A Deep Learning Framework for Assessing Physical Rehabilitation Exercises
Computer-aided assessment of physical rehabilitation entails evaluation of patient performance in completing prescribed rehabilitation exercises, based on processing movement data captured with a sensory system. Despite the essential role of rehabilitation assessment toward improved patient outcomes...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 2; pp. 468 - 477 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2020.2966249 |
Cover
Loading…
Abstract | Computer-aided assessment of physical rehabilitation entails evaluation of patient performance in completing prescribed rehabilitation exercises, based on processing movement data captured with a sensory system. Despite the essential role of rehabilitation assessment toward improved patient outcomes and reduced healthcare costs, existing approaches lack versatility, robustness, and practical relevance. In this paper, we propose a deep learning-based framework for automated assessment of the quality of physical rehabilitation exercises. The main components of the framework are metrics for quantifying movement performance, scoring functions for mapping the performance metrics into numerical scores of movement quality, and deep neural network models for generating quality scores of input movements via supervised learning. The proposed performance metric is defined based on the log-likelihood of a Gaussian mixture model, and encodes low-dimensional data representation obtained with a deep autoencoder network. The proposed deep spatio-temporal neural network arranges data into temporal pyramids, and exploits the spatial characteristics of human movements by using sub-networks to process joint displacements of individual body parts. The presented framework is validated using a dataset of ten rehabilitation exercises. The significance of this work is that it is the first that implements deep neural networks for assessment of rehabilitation performance. |
---|---|
AbstractList | Computer-aided assessment of physical rehabilitation entails evaluation of patient performance in completing prescribed rehabilitation exercises, based on processing movement data captured with a sensory system. Despite the essential role of rehabilitation assessment toward improved patient outcomes and reduced healthcare costs, existing approaches lack versatility, robustness, and practical relevance. In this paper, we propose a deep learning-based framework for automated assessment of the quality of physical rehabilitation exercises. The main components of the framework are metrics for quantifying movement performance, scoring functions for mapping the performance metrics into numerical scores of movement quality, and deep neural network models for generating quality scores of input movements via supervised learning. The proposed performance metric is defined based on the log-likelihood of a Gaussian mixture model, and encodes low-dimensional data representation obtained with a deep autoencoder network. The proposed deep spatio-temporal neural network arranges data into temporal pyramids, and exploits the spatial characteristics of human movements by using sub-networks to process joint displacements of individual body parts. The presented framework is validated using a dataset of ten rehabilitation exercises. The significance of this work is that it is the first that implements deep neural networks for assessment of rehabilitation performance. Computer-aided assessment of physical rehabilitation entails evaluation of patient