A robust technique for copy-move forgery detection from small and extremely smooth tampered regions based on the DHE-SURF features and mDBSCAN clustering

The keypoint-based copy-move forgery (CMF) detection is one of the most widely used CMF detection methods; however the keypoint-based CMF detection method cannot effectively and efficiently detect the small and extremely smooth tampered regions in the input image. A CMF detection method is proposed...

Full description

Saved in:
Bibliographic Details
Published inAustralian journal of forensic sciences Vol. 53; no. 4; pp. 459 - 482
Main Authors Bilal, Muhammad, Habib, Hafiz Adnan, Mehmood, Zahid, Yousaf, Rehan Mehmood, Saba, Tanzila, Rehman, Amjad
Format Journal Article
LanguageEnglish
Published Clovelly Taylor & Francis 04.07.2021
Copyright Agency Limited (Distributor)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The keypoint-based copy-move forgery (CMF) detection is one of the most widely used CMF detection methods; however the keypoint-based CMF detection method cannot effectively and efficiently detect the small and extremely smooth tampered regions in the input image. A CMF detection method is proposed to tackle the above mention problem. In the proposed CMF detection method, the contrast of the input image is adjusted using the dynamic histogram equalization (DHE) method. A speeded-up robust feature (SURF) descriptor is used to extract features from the tampered image and matched using Euclidean distance. The novel modified density-based spatial clustering of application with noise (mDBSCAN) clustering technique is applied to the matched features to generate the binary mask followed by the detection of CMF regions. Three standard datasets, MICC-F220, MICC-F2000, and CoMoFoD, are used to evaluate the proposed CMF detection method performance. The experimental results indicate that the proposed CMF detection method outshines the state-of-the-art CMF detection method in terms of precision (P) and recall (R).
AbstractList The keypoint-based copy-move forgery (CMF) detection is one of the most widely used CMF detection methods; however the keypoint-based CMF detection method cannot effectively and efficiently detect the small and extremely smooth tampered regions in the input image. A CMF detection method is proposed to tackle the above mention problem. In the proposed CMF detection method, the contrast of the input image is adjusted using the dynamic histogram equalization (DHE) method. A speeded-up robust feature (SURF) descriptor is used to extract features from the tampered image and matched using Euclidean distance. The novel modified density-based spatial clustering of application with noise (mDBSCAN) clustering technique is applied to the matched features to generate the binary mask followed by the detection of CMF regions. Three standard datasets, MICC-F220, MICC-F2000, and CoMoFoD, are used to evaluate the proposed CMF detection method performance. The experimental results indicate that the proposed CMF detection method outshines the state-of-the-art CMF detection method in terms of precision (P) and recall (R).
Author Saba, Tanzila
Mehmood, Zahid
Bilal, Muhammad
Yousaf, Rehan Mehmood
Habib, Hafiz Adnan
Rehman, Amjad
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Bilal
  fullname: Bilal, Muhammad
  organization: University of Engineering and Technology
– sequence: 2
  givenname: Hafiz Adnan
  surname: Habib
  fullname: Habib, Hafiz Adnan
  organization: University of Engineering and Technology
– sequence: 3
  givenname: Zahid
  surname: Mehmood
  fullname: Mehmood, Zahid
  email: zahid.mehmood@uettaxila.edu.pk
  organization: University of Engineering and Technology
– sequence: 4
  givenname: Rehan Mehmood
  surname: Yousaf
  fullname: Yousaf, Rehan Mehmood
  organization: University of Engineering and Technology
– sequence: 5
  givenname: Tanzila
  surname: Saba
  fullname: Saba, Tanzila
  organization: CCIS Prince Sultan University
– sequence: 6
  givenname: Amjad
  surname: Rehman
  fullname: Rehman, Amjad
  organization: CCIS Prince Sultan University
BookMark eNqVkcFu1DAQhiNUJLaFR0CyxDnFTmInEReWbcsirUCiVOJmTZzJrqskDmNvYR-Ft8XptheQQJysGf__Z8_8p8nJ6EZMkpeCnwte8decF5IrUZ1nPIutUsiirJ8kC1HlRSpV9vUkWcyadBY9S069v-Vc1LFYJD-XjFyz94EFNLvRftsj6xwx46ZDOri7-2qLdGAtRkWwbmQduYH5Afqewdgy_BEIB-wPsedc2LEAw4SELSPcRr1nDfhYRWfYIbtYX6bXN5-vWIcQ9oT-HjJcvLteLT8y08e_INlx-zx52kHv8cXDeZbcXF1-Wa3Tzaf3H1bLTWqKMgupQSVU2RS16ozidddig7ItVFlxLlUD0JWqzYVUNdQq6yTk2ACvSoAia0o0-Vny6sidyMXpfdC3bk9jfFJncZGiLmSVR9Wbo8qQ856w08YGmNcRCGyvBddzFvoxCz1noR-yiG75m3siOwAd_unbHH002KBha_0U9C6EyesWAmg7xnTmq5iRbp2dcXku1KM0wgQvM8Ull3URces_cR6BzO7_UW-PqKMPvjvqWx3g0DvqCEZjvc7_PtwvaTLXgg
CitedBy_id crossref_primary_10_1016_j_jvcir_2024_104221
crossref_primary_10_32604_cmc_2023_032315
crossref_primary_10_1007_s00542_024_05773_1
crossref_primary_10_1007_s11220_023_00424_7
crossref_primary_10_1007_s11042_022_12915_y
crossref_primary_10_1007_s13042_024_02370_6
crossref_primary_10_1109_ACCESS_2023_3291128
crossref_primary_10_1007_s11042_022_14163_6
crossref_primary_10_1080_00450618_2020_1811376
crossref_primary_10_1080_1206212X_2021_1907905
crossref_primary_10_1177_01655515211050024
crossref_primary_10_1007_s11277_024_10959_x
crossref_primary_10_1007_s11042_023_17316_3
crossref_primary_10_1002_jemt_23659
crossref_primary_10_1155_2022_6580508
crossref_primary_10_32604_csse_2023_031319
crossref_primary_10_2478_cait_2022_0041
crossref_primary_10_1016_j_jvcir_2022_103661
crossref_primary_10_1016_j_patcog_2023_109778
crossref_primary_10_1111_1556_4029_15415
crossref_primary_10_32604_cmc_2023_042755
Cites_doi 10.1109/TIFS.2010.2078506
10.1049/iet-ipr.2017.0441
10.1016/j.ins.2016.01.061
10.1109/TIFS.2015.2445742
10.3390/sym10120706
10.1109/TIFS.2016.2585118
10.1016/j.jvcir.2015.01.016
10.1109/TPAMI.2005.188
10.1007/s10489-017-1038-5
10.1007/s13369-016-2268-2
10.1016/j.procs.2016.02.011
10.1177/0165551518816303
10.1080/00450618.2016.1153711
10.1016/j.jvcir.2018.03.015
10.1007/s11042-014-2362-y
10.1145/358669.358692
10.1007/978-3-319-04960-1
10.1109/ICIINFS.2014.7036519
10.1016/j.cviu.2007.09.014
10.1007/s11042-019-7165-8
10.1016/j.jisa.2019.01.007
10.1016/j.image.2015.08.008
10.1007/s00521-016-2663-3
10.1007/s11042-018-6266-0
10.1007/s11760-017-1191-7
10.1016/j.engappai.2016.12.022
10.1109/TIFS.2012.2218597
10.1109/MINES.2010.189
10.1109/SPIN.2018.8474093
10.1037/a0030967
10.1086/671052
10.1109/TIFS.2011.2129512
10.1007/s11042-016-4289-y
10.1109/TCE.2007.381734
10.1016/j.compeleceng.2017.03.013
10.1109/TIFS.2015.2455334
ContentType Journal Article
Copyright 2020 Australian Academy of Forensic Sciences 2020
2020 Australian Academy of Forensic Sciences
Copyright_xml – notice: 2020 Australian Academy of Forensic Sciences 2020
– notice: 2020 Australian Academy of Forensic Sciences
DBID AAYXX
CITATION
7QO
7SS
7U7
8FD
C1K
FR3
K7.
K9.
P64
DOI 10.1080/00450618.2020.1715479
DatabaseName CrossRef
Biotechnology Research Abstracts
Entomology Abstracts (Full archive)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Criminal Justice (Alumni)
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Entomology Abstracts
ProQuest Criminal Justice (Alumni)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Entomology Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Law
EISSN 1834-562X
EndPage 482
ExternalDocumentID 10_1080_00450618_2020_1715479
10.3316/agispt.20210726050594
1715479
Genre Research Article
Journal Article
Original Articles
GroupedDBID ---
.7F
.QJ
0BK
0R~
23N
2DF
30N
4.4
5GY
6J9
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFO
ACGFS
ACTIO
ACUHS
ADCVX
ADGTB
AEGXH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARTTT
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EAZ
EBD
EBS
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX0
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TN5
TQWBC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
3YN
AEGYZ
AFWLO
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7QO
7SS
7U7
8FD
C1K
FR3
K7.
K9.
P64
TASJS
ID FETCH-LOGICAL-c472t-ce6167b496fc609fdebe5d46780056baaf76d31569a962f5a3eba087aa42b7ec3
ISSN 0045-0618
IngestDate Wed Aug 13 04:20:11 EDT 2025
Tue Jul 01 02:46:05 EDT 2025
Thu Apr 24 22:50:38 EDT 2025
Wed Aug 28 03:34:35 EDT 2024
Wed Aug 28 03:31:12 EDT 2024
Wed Dec 25 09:06:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c472t-ce6167b496fc609fdebe5d46780056baaf76d31569a962f5a3eba087aa42b7ec3
Notes AUSTRALIAN JOURNAL OF FORENSIC SCIENCES, Vol. 53, No. 4, Aug 2021: [459]-482
TAJFS.jpg
2021-07-26T19:32:48+10:00
AUSTRALIAN JOURNAL OF FORENSIC SCIENCES, Vol. 53, No. 4, Aug 2021, [459]-482
Informit, Melbourne (Vic)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2547194583
PQPubID 28264
PageCount 24
ParticipantIDs crossref_primary_10_1080_00450618_2020_1715479
rmit_agispt_search_informit_org_doi_10_3316_agispt_20210726050594
proquest_journals_2547194583
rmit_agispt_https_data_informit_org_doi_10_3316_agispt_20210726050594
crossref_citationtrail_10_1080_00450618_2020_1715479
informaworld_taylorfrancis_310_1080_00450618_2020_1715479
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-04
PublicationDateYYYYMMDD 2021-07-04
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-04
  day: 04
PublicationDecade 2020
PublicationPlace Clovelly
PublicationPlace_xml – name: Clovelly
PublicationTitle Australian journal of forensic sciences
PublicationYear 2021
Publisher Taylor & Francis
Copyright Agency Limited (Distributor)
Publisher_xml – name: Taylor & Francis
– name: Copyright Agency Limited (Distributor)
References cit0011
Poynton C (cit0029) 2001
cit0012
cit0034
cit0031
cit0010
cit0032
Juan L (cit0033) 2009; 3
Fahim A (cit0014) 2009
Fridrich AJ (cit0018) 2003
cit0019
cit0017
cit0039
cit0015
cit0016
cit0038
cit0013
cit0035
cit0036
cit0022
cit0044
cit0023
cit0020
cit0042
cit0021
cit0043
cit0040
cit0041
Szeliski R (cit0030) 2010
Tralic D (cit0037) 2013
Kessler GC. (cit0001) 2004; 6
cit0008
cit0009
cit0006
cit0028
cit0007
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0035
  doi: 10.1109/TIFS.2010.2078506
– ident: cit0008
  doi: 10.1049/iet-ipr.2017.0441
– ident: cit0013
– ident: cit0024
  doi: 10.1016/j.ins.2016.01.061
– ident: cit0019
  doi: 10.1109/TIFS.2015.2445742
– ident: cit0034
  doi: 10.3390/sym10120706
– ident: cit0026
  doi: 10.1109/TIFS.2016.2585118
– volume-title: Computer vision: algorithms and applications
  year: 2010
  ident: cit0030
– start-page: 49
  volume-title: ELMAR, 2013 55th international symposium
  year: 2013
  ident: cit0037
– volume-title: Proceedings of Digital Forensic Research Workshop
  year: 2003
  ident: cit0018
– ident: cit0022
  doi: 10.1016/j.jvcir.2015.01.016
– ident: cit0032
  doi: 10.1109/TPAMI.2005.188
– ident: cit0016
  doi: 10.1007/s10489-017-1038-5
– ident: cit0025
  doi: 10.1007/s13369-016-2268-2
– ident: cit0007
  doi: 10.1016/j.procs.2016.02.011
– ident: cit0003
  doi: 10.1177/0165551518816303
– ident: cit0006
  doi: 10.1080/00450618.2016.1153711
– ident: cit0017
  doi: 10.1016/j.jvcir.2018.03.015
– ident: cit0028
  doi: 10.1007/s11042-014-2362-y
– ident: cit0015
  doi: 10.1145/358669.358692
– ident: cit0042
  doi: 10.1007/978-3-319-04960-1
– start-page: 53
  year: 2009
  ident: cit0014
  publication-title: Comput Sci Telecommun
– volume-title: YUV and luminance considered harmful: A plea for precise terminology in video
  year: 2001
  ident: cit0029
– ident: cit0012
  doi: 10.1109/ICIINFS.2014.7036519
– volume: 3
  start-page: 143
  issue: 4
  year: 2009
  ident: cit0033
  publication-title: Int J Image Proc
– ident: cit0010
  doi: 10.1016/j.cviu.2007.09.014
– ident: cit0040
  doi: 10.1007/s11042-019-7165-8
– ident: cit0044
  doi: 10.1016/j.jisa.2019.01.007
– ident: cit0005
  doi: 10.1016/j.image.2015.08.008
– ident: cit0021
  doi: 10.1007/s00521-016-2663-3
– ident: cit0043
  doi: 10.1007/s11042-018-6266-0
– ident: cit0023
  doi: 10.1007/s11760-017-1191-7
– ident: cit0027
  doi: 10.1016/j.engappai.2016.12.022
– ident: cit0004
  doi: 10.1109/TIFS.2012.2218597
– ident: cit0011
  doi: 10.1109/MINES.2010.189
– ident: cit0039
  doi: 10.1109/SPIN.2018.8474093
– ident: cit0009
  doi: 10.1037/a0030967
– volume: 6
  start-page: 1
  issue: 3
  year: 2004
  ident: cit0001
  publication-title: Forensic Sci Commun
– ident: cit0002
  doi: 10.1086/671052
– ident: cit0036
  doi: 10.1109/TIFS.2011.2129512
– ident: cit0038
  doi: 10.1007/s11042-016-4289-y
– ident: cit0031
  doi: 10.1109/TCE.2007.381734
– ident: cit0020
  doi: 10.1016/j.compeleceng.2017.03.013
– ident: cit0041
  doi: 10.1109/TIFS.2015.2455334
SSID ssj0019618
Score 2.3495514
Snippet The keypoint-based copy-move forgery (CMF) detection is one of the most widely used CMF detection methods; however the keypoint-based CMF detection method...
SourceID proquest
crossref
rmit
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 459
SubjectTerms Clustering
CMF detection method
COSTS
DBSCAN clustering
Digital images
Equalization
Euclidean geometry
Feature extraction
FORENSIC SCIENCE
Forensic sciences
Forgery
Histograms
Image contrast
Image manipulation
JPEG (Image coding standard)
Robustness
SURF features
Title A robust technique for copy-move forgery detection from small and extremely smooth tampered regions based on the DHE-SURF features and mDBSCAN clustering
URI https://www.tandfonline.com/doi/abs/10.1080/00450618.2020.1715479
https://search.informit.org/documentSummary;res=AGISPT;dn=20210726050594
http://search.informit.org/doi/10.3316/agispt.20210726050594
https://www.proquest.com/docview/2547194583
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBbS9rLLsCeWrht02M1wENuyHR-ztUUwLDusLVb0Ysh6LAGSOGgcDO0_2Y_bfxkpyY-gBbpulyCQLVkJP5MSRX4k5ANYOC4CFvoijbGEmYx8PkwLfyS15jpIAxljovD0azK5YJ8v48te73cnamlbFQNxe29eyb9IFdpArpgl-wjJNoNCA3wH-cInSBg-_0rGY--6LLabymuZWDFqUJTrG39ZWj5vTHr2pKqUrQlu0kk2SzyQRpc5qGZ0EC5uoK0s0SXLYR2NMelYsQHDaNDMSXek4B1PTvyzi2-nnlaGENQSPC-PP55h4Uix2CLtQm0Ma27b1pvSoamAmWHovPCcCe546xemBoE33c74csllqyOLuTk8mnA9v_XGctUCe6pmSxc7dMVnc9nRZRuuLYxm5ljK3Nd1dYSBCYttXZ3nd6qOdDU7i7FKhdXlyirzUcR8WN9ddrW9pSZ2qGYd1c0cM7ldBTBbEumOgakjMlmMDxvALKExhXVomrUWtYlzdFf2yEEIuxhQwwfjyfHV9-aYC8vt2BAIO_k6xQzJ3-97xM7iaYdad2eD1OGCMMuk82fkqdvf0LEF63PSU6sXZO8L__mS_BpTC1fawJXC0LSBK3VwpQ1cKcKVGrhSQBpt4EotXGkNV-rgSg1cKfQEuNIarrSGqxnEwZW2cH1FLk5Pzj9NfFcZxBcsDStfqCRI0oJliRbJMNMSVFEsweaPkNq24FyniYyCOMl4loQ65pEq-HCUcs7CIlUiek32V-VKvSGUaa2C4VCMVII8T3BTIKNCCp2EoywVsk9Y_ZfnwtHmY_WWRR407LpWUjlKKneS6pNB021teWMe6pB15ZlXBuza4jyPHuh7VAs_d2_yJg_hSpBhWESfnCAgcv5jvllXJpFvk2MAem6fCJdAvDlAHKcYRUFS34ov4TBFlwfSOvXJuDuONcWPHOPwP37mW_Kk1QpHZL-63qp3sCWoivfuxfoD7WMK4g
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbY5QAX3ojCAj5wTZWnnRzLbqsC3R7YrbQ3y_EDrUibqklByz_h3zJjJ1WLhFZoj0nsiR9jz4w98w0hH0DCSRWlcaB4hinMdBLIkJdBrq2VNuKRzjBQ-HzOpov081V2tRcLg26VaENbDxTh9mpc3HgY3bvEISBPBnIIPbNieMVBDeDFEbmfFYwjryfhfHeTgBlN_C1zhlkM8j6K519kDuTTAXrpgQ66F27vJNHkMVF9H7wDyvfhti2H6tdf8I536-QT8qhTVOnIc9ZTcs-snpGjmfz5nPwe0U1dbpuW7hBgKXSAqnp9EyzrH-4Jg62pNq1z9VpRDGOhzVJWFYUmURAJeDBZ3cC7GpiFthL0943RFDNFwEqgKF41hZqgodKz6Ti4WHydUGscEGnjiCzPPl6cjuZUVVuEewAh_IIsJuPL02nQpXgIVMrjNlCGRYyXacGsYmFhNfBUpmHzzhGjtJTScqYTsDELWbDYZjIxpQxzLmUal9yo5CU5XtUr84rQ1FoThaHKDUPAHigU6aTUyjKwKbnSA5L2EytUh3-OaTgqEe1gUv2ICxxx0Y34gAx31dYeAOS2CsU-14jWnbxYnyZFJLfUPelZTHR7SSPAhOdRgffbAzJGthPy23Wzbl1EViPQk1j4P8InmF4BrIRNTJKI9UVjNO052q6IzzMgo306fk_9Txqv79DN9-TB9PJ8Jmaf5l_ekIdI2HlApyfkuN1szVvQ89rynVvIfwBjMUS6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYRUJceCO6LOAD11R52smxbFsVWCrEUomb5ecKkTZVky5a_gn_lhknqVoktEJ7TGJP_Bh7ZuyZbwh5CxJO6iiNA80zTGFmkkCGXAW5cU66iEcmw0DhT3M2W6QfvmW9N2HduVWiDe1aoAi_V-PiXhvXe8QhHk8GYggds2J4xUEL4MURucsw0BKjOML57iIBE5q0l8wZJjHI-yCef5E5EE8H4KUHKuhetL0XRNOHRPVdaP1Pfgy3jRrqX3-hO96qj4_Ig05NpaOWrx6TO3b1hBydy59Pye8R3VRqWzd0h_9Kof1UV-vrYFld-ScMtabGNt7Ra0UxiIXWS1mWFFpEQSDgsWR5De8qYBXaSNDeN9ZQzBMB64CicDUUaoJ-SsezSXCx-DKlznoY0toTWY7fXZyN5lSXWwR7ABH8jCymk69ns6BL8BDolMdNoC2LGFdpwZxmYeEMcFRmYOvOEaFUSek4MwlYmIUsWOwymVglw5xLmcaKW508J8eramVfEJo6Z6Mw1LllCNcDhSKTKKMdA4uSazMgaT-vQnfo55iEoxTRDiS1HXGBIy66ER-Q4a7auoX_uKlCsc80ovHnLq5NkiKSG-qe9hwmup2kFmDA86jA2-0BmSDXCXn5vV43Ph6rFuhHLNo_wieYXgGchE1Mkoj1RWM07DlarojOMyCjfTrtjvqfNE5u0c035N7n8VScv59_fEnuI13v_pyekuNms7WvQMlr1Gu_jP8AIslDXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+technique+for+copy-move+forgery+detection+from+small+and+extremely+smooth+tampered+regions+based+on+the+DHE-SURF+features+and+mDBSCAN+clustering&rft.jtitle=Australian+journal+of+forensic+sciences&rft.au=Bilal%2C+Muhammad&rft.au=Habib%2C+Hafiz+Adnan&rft.au=Mehmood%2C+Zahid&rft.au=Yousaf%2C+Rehan+Mehmood&rft.date=2021-07-04&rft.pub=Taylor+%26+Francis&rft.issn=0045-0618&rft.eissn=1834-562X&rft.volume=53&rft.issue=4&rft.spage=459&rft.epage=482&rft_id=info:doi/10.1080%2F00450618.2020.1715479&rft.externalDocID=1715479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-0618&client=summon