GDNF, A Neuron-Derived Factor Upregulated in Glial Cells during Disease
In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family recepto...
Saved in:
Published in | Journal of clinical medicine Vol. 9; no. 2; p. 456 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
07.02.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family receptor α1 (GFRα1), which is mainly expressed by neurons and can act in cis as a membrane-bound factor or in trans as a soluble factor. The GDNF/GFRα1 complex signals through interactions with the “rearranged during transfection” (RET) receptor or via the neural cell adhesion molecule (NCAM) with a lower affinity. GDNF can also signal independently from GFRα1 by interacting with syndecan-3. RET, which is expressed by neurons involved in several pathways (nigro–striatal dopaminergic neurons, motor neurons, enteric neurons, sensory neurons, etc.), could be the main determinant of the specificity of GDNF’s pro-survival effect. In an injured brain, de novo expression of GDNF occurs in glial cells. Neuroinflammation has been reported to induce GDNF expression in activated astrocytes and microglia, infiltrating macrophages, nestin-positive reactive astrocytes, and neuron/glia (NG2) positive microglia-like cells. This disease-related GDNF overexpression can be either beneficial or detrimental depending on the localization in the brain and the level and duration of glial cell activation. Some reports also describe the upregulation of RET and GFRα1 in glial cells, suggesting that GDNF could modulate neuroinflammation. |
---|---|
AbstractList | In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family receptor α1 (GFRα1), which is mainly expressed by neurons and can act in
cis
as a membrane-bound factor or in
trans
as a soluble factor. The GDNF/GFRα1 complex signals through interactions with the “rearranged during transfection” (RET) receptor or via the neural cell adhesion molecule (NCAM) with a lower affinity. GDNF can also signal independently from GFRα1 by interacting with syndecan-3. RET, which is expressed by neurons involved in several pathways (nigro–striatal dopaminergic neurons, motor neurons, enteric neurons, sensory neurons, etc.), could be the main determinant of the specificity of GDNF’s pro-survival effect. In an injured brain, de novo expression of GDNF occurs in glial cells. Neuroinflammation has been reported to induce GDNF expression in activated astrocytes and microglia, infiltrating macrophages, nestin-positive reactive astrocytes, and neuron/glia (NG2) positive microglia-like cells. This disease-related GDNF overexpression can be either beneficial or detrimental depending on the localization in the brain and the level and duration of glial cell activation. Some reports also describe the upregulation of RET and GFRα1 in glial cells, suggesting that GDNF could modulate neuroinflammation. In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family receptor α1 (GFRα1), which is mainly expressed by neurons and can act in cis as a membrane-bound factor or in trans as a soluble factor. The GDNF/GFRα1 complex signals through interactions with the “rearranged during transfection” (RET) receptor or via the neural cell adhesion molecule (NCAM) with a lower affinity. GDNF can also signal independently from GFRα1 by interacting with syndecan-3. RET, which is expressed by neurons involved in several pathways (nigro–striatal dopaminergic neurons, motor neurons, enteric neurons, sensory neurons, etc.), could be the main determinant of the specificity of GDNF’s pro-survival effect. In an injured brain, de novo expression of GDNF occurs in glial cells. Neuroinflammation has been reported to induce GDNF expression in activated astrocytes and microglia, infiltrating macrophages, nestin-positive reactive astrocytes, and neuron/glia (NG2) positive microglia-like cells. This disease-related GDNF overexpression can be either beneficial or detrimental depending on the localization in the brain and the level and duration of glial cell activation. Some reports also describe the upregulation of RET and GFRα1 in glial cells, suggesting that GDNF could modulate neuroinflammation. In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family receptor α1 (GFRα1), which is mainly expressed by neurons and can act in cis as a membrane-bound factor or in trans as a soluble factor. The GDNF/GFRα1 complex signals through interactions with the "rearranged during transfection" (RET) receptor or via the neural cell adhesion molecule (NCAM) with a lower affinity. GDNF can also signal independently from GFRα1 by interacting with syndecan-3. RET, which is expressed by neurons involved in several pathways (nigro-striatal dopaminergic neurons, motor neurons, enteric neurons, sensory neurons, etc.), could be the main determinant of the specificity of GDNF's pro-survival effect. In an injured brain, de novo expression of GDNF occurs in glial cells. Neuroinflammation has been reported to induce GDNF expression in activated astrocytes and microglia, infiltrating macrophages, nestin-positive reactive astrocytes, and neuron/glia (NG2) positive microglia-like cells. This disease-related GDNF overexpression can be either beneficial or detrimental depending on the localization in the brain and the level and duration of glial cell activation. Some reports also describe the upregulation of RET and GFRα1 in glial cells, suggesting that GDNF could modulate neuroinflammation.In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family receptor α1 (GFRα1), which is mainly expressed by neurons and can act in cis as a membrane-bound factor or in trans as a soluble factor. The GDNF/GFRα1 complex signals through interactions with the "rearranged during transfection" (RET) receptor or via the neural cell adhesion molecule (NCAM) with a lower affinity. GDNF can also signal independently from GFRα1 by interacting with syndecan-3. RET, which is expressed by neurons involved in several pathways (nigro-striatal dopaminergic neurons, motor neurons, enteric neurons, sensory neurons, etc.), could be the main determinant of the specificity of GDNF's pro-survival effect. In an injured brain, de novo expression of GDNF occurs in glial cells. Neuroinflammation has been reported to induce GDNF expression in activated astrocytes and microglia, infiltrating macrophages, nestin-positive reactive astrocytes, and neuron/glia (NG2) positive microglia-like cells. This disease-related GDNF overexpression can be either beneficial or detrimental depending on the localization in the brain and the level and duration of glial cell activation. Some reports also describe the upregulation of RET and GFRα1 in glial cells, suggesting that GDNF could modulate neuroinflammation. In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family receptor α1 (GFRα1), which is mainly expressed by neurons and can act in as a membrane-bound factor or in as a soluble factor. The GDNF/GFRα1 complex signals through interactions with the "rearranged during transfection" (RET) receptor or via the neural cell adhesion molecule (NCAM) with a lower affinity. GDNF can also signal independently from GFRα1 by interacting with syndecan-3. RET, which is expressed by neurons involved in several pathways (nigro-striatal dopaminergic neurons, motor neurons, enteric neurons, sensory neurons, etc.), could be the main determinant of the specificity of GDNF's pro-survival effect. In an injured brain, de novo expression of GDNF occurs in glial cells. Neuroinflammation has been reported to induce GDNF expression in activated astrocytes and microglia, infiltrating macrophages, nestin-positive reactive astrocytes, and neuron/glia (NG2) positive microglia-like cells. This disease-related GDNF overexpression can be either beneficial or detrimental depending on the localization in the brain and the level and duration of glial cell activation. Some reports also describe the upregulation of RET and GFRα1 in glial cells, suggesting that GDNF could modulate neuroinflammation. |
Author | Duarte Azevedo, Marcelo Sander, Sibilla Tenenbaum, Liliane |
AuthorAffiliation | Laboratory of Molecular Neurotherapies and NeuroModulation, Center for Neuroscience Research, Lausanne University Hospital, CHUV-Pavillon 3, av de Beaumont, CH-1010 Lausanne, Switzerland; Marcelo.Duarte-Azevedo@chuv.ch (M.D.A.); sibilla.sander@chuv.ch (S.S.) |
AuthorAffiliation_xml | – name: Laboratory of Molecular Neurotherapies and NeuroModulation, Center for Neuroscience Research, Lausanne University Hospital, CHUV-Pavillon 3, av de Beaumont, CH-1010 Lausanne, Switzerland; Marcelo.Duarte-Azevedo@chuv.ch (M.D.A.); sibilla.sander@chuv.ch (S.S.) |
Author_xml | – sequence: 1 givenname: Marcelo surname: Duarte Azevedo fullname: Duarte Azevedo, Marcelo – sequence: 2 givenname: Sibilla surname: Sander fullname: Sander, Sibilla – sequence: 3 givenname: Liliane surname: Tenenbaum fullname: Tenenbaum, Liliane |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32046031$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtrGzEUhUVJaR7Npj8gDHRTSibVa0bSJmDs2A2EdFOvhUZzx5UZS440Y-i_r0wS50G1uUL3u4dzdE_RkQ8eEPpC8BVjCv9Y243CFPOq_oBOKBaixEyyo1f3Y3Se0hrnIyWnRHxCxywP1JiRE7RYzO7nl8WkuIcxBl_OILodtMXc2CHEYrmNsBp7M-Qn54tF70xfTKHvU9GO0flVMXMJTILP6GNn-gTnT_UMLec3v6c_y7tfi9vp5K60XNChbFpFuDKtbIignRKtraxtpbBK1kJRANOB7VoJyuJKMsuNsDXBQnLSZPcNO0PXj7rbsdlAa8EP0fR6G93GxL86GKffdrz7o1dhpwUWrKI4C3x7EojhYYQ06I1LNicyHsKYNGUVJ4JUXGX06zt0HcboczxNa05wxakgmbp47ehg5fmPM_D9EbAxpBShOyAE6_0O9csOM4zfwdYNZnBhn8b1_xv5B3ywnLo |
CitedBy_id | crossref_primary_10_3389_fphar_2022_745020 crossref_primary_10_3390_ijms22010136 crossref_primary_10_3389_fneur_2023_1082625 crossref_primary_10_3233_JAD_230801 crossref_primary_10_1038_s41380_024_02529_1 crossref_primary_10_3389_fncel_2021_679034 crossref_primary_10_3390_brainsci10050286 crossref_primary_10_3390_ijms23137073 crossref_primary_10_1007_s11064_025_04370_6 crossref_primary_10_54393_pjhs_v5i12_2703 crossref_primary_10_1002_glia_23904 crossref_primary_10_1089_neu_2021_0066 crossref_primary_10_1371_journal_pone_0240235 crossref_primary_10_5993_AJHB_47_1_8 crossref_primary_10_1007_s12035_020_02240_6 crossref_primary_10_1007_s11062_022_09924_w crossref_primary_10_1007_s00441_020_03287_6 crossref_primary_10_1016_j_neuro_2024_06_017 crossref_primary_10_1016_j_neulet_2022_136511 crossref_primary_10_3390_cells9051245 crossref_primary_10_1007_s12017_024_08800_6 crossref_primary_10_1016_j_yebeh_2024_110219 crossref_primary_10_11569_wcjd_v28_i19_979 crossref_primary_10_1016_j_isci_2022_104936 crossref_primary_10_1089_can_2021_0053 crossref_primary_10_3390_ijms24032000 crossref_primary_10_1002_glia_23939 crossref_primary_10_1007_s12035_024_03989_w crossref_primary_10_3389_fimmu_2022_837250 crossref_primary_10_1016_j_rhum_2024_05_006 crossref_primary_10_3390_ijms22063064 crossref_primary_10_3390_ijms252212471 crossref_primary_10_1007_s12035_022_02978_1 crossref_primary_10_1039_D3BM00183K crossref_primary_10_3389_fphar_2024_1392832 crossref_primary_10_7717_peerj_17033 crossref_primary_10_1152_ajpheart_00332_2022 crossref_primary_10_3390_life13010009 crossref_primary_10_1007_s10571_023_01434_5 crossref_primary_10_3390_cells9122623 crossref_primary_10_1186_s12974_024_03053_3 crossref_primary_10_3389_fbioe_2024_1476370 crossref_primary_10_3390_antiox11010142 crossref_primary_10_3389_fneur_2022_844497 crossref_primary_10_3390_biom12040563 crossref_primary_10_3390_jcm11247493 crossref_primary_10_1016_j_neubiorev_2024_105931 crossref_primary_10_3390_ph16121735 crossref_primary_10_1016_j_bbadis_2025_167702 crossref_primary_10_1371_journal_pone_0289169 crossref_primary_10_3390_biomedicines10081769 crossref_primary_10_1371_journal_pone_0300203 crossref_primary_10_1002_clt2_70022 crossref_primary_10_3390_ijms231710126 crossref_primary_10_1007_s43032_023_01328_3 crossref_primary_10_1002_jnr_25336 crossref_primary_10_3390_life13030647 crossref_primary_10_1002_glia_24013 crossref_primary_10_3390_ijms25126357 crossref_primary_10_4103_1673_5374_358619 crossref_primary_10_1002_jnr_24768 crossref_primary_10_1089_neu_2023_0423 crossref_primary_10_3389_fphar_2022_935418 crossref_primary_10_3390_ijms242316818 crossref_primary_10_1080_00914037_2023_2215376 crossref_primary_10_2147_NSS_S263528 crossref_primary_10_1038_s41598_024_68626_x crossref_primary_10_1155_2020_9494352 crossref_primary_10_3389_fbioe_2024_1420183 crossref_primary_10_3390_cells14010054 |
Cites_doi | 10.1016/j.expneurol.2019.113037 10.1016/j.neulet.2017.06.005 10.1002/mds.23442 10.1111/j.1529-8027.2010.00258.x 10.1016/S0169-328X(00)00250-3 10.1111/j.1750-3639.2004.tb00064.x 10.1038/s41598-018-23795-4 10.1002/jnr.10760 10.1083/jcb.201009136 10.1016/j.celrep.2019.02.003 10.3389/fnana.2017.00029 10.1046/j.1460-9568.2000.00239.x 10.1038/sj.mt.6300379 10.1007/s00441-008-0634-4 10.1016/S0896-6273(01)00188-X 10.1038/nn.3941 10.1016/j.nbd.2008.12.005 10.1006/exnr.2000.7416 10.1126/science.7973664 10.1016/j.expneurol.2018.07.017 10.1371/journal.pgen.1005710 10.3389/fphys.2019.00486 10.1016/j.mcn.2008.05.018 10.1523/JNEUROSCI.1122-04.2004 10.1006/mcne.1999.0754 10.1002/(SICI)1096-9861(19990531)408:2<283::AID-CNE9>3.0.CO;2-2 10.1016/j.taap.2018.09.012 10.1016/0304-3940(94)90218-6 10.1016/j.expneurol.2004.05.014 10.1007/s004410050688 10.1111/jnc.12209 10.1016/S0169-328X(99)00106-0 10.1523/JNEUROSCI.0567-10.2010 10.1016/j.bbr.2013.07.028 10.1016/j.pharmthera.2019.01.001 10.1006/exnr.2002.8006 10.1523/JNEUROSCI.5888-09.2010 10.1016/j.celrep.2016.12.039 10.1016/j.nbd.2014.01.009 10.1523/JNEUROSCI.20-12-04686.2000 10.1002/glia.21040 10.1523/JNEUROSCI.2693-11.2012 10.1371/journal.pone.0006486 10.1002/ana.20737 10.1038/mt.2013.169 10.1016/j.pneurobio.2008.09.006 10.1038/mt.2011.249 10.1038/nn1855 10.1016/S0006-8993(98)00627-1 10.1038/jcbfm.2009.233 10.1016/j.neures.2008.04.008 10.1038/mtm.2016.27 10.1038/382076a0 10.1038/nrn3710 10.3389/fncel.2013.00034 10.1016/j.nbd.2015.03.023 10.5607/en.2016.25.5.233 10.1002/mds.27986 10.1523/JNEUROSCI.19-05-01708.1999 10.1016/j.omtm.2018.08.008 10.1523/JNEUROSCI.17-10-03554.1997 10.1523/JNEUROSCI.21-10-03457.2001 10.1523/JNEUROSCI.17-21-08506.1997 10.1038/nn.2136 10.1016/j.omtm.2019.11.013 10.1016/j.brainres.2010.07.016 10.1073/pnas.92.18.8274 10.1016/j.neures.2007.07.007 10.1093/brain/awy340 10.1016/S0092-8674(03)00435-5 10.1038/s41598-017-13960-6 10.1242/jcs.00786 10.1016/S1474-4422(10)70254-4 10.1002/jnr.21241 10.1007/s11481-019-09855-0 10.1016/0925-4773(95)00464-5 10.1038/gt.2014.22 10.1159/000285508 10.1002/mds.27724 10.1016/j.neulet.2012.01.022 10.1006/mcne.2002.1185 10.1006/exnr.1999.7127 10.1016/S0006-8993(98)00131-0 10.1016/0896-6273(95)90024-1 10.1093/brain/awz023 10.1016/j.expneurol.2009.07.002 10.1038/labinvest.2010.203 10.1097/00001756-200502080-00004 10.1038/382070a0 10.1002/cne.21014 10.1089/hum.2009.103 10.1002/dvdy.10280 10.1111/j.1365-2982.2010.01626.x 10.1006/exnr.2001.7859 10.1111/j.1460-9568.1997.tb01623.x 10.1097/00001756-199709290-00018 10.1126/science.8493557 10.1016/j.neuroscience.2004.08.036 10.1016/j.neuron.2005.01.043 10.3233/JPD-191576 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/jcm9020456 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X7 name: ProQuest Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2077-0383 |
ExternalDocumentID | PMC7073520 32046031 10_3390_jcm9020456 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 31003A_179527 |
GroupedDBID | 53G 5VS 7X7 8FI 8FJ AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR CCPQU CITATION DIK FYUFA HMCUK HYE IAO IHR ITC KQ8 M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM UKHRP NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c472t-bd9149ad8b172f97dc5ccd87c986792eeafecfd8e9c0583c4a7c6107841b884b3 |
IEDL.DBID | M48 |
ISSN | 2077-0383 |
IngestDate | Thu Aug 21 13:34:05 EDT 2025 Fri Jul 11 08:31:42 EDT 2025 Mon Jun 30 05:52:35 EDT 2025 Mon Jul 21 05:46:57 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 Tue Jul 01 04:33:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | rearranged during transfection neuroinflammation glial-cell-line-derived neurotrophic factor gene therapy GDNF family receptor alpha 1 astrocyte microglia Parkinson’s disease |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-bd9149ad8b172f97dc5ccd87c986792eeafecfd8e9c0583c4a7c6107841b884b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/jcm9020456 |
PMID | 32046031 |
PQID | 2641054271 |
PQPubID | 5046890 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7073520 proquest_miscellaneous_2354171549 proquest_journals_2641054271 pubmed_primary_32046031 crossref_primary_10_3390_jcm9020456 crossref_citationtrail_10_3390_jcm9020456 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200207 |
PublicationDateYYYYMMDD | 2020-02-07 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200207 day: 7 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of clinical medicine |
PublicationTitleAlternate | J Clin Med |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ahn (ref_45) 2010; 15 Chen (ref_46) 2006; 497 Sanchez (ref_80) 1996; 382 Iravani (ref_36) 2012; 510 Hellmich (ref_17) 1996; 54 Patel (ref_39) 2019; 14 Chtarto (ref_98) 2016; 5 Boscia (ref_78) 2013; 126 Heiss (ref_11) 2019; 34 Hashimoto (ref_43) 2005; 16 Sotoyama (ref_28) 2017; 654 ref_19 Georgievska (ref_54) 2004; 24 Sergaki (ref_67) 2017; 18 Blits (ref_4) 2004; 189 Chen (ref_53) 2018; 8 Paratcha (ref_65) 2003; 113 Kanthasamy (ref_50) 2019; 197 ref_25 Eggers (ref_6) 2008; 39 Mansour (ref_87) 2018; 358 Hoffer (ref_58) 1994; 182 Lee (ref_75) 2016; 25 Sawada (ref_49) 2007; 85 Eggers (ref_101) 2019; 321 Bizon (ref_24) 1999; 408 Hoyng (ref_100) 2014; 21 Chen (ref_52) 2020; 17 Paratcha (ref_55) 2001; 29 Arenas (ref_61) 1995; 15 Whone (ref_12) 2019; 142 Pochon (ref_20) 1997; 9 Bresjanac (ref_35) 2000; 164 ref_73 London (ref_86) 2013; 7 Bartus (ref_93) 2011; 26 Huang (ref_16) 2005; 130 Ubhi (ref_32) 2010; 30 Kopra (ref_82) 2015; 18 Quintino (ref_97) 2018; 11 Poyhonen (ref_26) 2019; 10 Rodrigues (ref_62) 2011; 23 Baecker (ref_91) 1999; 69 Drinkut (ref_83) 2012; 20 Su (ref_94) 2009; 20 Ramaswamy (ref_3) 2009; 34 Piltonen (ref_71) 2009; 219 Cheng (ref_96) 2018; 309 Ryu (ref_74) 2011; 91 Batchelor (ref_51) 2000; 12 Saavedra (ref_27) 2008; 86 Cao (ref_64) 2008; 61 Henderson (ref_60) 1994; 266 Pascual (ref_81) 2008; 11 Lin (ref_1) 1993; 260 Tokumine (ref_40) 2003; 74 Moore (ref_79) 1996; 382 Airaksinen (ref_57) 1999; 13 Widenfalk (ref_76) 2001; 21 Eggers (ref_8) 2019; 142 Ledda (ref_66) 2007; 10 Kitamura (ref_47) 2010; 58 Liberatore (ref_44) 1997; 8 Tenenbaum (ref_7) 2017; 11 Brown (ref_84) 2014; 15 Sawada (ref_85) 2010; 7 Georgievska (ref_5) 2002; 177 Tomac (ref_59) 1995; 92 Woodbury (ref_89) 1998; 803 Bartus (ref_13) 2015; 78 Tsuzuki (ref_38) 2007; 59 Bian (ref_88) 2013; 253 Liu (ref_63) 2008; 16 Trupp (ref_22) 1997; 17 Lang (ref_10) 2006; 59 Bonilla (ref_18) 2012; 32 Nakagawa (ref_37) 2004; 14 Walker (ref_72) 1998; 792 Lume (ref_23) 2010; 30 Batchelor (ref_42) 1999; 19 Marco (ref_34) 2002; 174 Golden (ref_30) 1999; 158 Marks (ref_9) 2010; 9 Bespalov (ref_69) 2011; 192 Widenfalk (ref_21) 1997; 17 Quintino (ref_99) 2013; 21 Pozas (ref_15) 2005; 45 Smirkin (ref_48) 2010; 30 Whone (ref_92) 2019; 9 Pascual (ref_31) 2016; 10 Batchelor (ref_41) 2002; 21 Tereshchenko (ref_95) 2014; 65 Baudet (ref_56) 2003; 227 Merienne (ref_33) 2019; 26 Sariola (ref_70) 2003; 116 Nosrat (ref_29) 1996; 286 Chen (ref_68) 2017; 7 Ernsberger (ref_14) 2008; 333 Defaux (ref_77) 2010; 1353 Tanaka (ref_90) 2000; 85 Kirik (ref_2) 2000; 20 |
References_xml | – volume: 321 start-page: 113037 year: 2019 ident: ref_101 article-title: Enhanced regeneration and reinnervation following timed GDNF gene therapy in a cervical ventral root avulsion publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2019.113037 – volume: 654 start-page: 99 year: 2017 ident: ref_28 article-title: Striatal hypodopamine phenotypes found in transgenic mice that overexpress glial cell line-derived neurotrophic factor publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2017.06.005 – volume: 26 start-page: 27 year: 2011 ident: ref_93 article-title: Bioactivity of AAV2-neurturin gene therapy (CERE-120): Differences between Parkinson’s disease and nonhuman primate brains publication-title: Mov. Disord. doi: 10.1002/mds.23442 – volume: 15 start-page: 104 year: 2010 ident: ref_45 article-title: Glial cell line-derived neurotrophic factor is expressed by inflammatory cells in the sciatic nerves of Lewis rats with experimental autoimmune neuritis publication-title: J. Peripher. Nerv. Syst. doi: 10.1111/j.1529-8027.2010.00258.x – volume: 85 start-page: 91 year: 2000 ident: ref_90 article-title: Promoter analysis and characteristics of the 5′-untranslated region of the mouse glial cell line-derived neurotrophic factor gene publication-title: Brain Res. Mol. Brain Res. doi: 10.1016/S0169-328X(00)00250-3 – volume: 14 start-page: 275 year: 2004 ident: ref_37 article-title: Gene expression profiles of reactive astrocytes in dopamine-depleted striatum publication-title: Brain Pathol. doi: 10.1111/j.1750-3639.2004.tb00064.x – volume: 8 start-page: 5460 year: 2018 ident: ref_53 article-title: GDNF-expressing macrophages mitigate loss of dopamine neurons and improve Parkinsonian symptoms in MitoPark mice publication-title: Sci. Rep. doi: 10.1038/s41598-018-23795-4 – volume: 74 start-page: 552 year: 2003 ident: ref_40 article-title: Changes in spinal GDNF, BDNF, and NT-3 expression after transient spinal cord ischemia in the rat publication-title: J. Neurosci. Res. doi: 10.1002/jnr.10760 – volume: 192 start-page: 153 year: 2011 ident: ref_69 article-title: Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin publication-title: J. Cell Biol. doi: 10.1083/jcb.201009136 – volume: 26 start-page: 2477 year: 2019 ident: ref_33 article-title: Cell-type-specific gene expression profiling in adult mouse brain reveals normal and disease-state signatures publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.02.003 – volume: 11 start-page: 29 year: 2017 ident: ref_7 article-title: Glial Cell Line-Derived Neurotrophic Factor Gene Delivery in Parkinson’s Disease: A Delicate Balance between Neuroprotection, Trophic Effects, and Unwanted Compensatory Mechanisms publication-title: Front. Neuroanat. doi: 10.3389/fnana.2017.00029 – volume: 12 start-page: 3462 year: 2000 ident: ref_51 article-title: Inhibition of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression reduces dopaminergic sprouting in the injured striatum publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.2000.00239.x – volume: 16 start-page: 474 year: 2008 ident: ref_63 article-title: Protection against aminoglycoside-induced ototoxicity by regulated AAV vector-mediated GDNF gene transfer into the cochlea publication-title: Mol. Ther. doi: 10.1038/sj.mt.6300379 – volume: 333 start-page: 353 year: 2008 ident: ref_14 article-title: The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons publication-title: Cell Tissue Res. doi: 10.1007/s00441-008-0634-4 – volume: 29 start-page: 171 year: 2001 ident: ref_55 article-title: Released GFRα1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-Ret to lipid rafts publication-title: Neuron doi: 10.1016/S0896-6273(01)00188-X – volume: 18 start-page: 319 year: 2015 ident: ref_82 article-title: GDNF is not required for catecholaminergic neuron survival in vivo publication-title: Nat. Neurosci. doi: 10.1038/nn.3941 – volume: 34 start-page: 40 year: 2009 ident: ref_3 article-title: Intrastriatal CERE-120 (AAV-Neurturin) protects striatal and cortical neurons and delays motor deficits in a transgenic mouse model of Huntington’s disease publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2008.12.005 – volume: 10 start-page: 73 year: 2016 ident: ref_31 article-title: Simultaneous detection of both GDNF and GFRα1 expression patterns in the mouse central nervous system publication-title: Front. Neuroanat. – volume: 164 start-page: 53 year: 2000 ident: ref_35 article-title: Reactive astrocytes of the quinolinic acid-lesioned rat striatum express GFRα1 as well as GDNF in vivo publication-title: Exp. Neurol. doi: 10.1006/exnr.2000.7416 – volume: 266 start-page: 1062 year: 1994 ident: ref_60 article-title: GDNF: A potent survival factor for motoneurons present in peripheral nerve and muscle publication-title: Science doi: 10.1126/science.7973664 – volume: 309 start-page: 79 year: 2018 ident: ref_96 article-title: Therapeutic efficacy of regulable GDNF expression for Huntington’s and Parkinson’s disease by a high-induction, background-free “GeneSwitch” vector publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2018.07.017 – ident: ref_19 doi: 10.1371/journal.pgen.1005710 – volume: 10 start-page: 486 year: 2019 ident: ref_26 article-title: Effects of neurotrophic factors in glial cells in the central nervous system: Expression and properties in neurodegeneration and injury publication-title: Front. Physiol. doi: 10.3389/fphys.2019.00486 – volume: 39 start-page: 105 year: 2008 ident: ref_6 article-title: Neuroregenerative effects of lentiviral vector-mediated GDNF expression in reimplanted ventral roots publication-title: Mol. Cell Neurosci. doi: 10.1016/j.mcn.2008.05.018 – volume: 24 start-page: 6437 year: 2004 ident: ref_54 article-title: Overexpression of glial cell line-derived neurotrophic factor using a lentiviral vector induces time- and dose-dependent downregulation of tyrosine hydroxylase in the intact nigrostriatal dopamine system publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1122-04.2004 – volume: 13 start-page: 313 year: 1999 ident: ref_57 article-title: GDNF family neurotrophic factor signaling: Four masters, one servant? publication-title: Mol. Cell Neurosci. doi: 10.1006/mcne.1999.0754 – volume: 408 start-page: 283 year: 1999 ident: ref_24 article-title: Subpopulations of striatal interneurons can be distinguished on the basis of neurotrophic factor expression publication-title: J. Comp. Neurol. doi: 10.1002/(SICI)1096-9861(19990531)408:2<283::AID-CNE9>3.0.CO;2-2 – volume: 358 start-page: 76 year: 2018 ident: ref_87 article-title: Montelukast attenuates rotenone-induced microglial activation/p38 MAPK expression in rats: Possible role of its antioxidant, anti-inflammatory and antiapoptotic effects publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2018.09.012 – volume: 182 start-page: 107 year: 1994 ident: ref_58 article-title: Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo publication-title: Neurosci. Lett. doi: 10.1016/0304-3940(94)90218-6 – volume: 189 start-page: 303 year: 2004 ident: ref_4 article-title: Rescue and sprouting of motoneurons following ventral root avulsion and reimplantation combined with intraspinal adeno-associated viral vector-mediated expression of glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2004.05.014 – volume: 286 start-page: 191 year: 1996 ident: ref_29 article-title: Cellular expression of GDNF mRNA suggests multiple functions inside and outside the nervous system publication-title: Cell Tissue Res. doi: 10.1007/s004410050688 – volume: 126 start-page: 428 year: 2013 ident: ref_78 article-title: The isolectin IB4 binds RET receptor tyrosine kinase in microglia publication-title: J. Neurochem. doi: 10.1111/jnc.12209 – volume: 69 start-page: 209 year: 1999 ident: ref_91 article-title: Characterization of a promoter for the human glial cell line-derived neurotrophic factor gene publication-title: Brain Res. Mol. Brain Res. doi: 10.1016/S0169-328X(99)00106-0 – volume: 30 start-page: 6236 year: 2010 ident: ref_32 article-title: Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0567-10.2010 – volume: 253 start-page: 253 year: 2013 ident: ref_88 article-title: Various roles of astrocytes during recovery from repeated exposure to different doses of lipopolysaccharide publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2013.07.028 – volume: 197 start-page: 61 year: 2019 ident: ref_50 article-title: Environmental neurotoxicant-induced dopaminergic neurodegeneration: A potential link to impaired neuroinflammatory mechanisms publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2019.01.001 – volume: 177 start-page: 461 year: 2002 ident: ref_5 article-title: Aberrant sprouting and downregulation of tyrosine hydroxylase in lesioned nigrostriatal dopamine neurons induced by long-lasting overexpression of glial cell line derived neurotrophic factor in the striatum by lentiviral gene transfer publication-title: Exp. Neurol. doi: 10.1006/exnr.2002.8006 – volume: 30 start-page: 11403 year: 2010 ident: ref_23 article-title: Characterization of the intracellular localization, processing, and secretion of two glial cell line-derived neurotrophic factor splice isoforms publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5888-09.2010 – volume: 18 start-page: 367 year: 2017 ident: ref_67 article-title: GFRα1 regulates purkinje cell migration by counteracting NCAM function publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.12.039 – volume: 65 start-page: 35 year: 2014 ident: ref_95 article-title: Pharmacologically controlled, discontinuous GDNF gene therapy restores motor function in a rat model of Parkinson’s disease publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2014.01.009 – volume: 20 start-page: 4686 year: 2000 ident: ref_2 article-title: Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: Intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-12-04686.2000 – volume: 58 start-page: 1686 year: 2010 ident: ref_47 article-title: The 6-hydroxydopamine-induced nigrostriatal neurodegeneration produces microglia-like NG2 glial cells in the rat substantia nigra publication-title: Glia doi: 10.1002/glia.21040 – volume: 32 start-page: 864 year: 2012 ident: ref_18 article-title: GDNF is predominantly expressed in the PV+ neostriatal interneuronal ensemble in normal mouse and after injury of the nigrostriatal pathway publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2693-11.2012 – ident: ref_73 doi: 10.1371/journal.pone.0006486 – volume: 59 start-page: 459 year: 2006 ident: ref_10 article-title: Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease publication-title: Ann. Neurol. doi: 10.1002/ana.20737 – volume: 21 start-page: 2169 year: 2013 ident: ref_99 article-title: Functional neuroprotection and efficient regulation of GDNF using destabilizing domains in a rodent model of Parkinson’s disease publication-title: Mol. Ther. doi: 10.1038/mt.2013.169 – volume: 86 start-page: 186 year: 2008 ident: ref_27 article-title: Driving GDNF expression: The green and the red traffic lights publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2008.09.006 – volume: 20 start-page: 534 year: 2012 ident: ref_83 article-title: Efficient gene therapy for Parkinson’s disease using astrocytes as hosts for localized neurotrophic factor delivery publication-title: Mol. Ther. doi: 10.1038/mt.2011.249 – volume: 10 start-page: 293 year: 2007 ident: ref_66 article-title: GDNF and GFRalpha1 promote formation of neuronal synapses by ligand-induced cell adhesion publication-title: Nat. Neurosci. doi: 10.1038/nn1855 – volume: 803 start-page: 95 year: 1998 ident: ref_89 article-title: Novel structure of the human GDNF gene publication-title: Brain Res. doi: 10.1016/S0006-8993(98)00627-1 – volume: 30 start-page: 603 year: 2010 ident: ref_48 article-title: Iba1+/NG2+ macrophage-like cells expressing a variety of neuroprotective factors ameliorate ischemic damage of the brain publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2009.233 – volume: 61 start-page: 390 year: 2008 ident: ref_64 article-title: Involvement of NCAM in the effects of GDNF on the neurite outgrowth in the dopamine neurons publication-title: Neurosci. Res. doi: 10.1016/j.neures.2008.04.008 – volume: 5 start-page: 16027 year: 2016 ident: ref_98 article-title: A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1038/mtm.2016.27 – volume: 382 start-page: 76 year: 1996 ident: ref_79 article-title: Renal and neuronal abnormalities in mice lacking GDNF publication-title: Nature doi: 10.1038/382076a0 – volume: 15 start-page: 209 year: 2014 ident: ref_84 article-title: Microglial phagocytosis of live neurons publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3710 – volume: 7 start-page: 34 year: 2013 ident: ref_86 article-title: Microglia and monocyte-derived macrophages: Functionally distinct populations that act in concert in CNS plasticity and repair publication-title: Front. Cell Neurosci. doi: 10.3389/fncel.2013.00034 – volume: 78 start-page: 162 year: 2015 ident: ref_13 article-title: Post-mortem assessment of the short and long-term effects of the trophic factor neurturin in patients with α-synucleinopathies publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2015.03.023 – volume: 25 start-page: 233 year: 2016 ident: ref_75 article-title: Astrocytes and microglia as non-cell autonomous players in the pathogenesis of ALS publication-title: Exp. Neurobiol. doi: 10.5607/en.2016.25.5.233 – ident: ref_25 doi: 10.1002/mds.27986 – volume: 19 start-page: 1708 year: 1999 ident: ref_42 article-title: Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-05-01708.1999 – volume: 11 start-page: 29 year: 2018 ident: ref_97 article-title: Destabilizing domains enable long-term and inert regulation of GDNF expression in the brain publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1016/j.omtm.2018.08.008 – volume: 17 start-page: 3554 year: 1997 ident: ref_22 article-title: Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-α indicates multiple mechanisms of trophic actions in the adult rat CNS publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-10-03554.1997 – volume: 21 start-page: 3457 year: 2001 ident: ref_76 article-title: Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-10-03457.2001 – volume: 17 start-page: 8506 year: 1997 ident: ref_21 article-title: Neurturin and glial cell line-derived neurotrophic factor receptor-β (GDNFR-β), novel proteins related to GDNF and GDNFR-α with specific cellular patterns of expression suggesting roles in the developing and adult nervous system and in peripheral organs publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-21-08506.1997 – volume: 11 start-page: 755 year: 2008 ident: ref_81 article-title: Absolute requirement of GDNF for adult catecholaminergic neuron survival publication-title: Nat. Neurosci. doi: 10.1038/nn.2136 – volume: 17 start-page: 83 year: 2020 ident: ref_52 article-title: Non-toxic HSC transplantation-based macrophage/microglia-mediated GDNF delivery for Parkinson’s disease publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1016/j.omtm.2019.11.013 – volume: 1353 start-page: 213 year: 2010 ident: ref_77 article-title: Inflammatory responses in aggregating rat brain cell cultures subjected to different demyelinating conditions publication-title: Brain Res. doi: 10.1016/j.brainres.2010.07.016 – volume: 92 start-page: 8274 year: 1995 ident: ref_59 article-title: Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.18.8274 – volume: 59 start-page: 277 year: 2007 ident: ref_38 article-title: Distribution and immunohistochemical localization of GDNF protein in selected neural and non-neural tissues of rats during development and changes in unilateral 6-hydroxydopamine lesions publication-title: Neurosci. Res. doi: 10.1016/j.neures.2007.07.007 – volume: 142 start-page: 295 year: 2019 ident: ref_8 article-title: Timed GDNF gene therapy using an immune-evasive gene switch promotes long distance axon regeneration publication-title: Brain doi: 10.1093/brain/awy340 – volume: 113 start-page: 867 year: 2003 ident: ref_65 article-title: The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands publication-title: Cell doi: 10.1016/S0092-8674(03)00435-5 – volume: 7 start-page: 13931 year: 2017 ident: ref_68 article-title: Heparan sulfate: Resilience factor and therapeutic target for cocaine abuse publication-title: Sci. Rep. doi: 10.1038/s41598-017-13960-6 – volume: 116 start-page: 3855 year: 2003 ident: ref_70 article-title: Novel functions and signalling pathways for GDNF publication-title: J. Cell Sci. doi: 10.1242/jcs.00786 – volume: 9 start-page: 1164 year: 2010 ident: ref_9 article-title: Gene delivery of AAV2-neurturin for Parkinson’s disease: A double-blind, randomised, controlled trial publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(10)70254-4 – volume: 85 start-page: 1752 year: 2007 ident: ref_49 article-title: Activated microglia affect the nigro-striatal dopamine neurons differently in neonatal and aged mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine publication-title: J. Neurosci. Res. doi: 10.1002/jnr.21241 – volume: 14 start-page: 503 year: 2019 ident: ref_39 article-title: Cinnamon and its metabolite protect the nigrostriatum in a mouse model of Parkinson’s disease via astrocytic GDNF publication-title: J. Neuroimmune Pharmacol. doi: 10.1007/s11481-019-09855-0 – volume: 54 start-page: 95 year: 1996 ident: ref_17 article-title: Embryonic expression of glial cell-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions publication-title: Mech. Dev. doi: 10.1016/0925-4773(95)00464-5 – volume: 21 start-page: 549 year: 2014 ident: ref_100 article-title: Developing a potentially immunologically inert tetracycline-regulatable viral vector for gene therapy in the peripheral nerve publication-title: Gene Ther. doi: 10.1038/gt.2014.22 – volume: 7 start-page: 64 year: 2010 ident: ref_85 article-title: Neuroprotective and neurotoxic phenotypes of activated microglia in neonatal mice with respective MPTP- and ethanol-induced brain injury publication-title: Neurodegener. Dis. doi: 10.1159/000285508 – volume: 34 start-page: 1073 year: 2019 ident: ref_11 article-title: Trial of magnetic resonance-guided putaminal gene therapy for advanced Parkinson’s disease publication-title: Mov. Disord. doi: 10.1002/mds.27724 – volume: 510 start-page: 138 year: 2012 ident: ref_36 article-title: Lipopolysaccharide-induced nigral inflammation leads to increased IL-1β tissue content and expression of astrocytic glial cell line-derived neurotrophic factor publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2012.01.022 – volume: 21 start-page: 436 year: 2002 ident: ref_41 article-title: Macrophages and microglia produce local trophic gradients that stimulate axonal sprouting toward but not beyond the wound edge publication-title: Mol. Cell Neurosci. doi: 10.1006/mcne.2002.1185 – volume: 158 start-page: 504 year: 1999 ident: ref_30 article-title: Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mouse publication-title: Exp. Neurol. doi: 10.1006/exnr.1999.7127 – volume: 792 start-page: 207 year: 1998 ident: ref_72 article-title: Expression of the proto-oncogene Ret, a component of the GDNF receptor complex, persists in human substantia nigra neurons in Parkinson’s disease publication-title: Brain Res. doi: 10.1016/S0006-8993(98)00131-0 – volume: 15 start-page: 1465 year: 1995 ident: ref_61 article-title: GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo publication-title: Neuron doi: 10.1016/0896-6273(95)90024-1 – volume: 142 start-page: 512 year: 2019 ident: ref_12 article-title: Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson’s disease publication-title: Brain doi: 10.1093/brain/awz023 – volume: 219 start-page: 499 year: 2009 ident: ref_71 article-title: Heparin-binding determinants of GDNF reduce its tissue distribution but are beneficial for the protection of nigral dopaminergic neurons publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2009.07.002 – volume: 91 start-page: 342 year: 2011 ident: ref_74 article-title: Differential expression of c-Ret in motor neurons versus non-neuronal cells is linked to the pathogenesis of ALS publication-title: Lab. Invest. doi: 10.1038/labinvest.2010.203 – volume: 16 start-page: 99 year: 2005 ident: ref_43 article-title: Inflammation-induced GDNF improves locomotor function after spinal cord injury publication-title: Neuroreport doi: 10.1097/00001756-200502080-00004 – volume: 382 start-page: 70 year: 1996 ident: ref_80 article-title: Renal agenesis and the absence of enteric neurons in mice lacking GDNF publication-title: Nature doi: 10.1038/382070a0 – volume: 497 start-page: 898 year: 2006 ident: ref_46 article-title: Localization of nerve growth factor, neurotrophin-3, and glial cell line-derived neurotrophic factor in nestin-expressing reactive astrocytes in the caudate-putamen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated C57/Bl mice publication-title: J. Comp. Neurol. doi: 10.1002/cne.21014 – volume: 20 start-page: 1627 year: 2009 ident: ref_94 article-title: Safety evaluation of AAV2-GDNF gene transfer into the dopaminergic nigrostriatal pathway in aged and parkinsonian rhesus monkeys publication-title: Hum. Gene Ther. doi: 10.1089/hum.2009.103 – volume: 227 start-page: 27 year: 2003 ident: ref_56 article-title: Soluble and bound forms of GFRα1 elicit different GDNF-independent neurite growth responses in primary sensory neurons publication-title: Dev. Dyn. doi: 10.1002/dvdy.10280 – volume: 23 start-page: e44 year: 2011 ident: ref_62 article-title: Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system publication-title: Neurogastroenterol. Motil. doi: 10.1111/j.1365-2982.2010.01626.x – volume: 174 start-page: 243 year: 2002 ident: ref_34 article-title: Excitatory amino acids differentially regulate the expression of GDNF, neurturin, and their receptors in the adult rat striatum publication-title: Exp. Neurol. doi: 10.1006/exnr.2001.7859 – volume: 9 start-page: 463 year: 1997 ident: ref_20 article-title: Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.1997.tb01623.x – volume: 8 start-page: 3097 year: 1997 ident: ref_44 article-title: Expression of glial cell line-derived neurotrophic factor (GDNF) mRNA following mechanical injury to mouse striatum publication-title: Neuroreport doi: 10.1097/00001756-199709290-00018 – volume: 260 start-page: 1130 year: 1993 ident: ref_1 article-title: GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons publication-title: Science doi: 10.1126/science.8493557 – volume: 130 start-page: 95 year: 2005 ident: ref_16 article-title: Glial cell line-derived neurotrophic factor (GDNF) is required for differentiation of pontine noradrenergic neurons and patterning of central respiratory output publication-title: Neuroscience doi: 10.1016/j.neuroscience.2004.08.036 – volume: 45 start-page: 701 year: 2005 ident: ref_15 article-title: GDNF and GFRalpha1 promote differentiation and tangential migration of cortical GABAergic neurons publication-title: Neuron doi: 10.1016/j.neuron.2005.01.043 – volume: 9 start-page: 301 year: 2019 ident: ref_92 article-title: Extended treatment with glial cell line-derived neurotrophic factor in Parkinson’s disease publication-title: J. Parkinsons Dis. doi: 10.3233/JPD-191576 |
SSID | ssj0000884217 |
Score | 2.4302611 |
SecondaryResourceType | review_article |
Snippet | In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 456 |
SubjectTerms | Clinical medicine Dopamine Heparan sulfate Nervous system Neurons Parkinson's disease Review Rodents Spinal cord |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86QXwRv51OieiLYFk_0qZ9krHZDWF7crC3kiYpKrWb-_Dv967tuk3F1yal5e5y97tc8jtC7qQPccRMPEMLFxIUxj1DmJoZ4CsVoG1b-Hkfsv7A6w3Z88gdlRtus_JY5dIn5o5ajSXukTchcAMUYDa3HiefBnaNwupq2UJjm-wgdRlaNR_xao8FVhADyF2wkjqQ3Tff5UeA10GxX_V6HPoFLn-ekVwLOuEB2S_RIm0V6j0kWzo7Irv9sh5-TLrdziB8oC2ac2xkRgfs6UsrGuZddOhwMi1azcOjt4x2UzA22tZpOqPF9UTaKeozJ2QYPr20e0bZGsGQjNtzI1YBpDZC-TEAkCTgSrpSKp_LAAn0bK1FomWifB1I0_UdyQSXAJSwyBiDUGLnlNSycabPCYURy44lk9oSsJpjgaU_j1uJKbUH-VSd3C8FFcmSNxzbV6QR5A8o1Ggl1Dq5reZOCraMP2c1lvKOyhUzi1b6rZObahhsHQsYItPjBcxxXGZxJJWrk7NCPdVnHBtLvA68zTcUV01AHu3NkeztNefT5uDmXNu8-P-3Lsmejbk2ntjmDVKbTxf6CgDJPL7Ore4bo7_fyg priority: 102 providerName: ProQuest |
Title | GDNF, A Neuron-Derived Factor Upregulated in Glial Cells during Disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32046031 https://www.proquest.com/docview/2641054271 https://www.proquest.com/docview/2354171549 https://pubmed.ncbi.nlm.nih.gov/PMC7073520 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-cgvgifjudI6IvgtU2_Uj7IDL3JcKGiIW9lTRNcVI7nVP0v_fSdtXpHnxtEgJ3l9zvxzX3AzgWLuYRPXY0yW0kKBZzNK5LS8O7MkK0Tbmb6ZD1-s61b90M7MECTPU7CwO-zqV2Sk_KHydnHy-fl3jgLxTjRMp-_iiePPXG03YqsIQZiSklg14B87Mb2XUtmonvUp0xTUdWlncq_bV8Njf9AZy__5v8kYg6a7BaIEjSyF2-Dgsy3YDlXlEj34Rut9XvnJIGyfpupFoLY-xdRqSTKesQ_3mcy8_jp2FKugkGIGnKJHkl-ZNF0sprNlvgd9r3zWutkEvQhMXoRAsjD-kOj9wQLRB7LBK2EJHLhKea6lEpeSxFHLnSE7rtmsLiTCB4UoXHEA0UmtuwmI5SuQsERwwaCktIg-MJD7kqBzrMiHUhHeRYVTiZGioQRS9xJWmRBMgplFGDb6NW4aic-5x30Jg7qza1dzANggDBGsI_izKjCoflMMa_KmrwVI7ecI5po8dVo7kq7OTuKbcxqSr7mriazTiunKB6a8-OpMOHrMc2w6vPpvreP_bdhxWqSLj6lZvVYHEyfpMHiFQmYR0qbMDqsHTV7t_e1bOg_ALZmeg- |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xkAqXqpQCKRQW0R6QsLDXa699qCpESMIjOREpN7NerwUoOIEEEH-qv7EzfgEt6o2rd_zQ7Ow8PLvfB_BdBxhH7NS3jPKwQBHSt5RthIW-MsFsm6sg5yHr9vxOX5wMvMEM_K7OwtC2yson5o46GWn6R76PgRtTAcGl82t8axFrFHVXKwqNwixOzdMjlmyTn8dNnN8fnLeOzg87VskqYGkh-dSKkxCrApUEMcbuNJSJ9rROAqlDwp7jxqjU6DQJTKhtL3C1UFJjjkH9uTgIROzic2dhHgOvTcWeHMj6nw6uWIEpfoGC6rqhvX-tb0I6fkr82C_j3j_J7N97Ml8EudYn-Fhmp-ygMKclmDHZZ_jQLfvvy9BuN3utPXbAckyPzGqi_T6YhLVy1h7WH98V1PZ46Spj7SEaNzs0w-GEFcchWbPoB32B_rsobQXmslFm1oDhiMNjLbRxFHqPWFGr0ZdOamvjY_3WgN1KUZEuccqJLmMYYb1CSo2eldqAnVp2XKBzvCm1Uek7KlfoJHq2pwZs18O4tqhhojIzukcZ1xOOJBC7BqwW01O_xuXUUnbxbvlq4moBwu1-PZJdXeb43RLdqsftr___rC1Y6Jx3z6Kz497pOixyqvNpt7jcgLnp3b35hsnQNN7MLZDBxXub_B_9dx3s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIiEuqC1QtoXWCDhUarSJ48TJAVWUkOW5QqgrcQuO46hU2-yWXVr1r_XXdSYvoK164xo7D40_zyMzng9gRwdoR-zct4zyMEAR0reUbYSFujJDb5uroOQhOx_4R0NxcuVdzcGv5iwMlVU2OrFU1NlY0z_yHhpudAUEl04vr8siLqL4w-SbRQxSlGlt6DQqiJyanz8wfJvuHUe41rucx4efDo6smmHA0kLymZVmIUYIKgtStON5KDPtaZ0FUofUh44bo3Kj8ywwoba9wNVCSY3-BuXq0iAQqYvPnYcFSVFRBxY-Hg4uLts_PLh_BTr8VU9U1w3t3hf9NaTDqMSW_dAK_uXa_lmh-cDkxc9gufZV2X4FrucwZ4oXsHheZ-NXoN-PBvF7ts_KDh-FFSGav5uMxSWHDxtObiuie7x0U7D-CKHODsxoNGXV4UgWVdmhVRg-idjWoFOMC7MODEccnmqhjaNQl6SKEo--dHJbGx-juS68awSV6LprOZFnjBKMXkioyb1Qu7Ddzp1UvTr-OWujkXdS79dpco-uLmy1w7jTKH2iCjO-wzmuJxxJLe268LJanvY1LqcEs4t3y0cL106gLt6PR4qbz2U3b4lK1uP2q_9_1ltYRLgnZ8eD09ewxCnop9JxuQGd2e2d2UTPaJa-qSHI4PqpUf8b7aAjhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GDNF%2C+A+Neuron-Derived+Factor+Upregulated+in+Glial+Cells+during+Disease&rft.jtitle=Journal+of+clinical+medicine&rft.au=Duarte+Azevedo%2C+Marcelo&rft.au=Sander%2C+Sibilla&rft.au=Tenenbaum%2C+Liliane&rft.date=2020-02-07&rft.issn=2077-0383&rft.eissn=2077-0383&rft.volume=9&rft.issue=2&rft_id=info:doi/10.3390%2Fjcm9020456&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0383&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0383&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0383&client=summon |