performance in completing prescribed rehabilitation exercises, based on processing movement data captured with a sensory system. Despite the essential role of rehabilitation assessment toward improved patient outcomes and reduced healthcare costs, existing approaches lack versatility, robustness, and practical relevance. In this paper, we propose a deep learning-based framework for automated assessment of the quality of physical rehabilitation exercises. The main components of the framework are metrics for quantifying movement performance, scoring functions for mapping the performance metrics into numerical scores of movement quality, and deep neural network models for generating quality scores of input movements via supervised learning. The proposed performance metric is defined based on the log-likelihood of a Gaussian mixture model, and encodes low-dimensional data representation obtained with a deep autoencoder network. The proposed deep spatio-temporal neural network arranges data into temporal pyramids, and exploits the spatial characteristics of human movements by using sub-networks to process joint displacements of individual body parts. The presented framework is validated using a dataset of ten rehabilitation exercises. The significance of this work is that it is the first that implements deep neural networks for assessment of rehabilitation performance.Computer-aided assessment of physical rehabilitation entails evaluation of patient performance in completing prescribed rehabilitation exercises, based on processing movement data captured with a sensory system. Despite the essential role of rehabilitation assessment toward improved patient outcomes and reduced healthcare costs, existing approaches lack versatility, robustness, and practical relevance. In this paper, we propose a deep learning-based framework for automated assessment of the quality of physical rehabilitation exercises. The main components of the framework are metrics for quantifying movement performance, scoring functions for mapping the performance metrics into numerical scores of movement quality, and deep neural network models for generating quality scores of input movements via supervised learning. The proposed performance metric is defined based on the log-likelihood of a Gaussian mixture model, and encodes low-dimensional data representation obtained with a deep autoencoder network. The proposed deep spatio-temporal neural network arranges data into temporal pyramids, and exploits the spatial characteristics of human movements by using sub-networks to process joint displacements of individual body parts. The presented framework is validated using a dataset of ten rehabilitation exercises. The significance of this work is that it is the first that implements deep neural networks for assessment of rehabilitation performance. |
Author | Liao, Yalin Vakanski, Aleksandar Xian, Min |
Author_xml | – sequence: 1 givenname: Yalin surname: Liao fullname: Liao, Yalin email: liao4728@vandals.uidaho.edu organization: Department of Computer Science, University of Idaho, Idaho Falls, ID, USA – sequence: 2 givenname: Aleksandar orcidid: 0000-0003-3365-1291 surname: Vakanski fullname: Vakanski, Aleksandar email: vakanski@uidaho.edu organization: Department of Computer Science, University of Idaho, Idaho Falls, ID, USA – sequence: 3 givenname: Min orcidid: 0000-0001-6098-4441 surname: Xian fullname: Xian, Min email: mxian@uidaho.edu organization: Department of Computer Science, University of Idaho, Idaho Falls, ID, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31940544$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1uEzEUhS1URH_gBUBCI7HpZlL72jO2N0hRm0KlqKBS1pbHc6dxmYyDPWnp2-OQtIIuWF3L_s7R8T2HZG8IAxLyltEJY1SfXF9-u5pNgAKdgK5rEPoFOWBVpUoKjO5tzlyUggPdJ4cp3VLKZF3JV2SfMy1oJcQBuZgWZ4irYo42Dn64Kc6jXeJ9iD-KLsRimhKmtLn_unhI3tm-uMKFbXzvRzv6MBSzXxidz9Rr8rKzfcI3u3lEvp_Prk8_l_Mvny5Op_PSCQlj2TJA5I3jAlwNumpUU3OmsHGVaGuRh-xkjg9MtTUViusup5XQiqa1jZL8iHzc-q7WzRJbh8MYbW9W0S9tfDDBevPvy-AX5ibcGUk5aC2ywfHOIIafa0yjWfrksO_tgGGdDHCupWYAkNEPz9DbsI5D_l6mKgkgOFeZev93oqcoj1vOgNoCLoaUInbG7daXA_reMGo2hZo_hZpNoWZXaJbCM-mj-39F77Yij4hPAqUrWVHgvwGh9qtm |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1109_TNSRE_2023_3282675 crossref_primary_10_1016_j_compbiomed_2024_108382 crossref_primary_10_1016_j_patcog_2021_108095 crossref_primary_10_1109_TCSVT_2022_3143549 crossref_primary_10_1016_j_compbiomed_2024_109399 crossref_primary_10_1016_j_cviu_2024_104228 crossref_primary_10_1080_10255842_2022_2122820 crossref_primary_10_1142_S0219519423400894 crossref_primary_10_1016_j_compbiomed_2020_103687 crossref_primary_10_1016_j_jbi_2022_104077 crossref_primary_10_1007_s12652_022_03717_z crossref_primary_10_1016_j_compbiomed_2023_106835 crossref_primary_10_3390_rs14164110 crossref_primary_10_3390_mti6070048 crossref_primary_10_1007_s10459_024_10369_5 crossref_primary_10_1109_ACCESS_2021_3131613 crossref_primary_10_1109_TCDS_2021_3098350 crossref_primary_10_1186_s12911_025_02877_0 crossref_primary_10_1007_s44163_024_00130_7 crossref_primary_10_1109_TIP_2022_3166278 crossref_primary_10_3390_s21051669 crossref_primary_10_1007_s11042_024_19092_0 crossref_primary_10_1109_TNSRE_2021_3092199 crossref_primary_10_3390_robotics13030049 crossref_primary_10_1016_j_mlwa_2023_100499 crossref_primary_10_57197_JDR_2023_0065 crossref_primary_10_3389_fnins_2024_1388742 crossref_primary_10_1109_ACCESS_2020_3005189 crossref_primary_10_3390_electronics12061464 crossref_primary_10_3390_healthcare11040507 crossref_primary_10_1016_j_bspc_2022_104364 crossref_primary_10_1016_j_slast_2024_100181 crossref_primary_10_3390_s23010005 crossref_primary_10_33571_rpolitec_v17n34a11 crossref_primary_10_1016_j_isci_2023_108705 crossref_primary_10_1016_j_cviu_2024_104275 crossref_primary_10_1051_itmconf_20257002025 crossref_primary_10_1016_j_bspc_2021_103323 crossref_primary_10_1109_ACCESS_2025_3526710 crossref_primary_10_3390_s20226451 crossref_primary_10_1016_j_heliyon_2024_e32679 crossref_primary_10_1016_j_bspc_2023_105701 crossref_primary_10_3389_fnins_2023_1219556 crossref_primary_10_1155_bmri_9554590 crossref_primary_10_1016_j_micpro_2020_103791 crossref_primary_10_1109_TMM_2021_3075025 crossref_primary_10_1038_s41598_024_68204_1 crossref_primary_10_1109_JIOT_2022_3201005 crossref_primary_10_1016_j_knosys_2021_107388 crossref_primary_10_1109_JIOT_2024_3359209 crossref_primary_10_1109_JTEHM_2022_3213348 crossref_primary_10_3390_s23020778 crossref_primary_10_1007_s10489_023_04613_5 crossref_primary_10_1007_s10489_022_03984_5 crossref_primary_10_1109_TIM_2024_3373058 crossref_primary_10_1016_j_compbiomed_2021_104316 crossref_primary_10_1016_j_compbiomed_2024_109578 crossref_primary_10_1109_TPAMI_2024_3378753 crossref_primary_10_3390_en15228491 crossref_primary_10_3390_s25051586 crossref_primary_10_1186_s12911_022_01907_5 crossref_primary_10_1016_j_smhl_2024_100516 crossref_primary_10_1007_s11517_024_03177_x crossref_primary_10_1109_TNSRE_2022_3150392 crossref_primary_10_3390_jsan12050070 crossref_primary_10_3390_jpm13050874 crossref_primary_10_1080_24751839_2025_2454053 crossref_primary_10_1186_s12984_021_00957_6 crossref_primary_10_1109_LES_2023_3289810 crossref_primary_10_1016_j_imu_2023_101327 crossref_primary_10_1016_j_compbiomed_2023_107420 crossref_primary_10_1109_ACCESS_2024_3491862 crossref_primary_10_3389_fphys_2024_1472380 crossref_primary_10_1142_S0219519425400019 crossref_primary_10_3390_s19194129 crossref_primary_10_1109_TNSRE_2022_3219085 crossref_primary_10_3390_s20185258 crossref_primary_10_1109_LRA_2021_3084889 crossref_primary_10_1109_TNSRE_2023_3317411 crossref_primary_10_1038_s41746_024_00998_w crossref_primary_10_3390_s22031170 crossref_primary_10_3390_computation10100175 crossref_primary_10_1016_j_jvcir_2022_103625 crossref_primary_10_1016_j_heliyon_2024_e27596 crossref_primary_10_1109_TNSRE_2024_3523906 crossref_primary_10_1109_THMS_2021_3059716 crossref_primary_10_1186_s12984_024_01318_9 crossref_primary_10_1109_TMM_2022_3222681 |
Cites_doi | 10.1186/s12883-017-0888-0 10.2522/ptj.20100343 10.1109/TIM.2012.2236792 10.1111/j.2517-6161.1977.tb01600.x 10.1109/CVPR.2016.119 10.3414/ME13-01-0109 10.4172/2329-9096.1000214 10.1504/IJSNET.2019.099230 10.3390/data3010002 10.1109/TNSRE.2014.2326254 10.1109/TSMCB.2012.2185694 10.1109/JSYST.2014.2327792 10.1109/TNSRE.2019.2923060 10.1007/978-3-642-25446-8_4 10.1109/ICIP.2005.1530635 10.1186/1743-0003-11-3 10.1016/j.asoc.2014.04.020 10.1080/10749357.2016.1200292 10.1109/ICCV.2017.317 10.1109/TBME.2015.2477095 10.1109/ISCAS.2018.8350967 10.24963/ijcai.2018/109 10.1109/TASSP.1978.1163055 10.2522/ptj.20060260 10.3390/s16010115 10.1109/ICCV.2015.494 10.1109/TRO.2006.886270 10.1145/1460096.1460144 10.1016/j.math.2009.12.004 10.1016/j.jbi.2017.12.012 10.1109/JBHI.2015.2431472 10.1007/BF00332918 10.1109/CVPR.2017.173 10.1109/CVPR.2016.115 10.1007/978-3-642-40728-4_48 10.4172/2329-9096.1000403 10.1109/TBME.2005.856295 10.1109/CVPR.2016.573 10.1109/TNSRE.2013.2259640 10.1109/THMS.2015.2493536 10.1109/ISBB.2011.6107680 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
DOI | 10.1109/TNSRE.2020.2966249 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 477 |
ExternalDocumentID | PMC7032994 31940544 10_1109_TNSRE_2020_2966249 8957502 |
Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: University of Idaho grantid: P20GM104420 funderid: 10.13039/100012326 – fundername: NIGMS NIH HHS grantid: P20 GM104420 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c472t-d12ee3bc342c6295b8b6318ebc54d64bc57f7210218d604839f31972d4bdab873 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Thu Aug 21 18:42:30 EDT 2025 Fri Jul 11 11:51:36 EDT 2025 Fri Jul 25 06:17:02 EDT 2025 Wed Feb 19 02:29:29 EST 2025 Tue Jul 01 00:43:20 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 Wed Aug 27 02:51:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-d12ee3bc342c6295b8b6318ebc54d64bc57f7210218d604839f31972d4bdab873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6098-4441 0000-0003-3365-1291 |
PMID | 31940544 |
PQID | 2357224338 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2339791222 proquest_journals_2357224338 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7032994 pubmed_primary_31940544 crossref_citationtrail_10_1109_TNSRE_2020_2966249 crossref_primary_10_1109_TNSRE_2020_2966249 ieee_primary_8957502 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | le (ref51) 2018 ref13 ref12 ref15 ref14 ref11 simonyan (ref49) 2014; 27 song (ref24) 2017 ref17 ref16 ref19 ref18 du (ref10) 2015 vakanski (ref8) 2016; 1 ref50 ref45 ref47 ref44 dempster (ref41) 1977; 39 zhang (ref43) 2018 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref37 ref36 ref31 ref30 ref32 ref2 ref1 ref39 ref38 shahroudy (ref48) 2016 mclachlan (ref42) 1989; 38 ref23 ref26 ref25 bishop (ref40) 2011 ref20 antón (ref33) 2015; 54 ref22 ref21 ref28 ref27 ref29 szegedy (ref46) 2016 |
References_xml | – ident: ref7 doi: 10.1186/s12883-017-0888-0 – ident: ref1 doi: 10.2522/ptj.20100343 – start-page: 712 year: 2018 ident: ref43 article-title: Dynamic temporal pyramid network: A closer look at multi-scale modeling for activity detection publication-title: Vision Computer – ident: ref13 doi: 10.1109/TIM.2012.2236792 – volume: 39 start-page: 1 year: 1977 ident: ref41 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Roy Statist Soc Series B (Methodol ) doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref45 doi: 10.1109/CVPR.2016.119 – volume: 54 start-page: 145 year: 2015 ident: ref33 article-title: Exercise recognition for Kinect-based telerehabilitation publication-title: Methods Inf Med doi: 10.3414/ME13-01-0109 – ident: ref2 doi: 10.4172/2329-9096.1000214 – ident: ref29 doi: 10.1504/IJSNET.2019.099230 – ident: ref11 doi: 10.3390/data3010002 – ident: ref28 doi: 10.1109/TNSRE.2014.2326254 – ident: ref15 doi: 10.1109/TSMCB.2012.2185694 – ident: ref18 doi: 10.1109/JSYST.2014.2327792 – ident: ref50 doi: 10.1109/TNSRE.2019.2923060 – ident: ref19 doi: 10.1007/978-3-642-25446-8_4 – ident: ref37 doi: 10.1109/ICIP.2005.1530635 – ident: ref6 doi: 10.1186/1743-0003-11-3 – ident: ref31 doi: 10.1016/j.asoc.2014.04.020 – ident: ref5 doi: 10.1080/10749357.2016.1200292 – ident: ref44 doi: 10.1109/ICCV.2017.317 – volume: 27 start-page: 568 year: 2014 ident: ref49 article-title: Two-stream convolutional networks for action recognition in videos publication-title: Proc Adv Neural Inf Process Syst – ident: ref32 doi: 10.1109/TBME.2015.2477095 – year: 2011 ident: ref40 publication-title: Pattern Recognition and Machine Learning – ident: ref16 doi: 10.1109/ISCAS.2018.8350967 – ident: ref47 doi: 10.24963/ijcai.2018/109 – ident: ref30 doi: 10.1109/TASSP.1978.1163055 – ident: ref3 doi: 10.2522/ptj.20060260 – ident: ref21 doi: 10.3390/s16010115 – ident: ref26 doi: 10.1109/ICCV.2015.494 – ident: ref12 doi: 10.1109/TRO.2006.886270 – ident: ref9 doi: 10.1145/1460096.1460144 – year: 2016 ident: ref46 article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning publication-title: arXiv 1602 07261 – ident: ref4 doi: 10.1016/j.math.2009.12.004 – ident: ref34 doi: 10.1016/j.jbi.2017.12.012 – start-page: 1010 year: 2016 ident: ref48 article-title: NTU RGB+D: A large scale dataset for 3D human activity analysis publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – ident: ref17 doi: 10.1109/JBHI.2015.2431472 – ident: ref38 doi: 10.1007/BF00332918 – ident: ref25 doi: 10.1109/CVPR.2017.173 – ident: ref22 doi: 10.1109/CVPR.2016.115 – ident: ref20 doi: 10.1007/978-3-642-40728-4_48 – ident: ref39 doi: 10.4172/2329-9096.1000403 – ident: ref14 doi: 10.1109/TBME.2005.856295 – ident: ref23 doi: 10.1109/CVPR.2016.573 – volume: 1 start-page: 118 year: 2016 ident: ref8 article-title: Mathematical modeling and evaluation of human motions in physical therapy using mixture density neural networks publication-title: J Physiother Phys Rehabil – ident: ref36 doi: 10.1109/TNSRE.2013.2259640 – start-page: 4263 year: 2017 ident: ref24 article-title: An end-to-end spatio-temporal attention model for human action recognition from skeleton data publication-title: Proc Assoc Adv Artif Intell (AAAI) – start-page: 1110 year: 2015 ident: ref10 article-title: Hierarchical recurrent neural network for skeleton based action recognition publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – year: 2018 ident: ref51 article-title: A fine-to-coarse convolutional neural network for 3D human action recognition publication-title: arXiv 1805 11790 – volume: 38 start-page: 384 year: 1989 ident: ref42 article-title: Mixture models: Inference and applications to clustering publication-title: Appl Stat J Roy Statist Soc Ser C – ident: ref35 doi: 10.1109/THMS.2015.2493536 – ident: ref27 doi: 10.1109/ISBB.2011.6107680 |
SSID | ssj0017657 |
Score | 2.5955248 |
Snippet | Computer-aided assessment of physical rehabilitation entails evaluation of patient performance in completing prescribed rehabilitation exercises, based on... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 468 |
SubjectTerms | Algorithms Artificial neural networks Automation Biomechanical Phenomena Body parts Business metrics Computational modeling Computer Simulation Data models Deep Learning Dimensionality reduction Exercise Therapy - methods Healthy Volunteers Hidden Markov models Human motion Humans Machine learning Mapping Measurement Movement - physiology Movement modeling Neural networks Neural Networks, Computer Normal Distribution Performance evaluation Performance measurement performance metrics physical rehabilitation Probabilistic models Pyramids Quality assessment Rehabilitation Rehabilitation - methods Robustness (mathematics) Solid modeling Treatment Outcome |
Title | A Deep Learning Framework for Assessing Physical Rehabilitation Exercises |
URI | https://ieeexplore.ieee.org/document/8957502 https://www.ncbi.nlm.nih.gov/pubmed/31940544 https://www.proquest.com/docview/2357224338 https://www.proquest.com/docview/2339791222 https://pubmed.ncbi.nlm.nih.gov/PMC7032994 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VHlAv0FI-QltkJOAC2SaO4zjHCnZVkFqhspV6i9b2bEGgbEV3L_x6Zhwn6q4qxClR7ES2Zmy_ycy8AXiTl2gKnJOlampMVY6YmjmaVGGuMCsd-oKTk8_O9eml-nJVXm3BhyEXBhFD8BmO-Db48v3CrfhX2bGpCVwwc-QDMty6XK3BY1DpwOpJC1ilqpBZnyCT1cfT828XYzIFZTaShO7J4NiBh6R6hFWUWjuPQoGV-7DmZsjknTNo8hjO-tF3oSc_R6ulHbk_G8SO_zu9XXgUwag46bRnD7awfQJv7xIPi2nHOiDeiYs1Tu99-HwiPiHeiMjQei0mfZyXICAsOm8yP_8aVWHjC2Icqz3dPoXLyXj68TSNhRlSpyq5TH0uEQvrCiWdlnVpjdW0N6B1pfJa0aWaV2xL5sZr5qyv5wWXN_PK-pk1VfEMtttFiy9AzGrUzntFQC4UQzOZllZpW2a5JSwnE8h78TQujo-LZ_xqgvWS1U2QbsPSbaJ0E3g_vHPTcXb8s_c-i2LoGaWQwGGvBU1c1rcNcwMR5iGzPoHXQzMtSPayzFpcrLgPu0pzwl0JPO-UZvh2r3QJVGvqNHRgsu_1lvbH90D6TTszIQf18v7RHsAOz6kLJz-E7eXvFR4RWlraV2GZ_AVUgg9o |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5NQ4K98GswAgOMBLxAusRxHOdxglYdrBUanbS3qI6vgEDpxNoX_nruHCdaqwnxlCh2Ilt3tr_L3X0H8DrN0WS4IEvVlBirFDE2CzSxwlRhktfoMk5Onkz1-Fx9usgvduB9nwuDiD74DAd86335blmv-VfZkSkJXDBz5K2ck3HbbK3eZ1Boz-tJS1jFKpNJlyKTlEez6dezIRmDMhlIwvdkcuzBbVI-QitKbZxIvsTKTWhzO2jy2ik0ugeTbvxt8MnPwXplB_WfLWrH_53gfbgb4Kg4bvXnAexg8xDeXKceFrOWd0C8FWcbrN77cHIsPiJeisDR-k2MukgvQVBYtP5kfv4lKMPWF8Qw1Hu6egTno-HswzgOpRniWhVyFbtUIma2zpSstSxza6ym3QFtnSunFV2KRcHWZGqcZtb6cpFxgTOnrJtbU2SPYbdZNvgExLxEXTunSKS-HJpJtLRK2zxJLaE5GUHaiaeqw_i4fMavytsvSVl56VYs3SpIN4J3_TuXLWvHP3vvsyj6nkEKERx2WlCFhX1VMTsQoR4y7CN41TfTkmQ_y7zB5Zr7sLM0JeQVwUGrNP23O6WLoNhQp74D031vtjQ_vnvab9qbCTuopzeP9iXcGc8mp9XpyfTzM9jj-bXB5Yewu_q9xueEnVb2hV8yfwGYVRKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Framework+for+Assessing+Physical+Rehabilitation+Exercises&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Liao%2C+Yalin&rft.au=Vakanski%2C+Aleksandar&rft.au=Xian%2C+Min&rft.date=2020-02-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=28&rft.issue=2&rft.spage=468&rft.epage=477&rft_id=info:doi/10.1109%2FTNSRE.2020.2966249&rft_id=info%3Apmid%2F31940544&rft.externalDocID=PMC7032994 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |