Rejection and modeling of arsenate by nanofiltration: Contributions of convection, diffusion and electromigration to arsenic transport

Nanofiltration (NF) membranes, DK and DL, were characterized by attenuated total reflection-Fourier transform infrared spectroscopy, surface charge titration, pore size determination and salt rejection. The results showed both membranes have amide I and carbonyl groups on their surfaces, and have th...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 453; pp. 42 - 51
Main Authors Fang, Jun, Deng, Baolin
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.03.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanofiltration (NF) membranes, DK and DL, were characterized by attenuated total reflection-Fourier transform infrared spectroscopy, surface charge titration, pore size determination and salt rejection. The results showed both membranes have amide I and carbonyl groups on their surfaces, and have the same basic structure of polyamide layer sitting on the top of a polysulfone layer. The DK membrane carries more negative charges in the entire pH range investigated. Arsenate rejections by the NF membranes were evaluated with a crossflow test setup. The effects of pH, ionic strength, operating pressure, arsenate initial concentration on the membrane performance were investigated. Mass transfer coefficients of the membranes were determined experimentally. The Donann Steric Pore Model and concentration polarization film theory were applied to calculate the arsenic rejection rate. The rejection mechanism was interpreted by calculating the contributions of convection, diffusion, and electrostatic migration to arsenic transport through the membranes. The calculated results showed that the contribution of diffusive transport dominated at low flux, and convection and electromigrative transport, especially the latter, play an increasingly important role at a high flux. •As(V) rejection varied when operating parameters changed.•DSPM model and concentration polarization theory well predicted As(V) rejection.•With normalized volume charges |ξ|>10, diffusion dominates at low flux.•Contribution of diffusion decreased with the increasing flux.•The convection and electromigration play an increasing critical role at a high flux.
AbstractList Nanofiltration (NF) membranes, DK and DL, were characterized by attenuated total reflection-Fourier transform infrared spectroscopy, surface charge titration, pore size determination and salt rejection. The results showed both membranes have amide I and carbonyl groups on their surfaces, and have the same basic structure of polyamide layer sitting on the top of a polysulfone layer. The DK membrane carries more negative charges in the entire pH range investigated. Arsenate rejections by the NF membranes were evaluated with a crossflow test setup. The effects of pH, ionic strength, operating pressure, arsenate initial concentration on the membrane performance were investigated. Mass transfer coefficients of the membranes were determined experimentally. The Donann Steric Pore Model and concentration polarization film theory were applied to calculate the arsenic rejection rate. The rejection mechanism was interpreted by calculating the contributions of convection, diffusion, and electrostatic migration to arsenic transport through the membranes. The calculated results showed that the contribution of diffusive transport dominated at low flux, and convection and electromigrative transport, especially the latter, play an increasingly important role at a high flux.
Nanofiltration (NF) membranes, DK and DL, were characterized by attenuated total reflection-Fourier transform infrared spectroscopy, surface charge titration, pore size determination and salt rejection. The results showed both membranes have amide I and carbonyl groups on their surfaces, and have the same basic structure of polyamide layer sitting on the top of a polysulfone layer. The DK membrane carries more negative charges in the entire pH range investigated. Arsenate rejections by the NF membranes were evaluated with a crossflow test setup. The effects of pH, ionic strength, operating pressure, arsenate initial concentration on the membrane performance were investigated. Mass transfer coefficients of the membranes were determined experimentally. The Donann Steric Pore Model and concentration polarization film theory were applied to calculate the arsenic rejection rate. The rejection mechanism was interpreted by calculating the contributions of convection, diffusion, and electrostatic migration to arsenic transport through the membranes. The calculated results showed that the contribution of diffusive transport dominated at low flux, and convection and electromigrative transport, especially the latter, play an increasingly important role at a high flux. •As(V) rejection varied when operating parameters changed.•DSPM model and concentration polarization theory well predicted As(V) rejection.•With normalized volume charges |ξ|>10, diffusion dominates at low flux.•Contribution of diffusion decreased with the increasing flux.•The convection and electromigration play an increasing critical role at a high flux.
Author Deng, Baolin
Fang, Jun
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-9239-5833
  surname: Fang
  fullname: Fang, Jun
  email: jun.fang@dcwater.com
  organization: OMAP Program at District of Columbia Water and Sewer Authority, Delon Hampton and Associates, Chartered, Washington, DC 20032, USA
– sequence: 2
  givenname: Baolin
  surname: Deng
  fullname: Deng, Baolin
  email: dengb@missouri.edu
  organization: Department of Civil and Environmental Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28352147$$DView record in Pascal Francis
BookMark eNqNkctKJDEYhbNwwMv4Bi6yEWZh9-TWlZQLYWicCwgDouuQTv5ImqqkJ0kLvoDPbcrSzSzGWYWcfOcQzjlGBzFFQOiMkiUltPu6XY4wFhuWjFDepCVZdQfoiHDZLSRX6hAdl7IlhEqi-iP0fAtbsDWkiE10eEwOhhAfcPLY5ALRVMCbJxxNTD4MNZsJvcTrFGsOm_10KxNsU3yccy6wC97vy3skDE3PaQwPsxnXNEcHi1teLLuU62f0yZuhwOnbeYLuv1_frX8ubn7_-LX-drOwQrK6cL03tudMeKucEqZnoudWES5s1wvP-IYoQ92mk30rw0jw3jVVrkh77gjjJ-jLnLvL6c8eStVjKBaGwURI-6JZs3GqOKcfolQRIgQV_4PKFW3JjE8fOH9DTbFm8K0AG4re5TCa_KSZ4itGhWzc5czZnErJ4LUN9bW_1lkYNCV6mltv9Ty3nuae1DZ3M4u_zO_5H9iuZhu0BR4DZN0IiBZcyG1D7VL4d8ALsqPMRQ
CODEN JMESDO
CitedBy_id crossref_primary_10_1080_19443994_2016_1140086
crossref_primary_10_1021_acs_iecr_7b01440
crossref_primary_10_1039_C6EW00001K
crossref_primary_10_1016_j_cej_2019_122921
crossref_primary_10_1016_j_desal_2016_06_023
crossref_primary_10_1016_j_jwpe_2023_103587
crossref_primary_10_1007_s13762_021_03660_0
crossref_primary_10_1016_j_seppur_2015_02_017
crossref_primary_10_1002_macp_201500433
crossref_primary_10_1021_acs_est_3c02286
crossref_primary_10_5004_dwt_2022_28398
crossref_primary_10_1007_s11696_021_01694_9
crossref_primary_10_1016_j_desal_2022_115740
crossref_primary_10_1002_aic_17865
crossref_primary_10_1016_j_desal_2019_04_028
crossref_primary_10_1016_j_memsci_2020_118631
crossref_primary_10_1039_C8RA00236C
crossref_primary_10_3390_membranes10080178
crossref_primary_10_1016_j_memsci_2014_08_045
crossref_primary_10_1016_j_psep_2023_09_036
crossref_primary_10_1016_j_jenvman_2018_06_032
crossref_primary_10_1016_j_cej_2022_138947
crossref_primary_10_1016_j_pnucene_2016_10_005
crossref_primary_10_1186_s40201_015_0217_8
crossref_primary_10_1016_j_cej_2018_03_070
crossref_primary_10_1016_j_memsci_2020_117817
crossref_primary_10_1016_j_seppur_2015_05_027
crossref_primary_10_1016_j_psep_2020_11_033
crossref_primary_10_23939_chcht18_02_187
crossref_primary_10_1016_j_cej_2019_123348
crossref_primary_10_1016_j_jhazmat_2018_07_047
crossref_primary_10_5004_dwt_2017_21051
crossref_primary_10_1007_s11696_021_01990_4
crossref_primary_10_1080_01496395_2017_1279182
crossref_primary_10_1016_j_psep_2017_08_001
crossref_primary_10_1016_j_memsci_2017_09_067
crossref_primary_10_3390_nano10071323
crossref_primary_10_1016_j_scitotenv_2022_154287
crossref_primary_10_1007_s11356_020_11613_2
crossref_primary_10_1016_j_seppur_2020_118248
crossref_primary_10_1590_0104_6632_20190364s20190068
crossref_primary_10_1016_j_jer_2024_01_001
crossref_primary_10_1038_s44221_024_00220_x
crossref_primary_10_1016_j_jics_2025_101579
crossref_primary_10_5004_dwt_2019_24604
crossref_primary_10_1016_j_cej_2019_122786
crossref_primary_10_1016_j_memsci_2014_05_040
crossref_primary_10_1016_j_seppur_2022_122308
crossref_primary_10_1007_s11051_019_4665_4
crossref_primary_10_1016_j_memsci_2015_09_062
crossref_primary_10_3390_molecules25214911
crossref_primary_10_1002_wer_1326
crossref_primary_10_1186_s40064_016_2832_y
crossref_primary_10_1007_s13369_018_3096_3
crossref_primary_10_1016_j_jhazmat_2020_124129
crossref_primary_10_1016_j_hydromet_2018_04_012
crossref_primary_10_1016_j_jics_2024_101408
crossref_primary_10_1007_s11783_019_1105_8
crossref_primary_10_1038_s41598_020_63356_2
crossref_primary_10_1007_s11356_017_9282_0
crossref_primary_10_1016_j_memsci_2022_120681
crossref_primary_10_1016_j_chemosphere_2022_136987
crossref_primary_10_1021_acs_jced_9b00936
crossref_primary_10_1080_00986445_2018_1503174
crossref_primary_10_1016_j_seppur_2022_120914
crossref_primary_10_3390_membranes12121216
crossref_primary_10_1080_01932691_2016_1263798
crossref_primary_10_1016_j_seppur_2019_01_028
crossref_primary_10_1039_C6RA23061J
Cites_doi 10.1016/S0273-1223(98)00554-X
10.1016/j.desal.2004.07.004
10.1016/S0376-7388(99)00314-2
10.1016/j.desal.2006.03.577
10.1089/10928750151132311
10.1021/ie060339f
10.1016/j.memsci.2003.11.003
10.1021/ac60111a017
10.1016/S0011-9164(00)90012-2
10.1016/S0376-7388(01)00458-6
10.1016/j.memsci.2005.01.031
10.1016/S0009-2509(02)00188-4
10.1016/j.jhazmat.2011.11.023
10.1002/j.1551-8833.2004.tb10536.x
10.1016/j.watres.2009.09.007
10.1016/S0376-7388(00)00316-1
10.1016/S1383-5866(02)00107-7
10.2166/wst.2000.0376
10.1016/0376-7388(94)00317-R
10.1016/S0376-7388(02)00328-9
10.1016/S0376-7388(01)00668-8
10.1016/S0376-7388(02)00423-4
10.1016/S0001-8686(02)00094-5
10.1016/S1383-5866(00)00163-5
10.1016/S0376-7388(01)00601-9
10.1016/S0376-7388(02)00356-3
10.1016/j.desal.2008.04.047
10.1021/ac960744o
10.1016/S0011-9164(98)00219-7
10.1016/S0376-7388(02)00050-9
10.1081/SS-100100819
10.1021/es0018724
10.1016/S0376-7388(97)00006-9
10.1016/S0376-7388(97)00125-7
10.1205/026387698525685
10.1016/j.desal.2004.08.027
10.1016/S1383-5866(98)00050-1
10.1016/S0269-7491(02)00308-1
10.1016/0376-7388(95)00302-9
10.1002/aic.690440811
10.1016/S0011-9164(02)00420-4
10.1016/0006-3002(58)90330-5
10.1080/01496390500423706
10.1021/es0008620
10.1016/S0376-7388(96)00276-1
10.1016/j.memsci.2006.03.045
10.1016/j.memsci.2004.05.012
10.1016/S0011-9164(00)00091-6
10.1021/es048179r
10.1016/j.polymer.2006.12.046
10.1016/S0043-1354(02)00037-4
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QH
7UA
C1K
F1W
H97
L.G
7SR
8BQ
8FD
JG9
7S9
L.6
DOI 10.1016/j.memsci.2013.10.056
DatabaseName CrossRef
Pascal-Francis
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Materials Research Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EndPage 51
ExternalDocumentID 28352147
10_1016_j_memsci_2013_10_056
S0376738813008685
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABXRA
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFPUW
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSH
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AAQXK
AAYXX
ABWVN
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGQPQ
AI.
AIGII
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
VH1
WUQ
AACTN
IQODW
7QH
7UA
C1K
F1W
H97
L.G
7SR
8BQ
8FD
JG9
7S9
L.6
ID FETCH-LOGICAL-c472t-d9fac9324fc8d84a92493c8034c694f23b08a1db679101a7effdf237506946023
IEDL.DBID .~1
ISSN 0376-7388
IngestDate Fri Jul 11 09:29:39 EDT 2025
Fri Jul 11 04:39:31 EDT 2025
Fri Jul 11 06:34:25 EDT 2025
Wed Apr 02 07:26:30 EDT 2025
Thu Apr 24 22:58:52 EDT 2025
Tue Jul 01 03:37:55 EDT 2025
Thu Jul 17 02:00:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Electromigration
Nanofiltration
Transport
Diffusion
Arsenate
Convection
Membrane separation
Arsenic
Arsenates
Membrane
Modeling
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-d9fac9324fc8d84a92493c8034c694f23b08a1db679101a7effdf237506946023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9239-5833
PQID 1751210232
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_2101318331
proquest_miscellaneous_1800441431
proquest_miscellaneous_1751210232
pascalfrancis_primary_28352147
crossref_citationtrail_10_1016_j_memsci_2013_10_056
crossref_primary_10_1016_j_memsci_2013_10_056
elsevier_sciencedirect_doi_10_1016_j_memsci_2013_10_056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of membrane science
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Schaep, Vandecasteele, Mohammad, Bowen (bib40) 1999; 34
Oh, Urase, Kitawaki, Rahman, Rhahman, Yamamoto (bib23) 2000; 42
Freger, Gilron, Belfer (bib43) 2002; 209
Szymczyk, Labbez, Fievet, Vidonne, Foissy, Pagetti (bib22) 2003; 103
Bowen, Mukhtar (bib13) 1996; 112
Gu, Fang, Deng (bib39) 2005; 39
Schaep, Vandecasteele, Mohammad, Bowen (bib18) 2001; 22,23
Belfer, Fainchtain, Purinson, Kedem (bib44) 2000; 172
Ghurye, Clifford (bib32) 2004; 96
Gomes, Goncalves, Norberta de Pinho (bib3) 2005; 255
Garba, Taha, Gondrexon, Cabon, Dorange (bib5) 2000; 168
Sheth, Qin, Sirkar, Baltzis (bib2) 2003; 211
Vasudevan, Mohan, Sozhan, Raghavendran, Murugan (bib33) 2006; 45
Wang, Chung (bib6) 2006; 281
Le, Ma, Wong (bib38) 1996; 68
Stumm, Morgan (bib45) 1996
Bowen, Mohammad (bib52) 1998; 44
Capelle, Moulin, Charbit, Gallo (bib1) 2002; 196
Geraldes, Semiao, de Pinho (bib14) 2001; 191
Seidel, Waypa, Elimelech (bib25) 2001; 18
Figoli, Cassano, Criscuoli, Mozumder, Uddin, Islam, Drioli (bib29) 2010; 44
Vrijenhoek, Waypa (bib24) 2000; 130
Kedem, Katchalsky (bib11) 1958; 27
Wang, Tsuru, Nakao, Kimura (bib12) 1995; 103
Sutzkover, Hasson, Semiat (bib37) 2000; 131
Bowen, Mohammad, Hilal (bib17) 1997; 126
Garba, Taha, Cabon, Dorange (bib20) 2003; 211
Nguyen, Bang, Cho, Kim (bib28) 2009; 245
Thanuttamavong, Yamamoto, Oh, Choo, Choi (bib9) 2002; 145
Chaabane, Taha, Taleb Ahmed, Maachi, Dorange (bib53) 2007; 206
Van der Bruggen, Vandecasteele (bib10) 2003; 122
Paugam, Taha, Dorange, Jaouen, Quemeneur (bib48) 2004; 231
Lee, Lueptow (bib19) 2001; 35
Zydney (bib36) 1997; 130
Coates (bib41) 2000
Saitua, Campderros, Cerutti, Padilla (bib27) 2005; 172
Dubois, Gilles, Hamilton, Rebers, Smith (bib35) 1956; 28
Mohammad, Othaman, Hilal (bib8) 2004; 168
Labbez, Fievet, Szymczyk, Vidonne, Foissy, Pagetti (bib21) 2003; 30
Sato, Kang, Kamei, Magara (bib26) 2002; 36
Kang, Liu, Lin, Cao, Yuan (bib42) 2007; 48
Criscuoli, Majumdar, Figoli, Sahoo, Bafaro, Bandyopadhyay, Drioli (bib34) 2012; 211–212
Bowen, Mohammad (bib55) 1998; 76
Fievet, Labbez, Szymczyk, Vidonne, Foissy, Pagetti (bib54) 2002; 57
Lastra, Gomez, Romero, Francisco, Luque, Alvarez (bib7) 2004; 242
Wang, Zhang, Ouyang (bib51) 2002; 204
J.G. Hering, M. Elimelech, Arsenic Removal by Enhanced Coagulation and Membrane Processes, 1997, 188 pp.
Wang, Tsuru, Nakao, Kimura (bib16) 1997; 135
Hagmeyer, Gimbel (bib46) 1999; 15
Vellenga, Traegardh (bib50) 1998; 120
Garba, Taha, Gondrexon, Dorange (bib4) 1998; 38
Fang, Deng (bib30) 2012
Diawara, Paugam, Pontie (bib49) 2005; 40
Yaroshchuk (bib15) 2002; 198
Childress, Elimelech (bib47) 2000; 34
Criscuoli (10.1016/j.memsci.2013.10.056_bib34) 2012; 211–212
Saitua (10.1016/j.memsci.2013.10.056_bib27) 2005; 172
Fang (10.1016/j.memsci.2013.10.056_bib30) 2012
Kedem (10.1016/j.memsci.2013.10.056_bib11) 1958; 27
Coates (10.1016/j.memsci.2013.10.056_bib41) 2000
Mohammad (10.1016/j.memsci.2013.10.056_bib8) 2004; 168
Labbez (10.1016/j.memsci.2013.10.056_bib21) 2003; 30
Wang (10.1016/j.memsci.2013.10.056_bib16) 1997; 135
Lee (10.1016/j.memsci.2013.10.056_bib19) 2001; 35
Van der Bruggen (10.1016/j.memsci.2013.10.056_bib10) 2003; 122
Garba (10.1016/j.memsci.2013.10.056_bib4) 1998; 38
Bowen (10.1016/j.memsci.2013.10.056_bib13) 1996; 112
Garba (10.1016/j.memsci.2013.10.056_bib20) 2003; 211
Paugam (10.1016/j.memsci.2013.10.056_bib48) 2004; 231
Nguyen (10.1016/j.memsci.2013.10.056_bib28) 2009; 245
Chaabane (10.1016/j.memsci.2013.10.056_bib53) 2007; 206
Vasudevan (10.1016/j.memsci.2013.10.056_bib33) 2006; 45
Wang (10.1016/j.memsci.2013.10.056_bib6) 2006; 281
Ghurye (10.1016/j.memsci.2013.10.056_bib32) 2004; 96
Sutzkover (10.1016/j.memsci.2013.10.056_bib37) 2000; 131
Vellenga (10.1016/j.memsci.2013.10.056_bib50) 1998; 120
Diawara (10.1016/j.memsci.2013.10.056_bib49) 2005; 40
Sato (10.1016/j.memsci.2013.10.056_bib26) 2002; 36
Yaroshchuk (10.1016/j.memsci.2013.10.056_bib15) 2002; 198
Vrijenhoek (10.1016/j.memsci.2013.10.056_bib24) 2000; 130
Garba (10.1016/j.memsci.2013.10.056_bib5) 2000; 168
Szymczyk (10.1016/j.memsci.2013.10.056_bib22) 2003; 103
Childress (10.1016/j.memsci.2013.10.056_bib47) 2000; 34
Bowen (10.1016/j.memsci.2013.10.056_bib52) 1998; 44
Zydney (10.1016/j.memsci.2013.10.056_bib36) 1997; 130
Schaep (10.1016/j.memsci.2013.10.056_bib40) 1999; 34
Schaep (10.1016/j.memsci.2013.10.056_bib18) 2001; 22,23
Stumm (10.1016/j.memsci.2013.10.056_bib45) 1996
Le (10.1016/j.memsci.2013.10.056_bib38) 1996; 68
Hagmeyer (10.1016/j.memsci.2013.10.056_bib46) 1999; 15
Wang (10.1016/j.memsci.2013.10.056_bib12) 1995; 103
Kang (10.1016/j.memsci.2013.10.056_bib42) 2007; 48
Bowen (10.1016/j.memsci.2013.10.056_bib17) 1997; 126
Seidel (10.1016/j.memsci.2013.10.056_bib25) 2001; 18
Oh (10.1016/j.memsci.2013.10.056_bib23) 2000; 42
Figoli (10.1016/j.memsci.2013.10.056_bib29) 2010; 44
Thanuttamavong (10.1016/j.memsci.2013.10.056_bib9) 2002; 145
Capelle (10.1016/j.memsci.2013.10.056_bib1) 2002; 196
Dubois (10.1016/j.memsci.2013.10.056_bib35) 1956; 28
Freger (10.1016/j.memsci.2013.10.056_bib43) 2002; 209
Wang (10.1016/j.memsci.2013.10.056_bib51) 2002; 204
10.1016/j.memsci.2013.10.056_bib31
Belfer (10.1016/j.memsci.2013.10.056_bib44) 2000; 172
Gomes (10.1016/j.memsci.2013.10.056_bib3) 2005; 255
Fievet (10.1016/j.memsci.2013.10.056_bib54) 2002; 57
Gu (10.1016/j.memsci.2013.10.056_bib39) 2005; 39
Bowen (10.1016/j.memsci.2013.10.056_bib55) 1998; 76
Lastra (10.1016/j.memsci.2013.10.056_bib7) 2004; 242
Sheth (10.1016/j.memsci.2013.10.056_bib2) 2003; 211
Geraldes (10.1016/j.memsci.2013.10.056_bib14) 2001; 191
References_xml – volume: 168
  start-page: 241
  year: 2004
  end-page: 252
  ident: bib8
  article-title: Potential use of nanofiltration membranes in treatment of industrial wastewater from Ni–P electroless plating
  publication-title: Desalination
– volume: 42
  start-page: 173
  year: 2000
  end-page: 180
  ident: bib23
  article-title: Modeling of arsenic rejection considering affinity and steric hindrance effect in nanofiltration membranes
  publication-title: Water Sci. Technol.
– volume: 198
  start-page: 285
  year: 2002
  end-page: 297
  ident: bib15
  article-title: Rejection of single salts versus transmembrane volume flow in RO/NF: thermodynamic properties, model of constant coefficients, and its modification
  publication-title: J. Membr. Sci.
– volume: 38
  start-page: 529
  year: 1998
  end-page: 535
  ident: bib4
  article-title: Cadmium salts transport through a nanofiltration membrane: experimental results and model predictions
  publication-title: Water Sci. Technol.
– volume: 211
  start-page: 51
  year: 2003
  end-page: 58
  ident: bib20
  article-title: Modeling of cadmium salts rejection through a nanofiltration membrane: relationships between solute concentration and transport parameters
  publication-title: J. Membr. Sci.
– volume: 112
  start-page: 263
  year: 1996
  end-page: 274
  ident: bib13
  article-title: Characterization and prediction of separation performance of nanofiltration membranes
  publication-title: J. Membr. Sci.
– volume: 172
  start-page: 173
  year: 2005
  end-page: 180
  ident: bib27
  article-title: Effect of operating conditions in removal of arsenic from water by nanofiltration membrane
  publication-title: Desalination
– volume: 103
  start-page: 117
  year: 1995
  end-page: 133
  ident: bib12
  article-title: Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell–Meyer–Sievers model
  publication-title: J. Membr. Sci.
– start-page: 10815
  year: 2000
  end-page: 10837
  ident: bib41
  article-title: Interpretation of infrared spectra, a practical approach
  publication-title: Encyclopedia of Analytical Chemistry
– volume: 172
  start-page: 113
  year: 2000
  end-page: 124
  ident: bib44
  article-title: Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled
  publication-title: J. Membr. Sci.
– volume: 45
  start-page: 7729
  year: 2006
  end-page: 7732
  ident: bib33
  article-title: Studies on the oxidation of As(III) to As(V) by in-situ generated hypochlorite
  publication-title: Ind. Eng. Chem. Res.
– volume: 68
  start-page: 4501
  year: 1996
  end-page: 4506
  ident: bib38
  article-title: Speciation of arsenic compounds using HPLC at elevated temperature and selective hydride-generation atomic fluorescence detection
  publication-title: Anal. Chem.
– start-page: 1022
  year: 1996
  ident: bib45
  article-title: Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters
– volume: 57
  start-page: 2921
  year: 2002
  end-page: 2931
  ident: bib54
  article-title: Electrolyte transport through amphoteric nanofiltration membranes
  publication-title: Chem. Eng. Sci.
– volume: 126
  start-page: 91
  year: 1997
  end-page: 105
  ident: bib17
  article-title: Characterization of nanofiltration membranes for predictive purposes—use of salts, uncharged solutes and atomic force microscopy
  publication-title: J. Membr. Sci.
– volume: 204
  start-page: 271
  year: 2002
  end-page: 281
  ident: bib51
  article-title: The possibility of separating saccharides from a NaCl solution by using nanofiltration in diafiltration mode
  publication-title: Journal of Membrane Science
– volume: 145
  start-page: 257
  year: 2002
  end-page: 264
  ident: bib9
  article-title: Rejection characteristics of organic and inorganic pollutants by ultra low-pressure nanofiltration of surface water for drinking water treatment
  publication-title: Desalination
– volume: 122
  start-page: 435
  year: 2003
  end-page: 445
  ident: bib10
  article-title: Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry
  publication-title: Environ. Pollut.
– volume: 27
  start-page: 229
  year: 1958
  end-page: 246
  ident: bib11
  article-title: Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes
  publication-title: Biochim. Biophys. Acta
– volume: 28
  start-page: 350
  year: 1956
  end-page: 356
  ident: bib35
  article-title: Colorimetric method for determination of sugars and related substances
  publication-title: Anal. Chem.
– volume: 255
  start-page: 157
  year: 2005
  end-page: 165
  ident: bib3
  article-title: The role of adsorption on nanofiltration of azo dyes
  publication-title: J. Membr. Sci.
– volume: 245
  start-page: 82
  year: 2009
  end-page: 94
  ident: bib28
  article-title: Performance and mechanism of arsenic removal from water by a nanofiltration membrane
  publication-title: Desalination
– volume: 39
  start-page: 3833
  year: 2005
  end-page: 3843
  ident: bib39
  article-title: Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal
  publication-title: Environ. Sci. Technol.
– volume: 196
  start-page: 125
  year: 2002
  end-page: 141
  ident: bib1
  article-title: Purification of heterocyclic drug derivatives from concentrated saline solution by nanofiltration
  publication-title: J. Membr. Sci.
– volume: 211
  start-page: 251
  year: 2003
  end-page: 261
  ident: bib2
  article-title: Nanofiltration-based diafiltration process for solvent exchange in pharmaceutical manufacturing
  publication-title: J. Membr. Sci.
– volume: 135
  start-page: 19
  year: 1997
  end-page: 32
  ident: bib16
  article-title: The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes
  publication-title: J. Membr. Sci.
– volume: 130
  start-page: 275
  year: 1997
  end-page: 281
  ident: bib36
  article-title: Stagnant film model for concentration polarization in membrane systems
  publication-title: J. Membr. Sci.
– volume: 231
  start-page: 37
  year: 2004
  end-page: 46
  ident: bib48
  article-title: Mechanism of nitrate ions transfer in nanofiltration depending on pressure, pH, concentration and medium composition
  publication-title: J. Membr. Sci.
– volume: 22,23
  start-page: 169
  year: 2001
  end-page: 179
  ident: bib18
  article-title: Modeling the retention of ionic components for different nanofiltration membranes
  publication-title: Sep. Purif. Technol.
– volume: 211–212
  start-page: 281
  year: 2012
  end-page: 287
  ident: bib34
  article-title: As(III) oxidation by MnO2 coated PEEK-WC nanostructured capsules
  publication-title: J. Hazard. Mater.
– volume: 130
  start-page: 265
  year: 2000
  end-page: 277
  ident: bib24
  article-title: Arsenic removal from drinking water by a "loose" nanofiltration membrane
  publication-title: Desalination
– volume: 40
  start-page: 3339
  year: 2005
  end-page: 3347
  ident: bib49
  article-title: Influence of chloride, nitrate, and sulphate on the removal of fluoride ions by using nanofiltration membranes
  publication-title: Sep. Sci. Technol.
– volume: 44
  start-page: 1799
  year: 1998
  end-page: 1812
  ident: bib52
  article-title: Diafiltration by nanofiltration: prediction and optimization
  publication-title: AIChE J.
– volume: 44
  start-page: 97
  year: 2010
  end-page: 104
  ident: bib29
  article-title: Influence of operating parameters on the arsenic removal by nanofiltration
  publication-title: Water Res.
– volume: 35
  start-page: 3008
  year: 2001
  end-page: 3018
  ident: bib19
  article-title: Membrane rejection of nitrogen compounds
  publication-title: Environ. Sci. Technol.
– volume: 120
  start-page: 211
  year: 1998
  end-page: 220
  ident: bib50
  article-title: Nanofiltration of combined salt and sugar solutions: coupling between retentions
  publication-title: Desalination
– volume: 34
  start-page: 3710
  year: 2000
  end-page: 3716
  ident: bib47
  article-title: Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics
  publication-title: Environ. Sci. Technol.
– volume: 281
  start-page: 307
  year: 2006
  end-page: 315
  ident: bib6
  article-title: Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate
  publication-title: J. Membr. Sci.
– volume: 76
  start-page: 885
  year: 1998
  end-page: 893
  ident: bib55
  article-title: Characterization and prediction of nanofiltration membrane performance—a general assessment
  publication-title: Chem. Eng. Res. Des.
– volume: 34
  start-page: 3009
  year: 1999
  end-page: 3030
  ident: bib40
  article-title: Analysis of the salt retention of nanofiltration membranes using the Donnan-steric partitioning pore model
  publication-title: Sep. Sci. Technol.
– volume: 30
  start-page: 47
  year: 2003
  end-page: 55
  ident: bib21
  article-title: Retention of mineral salts by a polyamide nanofiltration membrane
  publication-title: Sep. Purif. Technol.
– volume: 18
  start-page: 105
  year: 2001
  end-page: 113
  ident: bib25
  article-title: Role of charge (Donnan) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane
  publication-title: Environ. Eng. Sci.
– reference: J.G. Hering, M. Elimelech, Arsenic Removal by Enhanced Coagulation and Membrane Processes, 1997, 188 pp.
– start-page: 348
  year: 2012
  end-page: 381
  ident: bib30
  article-title: Arsenic removal by membrane processes: modeling and applications
  publication-title: Membrane Technology and Environmental Applications
– volume: 168
  start-page: 135
  year: 2000
  end-page: 141
  ident: bib5
  article-title: Mechanisms involved in cadmium salts transport through a nanofiltration membrane. Characterization and distribution
  publication-title: J. Membr. Sci.
– volume: 36
  start-page: 3371
  year: 2002
  end-page: 3377
  ident: bib26
  article-title: Performance of nanofiltration for arsenic removal
  publication-title: Water Res.
– volume: 15
  start-page: 19
  year: 1999
  end-page: 30
  ident: bib46
  article-title: Modelling the rejection of nanofiltration membrane using zeta potential measurements
  publication-title: Sep. Purif. Technol.
– volume: 48
  start-page: 1165
  year: 2007
  end-page: 1170
  ident: bib42
  article-title: A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly (ethylene glycol)
  publication-title: Polymer
– volume: 209
  start-page: 283
  year: 2002
  end-page: 292
  ident: bib43
  article-title: TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study
  publication-title: J. Membr. Sci.
– volume: 96
  start-page: 84
  year: 2004
  end-page: 96
  ident: bib32
  article-title: As(III) oxidation using chemical and solid-phase oxidants
  publication-title: J. Am. Water Works Assoc.
– volume: 131
  start-page: 117
  year: 2000
  end-page: 127
  ident: bib37
  article-title: Simple technique for measuring the concentration polarization level in a reverse osmosis system
  publication-title: Desalination
– volume: 206
  start-page: 424
  year: 2007
  end-page: 432
  ident: bib53
  article-title: Coupled model of file theory and the Nernst–Planck equation in nanofiltration
  publication-title: Desalination
– volume: 103
  start-page: 77
  year: 2003
  end-page: 94
  ident: bib22
  article-title: Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes
  publication-title: Adv. Colloid Interface Sci.
– volume: 191
  start-page: 109
  year: 2001
  end-page: 128
  ident: bib14
  article-title: Flow and mass transfer modelling of nanofiltration
  publication-title: J. Membr. Sci.
– volume: 242
  start-page: 97
  year: 2004
  end-page: 105
  ident: bib7
  article-title: Removal of metal complexes by nanofiltration in a TCF pulp mill: technical and economic feasibility
  publication-title: J. Membr. Sci.
– volume: 38
  start-page: 529
  year: 1998
  ident: 10.1016/j.memsci.2013.10.056_bib4
  article-title: Cadmium salts transport through a nanofiltration membrane: experimental results and model predictions
  publication-title: Water Sci. Technol.
  doi: 10.1016/S0273-1223(98)00554-X
– volume: 168
  start-page: 241
  year: 2004
  ident: 10.1016/j.memsci.2013.10.056_bib8
  article-title: Potential use of nanofiltration membranes in treatment of industrial wastewater from Ni–P electroless plating
  publication-title: Desalination
  doi: 10.1016/j.desal.2004.07.004
– ident: 10.1016/j.memsci.2013.10.056_bib31
– volume: 168
  start-page: 135
  year: 2000
  ident: 10.1016/j.memsci.2013.10.056_bib5
  article-title: Mechanisms involved in cadmium salts transport through a nanofiltration membrane. Characterization and distribution
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(99)00314-2
– volume: 206
  start-page: 424
  year: 2007
  ident: 10.1016/j.memsci.2013.10.056_bib53
  article-title: Coupled model of file theory and the Nernst–Planck equation in nanofiltration
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.03.577
– volume: 18
  start-page: 105
  year: 2001
  ident: 10.1016/j.memsci.2013.10.056_bib25
  article-title: Role of charge (Donnan) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/10928750151132311
– volume: 45
  start-page: 7729
  year: 2006
  ident: 10.1016/j.memsci.2013.10.056_bib33
  article-title: Studies on the oxidation of As(III) to As(V) by in-situ generated hypochlorite
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie060339f
– volume: 231
  start-page: 37
  year: 2004
  ident: 10.1016/j.memsci.2013.10.056_bib48
  article-title: Mechanism of nitrate ions transfer in nanofiltration depending on pressure, pH, concentration and medium composition
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2003.11.003
– volume: 28
  start-page: 350
  year: 1956
  ident: 10.1016/j.memsci.2013.10.056_bib35
  article-title: Colorimetric method for determination of sugars and related substances
  publication-title: Anal. Chem.
  doi: 10.1021/ac60111a017
– volume: 131
  start-page: 117
  year: 2000
  ident: 10.1016/j.memsci.2013.10.056_bib37
  article-title: Simple technique for measuring the concentration polarization level in a reverse osmosis system
  publication-title: Desalination
  doi: 10.1016/S0011-9164(00)90012-2
– volume: 191
  start-page: 109
  year: 2001
  ident: 10.1016/j.memsci.2013.10.056_bib14
  article-title: Flow and mass transfer modelling of nanofiltration
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(01)00458-6
– volume: 255
  start-page: 157
  year: 2005
  ident: 10.1016/j.memsci.2013.10.056_bib3
  article-title: The role of adsorption on nanofiltration of azo dyes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2005.01.031
– volume: 57
  start-page: 2921
  year: 2002
  ident: 10.1016/j.memsci.2013.10.056_bib54
  article-title: Electrolyte transport through amphoteric nanofiltration membranes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(02)00188-4
– volume: 211–212
  start-page: 281
  year: 2012
  ident: 10.1016/j.memsci.2013.10.056_bib34
  article-title: As(III) oxidation by MnO2 coated PEEK-WC nanostructured capsules
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.11.023
– start-page: 10815
  year: 2000
  ident: 10.1016/j.memsci.2013.10.056_bib41
  article-title: Interpretation of infrared spectra, a practical approach
– volume: 96
  start-page: 84
  year: 2004
  ident: 10.1016/j.memsci.2013.10.056_bib32
  article-title: As(III) oxidation using chemical and solid-phase oxidants
  publication-title: J. Am. Water Works Assoc.
  doi: 10.1002/j.1551-8833.2004.tb10536.x
– volume: 44
  start-page: 97
  year: 2010
  ident: 10.1016/j.memsci.2013.10.056_bib29
  article-title: Influence of operating parameters on the arsenic removal by nanofiltration
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.09.007
– volume: 172
  start-page: 113
  year: 2000
  ident: 10.1016/j.memsci.2013.10.056_bib44
  article-title: Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)00316-1
– volume: 30
  start-page: 47
  year: 2003
  ident: 10.1016/j.memsci.2013.10.056_bib21
  article-title: Retention of mineral salts by a polyamide nanofiltration membrane
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/S1383-5866(02)00107-7
– volume: 42
  start-page: 173
  year: 2000
  ident: 10.1016/j.memsci.2013.10.056_bib23
  article-title: Modeling of arsenic rejection considering affinity and steric hindrance effect in nanofiltration membranes
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2000.0376
– volume: 103
  start-page: 117
  year: 1995
  ident: 10.1016/j.memsci.2013.10.056_bib12
  article-title: Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell–Meyer–Sievers model
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(94)00317-R
– start-page: 348
  year: 2012
  ident: 10.1016/j.memsci.2013.10.056_bib30
  article-title: Arsenic removal by membrane processes: modeling and applications
– volume: 211
  start-page: 51
  year: 2003
  ident: 10.1016/j.memsci.2013.10.056_bib20
  article-title: Modeling of cadmium salts rejection through a nanofiltration membrane: relationships between solute concentration and transport parameters
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(02)00328-9
– volume: 198
  start-page: 285
  year: 2002
  ident: 10.1016/j.memsci.2013.10.056_bib15
  article-title: Rejection of single salts versus transmembrane volume flow in RO/NF: thermodynamic properties, model of constant coefficients, and its modification
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(01)00668-8
– volume: 211
  start-page: 251
  year: 2003
  ident: 10.1016/j.memsci.2013.10.056_bib2
  article-title: Nanofiltration-based diafiltration process for solvent exchange in pharmaceutical manufacturing
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(02)00423-4
– volume: 103
  start-page: 77
  year: 2003
  ident: 10.1016/j.memsci.2013.10.056_bib22
  article-title: Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(02)00094-5
– volume: 22,23
  start-page: 169
  year: 2001
  ident: 10.1016/j.memsci.2013.10.056_bib18
  article-title: Modeling the retention of ionic components for different nanofiltration membranes
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/S1383-5866(00)00163-5
– volume: 196
  start-page: 125
  year: 2002
  ident: 10.1016/j.memsci.2013.10.056_bib1
  article-title: Purification of heterocyclic drug derivatives from concentrated saline solution by nanofiltration
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(01)00601-9
– volume: 209
  start-page: 283
  year: 2002
  ident: 10.1016/j.memsci.2013.10.056_bib43
  article-title: TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(02)00356-3
– volume: 245
  start-page: 82
  year: 2009
  ident: 10.1016/j.memsci.2013.10.056_bib28
  article-title: Performance and mechanism of arsenic removal from water by a nanofiltration membrane
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.04.047
– volume: 68
  start-page: 4501
  year: 1996
  ident: 10.1016/j.memsci.2013.10.056_bib38
  article-title: Speciation of arsenic compounds using HPLC at elevated temperature and selective hydride-generation atomic fluorescence detection
  publication-title: Anal. Chem.
  doi: 10.1021/ac960744o
– volume: 120
  start-page: 211
  year: 1998
  ident: 10.1016/j.memsci.2013.10.056_bib50
  article-title: Nanofiltration of combined salt and sugar solutions: coupling between retentions
  publication-title: Desalination
  doi: 10.1016/S0011-9164(98)00219-7
– volume: 204
  start-page: 271
  year: 2002
  ident: 10.1016/j.memsci.2013.10.056_bib51
  article-title: The possibility of separating saccharides from a NaCl solution by using nanofiltration in diafiltration mode
  publication-title: Journal of Membrane Science
  doi: 10.1016/S0376-7388(02)00050-9
– volume: 34
  start-page: 3009
  year: 1999
  ident: 10.1016/j.memsci.2013.10.056_bib40
  article-title: Analysis of the salt retention of nanofiltration membranes using the Donnan-steric partitioning pore model
  publication-title: Sep. Sci. Technol.
  doi: 10.1081/SS-100100819
– volume: 35
  start-page: 3008
  year: 2001
  ident: 10.1016/j.memsci.2013.10.056_bib19
  article-title: Membrane rejection of nitrogen compounds
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0018724
– volume: 130
  start-page: 275
  year: 1997
  ident: 10.1016/j.memsci.2013.10.056_bib36
  article-title: Stagnant film model for concentration polarization in membrane systems
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(97)00006-9
– volume: 135
  start-page: 19
  year: 1997
  ident: 10.1016/j.memsci.2013.10.056_bib16
  article-title: The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(97)00125-7
– volume: 76
  start-page: 885
  year: 1998
  ident: 10.1016/j.memsci.2013.10.056_bib55
  article-title: Characterization and prediction of nanofiltration membrane performance—a general assessment
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/026387698525685
– volume: 172
  start-page: 173
  year: 2005
  ident: 10.1016/j.memsci.2013.10.056_bib27
  article-title: Effect of operating conditions in removal of arsenic from water by nanofiltration membrane
  publication-title: Desalination
  doi: 10.1016/j.desal.2004.08.027
– volume: 15
  start-page: 19
  year: 1999
  ident: 10.1016/j.memsci.2013.10.056_bib46
  article-title: Modelling the rejection of nanofiltration membrane using zeta potential measurements
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/S1383-5866(98)00050-1
– volume: 122
  start-page: 435
  year: 2003
  ident: 10.1016/j.memsci.2013.10.056_bib10
  article-title: Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(02)00308-1
– volume: 112
  start-page: 263
  year: 1996
  ident: 10.1016/j.memsci.2013.10.056_bib13
  article-title: Characterization and prediction of separation performance of nanofiltration membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(95)00302-9
– volume: 44
  start-page: 1799
  year: 1998
  ident: 10.1016/j.memsci.2013.10.056_bib52
  article-title: Diafiltration by nanofiltration: prediction and optimization
  publication-title: AIChE J.
  doi: 10.1002/aic.690440811
– volume: 145
  start-page: 257
  year: 2002
  ident: 10.1016/j.memsci.2013.10.056_bib9
  article-title: Rejection characteristics of organic and inorganic pollutants by ultra low-pressure nanofiltration of surface water for drinking water treatment
  publication-title: Desalination
  doi: 10.1016/S0011-9164(02)00420-4
– volume: 27
  start-page: 229
  year: 1958
  ident: 10.1016/j.memsci.2013.10.056_bib11
  article-title: Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0006-3002(58)90330-5
– volume: 40
  start-page: 3339
  year: 2005
  ident: 10.1016/j.memsci.2013.10.056_bib49
  article-title: Influence of chloride, nitrate, and sulphate on the removal of fluoride ions by using nanofiltration membranes
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496390500423706
– start-page: 1022
  year: 1996
  ident: 10.1016/j.memsci.2013.10.056_bib45
– volume: 34
  start-page: 3710
  year: 2000
  ident: 10.1016/j.memsci.2013.10.056_bib47
  article-title: Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0008620
– volume: 126
  start-page: 91
  year: 1997
  ident: 10.1016/j.memsci.2013.10.056_bib17
  article-title: Characterization of nanofiltration membranes for predictive purposes—use of salts, uncharged solutes and atomic force microscopy
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(96)00276-1
– volume: 281
  start-page: 307
  year: 2006
  ident: 10.1016/j.memsci.2013.10.056_bib6
  article-title: Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.03.045
– volume: 242
  start-page: 97
  year: 2004
  ident: 10.1016/j.memsci.2013.10.056_bib7
  article-title: Removal of metal complexes by nanofiltration in a TCF pulp mill: technical and economic feasibility
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2004.05.012
– volume: 130
  start-page: 265
  year: 2000
  ident: 10.1016/j.memsci.2013.10.056_bib24
  article-title: Arsenic removal from drinking water by a "loose" nanofiltration membrane
  publication-title: Desalination
  doi: 10.1016/S0011-9164(00)00091-6
– volume: 39
  start-page: 3833
  year: 2005
  ident: 10.1016/j.memsci.2013.10.056_bib39
  article-title: Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048179r
– volume: 48
  start-page: 1165
  year: 2007
  ident: 10.1016/j.memsci.2013.10.056_bib42
  article-title: A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly (ethylene glycol)
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.12.046
– volume: 36
  start-page: 3371
  year: 2002
  ident: 10.1016/j.memsci.2013.10.056_bib26
  article-title: Performance of nanofiltration for arsenic removal
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(02)00037-4
SSID ssj0017089
Score 2.3955455
Snippet Nanofiltration (NF) membranes, DK and DL, were characterized by attenuated total reflection-Fourier transform infrared spectroscopy, surface charge titration,...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 42
SubjectTerms Arsenate
Arsenates
Arsenic
artificial membranes
Chemistry
Colloidal state and disperse state
Convection
Diffusion
Electromigration
Exact sciences and technology
General and physical chemistry
infrared spectroscopy
ionic strength
mass transfer
Mathematical models
Membranes
moieties
Nanofiltration
polyamides
porosity
Rejection
titration
Transport
Title Rejection and modeling of arsenate by nanofiltration: Contributions of convection, diffusion and electromigration to arsenic transport
URI https://dx.doi.org/10.1016/j.memsci.2013.10.056
https://www.proquest.com/docview/1751210232
https://www.proquest.com/docview/1800441431
https://www.proquest.com/docview/2101318331
Volume 453
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWq7gWEVsuXKLCVkfaI26R2E5dbVW1VQPSwUKm3yHFslGrrVDQ97IUjv5sZJ66o-FiJY5zxJPE49rM8fo-Qqxw5zU1UMDtOBROwXGNSTmKWA7yH2caKWOHh5E_LZLESH9bjdYfMwlkYTKtsx_5mTPejdVsybFtzuCvL4ecIiUi4lLghI-GReIJdpNjLB9-PaR5xGnkZPDRmaB2Oz_kcr63ZgmtM8OIDzPFCGes_T0-PdmoPjWYbtYvfBm4_G80vyHkLI-m0edPHpGPcE_LwF3LBp-THjdn4PCtHlSuol7yBG7SyFBazxgHIpPkddcqhanfLnvuOIl1VEMHao7HPS_d-3lKUUznsg8tWQmdbfm0q07pqXJea1oE0_RlZza-_zBasVV1gWqSjmhUTqzSgOmG1LKRQuEDjWkZc6GQi7IjnkVRxkScpII1YpcbaAkoBecDtBCDAc9J1lTMvCJVcW62LiRojd3qicmUiYbTlNlJgKHqEh8bOdEtJjsoYt1nIPdtkTYgyDBGWQoh6hB1r7RpKjnvs0xDH7KRrZTBr3FOzfxL24-OQpA4FnnrkTegHGfyWuNeinKkO-wxQmadm46N_2EjcTgfAGv_dBnzEOOzy-OV_f8Yr8gCuRJM595p0628HcwlQqs77_l_pk7Pp-4-L5U9iHiG9
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgCEEE-xBYqR4Ia7SexNvEgcEFBt6eMArdSbcRwbbcV6V01WqBeO_CH-IDOOvaLiUQmpV78Se5KZsfz5-wh5ViOnuc0a5kaVYAK2a0zKcc5qSO8h2jiRa7ycvH9QTo7E--PR8Rr5ke7CIKwy-v7epwdvHUuGcTWHi-l0-DFDIhIuJR7ISHhkRFbu2rOvsG9rX-28BSM_L4rtd4dvJixKCzAjqqJjzdhpA6mLcEY2UmjchXAjMy5MORau4HUmdd7UZQXhNNeVda6BUgivUF0GtgPw-1cEuAuUTdj6tsKV5FUWdPfw7Ri-XrqvF0BlMzuDuSCijG8hqAx1s_8cD28sdAtWcr28xm-RIoS_7VvkZsxb6et-aW6TNevvkOu_sBneJd8_2JMA7PJU-4YGjR2ooHNHYfdsPWS1tD6jXnuUCY90vS8p8mMl1a0WGwcgfBjnBUX9lmWbhoyaPbPp574z7eb90FNDu8TSfo8cXYot7pN1P_f2AaGSG2dMM9YjJGsvda1tJqxx3GUaGooB4WmxlYkc6CjF8UUlsNuJ6k2k0ERYCiYaELbqteg5QC5oXyU7qnPfsoIwdUHPzXNmXz0OWfFQUWpAnqbvQIEfwMMd7e182SpIAwMXHC_-0Ubi-T1kyPnf28AYOfp5nm_89zSekKuTw_09tbdzsPuQXIMa0cP2HpH17nRpH0Me19Wb4b-h5NNl_6g_AayoXB8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rejection+and+modeling+of+arsenate+by+nanofiltration%3A+Contributions+of+convection%2C+diffusion+and+electromigration+to+arsenic+transport&rft.jtitle=Journal+of+membrane+science&rft.au=Fang%2C+Jun&rft.au=Deng%2C+Baolin&rft.date=2014-03-01&rft.issn=0376-7388&rft.volume=453&rft.spage=42&rft.epage=51&rft_id=info:doi/10.1016%2Fj.memsci.2013.10.056&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon