A robust technique for copy-move forgery detection from small and extremely smooth tampered regions based on the DHE-SURF features and mDBSCAN clustering
The keypoint-based copy-move forgery (CMF) detection is one of the most widely used CMF detection methods; however the keypoint-based CMF detection method cannot effectively and efficiently detect the small and extremely smooth tampered regions in the input image. A CMF detection method is proposed...
Saved in:
Published in | Australian journal of forensic sciences Vol. 53; no. 4; pp. 459 - 482 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Clovelly
Taylor & Francis
04.07.2021
Copyright Agency Limited (Distributor) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The keypoint-based copy-move forgery (CMF) detection is one of the most widely used CMF detection methods; however the keypoint-based CMF detection method cannot effectively and efficiently detect the small and extremely smooth tampered regions in the input image. A CMF detection method is proposed to tackle the above mention problem. In the proposed CMF detection method, the contrast of the input image is adjusted using the dynamic histogram equalization (DHE) method. A speeded-up robust feature (SURF) descriptor is used to extract features from the tampered image and matched using Euclidean distance. The novel modified density-based spatial clustering of application with noise (mDBSCAN) clustering technique is applied to the matched features to generate the binary mask followed by the detection of CMF regions. Three standard datasets, MICC-F220, MICC-F2000, and CoMoFoD, are used to evaluate the proposed CMF detection method performance. The experimental results indicate that the proposed CMF detection method outshines the state-of-the-art CMF detection method in terms of precision (P) and recall (R). |
---|---|
AbstractList | The keypoint-based copy-move forgery (CMF) detection is one of the most widely used CMF detection methods; however the keypoint-based CMF detection method cannot effectively and efficiently detect the small and extremely smooth tampered regions in the input image. A CMF detection method is proposed to tackle the above mention problem. In the proposed CMF detection method, the contrast of the input image is adjusted using the dynamic histogram equalization (DHE) method. A speeded-up robust feature (SURF) descriptor is used to extract features from the tampered image and matched using Euclidean distance. The novel modified density-based spatial clustering of application with noise (mDBSCAN) clustering technique is applied to the matched features to generate the binary mask followed by the detection of CMF regions. Three standard datasets, MICC-F220, MICC-F2000, and CoMoFoD, are used to evaluate the proposed CMF detection method performance. The experimental results indicate that the proposed CMF detection method outshines the state-of-the-art CMF detection method in terms of precision (P) and recall (R). |
Author | Saba, Tanzila Mehmood, Zahid Bilal, Muhammad Yousaf, Rehan Mehmood Habib, Hafiz Adnan Rehman, Amjad |
Author_xml | – sequence: 1 givenname: Muhammad surname: Bilal fullname: Bilal, Muhammad organization: University of Engineering and Technology – sequence: 2 givenname: Hafiz Adnan surname: Habib fullname: Habib, Hafiz Adnan organization: University of Engineering and Technology – sequence: 3 givenname: Zahid surname: Mehmood fullname: Mehmood, Zahid email: zahid.mehmood@uettaxila.edu.pk organization: University of Engineering and Technology – sequence: 4 givenname: Rehan Mehmood surname: Yousaf fullname: Yousaf, Rehan Mehmood organization: University of Engineering and Technology – sequence: 5 givenname: Tanzila surname: Saba fullname: Saba, Tanzila organization: CCIS Prince Sultan University – sequence: 6 givenname: Amjad surname: Rehman fullname: Rehman, Amjad organization: CCIS Prince Sultan University |
BookMark | eNqVkcFu1DAQhiNUJLaFR0CyxDnFTmInEReWbcsirUCiVOJmTZzJrqskDmNvYR-Ft8XptheQQJysGf__Z8_8p8nJ6EZMkpeCnwte8decF5IrUZ1nPIutUsiirJ8kC1HlRSpV9vUkWcyadBY9S069v-Vc1LFYJD-XjFyz94EFNLvRftsj6xwx46ZDOri7-2qLdGAtRkWwbmQduYH5Afqewdgy_BEIB-wPsedc2LEAw4SELSPcRr1nDfhYRWfYIbtYX6bXN5-vWIcQ9oT-HjJcvLteLT8y08e_INlx-zx52kHv8cXDeZbcXF1-Wa3Tzaf3H1bLTWqKMgupQSVU2RS16ozidddig7ItVFlxLlUD0JWqzYVUNdQq6yTk2ACvSoAia0o0-Vny6sidyMXpfdC3bk9jfFJncZGiLmSVR9Wbo8qQ856w08YGmNcRCGyvBddzFvoxCz1noR-yiG75m3siOwAd_unbHH002KBha_0U9C6EyesWAmg7xnTmq5iRbp2dcXku1KM0wgQvM8Ull3URces_cR6BzO7_UW-PqKMPvjvqWx3g0DvqCEZjvc7_PtwvaTLXgg |
CitedBy_id | crossref_primary_10_1016_j_jvcir_2024_104221 crossref_primary_10_32604_cmc_2023_032315 crossref_primary_10_1007_s00542_024_05773_1 crossref_primary_10_1007_s11220_023_00424_7 crossref_primary_10_1007_s11042_022_12915_y crossref_primary_10_1007_s13042_024_02370_6 crossref_primary_10_1109_ACCESS_2023_3291128 crossref_primary_10_1007_s11042_022_14163_6 crossref_primary_10_1080_00450618_2020_1811376 crossref_primary_10_1080_1206212X_2021_1907905 crossref_primary_10_1177_01655515211050024 crossref_primary_10_1007_s11277_024_10959_x crossref_primary_10_1007_s11042_023_17316_3 crossref_primary_10_1002_jemt_23659 crossref_primary_10_1155_2022_6580508 crossref_primary_10_32604_csse_2023_031319 crossref_primary_10_2478_cait_2022_0041 crossref_primary_10_1016_j_jvcir_2022_103661 crossref_primary_10_1016_j_patcog_2023_109778 crossref_primary_10_1111_1556_4029_15415 crossref_primary_10_32604_cmc_2023_042755 |
Cites_doi | 10.1109/TIFS.2010.2078506 10.1049/iet-ipr.2017.0441 10.1016/j.ins.2016.01.061 10.1109/TIFS.2015.2445742 10.3390/sym10120706 10.1109/TIFS.2016.2585118 10.1016/j.jvcir.2015.01.016 10.1109/TPAMI.2005.188 10.1007/s10489-017-1038-5 10.1007/s13369-016-2268-2 10.1016/j.procs.2016.02.011 10.1177/0165551518816303 10.1080/00450618.2016.1153711 10.1016/j.jvcir.2018.03.015 10.1007/s11042-014-2362-y 10.1145/358669.358692 10.1007/978-3-319-04960-1 10.1109/ICIINFS.2014.7036519 10.1016/j.cviu.2007.09.014 10.1007/s11042-019-7165-8 10.1016/j.jisa.2019.01.007 10.1016/j.image.2015.08.008 10.1007/s00521-016-2663-3 10.1007/s11042-018-6266-0 10.1007/s11760-017-1191-7 10.1016/j.engappai.2016.12.022 10.1109/TIFS.2012.2218597 10.1109/MINES.2010.189 10.1109/SPIN.2018.8474093 10.1037/a0030967 10.1086/671052 10.1109/TIFS.2011.2129512 10.1007/s11042-016-4289-y 10.1109/TCE.2007.381734 10.1016/j.compeleceng.2017.03.013 10.1109/TIFS.2015.2455334 |
ContentType | Journal Article |
Copyright | 2020 Australian Academy of Forensic Sciences 2020 2020 Australian Academy of Forensic Sciences |
Copyright_xml | – notice: 2020 Australian Academy of Forensic Sciences 2020 – notice: 2020 Australian Academy of Forensic Sciences |
DBID | AAYXX CITATION 7QO 7SS 7U7 8FD C1K FR3 K7. K9. P64 |
DOI | 10.1080/00450618.2020.1715479 |
DatabaseName | CrossRef Biotechnology Research Abstracts Entomology Abstracts (Full archive) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Criminal Justice (Alumni) ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Entomology Abstracts ProQuest Criminal Justice (Alumni) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Law |
EISSN | 1834-562X |
EndPage | 482 |
ExternalDocumentID | 10_1080_00450618_2020_1715479 10.3316/agispt.20210726050594 1715479 |
Genre | Research Article Journal Article Original Articles |
GroupedDBID | --- .7F .QJ 0BK 0R~ 23N 2DF 30N 4.4 5GY 6J9 AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFO ACGFS ACTIO ACUHS ADCVX ADGTB AEGXH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIAGR AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARTTT AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EAZ EBD EBS ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX0 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEI TFL TFT TFW TN5 TQWBC TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ 3YN AEGYZ AFWLO AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7QO 7SS 7U7 8FD C1K FR3 K7. K9. P64 TASJS |
ID | FETCH-LOGICAL-c472t-ce6167b496fc609fdebe5d46780056baaf76d31569a962f5a3eba087aa42b7ec3 |
ISSN | 0045-0618 |
IngestDate | Wed Aug 13 04:20:11 EDT 2025 Tue Jul 01 02:46:05 EDT 2025 Thu Apr 24 22:50:38 EDT 2025 Wed Aug 28 03:34:35 EDT 2024 Wed Aug 28 03:31:12 EDT 2024 Wed Dec 25 09:06:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c472t-ce6167b496fc609fdebe5d46780056baaf76d31569a962f5a3eba087aa42b7ec3 |
Notes | AUSTRALIAN JOURNAL OF FORENSIC SCIENCES, Vol. 53, No. 4, Aug 2021: [459]-482 TAJFS.jpg 2021-07-26T19:32:48+10:00 AUSTRALIAN JOURNAL OF FORENSIC SCIENCES, Vol. 53, No. 4, Aug 2021, [459]-482 Informit, Melbourne (Vic) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2547194583 |
PQPubID | 28264 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1080_00450618_2020_1715479 rmit_agispt_search_informit_org_doi_10_3316_agispt_20210726050594 proquest_journals_2547194583 rmit_agispt_https_data_informit_org_doi_10_3316_agispt_20210726050594 crossref_citationtrail_10_1080_00450618_2020_1715479 informaworld_taylorfrancis_310_1080_00450618_2020_1715479 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-04 |
PublicationDateYYYYMMDD | 2021-07-04 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Clovelly |
PublicationPlace_xml | – name: Clovelly |
PublicationTitle | Australian journal of forensic sciences |
PublicationYear | 2021 |
Publisher | Taylor & Francis Copyright Agency Limited (Distributor) |
Publisher_xml | – name: Taylor & Francis – name: Copyright Agency Limited (Distributor) |
References | cit0011 Poynton C (cit0029) 2001 cit0012 cit0034 cit0031 cit0010 cit0032 Juan L (cit0033) 2009; 3 Fahim A (cit0014) 2009 Fridrich AJ (cit0018) 2003 cit0019 cit0017 cit0039 cit0015 cit0016 cit0038 cit0013 cit0035 cit0036 cit0022 cit0044 cit0023 cit0020 cit0042 cit0021 cit0043 cit0040 cit0041 Szeliski R (cit0030) 2010 Tralic D (cit0037) 2013 Kessler GC. (cit0001) 2004; 6 cit0008 cit0009 cit0006 cit0028 cit0007 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 cit0025 |
References_xml | – ident: cit0035 doi: 10.1109/TIFS.2010.2078506 – ident: cit0008 doi: 10.1049/iet-ipr.2017.0441 – ident: cit0013 – ident: cit0024 doi: 10.1016/j.ins.2016.01.061 – ident: cit0019 doi: 10.1109/TIFS.2015.2445742 – ident: cit0034 doi: 10.3390/sym10120706 – ident: cit0026 doi: 10.1109/TIFS.2016.2585118 – volume-title: Computer vision: algorithms and applications year: 2010 ident: cit0030 – start-page: 49 volume-title: ELMAR, 2013 55th international symposium year: 2013 ident: cit0037 – volume-title: Proceedings of Digital Forensic Research Workshop year: 2003 ident: cit0018 – ident: cit0022 doi: 10.1016/j.jvcir.2015.01.016 – ident: cit0032 doi: 10.1109/TPAMI.2005.188 – ident: cit0016 doi: 10.1007/s10489-017-1038-5 – ident: cit0025 doi: 10.1007/s13369-016-2268-2 – ident: cit0007 doi: 10.1016/j.procs.2016.02.011 – ident: cit0003 doi: 10.1177/0165551518816303 – ident: cit0006 doi: 10.1080/00450618.2016.1153711 – ident: cit0017 doi: 10.1016/j.jvcir.2018.03.015 – ident: cit0028 doi: 10.1007/s11042-014-2362-y – ident: cit0015 doi: 10.1145/358669.358692 – ident: cit0042 doi: 10.1007/978-3-319-04960-1 – start-page: 53 year: 2009 ident: cit0014 publication-title: Comput Sci Telecommun – volume-title: YUV and luminance considered harmful: A plea for precise terminology in video year: 2001 ident: cit0029 – ident: cit0012 doi: 10.1109/ICIINFS.2014.7036519 – volume: 3 start-page: 143 issue: 4 year: 2009 ident: cit0033 publication-title: Int J Image Proc – ident: cit0010 doi: 10.1016/j.cviu.2007.09.014 – ident: cit0040 doi: 10.1007/s11042-019-7165-8 – ident: cit0044 doi: 10.1016/j.jisa.2019.01.007 – ident: cit0005 doi: 10.1016/j.image.2015.08.008 – ident: cit0021 doi: 10.1007/s00521-016-2663-3 – ident: cit0043 doi: 10.1007/s11042-018-6266-0 – ident: cit0023 doi: 10.1007/s11760-017-1191-7 – ident: cit0027 doi: 10.1016/j.engappai.2016.12.022 – ident: cit0004 doi: 10.1109/TIFS.2012.2218597 – ident: cit0011 doi: 10.1109/MINES.2010.189 – ident: cit0039 doi: 10.1109/SPIN.2018.8474093 – ident: cit0009 doi: 10.1037/a0030967 – volume: 6 start-page: 1 issue: 3 year: 2004 ident: cit0001 publication-title: Forensic Sci Commun – ident: cit0002 doi: 10.1086/671052 – ident: cit0036 doi: 10.1109/TIFS.2011.2129512 – ident: cit0038 doi: 10.1007/s11042-016-4289-y – ident: cit0031 doi: 10.1109/TCE.2007.381734 – ident: cit0020 doi: 10.1016/j.compeleceng.2017.03.013 – ident: cit0041 doi: 10.1109/TIFS.2015.2455334 |
SSID | ssj0019618 |
Score | 2.3495514 |
Snippet | The keypoint-based copy-move forgery (CMF) detection is one of the most widely used CMF detection methods; however the keypoint-based CMF detection method... |
SourceID | proquest crossref rmit informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 459 |
SubjectTerms | Clustering CMF detection method COSTS DBSCAN clustering Digital images Equalization Euclidean geometry Feature extraction FORENSIC SCIENCE Forensic sciences Forgery Histograms Image contrast Image manipulation JPEG (Image coding standard) Robustness SURF features |
Title | A robust technique for copy-move forgery detection from small and extremely smooth tampered regions based on the DHE-SURF features and mDBSCAN clustering |
URI | https://www.tandfonline.com/doi/abs/10.1080/00450618.2020.1715479 https://search.informit.org/documentSummary;res=AGISPT;dn=20210726050594 http://search.informit.org/doi/10.3316/agispt.20210726050594 https://www.proquest.com/docview/2547194583 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBbS9rLLsCeWrht02M1wENuyHR-ztUUwLDusLVb0Ysh6LAGSOGgcDO0_2Y_bfxkpyY-gBbpulyCQLVkJP5MSRX4k5ANYOC4CFvoijbGEmYx8PkwLfyS15jpIAxljovD0azK5YJ8v48te73cnamlbFQNxe29eyb9IFdpArpgl-wjJNoNCA3wH-cInSBg-_0rGY--6LLabymuZWDFqUJTrG39ZWj5vTHr2pKqUrQlu0kk2SzyQRpc5qGZ0EC5uoK0s0SXLYR2NMelYsQHDaNDMSXek4B1PTvyzi2-nnlaGENQSPC-PP55h4Uix2CLtQm0Ma27b1pvSoamAmWHovPCcCe546xemBoE33c74csllqyOLuTk8mnA9v_XGctUCe6pmSxc7dMVnc9nRZRuuLYxm5ljK3Nd1dYSBCYttXZ3nd6qOdDU7i7FKhdXlyirzUcR8WN9ddrW9pSZ2qGYd1c0cM7ldBTBbEumOgakjMlmMDxvALKExhXVomrUWtYlzdFf2yEEIuxhQwwfjyfHV9-aYC8vt2BAIO_k6xQzJ3-97xM7iaYdad2eD1OGCMMuk82fkqdvf0LEF63PSU6sXZO8L__mS_BpTC1fawJXC0LSBK3VwpQ1cKcKVGrhSQBpt4EotXGkNV-rgSg1cKfQEuNIarrSGqxnEwZW2cH1FLk5Pzj9NfFcZxBcsDStfqCRI0oJliRbJMNMSVFEsweaPkNq24FyniYyCOMl4loQ65pEq-HCUcs7CIlUiek32V-VKvSGUaa2C4VCMVII8T3BTIKNCCp2EoywVsk9Y_ZfnwtHmY_WWRR407LpWUjlKKneS6pNB021teWMe6pB15ZlXBuza4jyPHuh7VAs_d2_yJg_hSpBhWESfnCAgcv5jvllXJpFvk2MAem6fCJdAvDlAHKcYRUFS34ov4TBFlwfSOvXJuDuONcWPHOPwP37mW_Kk1QpHZL-63qp3sCWoivfuxfoD7WMK4g |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbY5QAX3ojCAj5wTZWnnRzLbqsC3R7YrbQ3y_EDrUibqklByz_h3zJjJ1WLhFZoj0nsiR9jz4w98w0hH0DCSRWlcaB4hinMdBLIkJdBrq2VNuKRzjBQ-HzOpov081V2tRcLg26VaENbDxTh9mpc3HgY3bvEISBPBnIIPbNieMVBDeDFEbmfFYwjryfhfHeTgBlN_C1zhlkM8j6K519kDuTTAXrpgQ66F27vJNHkMVF9H7wDyvfhti2H6tdf8I536-QT8qhTVOnIc9ZTcs-snpGjmfz5nPwe0U1dbpuW7hBgKXSAqnp9EyzrH-4Jg62pNq1z9VpRDGOhzVJWFYUmURAJeDBZ3cC7GpiFthL0943RFDNFwEqgKF41hZqgodKz6Ti4WHydUGscEGnjiCzPPl6cjuZUVVuEewAh_IIsJuPL02nQpXgIVMrjNlCGRYyXacGsYmFhNfBUpmHzzhGjtJTScqYTsDELWbDYZjIxpQxzLmUal9yo5CU5XtUr84rQ1FoThaHKDUPAHigU6aTUyjKwKbnSA5L2EytUh3-OaTgqEe1gUv2ICxxx0Y34gAx31dYeAOS2CsU-14jWnbxYnyZFJLfUPelZTHR7SSPAhOdRgffbAzJGthPy23Wzbl1EViPQk1j4P8InmF4BrIRNTJKI9UVjNO052q6IzzMgo306fk_9Txqv79DN9-TB9PJ8Jmaf5l_ekIdI2HlApyfkuN1szVvQ89rynVvIfwBjMUS6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYRUJceCO6LOAD11R52smxbFsVWCrEUomb5ecKkTZVky5a_gn_lhknqVoktEJ7TGJP_Bh7ZuyZbwh5CxJO6iiNA80zTGFmkkCGXAW5cU66iEcmw0DhT3M2W6QfvmW9N2HduVWiDe1aoAi_V-PiXhvXe8QhHk8GYggds2J4xUEL4MURucsw0BKjOML57iIBE5q0l8wZJjHI-yCef5E5EE8H4KUHKuhetL0XRNOHRPVdaP1Pfgy3jRrqX3-hO96qj4_Ig05NpaOWrx6TO3b1hBydy59Pye8R3VRqWzd0h_9Kof1UV-vrYFld-ScMtabGNt7Ra0UxiIXWS1mWFFpEQSDgsWR5De8qYBXaSNDeN9ZQzBMB64CicDUUaoJ-SsezSXCx-DKlznoY0toTWY7fXZyN5lSXWwR7ABH8jCymk69ns6BL8BDolMdNoC2LGFdpwZxmYeEMcFRmYOvOEaFUSek4MwlYmIUsWOwymVglw5xLmcaKW508J8eramVfEJo6Z6Mw1LllCNcDhSKTKKMdA4uSazMgaT-vQnfo55iEoxTRDiS1HXGBIy66ER-Q4a7auoX_uKlCsc80ovHnLq5NkiKSG-qe9hwmup2kFmDA86jA2-0BmSDXCXn5vV43Ph6rFuhHLNo_wieYXgGchE1Mkoj1RWM07DlarojOMyCjfTrtjvqfNE5u0c035N7n8VScv59_fEnuI13v_pyekuNms7WvQMlr1Gu_jP8AIslDXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+technique+for+copy-move+forgery+detection+from+small+and+extremely+smooth+tampered+regions+based+on+the+DHE-SURF+features+and+mDBSCAN+clustering&rft.jtitle=Australian+journal+of+forensic+sciences&rft.au=Bilal%2C+Muhammad&rft.au=Habib%2C+Hafiz+Adnan&rft.au=Mehmood%2C+Zahid&rft.au=Yousaf%2C+Rehan+Mehmood&rft.date=2021-07-04&rft.pub=Taylor+%26+Francis&rft.issn=0045-0618&rft.eissn=1834-562X&rft.volume=53&rft.issue=4&rft.spage=459&rft.epage=482&rft_id=info:doi/10.1080%2F00450618.2020.1715479&rft.externalDocID=1715479 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-0618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-0618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-0618&client=summon |