Terahertz Broadband Absorber Based on a Combined Circular Disc Structure

To solve the problem of complex structure and narrow absorption band of most of today's terahertz absorbers, this paper proposes and utilizes the finite element (COMSOL) method to numerically simulate a broadband absorber based on a straightforward periodic structure consisting of a disk and co...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 12; no. 11; p. 1290
Main Authors Huang, Meihong, Wei, Kaihua, Wu, Pinghui, Xu, Danyang, Xu, Yan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.10.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To solve the problem of complex structure and narrow absorption band of most of today's terahertz absorbers, this paper proposes and utilizes the finite element (COMSOL) method to numerically simulate a broadband absorber based on a straightforward periodic structure consisting of a disk and concentric ring. The final results show that our designed absorber has an absorption rate of over 99% in the broadband range of 9.06 THz to 9.8 THz and an average of over 97.7% in the ultra-broadband range of 8.62 THz to 10 THz. The reason for the high absorption is explained by the depiction of the electric field on the absorber surface at different frequencies. In addition, the materials for the top pattern of the absorber are replaced by Cu, Ag, or Al, and the absorber still achieves perfect absorption with different metal materials. Due to the perfect symmetry of the absorber structure, the absorber is very polarization-insensitive. The overall design is simple, easy to process and production. Therefore, our research will offer great potential for applications in areas such as terahertz electromagnetic stealth, sensing, and thermal imaging.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2072-666X
2072-666X
DOI:10.3390/mi12111290