Application of Machine Learning Algorithm on MEMS-Based Sensors for Determination of Helmet Wearing for Workplace Safety

Appropriate use of helmets as industrial personal protective gear is a long-standing challenge. The dilemma for any user wearing a helmet is thermal discomfort versus the chances of head injuries while not wearing it. Applying helmet microclimate psychrometry, we propose a logistic regression- (LR)...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 12; no. 4; p. 449
Main Authors Tan, Yan Hao, Hitesh, Agarwal, Li, King Ho Holden
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.04.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Appropriate use of helmets as industrial personal protective gear is a long-standing challenge. The dilemma for any user wearing a helmet is thermal discomfort versus the chances of head injuries while not wearing it. Applying helmet microclimate psychrometry, we propose a logistic regression- (LR) based machine learning (ML) algorithm coupled with low-cost and readily available MEMS sensors to determine if a helmet was worn (W) or not worn (NW) by a human user. Experiment runs involving human subject (S) and mannequin experiment control (C) groups were conducted across no mask (NM) and mask (M) conditions. Only ambient-microclimate humidity difference (AMHD) was a feasible parameter for helmet wearing determination with 71 to 85% goodness of fit, 72 to 76% efficacy, and distinction from control group. Ambient-microclimate humidity difference’s rate of change (AMHDROC) had high correlation to helmet wearing and removal initiations and was quantitatively better in all measures. However, its feasibility was doubtful for continuous use beyond 1 min due to plateauing AMHD response. Experiments with control groups and temperature measurement showed invariant response to helmet worn or not worn with goodness of fit and efficacy consolidation to 50%. Results showed the algorithm can make helmet-wearing determinations with combination of analysis and use of data that was individually authentic and non-identifiable. This is an improvement as compared to state of the art skin-contact mechanisms and image analytics methods in enabling safety enhancements through data-driven worker safety ownership.
AbstractList Appropriate use of helmets as industrial personal protective gear is a long-standing challenge. The dilemma for any user wearing a helmet is thermal discomfort versus the chances of head injuries while not wearing it. Applying helmet microclimate psychrometry, we propose a logistic regression- (LR) based machine learning (ML) algorithm coupled with low-cost and readily available MEMS sensors to determine if a helmet was worn (W) or not worn (NW) by a human user. Experiment runs involving human subject (S) and mannequin experiment control (C) groups were conducted across no mask (NM) and mask (M) conditions. Only ambient-microclimate humidity difference (AMHD) was a feasible parameter for helmet wearing determination with 71 to 85% goodness of fit, 72 to 76% efficacy, and distinction from control group. Ambient-microclimate humidity difference's rate of change (AMHDROC) had high correlation to helmet wearing and removal initiations and was quantitatively better in all measures. However, its feasibility was doubtful for continuous use beyond 1 min due to plateauing AMHD response. Experiments with control groups and temperature measurement showed invariant response to helmet worn or not worn with goodness of fit and efficacy consolidation to 50%. Results showed the algorithm can make helmet-wearing determinations with combination of analysis and use of data that was individually authentic and non-identifiable. This is an improvement as compared to state of the art skin-contact mechanisms and image analytics methods in enabling safety enhancements through data-driven worker safety ownership.Appropriate use of helmets as industrial personal protective gear is a long-standing challenge. The dilemma for any user wearing a helmet is thermal discomfort versus the chances of head injuries while not wearing it. Applying helmet microclimate psychrometry, we propose a logistic regression- (LR) based machine learning (ML) algorithm coupled with low-cost and readily available MEMS sensors to determine if a helmet was worn (W) or not worn (NW) by a human user. Experiment runs involving human subject (S) and mannequin experiment control (C) groups were conducted across no mask (NM) and mask (M) conditions. Only ambient-microclimate humidity difference (AMHD) was a feasible parameter for helmet wearing determination with 71 to 85% goodness of fit, 72 to 76% efficacy, and distinction from control group. Ambient-microclimate humidity difference's rate of change (AMHDROC) had high correlation to helmet wearing and removal initiations and was quantitatively better in all measures. However, its feasibility was doubtful for continuous use beyond 1 min due to plateauing AMHD response. Experiments with control groups and temperature measurement showed invariant response to helmet worn or not worn with goodness of fit and efficacy consolidation to 50%. Results showed the algorithm can make helmet-wearing determinations with combination of analysis and use of data that was individually authentic and non-identifiable. This is an improvement as compared to state of the art skin-contact mechanisms and image analytics methods in enabling safety enhancements through data-driven worker safety ownership.
Appropriate use of helmets as industrial personal protective gear is a long-standing challenge. The dilemma for any user wearing a helmet is thermal discomfort versus the chances of head injuries while not wearing it. Applying helmet microclimate psychrometry, we propose a logistic regression- (LR) based machine learning (ML) algorithm coupled with low-cost and readily available MEMS sensors to determine if a helmet was worn (W) or not worn (NW) by a human user. Experiment runs involving human subject (S) and mannequin experiment control (C) groups were conducted across no mask (NM) and mask (M) conditions. Only ambient-microclimate humidity difference (AMHD) was a feasible parameter for helmet wearing determination with 71 to 85% goodness of fit, 72 to 76% efficacy, and distinction from control group. Ambient-microclimate humidity difference’s rate of change (AMHDROC) had high correlation to helmet wearing and removal initiations and was quantitatively better in all measures. However, its feasibility was doubtful for continuous use beyond 1 min due to plateauing AMHD response. Experiments with control groups and temperature measurement showed invariant response to helmet worn or not worn with goodness of fit and efficacy consolidation to 50%. Results showed the algorithm can make helmet-wearing determinations with combination of analysis and use of data that was individually authentic and non-identifiable. This is an improvement as compared to state of the art skin-contact mechanisms and image analytics methods in enabling safety enhancements through data-driven worker safety ownership.
Author Tan, Yan Hao
Hitesh, Agarwal
Li, King Ho Holden
AuthorAffiliation 1 School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; yh.tan@ntu.edu.sg
2 School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; HITESH001@e.ntu.edu.sg
AuthorAffiliation_xml – name: 1 School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; yh.tan@ntu.edu.sg
– name: 2 School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; HITESH001@e.ntu.edu.sg
Author_xml – sequence: 1
  givenname: Yan Hao
  orcidid: 0000-0003-4659-0387
  surname: Tan
  fullname: Tan, Yan Hao
– sequence: 2
  givenname: Agarwal
  surname: Hitesh
  fullname: Hitesh, Agarwal
– sequence: 3
  givenname: King Ho Holden
  orcidid: 0000-0001-6187-6434
  surname: Li
  fullname: Li, King Ho Holden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33923785$$D View this record in MEDLINE/PubMed
BookMark eNptkl1vFCEUQImpse3aF3-AmcQXY7LK8DXMi8laq22yGx9WU98Iw9zZZZ2BEVjT_nvZblvbRkiAwLknFy7H6MB5Bwi9KvF7Smv8YbAlwQwzVj9DRwRXZCqE-HnwYH2ITmLc4Nyqqs7DC3SYIwmtJD9CV7Nx7K3RyXpX-K5YaLO2Doo56OCsWxWzfuWDTeuhyMDibLGcftIR2mIJLvoQi86H4jMkCIN195Zz6AdIxWWW7Bw75tKHX2OvDRRL3UG6fomed7qPcHI7T9CPL2ffT8-n829fL05n86lhFUlTI4mQRtBG1DXUlZaEGaNbkDUhRnPOOEBZEQJSCgINxR3tWpOvXYpOtHVLJ-hi72293qgx2EGHa-W1VTcbPqyUDsmaHhSThmtZN1hIxhrcStF0JS815bqpDOfZ9XHvGrfNAK0Bl4LuH0kfnzi7Viv_R0lc0TL3CXp7Kwj-9xZiUoONBvpeO_DbqAgnWHLMyiqjb56gG78NLj9VpigmRErKMvX6YUb3qdwVOAN4D5jgYwzQKWPTTZ1ygrZXJd6xWP37Rjnk3ZOQO-t_4L8fXcd9
CitedBy_id crossref_primary_10_3390_app142311278
crossref_primary_10_3390_mi13071044
crossref_primary_10_3390_mi13030407
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_54097_7hkv9b51
crossref_primary_10_7769_gesec_v14i8_2585
Cites_doi 10.2114/jpa.16.107
10.1186/cc6875
10.1073/pnas.1922210117
10.1016/j.applthermaleng.2016.09.142
10.1080/00140130210159959
10.1016/j.compfluid.2010.07.004
10.1016/j.actamat.2020.03.016
10.1007/s11036-017-0935-5
10.1016/S0169-8141(00)00059-7
10.1007/978-3-540-73331-7_74
10.1519/JSC.0b013e31823b0a5a
10.1016/0003-6870(95)00010-A
10.1520/JTE102812
10.1002/1348-9585.12024
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/mi12040449
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

PubMed
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID oai_doaj_org_article_48c5a89b06844b0d86bf151a35ab7c55
PMC8073131
33923785
10_3390_mi12040449
Genre Journal Article
GeographicLocations Singapore
GeographicLocations_xml – name: Singapore
GrantInformation_xml – fundername: Ministry of Education
  grantid: MOE Tier 1 Award 020212-00001
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
KQ8
L6V
M7S
MM.
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RPM
TR2
TUS
NPM
7SP
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c472t-c8268c63b699e97a824ccade8922ca5545ee1722e8862eb30f3fdc66616f6d9d3
IEDL.DBID BENPR
ISSN 2072-666X
IngestDate Wed Aug 27 01:31:48 EDT 2025
Thu Aug 21 17:56:20 EDT 2025
Thu Jul 10 22:13:50 EDT 2025
Fri Jul 25 11:57:51 EDT 2025
Wed Feb 19 02:28:40 EST 2025
Thu Apr 24 23:13:12 EDT 2025
Tue Jul 01 03:41:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords microclimate
logistic regression
machine learning
appropriate use
helmet
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-c8268c63b699e97a824ccade8922ca5545ee1722e8862eb30f3fdc66616f6d9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4659-0387
0000-0001-6187-6434
OpenAccessLink https://www.proquest.com/docview/2530228834?pq-origsite=%requestingapplication%
PMID 33923785
PQID 2530228834
PQPubID 2032359
ParticipantIDs doaj_primary_oai_doaj_org_article_48c5a89b06844b0d86bf151a35ab7c55
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8073131
proquest_miscellaneous_2520850417
proquest_journals_2530228834
pubmed_primary_33923785
crossref_citationtrail_10_3390_mi12040449
crossref_primary_10_3390_mi12040449
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210416
PublicationDateYYYYMMDD 2021-04-16
PublicationDate_xml – month: 4
  year: 2021
  text: 20210416
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Micromachines (Basel)
PublicationTitleAlternate Micromachines (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Canuto (ref_16) 2011; 43
Chiumello (ref_12) 2008; 12
Taylor (ref_13) 2008; 104
Liu (ref_22) 2020; 190
Amar (ref_4) 2011; 5
Bogerd (ref_15) 2010; 55
ref_24
Liu (ref_9) 1995; 26
Cimolin (ref_14) 2010; Volume 1281
Wang (ref_21) 2017; 23
Ghani (ref_11) 2017; 111
Lu (ref_23) 2020; 117
Halimi (ref_5) 2009; 5
ref_3
Geetha (ref_18) 2013; 16
Holland (ref_7) 2002; 45
Davis (ref_1) 2001; 27
Cheng (ref_20) 2009; Volume 3
Wickwire (ref_17) 2012; 26
ref_8
Dohare (ref_19) 2013; 61
Liu (ref_10) 1997; 16
Guan (ref_6) 2007; Volume 4562
Ueno (ref_2) 2019; 61
References_xml – ident: ref_8
– volume: 5
  start-page: 833
  year: 2009
  ident: ref_5
  article-title: Thermal properties of industrial safety helmets
  publication-title: J. Appl. Sci. Res.
– volume: 16
  start-page: 107
  year: 1997
  ident: ref_10
  article-title: Evaluation of Evaporative Heat Transfer Characteristics of Helmets
  publication-title: Appl. Hum. Sci. J. Physiol. Anthr.
  doi: 10.2114/jpa.16.107
– volume: 12
  start-page: R55
  year: 2008
  ident: ref_12
  article-title: Effect of a heated humidifier during continuous positive airway pressure delivered by a helmet
  publication-title: Crit. Care
  doi: 10.1186/cc6875
– volume: 117
  start-page: 7052
  year: 2020
  ident: ref_23
  article-title: Extraction of mechanical properties of materials through deep learning from instrumented indentation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1922210117
– ident: ref_24
– volume: 111
  start-page: 624
  year: 2017
  ident: ref_11
  article-title: The effect of forced convection and PCM on helmets’ thermal performance in hot and arid environments
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.09.142
– volume: 61
  start-page: 283
  year: 2013
  ident: ref_19
  article-title: Low power low cost environment monitoring and control through zigbee in underground mines
  publication-title: J. Mines Met. Fuels
– volume: 45
  start-page: 699
  year: 2002
  ident: ref_7
  article-title: Helmet design to facilitate thermoneutrality during forest harvesting
  publication-title: Ergonomics
  doi: 10.1080/00140130210159959
– volume: 43
  start-page: 29
  year: 2011
  ident: ref_16
  article-title: A sweating model for the internal ventilation of a motorcycle helmet
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2010.07.004
– volume: 190
  start-page: 105
  year: 2020
  ident: ref_22
  article-title: A machine learning approach to fracture mechanics problems
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.03.016
– volume: 23
  start-page: 336
  year: 2017
  ident: ref_21
  article-title: Anxiety Level Detection Using BCI of Miner’s Smart Helmet
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-017-0935-5
– volume: Volume 1281
  start-page: 67
  year: 2010
  ident: ref_14
  article-title: Analysis of the internal ventilation for a motorcycle helmet
  publication-title: Fourth Huntsville Gammaray Burst Symposium
– volume: 27
  start-page: 321
  year: 2001
  ident: ref_1
  article-title: Effects of ventilated safety helmets in a hot environment
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/S0169-8141(00)00059-7
– volume: 5
  start-page: 41
  year: 2011
  ident: ref_4
  article-title: Heat and moisture transfer in safety helmet
  publication-title: JP J. Heat Mass Transf.
– volume: Volume 3
  start-page: 433
  year: 2009
  ident: ref_20
  article-title: ZigBee based intelligent helmet for coal miners
  publication-title: Proceedings of the 2009 World Congress on Computer Science and Information Engineering
– volume: Volume 4562
  start-page: 678
  year: 2007
  ident: ref_6
  article-title: Experimental thermal/moisture mapping of industrial safety helmets
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-540-73331-7_74
– volume: 26
  start-page: 1
  year: 2012
  ident: ref_17
  article-title: Comparison of an In-Helmet Temperature Monitor System to Rectal Temperature During Exercise
  publication-title: J. Strength Cond. Res.
  doi: 10.1519/JSC.0b013e31823b0a5a
– volume: 26
  start-page: 135
  year: 1995
  ident: ref_9
  article-title: Evaporative heat transfer characteristics of industrial safety helmets
  publication-title: Appl. Ergon.
  doi: 10.1016/0003-6870(95)00010-A
– volume: 104
  start-page: 289
  year: 2008
  ident: ref_13
  article-title: The physiological demands of horseback mustering when wearing an equestrian helmet
  publication-title: Graefes Arch. Clin. Exp. Ophthalmol.
– volume: 16
  start-page: 1835
  year: 2013
  ident: ref_18
  article-title: Intelligent helmet for coal miners with voice over zigbee and environmental monitoring
  publication-title: Middle East J. Sci. Res.
– ident: ref_3
  doi: 10.1520/JTE102812
– volume: 61
  start-page: 157
  year: 2019
  ident: ref_2
  article-title: Effects of ventilation openings in industrial safety helmets on evaporative heat dissipation
  publication-title: J. Occup. Health
  doi: 10.1002/1348-9585.12024
– volume: 55
  start-page: 192
  year: 2010
  ident: ref_15
  article-title: Thermal Perception of Ventilation Changes in Full-Face Motorcycle Helmets: Subject and Manikin Study
  publication-title: Ann. Occup. Hyg.
SSID ssj0000779007
Score 2.2406545
Snippet Appropriate use of helmets as industrial personal protective gear is a long-standing challenge. The dilemma for any user wearing a helmet is thermal discomfort...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 449
SubjectTerms Algorithms
appropriate use
Calibration
Compliance
Data collection
Decision making
Experiments
Feasibility
Goodness of fit
Head injuries
helmet
Helmets
Human performance
Human subjects
Humidity
logistic regression
Machine learning
Mannequins
Microclimate
Microelectromechanical systems
Occupational safety
Psychrometers
Sensors
Temperature measurement
Thermal comfort
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTvSACm1pykOu2ksPEbHj-HFcXkKVtpctglvkJ6zEJtUSJPj3jPNYsgipl17j0WjiGXvmk0ffIPTDkSI4KUmqgnApVMQqVT6Q1OmMGMqFlrrt8v3NLy7Zr-viejTqK_aEdfTA3cYdMWkLLZXJuGTMZE5yEyBL6bzQRtiiZS-FnDcCU-0dHGn0MtHxkeaA648Wc0IhYFkkzRxloJao_63q8nWT5CjrnH9AW325iCedmdvona920PsRieBH9Dh5eYPGdcDTtj3S45459QZP7m7q5by5XWAQmJ5NZ-kxpC6HZ4Bg6-U9hrIVnw5dMYMWSEcL3-ArUBJ1RJmroYULz3TwzdMndHl-9ufkIu3nKaSWCdqkFqCEtDw3XCmvwA2U2diELxWlVkNdUXgP9Qz1EmAOgOws5MFZwDeEB-6Uyz-jjaqu_BeEszyQIL2wmnOmJTPKeheU5kRaQ3xI0M9hj0vbk43HmRd3JYCO6I_yxR8J-r6S_dtRbLwpdRxdtZKItNjtBwiWsg-W8l_BkqD9wdFlf1bvSxoHJ8WhyyxB31bLcMri04mufP0QZeIs04wRkaDdLi5WloChNBcSlIu1iFkzdX2lmt-2TN4SLliSk6__49_20CaN_TaRh5Lvo41m-eAPoGBqzGF7Np4BACwVYA
  priority: 102
  providerName: Directory of Open Access Journals
Title Application of Machine Learning Algorithm on MEMS-Based Sensors for Determination of Helmet Wearing for Workplace Safety
URI https://www.ncbi.nlm.nih.gov/pubmed/33923785
https://www.proquest.com/docview/2530228834
https://www.proquest.com/docview/2520850417
https://pubmed.ncbi.nlm.nih.gov/PMC8073131
https://doaj.org/article/48c5a89b06844b0d86bf151a35ab7c55
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY9gIPiO9ljMoIXniIFjuOYz-hFlompE6IMm1vkeOPbtKajDaTxn_POXXSFk28JqfTJXe-L59-h9BHQzJnhCCxdLmJISOWsbSOxEYlpKQ8V0K1U75n_PScfb_MLkPDbRXGKjuf2DpqU2vfIz-hfr2NX43LPt_-jv3WKH-7GlZo7KEDcMECiq-D0fjsx8--y5J4OL0kX-OSplDfnyyuCQXDZR48cysStYD9D2WZ_w5LbkWfyTP0NKSNeLjW83P0yFYv0JMtMMGX6H64uYvGtcPTdkzS4oCgOsfDmzl8UHO1wEAwHU9n8QhCmMEzqGTr5QpD-oq_dtMxHRcISwvb4Atg4nl4motulAvPlLPNn1fofDL-9eU0DnsVYs1y2sQaSgqheVpyKa0EdVCm_TC-kJRqBflFZi3kNdQKKHeg2E5c6oyGOodwx4006Wu0X9WVPUQ4SR1xwuZacc6UYKXU1jipOBG6JNZF6FP3jwsdQMf97oubAooPr49io48Ifehpb9dQGw9SjbyqegoPj90-qJfzIpy2ggmdKSHLhAvGysQIXjpIbVSaqTLXWRah407RRTizq2JjYRF637-G0-avUFRl6ztP43eaJozkEXqztoteEhCUprkA5vmOxeyIuvumur5qEb0FOFqSkqP_i_UWPaZ-osYjTfJjtN8s7-w7SImacoD2xOTbIFj_oG0s_AUmLBBg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPgwCFq7DiOfUBoS7tsabeXbdXeUsePbaVuUnZTQf8Uv5FxHvtAFbde16PRyDPj-RzPfoPQR0MSZ4QgoXSpCQERy1BaR0KjIpJTniqh6i7fAz44Yj9OkpM19Kf7L4xvq-zOxPqgNqX238g3qR9v40fjsq-XP0M_Ncq_rnYjNJqw2LPXv-DKNvuyuw3-_URpf-fw2yBspwqEmqW0CjUAaqF5nHMprQRjKNO-FV1ISrWC6ppYC1WdWgFgH66akYud0YDyCXfcSBOD3jvoLotj6TNK9L_Pv-lEnrwvShsWVFiPNifnhEKaME_VuVT36vEAN2Haf1szl2pd_xF62IJU3Gui6jFas8UT9GCJuvAp-t1bvHzj0uFh3ZRpccvXOsa9izFsX3U2wSAw3BmOwi0omAaP4N5cTmcYwDLe7npxOi1QBCe2wsegxOvwMsdd4xgeKWer62fo6Fb2-zlaL8rCvkQ4ih1xwqZacc6UYLnU1jipOBE6J9YF6HO3x5luKc79pI2LDK463h_Zwh8B-jCXvWyIPW6U2vKumkt4Mu76h3I6ztrczpjQiRIyj7hgLI-M4LkDIKXiROWpTpIAbXSOztoTYpYt4jlA7-fLkNv-wUYVtrzyMn6CasRIGqAXTVzMLQFDaZwKUJ6uRMyKqasrxflZzR8u4FgnMXn1f7PeoXuDw-F-tr97sPca3ae-l8dzXPINtF5Nr-wbAGNV_rbOAIxObzvl_gKDU0oX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyF4mPimY4AR8MBD1NhxHPsBoZa22hitJsq0vQXHH92ktRltJti_xl_HOU36gSbe9hqfTiffne_OvvwOoXeGxM4IQQLpEhNARiwDaR0JjApJRnmihCq7fId8_5h9OY1Pt9Cf-l8Y31ZZn4nlQW1y7e_IW9SPt_GjcVnLVW0RR93-p8ufgZ8g5V9a63EaCxM5tNe_oHybfzzogq7fU9rvff-8H1QTBgLNEloEGpJroXmUcSmtBMEo074tXUhKtYJIG1sLEZ5aAYk_lJ2hi5zRkPET7riRJgK-d9B2AlVR2EDbnd7w6Nvyhif0UH5hssBEjSIZtibnhILTMA_cuRYFy2EBN2W4_zZqrkW-_gO0U6WsuL2wsYdoy04foftrQIaP0e_26h0c5w4PyhZNiyv01jFuX4xhA4uzCQaCQW8wCjoQPg0eQRWdz-YYUmfcrTtzai4QEie2wCfAxPPwNCd1GxkeKWeL6yfo-FZ2_ClqTPOpfY5wGDnihE204pwpwTKprXFScSJ0Rqxrog_1Hqe6Ajz3czcuUih8vD7SlT6a6O2S9nIB83EjVceraknhobnLD_lsnFaenjKhYyVkFnLBWBYawTMHaZWKYpUlOo6baK9WdFqdF_N0Zd1N9Ga5DJ7un2_U1OZXnsbPUw0ZSZro2cIulpKAoDRKBDBPNixmQ9TNlen5WYkmLuCQJxHZ_b9Yr9FdcLf068Hw8AW6R31jjwe85HuoUcyu7EvIzIrsVeUCGP24ba_7CyuHT6k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Machine+Learning+Algorithm+on+MEMS-Based+Sensors+for+Determination+of+Helmet+Wearing+for+Workplace+Safety&rft.jtitle=Micromachines+%28Basel%29&rft.au=Tan%2C+Yan+Hao&rft.au=Hitesh%2C+Agarwal&rft.au=Li%2C+King+Ho+Holden&rft.date=2021-04-16&rft.issn=2072-666X&rft.eissn=2072-666X&rft.volume=12&rft.issue=4&rft_id=info:doi/10.3390%2Fmi12040449&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon