Membr. Sci. – volume: 96 start-page: 84 year: 2004 end-page: 96 ident: bib32 article-title: As(III) oxidation using chemical and solid-phase oxidants publication-title: J. Am. Water Works Assoc. – volume: 131 start-page: 117 year: 2000 end-page: 127 ident: bib37 article-title: Simple technique for measuring the concentration polarization level in a reverse osmosis system publication-title: Desalination – volume: 206 start-page: 424 year: 2007 end-page: 432 ident: bib53 article-title: Coupled model of file theory and the Nernst–Planck equation in nanofiltration publication-title: Desalination – volume: 103 start-page: 77 year: 2003 end-page: 94 ident: bib22 article-title: Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes publication-title: Adv. Colloid Interface Sci. – volume: 191 start-page: 109 year: 2001 end-page: 128 ident: bib14 article-title: Flow and mass transfer modelling of nanofiltration publication-title: J. Membr. Sci. – volume: 242 start-page: 97 year: 2004 end-page: 105 ident: bib7 article-title: Removal of metal complexes by nanofiltration in a TCF pulp mill: technical and economic feasibility publication-title: J. Membr. Sci. – volume: 38 start-page: 529 year: 1998 ident: 10.1016/j.memsci.2013.10.056_bib4 article-title: Cadmium salts transport through a nanofiltration membrane: experimental results and model predictions publication-title: Water Sci. Technol. doi: 10.1016/S0273-1223(98)00554-X – volume: 168 start-page: 241 year: 2004 ident: 10.1016/j.memsci.2013.10.056_bib8 article-title: Potential use of nanofiltration membranes in treatment of industrial wastewater from Ni–P electroless plating publication-title: Desalination doi: 10.1016/j.desal.2004.07.004 – ident: 10.1016/j.memsci.2013.10.056_bib31 – volume: 168 start-page: 135 year: 2000 ident: 10.1016/j.memsci.2013.10.056_bib5 article-title: Mechanisms involved in cadmium salts transport through a nanofiltration membrane. Characterization and distribution publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(99)00314-2 – volume: 206 start-page: 424 year: 2007 ident: 10.1016/j.memsci.2013.10.056_bib53 article-title: Coupled model of file theory and the Nernst–Planck equation in nanofiltration publication-title: Desalination doi: 10.1016/j.desal.2006.03.577 – volume: 18 start-page: 105 year: 2001 ident: 10.1016/j.memsci.2013.10.056_bib25 article-title: Role of charge (Donnan) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane publication-title: Environ. Eng. Sci. doi: 10.1089/10928750151132311 – volume: 45 start-page: 7729 year: 2006 ident: 10.1016/j.memsci.2013.10.056_bib33 article-title: Studies on the oxidation of As(III) to As(V) by in-situ generated hypochlorite publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060339f – volume: 231 start-page: 37 year: 2004 ident: 10.1016/j.memsci.2013.10.056_bib48 article-title: Mechanism of nitrate ions transfer in nanofiltration depending on pressure, pH, concentration and medium composition publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2003.11.003 – volume: 28 start-page: 350 year: 1956 ident: 10.1016/j.memsci.2013.10.056_bib35 article-title: Colorimetric method for determination of sugars and related substances publication-title: Anal. Chem. doi: 10.1021/ac60111a017 – volume: 131 start-page: 117 year: 2000 ident: 10.1016/j.memsci.2013.10.056_bib37 article-title: Simple technique for measuring the concentration polarization level in a reverse osmosis system publication-title: Desalination doi: 10.1016/S0011-9164(00)90012-2 – volume: 191 start-page: 109 year: 2001 ident: 10.1016/j.memsci.2013.10.056_bib14 article-title: Flow and mass transfer modelling of nanofiltration publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(01)00458-6 – volume: 255 start-page: 157 year: 2005 ident: 10.1016/j.memsci.2013.10.056_bib3 article-title: The role of adsorption on nanofiltration of azo dyes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.01.031 – volume: 57 start-page: 2921 year: 2002 ident: 10.1016/j.memsci.2013.10.056_bib54 article-title: Electrolyte transport through amphoteric nanofiltration membranes publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(02)00188-4 – volume: 211–212 start-page: 281 year: 2012 ident: 10.1016/j.memsci.2013.10.056_bib34 article-title: As(III) oxidation by MnO2 coated PEEK-WC nanostructured capsules publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.11.023 – start-page: 10815 year: 2000 ident: 10.1016/j.memsci.2013.10.056_bib41 article-title: Interpretation of infrared spectra, a practical approach – volume: 96 start-page: 84 year: 2004 ident: 10.1016/j.memsci.2013.10.056_bib32 article-title: As(III) oxidation using chemical and solid-phase oxidants publication-title: J. Am. Water Works Assoc. doi: 10.1002/j.1551-8833.2004.tb10536.x – volume: 44 start-page: 97 year: 2010 ident: 10.1016/j.memsci.2013.10.056_bib29 article-title: Influence of operating parameters on the arsenic removal by nanofiltration publication-title: Water Res. doi: 10.1016/j.watres.2009.09.007 – volume: 172 start-page: 113 year: 2000 ident: 10.1016/j.memsci.2013.10.056_bib44 article-title: Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)00316-1 – volume: 30 start-page: 47 year: 2003 ident: 10.1016/j.memsci.2013.10.056_bib21 article-title: Retention of mineral salts by a polyamide nanofiltration membrane publication-title: Sep. Purif. Technol. doi: 10.1016/S1383-5866(02)00107-7 – volume: 42 start-page: 173 year: 2000 ident: 10.1016/j.memsci.2013.10.056_bib23 article-title: Modeling of arsenic rejection considering affinity and steric hindrance effect in nanofiltration membranes publication-title: Water Sci. Technol. doi: 10.2166/wst.2000.0376 – volume: 103 start-page: 117 year: 1995 ident: 10.1016/j.memsci.2013.10.056_bib12 article-title: Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell–Meyer–Sievers model publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(94)00317-R – start-page: 348 year: 2012 ident: 10.1016/j.memsci.2013.10.056_bib30 article-title: Arsenic removal by membrane processes: modeling and applications – volume: 211 start-page: 51 year: 2003 ident: 10.1016/j.memsci.2013.10.056_bib20 article-title: Modeling of cadmium salts rejection through a nanofiltration membrane: relationships between solute concentration and transport parameters publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(02)00328-9 – volume: 198 start-page: 285 year: 2002 ident: 10.1016/j.memsci.2013.10.056_bib15 article-title: Rejection of single salts versus transmembrane volume flow in RO/NF: thermodynamic properties, model of constant coefficients, and its modification publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(01)00668-8 – volume: 211 start-page: 251 year: 2003 ident: 10.1016/j.memsci.2013.10.056_bib2 article-title: Nanofiltration-based diafiltration process for solvent exchange in pharmaceutical manufacturing publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(02)00423-4 – volume: 103 start-page: 77 year: 2003 ident: 10.1016/j.memsci.2013.10.056_bib22 article-title: Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(02)00094-5 – volume: 22,23 start-page: 169 year: 2001 ident: 10.1016/j.memsci.2013.10.056_bib18 article-title: Modeling the retention of ionic components for different nanofiltration membranes publication-title: Sep. Purif. Technol. doi: 10.1016/S1383-5866(00)00163-5 – volume: 196 start-page: 125 year: 2002 ident: 10.1016/j.memsci.2013.10.056_bib1 article-title: Purification of heterocyclic drug derivatives from concentrated saline solution by nanofiltration publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(01)00601-9 – volume: 209 start-page: 283 year: 2002 ident: 10.1016/j.memsci.2013.10.056_bib43 article-title: TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(02)00356-3 – volume: 245 start-page: 82 year: 2009 ident: 10.1016/j.memsci.2013.10.056_bib28 article-title: Performance and mechanism of arsenic removal from water by a nanofiltration membrane publication-title: Desalination doi: 10.1016/j.desal.2008.04.047 – volume: 68 start-page: 4501 year: 1996 ident: 10.1016/j.memsci.2013.10.056_bib38 article-title: Speciation of arsenic compounds using HPLC at elevated temperature and selective hydride-generation atomic fluorescence detection publication-title: Anal. Chem. doi: 10.1021/ac960744o – volume: 120 start-page: 211 year: 1998 ident: 10.1016/j.memsci.2013.10.056_bib50 article-title: Nanofiltration of combined salt and sugar solutions: coupling between retentions publication-title: Desalination doi: 10.1016/S0011-9164(98)00219-7 – volume: 204 start-page: 271 year: 2002 ident: 10.1016/j.memsci.2013.10.056_bib51 article-title: The possibility of separating saccharides from a NaCl solution by using nanofiltration in diafiltration mode publication-title: Journal of Membrane Science doi: 10.1016/S0376-7388(02)00050-9 – volume: 34 start-page: 3009 year: 1999 ident: 10.1016/j.memsci.2013.10.056_bib40 article-title: Analysis of the salt retention of nanofiltration membranes using the Donnan-steric partitioning pore model publication-title: Sep. Sci. Technol. doi: 10.1081/SS-100100819 – volume: 35 start-page: 3008 year: 2001 ident: 10.1016/j.memsci.2013.10.056_bib19 article-title: Membrane rejection of nitrogen compounds publication-title: Environ. Sci. Technol. doi: 10.1021/es0018724 – volume: 130 start-page: 275 year: 1997 ident: 10.1016/j.memsci.2013.10.056_bib36 article-title: Stagnant film model for concentration polarization in membrane systems publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(97)00006-9 – volume: 135 start-page: 19 year: 1997 ident: 10.1016/j.memsci.2013.10.056_bib16 article-title: The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(97)00125-7 – volume: 76 start-page: 885 year: 1998 ident: 10.1016/j.memsci.2013.10.056_bib55 article-title: Characterization and prediction of nanofiltration membrane performance—a general assessment publication-title: Chem. Eng. Res. Des. doi: 10.1205/026387698525685 – volume: 172 start-page: 173 year: 2005 ident: 10.1016/j.memsci.2013.10.056_bib27 article-title: Effect of operating conditions in removal of arsenic from water by nanofiltration membrane publication-title: Desalination doi: 10.1016/j.desal.2004.08.027 – volume: 15 start-page: 19 year: 1999 ident: 10.1016/j.memsci.2013.10.056_bib46 article-title: Modelling the rejection of nanofiltration membrane using zeta potential measurements publication-title: Sep. Purif. Technol. doi: 10.1016/S1383-5866(98)00050-1 – volume: 122 start-page: 435 year: 2003 ident: 10.1016/j.memsci.2013.10.056_bib10 article-title: Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(02)00308-1 – volume: 112 start-page: 263 year: 1996 ident: 10.1016/j.memsci.2013.10.056_bib13 article-title: Characterization and prediction of separation performance of nanofiltration membranes publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(95)00302-9 – volume: 44 start-page: 1799 year: 1998 ident: 10.1016/j.memsci.2013.10.056_bib52 article-title: Diafiltration by nanofiltration: prediction and optimization publication-title: AIChE J. doi: 10.1002/aic.690440811 – volume: 145 start-page: 257 year: 2002 ident: 10.1016/j.memsci.2013.10.056_bib9 article-title: Rejection characteristics of organic and inorganic pollutants by ultra low-pressure nanofiltration of surface water for drinking water treatment publication-title: Desalination doi: 10.1016/S0011-9164(02)00420-4 – volume: 27 start-page: 229 year: 1958 ident: 10.1016/j.memsci.2013.10.056_bib11 article-title: Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes publication-title: Biochim. Biophys. Acta doi: 10.1016/0006-3002(58)90330-5 – volume: 40 start-page: 3339 year: 2005 ident: 10.1016/j.memsci.2013.10.056_bib49 article-title: Influence of chloride, nitrate, and sulphate on the removal of fluoride ions by using nanofiltration membranes publication-title: Sep. Sci. Technol. doi: 10.1080/01496390500423706 – start-page: 1022 year: 1996 ident: 10.1016/j.memsci.2013.10.056_bib45 – volume: 34 start-page: 3710 year: 2000 ident: 10.1016/j.memsci.2013.10.056_bib47 article-title: Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics publication-title: Environ. Sci. Technol. doi: 10.1021/es0008620 – volume: 126 start-page: 91 year: 1997 ident: 10.1016/j.memsci.2013.10.056_bib17 article-title: Characterization of nanofiltration membranes for predictive purposes—use of salts, uncharged solutes and atomic force microscopy publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(96)00276-1 – volume: 281 start-page: 307 year: 2006 ident: 10.1016/j.memsci.2013.10.056_bib6 article-title: Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.03.045 – volume: 242 start-page: 97 year: 2004 ident: 10.1016/j.memsci.2013.10.056_bib7 article-title: Removal of metal complexes by nanofiltration in a TCF pulp mill: technical and economic feasibility publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2004.05.012 – volume: 130 start-page: 265 year: 2000 ident: 10.1016/j.memsci.2013.10.056_bib24 article-title: Arsenic removal from drinking water by a "loose" nanofiltration membrane publication-title: Desalination doi: 10.1016/S0011-9164(00)00091-6 – volume: 39 start-page: 3833 year: 2005 ident: 10.1016/j.memsci.2013.10.056_bib39 article-title: Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal publication-title: Environ. Sci. Technol. doi: 10.1021/es048179r – volume: 48 start-page: 1165 year: 2007 ident: 10.1016/j.memsci.2013.10.056_bib42 article-title: A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly (ethylene glycol) publication-title: Polymer doi: 10.1016/j.polymer.2006.12.046 – volume: 36 start-page: 3371 year: 2002 ident: 10.1016/j.memsci.2013.10.056_bib26 article-title: Performance of nanofiltration for arsenic removal publication-title: Water Res. doi: 10.1016/S0043-1354(02)00037-4 |
SSID | ssj0017089 |
Score | 2.3955455 |
Snippet | Nanofiltration (NF) membranes, DK and DL, were characterized by attenuated total reflection-Fourier transform infrared spectroscopy, surface charge titration,... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 42 |
SubjectTerms | Arsenate Arsenates Arsenic artificial membranes Chemistry Colloidal state and disperse state Convection Diffusion Electromigration Exact sciences and technology General and physical chemistry infrared spectroscopy ionic strength mass transfer Mathematical models Membranes moieties Nanofiltration polyamides porosity Rejection titration Transport |
Title | Rejection and modeling of arsenate by nanofiltration: Contributions of convection, diffusion and electromigration to arsenic transport |
URI | https://dx.doi.org/10.1016/j.memsci.2013.10.056 https://www.proquest.com/docview/1751210232 https://www.proquest.com/docview/1800441431 https://www.proquest.com/docview/2101318331 |
Volume | 453 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWq7gWEVsuXKLCVkfaI26R2E5dbVW1VQPSwUKm3yHFslGrrVDQ97IUjv5sZJ66o-FiJY5zxJPE49rM8fo-Qqxw5zU1UMDtOBROwXGNSTmKWA7yH2caKWOHh5E_LZLESH9bjdYfMwlkYTKtsx_5mTPejdVsybFtzuCvL4ecIiUi4lLghI-GReIJdpNjLB9-PaR5xGnkZPDRmaB2Oz_kcr63ZgmtM8OIDzPFCGes_T0-PdmoPjWYbtYvfBm4_G80vyHkLI-m0edPHpGPcE_LwF3LBp-THjdn4PCtHlSuol7yBG7SyFBazxgHIpPkddcqhanfLnvuOIl1VEMHao7HPS_d-3lKUUznsg8tWQmdbfm0q07pqXJea1oE0_RlZza-_zBasVV1gWqSjmhUTqzSgOmG1LKRQuEDjWkZc6GQi7IjnkVRxkScpII1YpcbaAkoBecDtBCDAc9J1lTMvCJVcW62LiRojd3qicmUiYbTlNlJgKHqEh8bOdEtJjsoYt1nIPdtkTYgyDBGWQoh6hB1r7RpKjnvs0xDH7KRrZTBr3FOzfxL24-OQpA4FnnrkTegHGfyWuNeinKkO-wxQmadm46N_2EjcTgfAGv_dBnzEOOzy-OV_f8Yr8gCuRJM595p0628HcwlQqs77_l_pk7Pp-4-L5U9iHiG9 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgCEEE-xBYqR4Ia7SexNvEgcEFBt6eMArdSbcRwbbcV6V01WqBeO_CH-IDOOvaLiUQmpV78Se5KZsfz5-wh5ViOnuc0a5kaVYAK2a0zKcc5qSO8h2jiRa7ycvH9QTo7E--PR8Rr5ke7CIKwy-v7epwdvHUuGcTWHi-l0-DFDIhIuJR7ISHhkRFbu2rOvsG9rX-28BSM_L4rtd4dvJixKCzAjqqJjzdhpA6mLcEY2UmjchXAjMy5MORau4HUmdd7UZQXhNNeVda6BUgivUF0GtgPw-1cEuAuUTdj6tsKV5FUWdPfw7Ri-XrqvF0BlMzuDuSCijG8hqAx1s_8cD28sdAtWcr28xm-RIoS_7VvkZsxb6et-aW6TNevvkOu_sBneJd8_2JMA7PJU-4YGjR2ooHNHYfdsPWS1tD6jXnuUCY90vS8p8mMl1a0WGwcgfBjnBUX9lmWbhoyaPbPp574z7eb90FNDu8TSfo8cXYot7pN1P_f2AaGSG2dMM9YjJGsvda1tJqxx3GUaGooB4WmxlYkc6CjF8UUlsNuJ6k2k0ERYCiYaELbqteg5QC5oXyU7qnPfsoIwdUHPzXNmXz0OWfFQUWpAnqbvQIEfwMMd7e182SpIAwMXHC_-0Ubi-T1kyPnf28AYOfp5nm_89zSekKuTw_09tbdzsPuQXIMa0cP2HpH17nRpH0Me19Wb4b-h5NNl_6g_AayoXB8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rejection+and+modeling+of+arsenate+by+nanofiltration%3A+Contributions+of+convection%2C+diffusion+and+electromigration+to+arsenic+transport&rft.jtitle=Journal+of+membrane+science&rft.au=Fang%2C+Jun&rft.au=Deng%2C+Baolin&rft.date=2014-03-01&rft.issn=0376-7388&rft.volume=453&rft.spage=42&rft.epage=51&rft_id=info:doi/10.1016%2Fj.memsci.2013.10.056&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |