GDNF, A Neuron-Derived Factor Upregulated in Glial Cells during Disease

In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family recepto...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical medicine Vol. 9; no. 2; p. 456
Main Authors Duarte Azevedo, Marcelo, Sander, Sibilla, Tenenbaum, Liliane
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 07.02.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family receptor α1 (GFRα1), which is mainly expressed by neurons and can act in cis as a membrane-bound factor or in trans as a soluble factor. The GDNF/GFRα1 complex signals through interactions with the “rearranged during transfection” (RET) receptor or via the neural cell adhesion molecule (NCAM) with a lower affinity. GDNF can also signal independently from GFRα1 by interacting with syndecan-3. RET, which is expressed by neurons involved in several pathways (nigro–striatal dopaminergic neurons, motor neurons, enteric neurons, sensory neurons, etc.), could be the main determinant of the specificity of GDNF’s pro-survival effect. In an injured brain, de novo expression of GDNF occurs in glial cells. Neuroinflammation has been reported to induce GDNF expression in activated astrocytes and microglia, infiltrating macrophages, nestin-positive reactive astrocytes, and neuron/glia (NG2) positive microglia-like cells. This disease-related GDNF overexpression can be either beneficial or detrimental depending on the localization in the brain and the level and duration of glial cell activation. Some reports also describe the upregulation of RET and GFRα1 in glial cells, suggesting that GDNF could modulate neuroinflammation.
AbstractList In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family receptor α1 (GFRα1), which is mainly expressed by neurons and can act in cis as a membrane-bound factor or in trans as a soluble factor. The GDNF/GFRα1 complex signals through interactions with the “rearranged during transfection” (RET) receptor or via the neural cell adhesion molecule (NCAM) with a lower affinity. GDNF can also signal independently from GFRα1 by interacting with syndecan-3. RET, which is expressed by neurons involved in several pathways (nigro–striatal dopaminergic neurons, motor neurons, enteric neurons, sensory neurons, etc.), could be the main determinant of the specificity of GDNF’s pro-survival effect. In an injured brain, de novo expression of GDNF occurs in glial cells. Neuroinflammation has been reported to induce GDNF expression in activated astrocytes and microglia, infiltrating macrophages, nestin-positive reactive astrocytes, and neuron/glia (NG2) positive microglia-like cells. This disease-related GDNF overexpression can be either beneficial or detrimental depending on the localization in the brain and the level and duration of glial cell activation. Some reports also describe the upregulation of RET and GFRα1 in glial cells, suggesting that GDNF could modulate neuroinflammation.
In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family receptor α1 (GFRα1), which is mainly expressed by neurons and can act in cis as a membrane-bound factor or in trans as a soluble factor. The GDNF/GFRα1 complex signals through interactions with the “rearranged during transfection” (RET) receptor or via the neural cell adhesion molecule (NCAM) with a lower affinity. GDNF can also signal independently from GFRα1 by interacting with syndecan-3. RET, which is expressed by neurons involved in several pathways (nigro–striatal dopaminergic neurons, motor neurons, enteric neurons, sensory neurons, etc.), could be the main determinant of the specificity of GDNF’s pro-survival effect. In an injured brain, de novo expression of GDNF occurs in glial cells. Neuroinflammation has been reported to induce GDNF expression in activated astrocytes and microglia, infiltrating macrophages, nestin-positive reactive astrocytes, and neuron/glia (NG2) positive microglia-like cells. This disease-related GDNF overexpression can be either beneficial or detrimental depending on the localization in the brain and the level and duration of glial cell activation. Some reports also describe the upregulation of RET and GFRα1 in glial cells, suggesting that GDNF could modulate neuroinflammation.
In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family receptor α1 (GFRα1), which is mainly expressed by neurons and can act in cis as a membrane-bound factor or in trans as a soluble factor. The GDNF/GFRα1 complex signals through interactions with the "rearranged during transfection" (RET) receptor or via the neural cell adhesion molecule (NCAM) with a lower affinity. GDNF can also signal independently from GFRα1 by interacting with syndecan-3. RET, which is expressed by neurons involved in several pathways (nigro-striatal dopaminergic neurons, motor neurons, enteric neurons, sensory neurons, etc.), could be the main determinant of the specificity of GDNF's pro-survival effect. In an injured brain, de novo expression of GDNF occurs in glial cells. Neuroinflammation has been reported to induce GDNF expression in activated astrocytes and microglia, infiltrating macrophages, nestin-positive reactive astrocytes, and neuron/glia (NG2) positive microglia-like cells. This disease-related GDNF overexpression can be either beneficial or detrimental depending on the localization in the brain and the level and duration of glial cell activation. Some reports also describe the upregulation of RET and GFRα1 in glial cells, suggesting that GDNF could modulate neuroinflammation.In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family receptor α1 (GFRα1), which is mainly expressed by neurons and can act in cis as a membrane-bound factor or in trans as a soluble factor. The GDNF/GFRα1 complex signals through interactions with the "rearranged during transfection" (RET) receptor or via the neural cell adhesion molecule (NCAM) with a lower affinity. GDNF can also signal independently from GFRα1 by interacting with syndecan-3. RET, which is expressed by neurons involved in several pathways (nigro-striatal dopaminergic neurons, motor neurons, enteric neurons, sensory neurons, etc.), could be the main determinant of the specificity of GDNF's pro-survival effect. In an injured brain, de novo expression of GDNF occurs in glial cells. Neuroinflammation has been reported to induce GDNF expression in activated astrocytes and microglia, infiltrating macrophages, nestin-positive reactive astrocytes, and neuron/glia (NG2) positive microglia-like cells. This disease-related GDNF overexpression can be either beneficial or detrimental depending on the localization in the brain and the level and duration of glial cell activation. Some reports also describe the upregulation of RET and GFRα1 in glial cells, suggesting that GDNF could modulate neuroinflammation.
In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family receptor α1 (GFRα1), which is mainly expressed by neurons and can act in as a membrane-bound factor or in as a soluble factor. The GDNF/GFRα1 complex signals through interactions with the "rearranged during transfection" (RET) receptor or via the neural cell adhesion molecule (NCAM) with a lower affinity. GDNF can also signal independently from GFRα1 by interacting with syndecan-3. RET, which is expressed by neurons involved in several pathways (nigro-striatal dopaminergic neurons, motor neurons, enteric neurons, sensory neurons, etc.), could be the main determinant of the specificity of GDNF's pro-survival effect. In an injured brain, de novo expression of GDNF occurs in glial cells. Neuroinflammation has been reported to induce GDNF expression in activated astrocytes and microglia, infiltrating macrophages, nestin-positive reactive astrocytes, and neuron/glia (NG2) positive microglia-like cells. This disease-related GDNF overexpression can be either beneficial or detrimental depending on the localization in the brain and the level and duration of glial cell activation. Some reports also describe the upregulation of RET and GFRα1 in glial cells, suggesting that GDNF could modulate neuroinflammation.
Author Duarte Azevedo, Marcelo
Sander, Sibilla
Tenenbaum, Liliane
AuthorAffiliation Laboratory of Molecular Neurotherapies and NeuroModulation, Center for Neuroscience Research, Lausanne University Hospital, CHUV-Pavillon 3, av de Beaumont, CH-1010 Lausanne, Switzerland; Marcelo.Duarte-Azevedo@chuv.ch (M.D.A.); sibilla.sander@chuv.ch (S.S.)
AuthorAffiliation_xml – name: Laboratory of Molecular Neurotherapies and NeuroModulation, Center for Neuroscience Research, Lausanne University Hospital, CHUV-Pavillon 3, av de Beaumont, CH-1010 Lausanne, Switzerland; Marcelo.Duarte-Azevedo@chuv.ch (M.D.A.); sibilla.sander@chuv.ch (S.S.)
Author_xml – sequence: 1
  givenname: Marcelo
  surname: Duarte Azevedo
  fullname: Duarte Azevedo, Marcelo
– sequence: 2
  givenname: Sibilla
  surname: Sander
  fullname: Sander, Sibilla
– sequence: 3
  givenname: Liliane
  surname: Tenenbaum
  fullname: Tenenbaum, Liliane
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32046031$$D View this record in MEDLINE/PubMed
BookMark eNptkUtrGzEUhUVJaR7Npj8gDHRTSibVa0bSJmDs2A2EdFOvhUZzx5UZS440Y-i_r0wS50G1uUL3u4dzdE_RkQ8eEPpC8BVjCv9Y243CFPOq_oBOKBaixEyyo1f3Y3Se0hrnIyWnRHxCxywP1JiRE7RYzO7nl8WkuIcxBl_OILodtMXc2CHEYrmNsBp7M-Qn54tF70xfTKHvU9GO0flVMXMJTILP6GNn-gTnT_UMLec3v6c_y7tfi9vp5K60XNChbFpFuDKtbIignRKtraxtpbBK1kJRANOB7VoJyuJKMsuNsDXBQnLSZPcNO0PXj7rbsdlAa8EP0fR6G93GxL86GKffdrz7o1dhpwUWrKI4C3x7EojhYYQ06I1LNicyHsKYNGUVJ4JUXGX06zt0HcboczxNa05wxakgmbp47ehg5fmPM_D9EbAxpBShOyAE6_0O9csOM4zfwdYNZnBhn8b1_xv5B3ywnLo
CitedBy_id crossref_primary_10_3389_fphar_2022_745020
crossref_primary_10_3390_ijms22010136
crossref_primary_10_3389_fneur_2023_1082625
crossref_primary_10_3233_JAD_230801
crossref_primary_10_1038_s41380_024_02529_1
crossref_primary_10_3389_fncel_2021_679034
crossref_primary_10_3390_brainsci10050286
crossref_primary_10_3390_ijms23137073
crossref_primary_10_1007_s11064_025_04370_6
crossref_primary_10_54393_pjhs_v5i12_2703
crossref_primary_10_1002_glia_23904
crossref_primary_10_1089_neu_2021_0066
crossref_primary_10_1371_journal_pone_0240235
crossref_primary_10_5993_AJHB_47_1_8
crossref_primary_10_1007_s12035_020_02240_6
crossref_primary_10_1007_s11062_022_09924_w
crossref_primary_10_1007_s00441_020_03287_6
crossref_primary_10_1016_j_neuro_2024_06_017
crossref_primary_10_1016_j_neulet_2022_136511
crossref_primary_10_3390_cells9051245
crossref_primary_10_1007_s12017_024_08800_6
crossref_primary_10_1016_j_yebeh_2024_110219
crossref_primary_10_11569_wcjd_v28_i19_979
crossref_primary_10_1016_j_isci_2022_104936
crossref_primary_10_1089_can_2021_0053
crossref_primary_10_3390_ijms24032000
crossref_primary_10_1002_glia_23939
crossref_primary_10_1007_s12035_024_03989_w
crossref_primary_10_3389_fimmu_2022_837250
crossref_primary_10_1016_j_rhum_2024_05_006
crossref_primary_10_3390_ijms22063064
crossref_primary_10_3390_ijms252212471
crossref_primary_10_1007_s12035_022_02978_1
crossref_primary_10_1039_D3BM00183K
crossref_primary_10_3389_fphar_2024_1392832
crossref_primary_10_7717_peerj_17033
crossref_primary_10_1152_ajpheart_00332_2022
crossref_primary_10_3390_life13010009
crossref_primary_10_1007_s10571_023_01434_5
crossref_primary_10_3390_cells9122623
crossref_primary_10_1186_s12974_024_03053_3
crossref_primary_10_3389_fbioe_2024_1476370
crossref_primary_10_3390_antiox11010142
crossref_primary_10_3389_fneur_2022_844497
crossref_primary_10_3390_biom12040563
crossref_primary_10_3390_jcm11247493
crossref_primary_10_1016_j_neubiorev_2024_105931
crossref_primary_10_3390_ph16121735
crossref_primary_10_1016_j_bbadis_2025_167702
crossref_primary_10_1371_journal_pone_0289169
crossref_primary_10_3390_biomedicines10081769
crossref_primary_10_1371_journal_pone_0300203
crossref_primary_10_1002_clt2_70022
crossref_primary_10_3390_ijms231710126
crossref_primary_10_1007_s43032_023_01328_3
crossref_primary_10_1002_jnr_25336
crossref_primary_10_3390_life13030647
crossref_primary_10_1002_glia_24013
crossref_primary_10_3390_ijms25126357
crossref_primary_10_4103_1673_5374_358619
crossref_primary_10_1002_jnr_24768
crossref_primary_10_1089_neu_2023_0423
crossref_primary_10_3389_fphar_2022_935418
crossref_primary_10_3390_ijms242316818
crossref_primary_10_1080_00914037_2023_2215376
crossref_primary_10_2147_NSS_S263528
crossref_primary_10_1038_s41598_024_68626_x
crossref_primary_10_1155_2020_9494352
crossref_primary_10_3389_fbioe_2024_1420183
crossref_primary_10_3390_cells14010054
Cites_doi 10.1016/j.expneurol.2019.113037
10.1016/j.neulet.2017.06.005
10.1002/mds.23442
10.1111/j.1529-8027.2010.00258.x
10.1016/S0169-328X(00)00250-3
10.1111/j.1750-3639.2004.tb00064.x
10.1038/s41598-018-23795-4
10.1002/jnr.10760
10.1083/jcb.201009136
10.1016/j.celrep.2019.02.003
10.3389/fnana.2017.00029
10.1046/j.1460-9568.2000.00239.x
10.1038/sj.mt.6300379
10.1007/s00441-008-0634-4
10.1016/S0896-6273(01)00188-X
10.1038/nn.3941
10.1016/j.nbd.2008.12.005
10.1006/exnr.2000.7416
10.1126/science.7973664
10.1016/j.expneurol.2018.07.017
10.1371/journal.pgen.1005710
10.3389/fphys.2019.00486
10.1016/j.mcn.2008.05.018
10.1523/JNEUROSCI.1122-04.2004
10.1006/mcne.1999.0754
10.1002/(SICI)1096-9861(19990531)408:2<283::AID-CNE9>3.0.CO;2-2
10.1016/j.taap.2018.09.012
10.1016/0304-3940(94)90218-6
10.1016/j.expneurol.2004.05.014
10.1007/s004410050688
10.1111/jnc.12209
10.1016/S0169-328X(99)00106-0
10.1523/JNEUROSCI.0567-10.2010
10.1016/j.bbr.2013.07.028
10.1016/j.pharmthera.2019.01.001
10.1006/exnr.2002.8006
10.1523/JNEUROSCI.5888-09.2010
10.1016/j.celrep.2016.12.039
10.1016/j.nbd.2014.01.009
10.1523/JNEUROSCI.20-12-04686.2000
10.1002/glia.21040
10.1523/JNEUROSCI.2693-11.2012
10.1371/journal.pone.0006486
10.1002/ana.20737
10.1038/mt.2013.169
10.1016/j.pneurobio.2008.09.006
10.1038/mt.2011.249
10.1038/nn1855
10.1016/S0006-8993(98)00627-1
10.1038/jcbfm.2009.233
10.1016/j.neures.2008.04.008
10.1038/mtm.2016.27
10.1038/382076a0
10.1038/nrn3710
10.3389/fncel.2013.00034
10.1016/j.nbd.2015.03.023
10.5607/en.2016.25.5.233
10.1002/mds.27986
10.1523/JNEUROSCI.19-05-01708.1999
10.1016/j.omtm.2018.08.008
10.1523/JNEUROSCI.17-10-03554.1997
10.1523/JNEUROSCI.21-10-03457.2001
10.1523/JNEUROSCI.17-21-08506.1997
10.1038/nn.2136
10.1016/j.omtm.2019.11.013
10.1016/j.brainres.2010.07.016
10.1073/pnas.92.18.8274
10.1016/j.neures.2007.07.007
10.1093/brain/awy340
10.1016/S0092-8674(03)00435-5
10.1038/s41598-017-13960-6
10.1242/jcs.00786
10.1016/S1474-4422(10)70254-4
10.1002/jnr.21241
10.1007/s11481-019-09855-0
10.1016/0925-4773(95)00464-5
10.1038/gt.2014.22
10.1159/000285508
10.1002/mds.27724
10.1016/j.neulet.2012.01.022
10.1006/mcne.2002.1185
10.1006/exnr.1999.7127
10.1016/S0006-8993(98)00131-0
10.1016/0896-6273(95)90024-1
10.1093/brain/awz023
10.1016/j.expneurol.2009.07.002
10.1038/labinvest.2010.203
10.1097/00001756-200502080-00004
10.1038/382070a0
10.1002/cne.21014
10.1089/hum.2009.103
10.1002/dvdy.10280
10.1111/j.1365-2982.2010.01626.x
10.1006/exnr.2001.7859
10.1111/j.1460-9568.1997.tb01623.x
10.1097/00001756-199709290-00018
10.1126/science.8493557
10.1016/j.neuroscience.2004.08.036
10.1016/j.neuron.2005.01.043
10.3233/JPD-191576
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/jcm9020456
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X7
  name: ProQuest Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2077-0383
ExternalDocumentID PMC7073520
32046031
10_3390_jcm9020456
Genre Journal Article
Review
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: 31003A_179527
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
HMCUK
HYE
IAO
IHR
ITC
KQ8
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c472t-bd9149ad8b172f97dc5ccd87c986792eeafecfd8e9c0583c4a7c6107841b884b3
IEDL.DBID M48
ISSN 2077-0383
IngestDate Thu Aug 21 13:34:05 EDT 2025
Fri Jul 11 08:31:42 EDT 2025
Mon Jun 30 05:52:35 EDT 2025
Mon Jul 21 05:46:57 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
Tue Jul 01 04:33:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords rearranged during transfection
neuroinflammation
glial-cell-line-derived neurotrophic factor
gene therapy
GDNF family receptor alpha 1
astrocyte
microglia
Parkinson’s disease
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-bd9149ad8b172f97dc5ccd87c986792eeafecfd8e9c0583c4a7c6107841b884b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/jcm9020456
PMID 32046031
PQID 2641054271
PQPubID 5046890
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7073520
proquest_miscellaneous_2354171549
proquest_journals_2641054271
pubmed_primary_32046031
crossref_primary_10_3390_jcm9020456
crossref_citationtrail_10_3390_jcm9020456
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200207
PublicationDateYYYYMMDD 2020-02-07
PublicationDate_xml – month: 2
  year: 2020
  text: 20200207
  day: 7
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of clinical medicine
PublicationTitleAlternate J Clin Med
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ahn (ref_45) 2010; 15
Chen (ref_46) 2006; 497
Sanchez (ref_80) 1996; 382
Iravani (ref_36) 2012; 510
Hellmich (ref_17) 1996; 54
Patel (ref_39) 2019; 14
Chtarto (ref_98) 2016; 5
Boscia (ref_78) 2013; 126
Heiss (ref_11) 2019; 34
Hashimoto (ref_43) 2005; 16
Sotoyama (ref_28) 2017; 654
ref_19
Georgievska (ref_54) 2004; 24
Sergaki (ref_67) 2017; 18
Blits (ref_4) 2004; 189
Chen (ref_53) 2018; 8
Paratcha (ref_65) 2003; 113
Kanthasamy (ref_50) 2019; 197
ref_25
Eggers (ref_6) 2008; 39
Mansour (ref_87) 2018; 358
Hoffer (ref_58) 1994; 182
Lee (ref_75) 2016; 25
Sawada (ref_49) 2007; 85
Eggers (ref_101) 2019; 321
Bizon (ref_24) 1999; 408
Hoyng (ref_100) 2014; 21
Chen (ref_52) 2020; 17
Paratcha (ref_55) 2001; 29
Arenas (ref_61) 1995; 15
Whone (ref_12) 2019; 142
Pochon (ref_20) 1997; 9
Bresjanac (ref_35) 2000; 164
ref_73
London (ref_86) 2013; 7
Bartus (ref_93) 2011; 26
Huang (ref_16) 2005; 130
Ubhi (ref_32) 2010; 30
Kopra (ref_82) 2015; 18
Quintino (ref_97) 2018; 11
Poyhonen (ref_26) 2019; 10
Rodrigues (ref_62) 2011; 23
Baecker (ref_91) 1999; 69
Drinkut (ref_83) 2012; 20
Su (ref_94) 2009; 20
Ramaswamy (ref_3) 2009; 34
Piltonen (ref_71) 2009; 219
Cheng (ref_96) 2018; 309
Ryu (ref_74) 2011; 91
Batchelor (ref_51) 2000; 12
Saavedra (ref_27) 2008; 86
Cao (ref_64) 2008; 61
Henderson (ref_60) 1994; 266
Pascual (ref_81) 2008; 11
Lin (ref_1) 1993; 260
Tokumine (ref_40) 2003; 74
Moore (ref_79) 1996; 382
Airaksinen (ref_57) 1999; 13
Widenfalk (ref_76) 2001; 21
Eggers (ref_8) 2019; 142
Ledda (ref_66) 2007; 10
Kitamura (ref_47) 2010; 58
Liberatore (ref_44) 1997; 8
Tenenbaum (ref_7) 2017; 11
Brown (ref_84) 2014; 15
Sawada (ref_85) 2010; 7
Georgievska (ref_5) 2002; 177
Tomac (ref_59) 1995; 92
Woodbury (ref_89) 1998; 803
Bartus (ref_13) 2015; 78
Tsuzuki (ref_38) 2007; 59
Bian (ref_88) 2013; 253
Liu (ref_63) 2008; 16
Trupp (ref_22) 1997; 17
Lang (ref_10) 2006; 59
Bonilla (ref_18) 2012; 32
Nakagawa (ref_37) 2004; 14
Walker (ref_72) 1998; 792
Lume (ref_23) 2010; 30
Batchelor (ref_42) 1999; 19
Marco (ref_34) 2002; 174
Golden (ref_30) 1999; 158
Marks (ref_9) 2010; 9
Bespalov (ref_69) 2011; 192
Widenfalk (ref_21) 1997; 17
Quintino (ref_99) 2013; 21
Pozas (ref_15) 2005; 45
Smirkin (ref_48) 2010; 30
Whone (ref_92) 2019; 9
Pascual (ref_31) 2016; 10
Batchelor (ref_41) 2002; 21
Tereshchenko (ref_95) 2014; 65
Baudet (ref_56) 2003; 227
Merienne (ref_33) 2019; 26
Sariola (ref_70) 2003; 116
Nosrat (ref_29) 1996; 286
Chen (ref_68) 2017; 7
Ernsberger (ref_14) 2008; 333
Defaux (ref_77) 2010; 1353
Tanaka (ref_90) 2000; 85
Kirik (ref_2) 2000; 20
References_xml – volume: 321
  start-page: 113037
  year: 2019
  ident: ref_101
  article-title: Enhanced regeneration and reinnervation following timed GDNF gene therapy in a cervical ventral root avulsion
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2019.113037
– volume: 654
  start-page: 99
  year: 2017
  ident: ref_28
  article-title: Striatal hypodopamine phenotypes found in transgenic mice that overexpress glial cell line-derived neurotrophic factor
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2017.06.005
– volume: 26
  start-page: 27
  year: 2011
  ident: ref_93
  article-title: Bioactivity of AAV2-neurturin gene therapy (CERE-120): Differences between Parkinson’s disease and nonhuman primate brains
  publication-title: Mov. Disord.
  doi: 10.1002/mds.23442
– volume: 15
  start-page: 104
  year: 2010
  ident: ref_45
  article-title: Glial cell line-derived neurotrophic factor is expressed by inflammatory cells in the sciatic nerves of Lewis rats with experimental autoimmune neuritis
  publication-title: J. Peripher. Nerv. Syst.
  doi: 10.1111/j.1529-8027.2010.00258.x
– volume: 85
  start-page: 91
  year: 2000
  ident: ref_90
  article-title: Promoter analysis and characteristics of the 5′-untranslated region of the mouse glial cell line-derived neurotrophic factor gene
  publication-title: Brain Res. Mol. Brain Res.
  doi: 10.1016/S0169-328X(00)00250-3
– volume: 14
  start-page: 275
  year: 2004
  ident: ref_37
  article-title: Gene expression profiles of reactive astrocytes in dopamine-depleted striatum
  publication-title: Brain Pathol.
  doi: 10.1111/j.1750-3639.2004.tb00064.x
– volume: 8
  start-page: 5460
  year: 2018
  ident: ref_53
  article-title: GDNF-expressing macrophages mitigate loss of dopamine neurons and improve Parkinsonian symptoms in MitoPark mice
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-23795-4
– volume: 74
  start-page: 552
  year: 2003
  ident: ref_40
  article-title: Changes in spinal GDNF, BDNF, and NT-3 expression after transient spinal cord ischemia in the rat
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.10760
– volume: 192
  start-page: 153
  year: 2011
  ident: ref_69
  article-title: Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201009136
– volume: 26
  start-page: 2477
  year: 2019
  ident: ref_33
  article-title: Cell-type-specific gene expression profiling in adult mouse brain reveals normal and disease-state signatures
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.02.003
– volume: 11
  start-page: 29
  year: 2017
  ident: ref_7
  article-title: Glial Cell Line-Derived Neurotrophic Factor Gene Delivery in Parkinson’s Disease: A Delicate Balance between Neuroprotection, Trophic Effects, and Unwanted Compensatory Mechanisms
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2017.00029
– volume: 12
  start-page: 3462
  year: 2000
  ident: ref_51
  article-title: Inhibition of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression reduces dopaminergic sprouting in the injured striatum
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.2000.00239.x
– volume: 16
  start-page: 474
  year: 2008
  ident: ref_63
  article-title: Protection against aminoglycoside-induced ototoxicity by regulated AAV vector-mediated GDNF gene transfer into the cochlea
  publication-title: Mol. Ther.
  doi: 10.1038/sj.mt.6300379
– volume: 333
  start-page: 353
  year: 2008
  ident: ref_14
  article-title: The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-008-0634-4
– volume: 29
  start-page: 171
  year: 2001
  ident: ref_55
  article-title: Released GFRα1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-Ret to lipid rafts
  publication-title: Neuron
  doi: 10.1016/S0896-6273(01)00188-X
– volume: 18
  start-page: 319
  year: 2015
  ident: ref_82
  article-title: GDNF is not required for catecholaminergic neuron survival in vivo
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3941
– volume: 34
  start-page: 40
  year: 2009
  ident: ref_3
  article-title: Intrastriatal CERE-120 (AAV-Neurturin) protects striatal and cortical neurons and delays motor deficits in a transgenic mouse model of Huntington’s disease
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2008.12.005
– volume: 10
  start-page: 73
  year: 2016
  ident: ref_31
  article-title: Simultaneous detection of both GDNF and GFRα1 expression patterns in the mouse central nervous system
  publication-title: Front. Neuroanat.
– volume: 164
  start-page: 53
  year: 2000
  ident: ref_35
  article-title: Reactive astrocytes of the quinolinic acid-lesioned rat striatum express GFRα1 as well as GDNF in vivo
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.2000.7416
– volume: 266
  start-page: 1062
  year: 1994
  ident: ref_60
  article-title: GDNF: A potent survival factor for motoneurons present in peripheral nerve and muscle
  publication-title: Science
  doi: 10.1126/science.7973664
– volume: 309
  start-page: 79
  year: 2018
  ident: ref_96
  article-title: Therapeutic efficacy of regulable GDNF expression for Huntington’s and Parkinson’s disease by a high-induction, background-free “GeneSwitch” vector
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2018.07.017
– ident: ref_19
  doi: 10.1371/journal.pgen.1005710
– volume: 10
  start-page: 486
  year: 2019
  ident: ref_26
  article-title: Effects of neurotrophic factors in glial cells in the central nervous system: Expression and properties in neurodegeneration and injury
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.00486
– volume: 39
  start-page: 105
  year: 2008
  ident: ref_6
  article-title: Neuroregenerative effects of lentiviral vector-mediated GDNF expression in reimplanted ventral roots
  publication-title: Mol. Cell Neurosci.
  doi: 10.1016/j.mcn.2008.05.018
– volume: 24
  start-page: 6437
  year: 2004
  ident: ref_54
  article-title: Overexpression of glial cell line-derived neurotrophic factor using a lentiviral vector induces time- and dose-dependent downregulation of tyrosine hydroxylase in the intact nigrostriatal dopamine system
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1122-04.2004
– volume: 13
  start-page: 313
  year: 1999
  ident: ref_57
  article-title: GDNF family neurotrophic factor signaling: Four masters, one servant?
  publication-title: Mol. Cell Neurosci.
  doi: 10.1006/mcne.1999.0754
– volume: 408
  start-page: 283
  year: 1999
  ident: ref_24
  article-title: Subpopulations of striatal interneurons can be distinguished on the basis of neurotrophic factor expression
  publication-title: J. Comp. Neurol.
  doi: 10.1002/(SICI)1096-9861(19990531)408:2<283::AID-CNE9>3.0.CO;2-2
– volume: 358
  start-page: 76
  year: 2018
  ident: ref_87
  article-title: Montelukast attenuates rotenone-induced microglial activation/p38 MAPK expression in rats: Possible role of its antioxidant, anti-inflammatory and antiapoptotic effects
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2018.09.012
– volume: 182
  start-page: 107
  year: 1994
  ident: ref_58
  article-title: Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo
  publication-title: Neurosci. Lett.
  doi: 10.1016/0304-3940(94)90218-6
– volume: 189
  start-page: 303
  year: 2004
  ident: ref_4
  article-title: Rescue and sprouting of motoneurons following ventral root avulsion and reimplantation combined with intraspinal adeno-associated viral vector-mediated expression of glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2004.05.014
– volume: 286
  start-page: 191
  year: 1996
  ident: ref_29
  article-title: Cellular expression of GDNF mRNA suggests multiple functions inside and outside the nervous system
  publication-title: Cell Tissue Res.
  doi: 10.1007/s004410050688
– volume: 126
  start-page: 428
  year: 2013
  ident: ref_78
  article-title: The isolectin IB4 binds RET receptor tyrosine kinase in microglia
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.12209
– volume: 69
  start-page: 209
  year: 1999
  ident: ref_91
  article-title: Characterization of a promoter for the human glial cell line-derived neurotrophic factor gene
  publication-title: Brain Res. Mol. Brain Res.
  doi: 10.1016/S0169-328X(99)00106-0
– volume: 30
  start-page: 6236
  year: 2010
  ident: ref_32
  article-title: Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0567-10.2010
– volume: 253
  start-page: 253
  year: 2013
  ident: ref_88
  article-title: Various roles of astrocytes during recovery from repeated exposure to different doses of lipopolysaccharide
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2013.07.028
– volume: 197
  start-page: 61
  year: 2019
  ident: ref_50
  article-title: Environmental neurotoxicant-induced dopaminergic neurodegeneration: A potential link to impaired neuroinflammatory mechanisms
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2019.01.001
– volume: 177
  start-page: 461
  year: 2002
  ident: ref_5
  article-title: Aberrant sprouting and downregulation of tyrosine hydroxylase in lesioned nigrostriatal dopamine neurons induced by long-lasting overexpression of glial cell line derived neurotrophic factor in the striatum by lentiviral gene transfer
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.2002.8006
– volume: 30
  start-page: 11403
  year: 2010
  ident: ref_23
  article-title: Characterization of the intracellular localization, processing, and secretion of two glial cell line-derived neurotrophic factor splice isoforms
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5888-09.2010
– volume: 18
  start-page: 367
  year: 2017
  ident: ref_67
  article-title: GFRα1 regulates purkinje cell migration by counteracting NCAM function
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.12.039
– volume: 65
  start-page: 35
  year: 2014
  ident: ref_95
  article-title: Pharmacologically controlled, discontinuous GDNF gene therapy restores motor function in a rat model of Parkinson’s disease
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2014.01.009
– volume: 20
  start-page: 4686
  year: 2000
  ident: ref_2
  article-title: Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: Intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-12-04686.2000
– volume: 58
  start-page: 1686
  year: 2010
  ident: ref_47
  article-title: The 6-hydroxydopamine-induced nigrostriatal neurodegeneration produces microglia-like NG2 glial cells in the rat substantia nigra
  publication-title: Glia
  doi: 10.1002/glia.21040
– volume: 32
  start-page: 864
  year: 2012
  ident: ref_18
  article-title: GDNF is predominantly expressed in the PV+ neostriatal interneuronal ensemble in normal mouse and after injury of the nigrostriatal pathway
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2693-11.2012
– ident: ref_73
  doi: 10.1371/journal.pone.0006486
– volume: 59
  start-page: 459
  year: 2006
  ident: ref_10
  article-title: Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20737
– volume: 21
  start-page: 2169
  year: 2013
  ident: ref_99
  article-title: Functional neuroprotection and efficient regulation of GDNF using destabilizing domains in a rodent model of Parkinson’s disease
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2013.169
– volume: 86
  start-page: 186
  year: 2008
  ident: ref_27
  article-title: Driving GDNF expression: The green and the red traffic lights
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2008.09.006
– volume: 20
  start-page: 534
  year: 2012
  ident: ref_83
  article-title: Efficient gene therapy for Parkinson’s disease using astrocytes as hosts for localized neurotrophic factor delivery
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2011.249
– volume: 10
  start-page: 293
  year: 2007
  ident: ref_66
  article-title: GDNF and GFRalpha1 promote formation of neuronal synapses by ligand-induced cell adhesion
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1855
– volume: 803
  start-page: 95
  year: 1998
  ident: ref_89
  article-title: Novel structure of the human GDNF gene
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(98)00627-1
– volume: 30
  start-page: 603
  year: 2010
  ident: ref_48
  article-title: Iba1+/NG2+ macrophage-like cells expressing a variety of neuroprotective factors ameliorate ischemic damage of the brain
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2009.233
– volume: 61
  start-page: 390
  year: 2008
  ident: ref_64
  article-title: Involvement of NCAM in the effects of GDNF on the neurite outgrowth in the dopamine neurons
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2008.04.008
– volume: 5
  start-page: 16027
  year: 2016
  ident: ref_98
  article-title: A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1038/mtm.2016.27
– volume: 382
  start-page: 76
  year: 1996
  ident: ref_79
  article-title: Renal and neuronal abnormalities in mice lacking GDNF
  publication-title: Nature
  doi: 10.1038/382076a0
– volume: 15
  start-page: 209
  year: 2014
  ident: ref_84
  article-title: Microglial phagocytosis of live neurons
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3710
– volume: 7
  start-page: 34
  year: 2013
  ident: ref_86
  article-title: Microglia and monocyte-derived macrophages: Functionally distinct populations that act in concert in CNS plasticity and repair
  publication-title: Front. Cell Neurosci.
  doi: 10.3389/fncel.2013.00034
– volume: 78
  start-page: 162
  year: 2015
  ident: ref_13
  article-title: Post-mortem assessment of the short and long-term effects of the trophic factor neurturin in patients with α-synucleinopathies
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2015.03.023
– volume: 25
  start-page: 233
  year: 2016
  ident: ref_75
  article-title: Astrocytes and microglia as non-cell autonomous players in the pathogenesis of ALS
  publication-title: Exp. Neurobiol.
  doi: 10.5607/en.2016.25.5.233
– ident: ref_25
  doi: 10.1002/mds.27986
– volume: 19
  start-page: 1708
  year: 1999
  ident: ref_42
  article-title: Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-05-01708.1999
– volume: 11
  start-page: 29
  year: 2018
  ident: ref_97
  article-title: Destabilizing domains enable long-term and inert regulation of GDNF expression in the brain
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1016/j.omtm.2018.08.008
– volume: 17
  start-page: 3554
  year: 1997
  ident: ref_22
  article-title: Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-α indicates multiple mechanisms of trophic actions in the adult rat CNS
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-10-03554.1997
– volume: 21
  start-page: 3457
  year: 2001
  ident: ref_76
  article-title: Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-10-03457.2001
– volume: 17
  start-page: 8506
  year: 1997
  ident: ref_21
  article-title: Neurturin and glial cell line-derived neurotrophic factor receptor-β (GDNFR-β), novel proteins related to GDNF and GDNFR-α with specific cellular patterns of expression suggesting roles in the developing and adult nervous system and in peripheral organs
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-21-08506.1997
– volume: 11
  start-page: 755
  year: 2008
  ident: ref_81
  article-title: Absolute requirement of GDNF for adult catecholaminergic neuron survival
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2136
– volume: 17
  start-page: 83
  year: 2020
  ident: ref_52
  article-title: Non-toxic HSC transplantation-based macrophage/microglia-mediated GDNF delivery for Parkinson’s disease
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1016/j.omtm.2019.11.013
– volume: 1353
  start-page: 213
  year: 2010
  ident: ref_77
  article-title: Inflammatory responses in aggregating rat brain cell cultures subjected to different demyelinating conditions
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2010.07.016
– volume: 92
  start-page: 8274
  year: 1995
  ident: ref_59
  article-title: Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.18.8274
– volume: 59
  start-page: 277
  year: 2007
  ident: ref_38
  article-title: Distribution and immunohistochemical localization of GDNF protein in selected neural and non-neural tissues of rats during development and changes in unilateral 6-hydroxydopamine lesions
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2007.07.007
– volume: 142
  start-page: 295
  year: 2019
  ident: ref_8
  article-title: Timed GDNF gene therapy using an immune-evasive gene switch promotes long distance axon regeneration
  publication-title: Brain
  doi: 10.1093/brain/awy340
– volume: 113
  start-page: 867
  year: 2003
  ident: ref_65
  article-title: The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00435-5
– volume: 7
  start-page: 13931
  year: 2017
  ident: ref_68
  article-title: Heparan sulfate: Resilience factor and therapeutic target for cocaine abuse
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13960-6
– volume: 116
  start-page: 3855
  year: 2003
  ident: ref_70
  article-title: Novel functions and signalling pathways for GDNF
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.00786
– volume: 9
  start-page: 1164
  year: 2010
  ident: ref_9
  article-title: Gene delivery of AAV2-neurturin for Parkinson’s disease: A double-blind, randomised, controlled trial
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(10)70254-4
– volume: 85
  start-page: 1752
  year: 2007
  ident: ref_49
  article-title: Activated microglia affect the nigro-striatal dopamine neurons differently in neonatal and aged mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.21241
– volume: 14
  start-page: 503
  year: 2019
  ident: ref_39
  article-title: Cinnamon and its metabolite protect the nigrostriatum in a mouse model of Parkinson’s disease via astrocytic GDNF
  publication-title: J. Neuroimmune Pharmacol.
  doi: 10.1007/s11481-019-09855-0
– volume: 54
  start-page: 95
  year: 1996
  ident: ref_17
  article-title: Embryonic expression of glial cell-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions
  publication-title: Mech. Dev.
  doi: 10.1016/0925-4773(95)00464-5
– volume: 21
  start-page: 549
  year: 2014
  ident: ref_100
  article-title: Developing a potentially immunologically inert tetracycline-regulatable viral vector for gene therapy in the peripheral nerve
  publication-title: Gene Ther.
  doi: 10.1038/gt.2014.22
– volume: 7
  start-page: 64
  year: 2010
  ident: ref_85
  article-title: Neuroprotective and neurotoxic phenotypes of activated microglia in neonatal mice with respective MPTP- and ethanol-induced brain injury
  publication-title: Neurodegener. Dis.
  doi: 10.1159/000285508
– volume: 34
  start-page: 1073
  year: 2019
  ident: ref_11
  article-title: Trial of magnetic resonance-guided putaminal gene therapy for advanced Parkinson’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.27724
– volume: 510
  start-page: 138
  year: 2012
  ident: ref_36
  article-title: Lipopolysaccharide-induced nigral inflammation leads to increased IL-1β tissue content and expression of astrocytic glial cell line-derived neurotrophic factor
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2012.01.022
– volume: 21
  start-page: 436
  year: 2002
  ident: ref_41
  article-title: Macrophages and microglia produce local trophic gradients that stimulate axonal sprouting toward but not beyond the wound edge
  publication-title: Mol. Cell Neurosci.
  doi: 10.1006/mcne.2002.1185
– volume: 158
  start-page: 504
  year: 1999
  ident: ref_30
  article-title: Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mouse
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.1999.7127
– volume: 792
  start-page: 207
  year: 1998
  ident: ref_72
  article-title: Expression of the proto-oncogene Ret, a component of the GDNF receptor complex, persists in human substantia nigra neurons in Parkinson’s disease
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(98)00131-0
– volume: 15
  start-page: 1465
  year: 1995
  ident: ref_61
  article-title: GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo
  publication-title: Neuron
  doi: 10.1016/0896-6273(95)90024-1
– volume: 142
  start-page: 512
  year: 2019
  ident: ref_12
  article-title: Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson’s disease
  publication-title: Brain
  doi: 10.1093/brain/awz023
– volume: 219
  start-page: 499
  year: 2009
  ident: ref_71
  article-title: Heparin-binding determinants of GDNF reduce its tissue distribution but are beneficial for the protection of nigral dopaminergic neurons
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2009.07.002
– volume: 91
  start-page: 342
  year: 2011
  ident: ref_74
  article-title: Differential expression of c-Ret in motor neurons versus non-neuronal cells is linked to the pathogenesis of ALS
  publication-title: Lab. Invest.
  doi: 10.1038/labinvest.2010.203
– volume: 16
  start-page: 99
  year: 2005
  ident: ref_43
  article-title: Inflammation-induced GDNF improves locomotor function after spinal cord injury
  publication-title: Neuroreport
  doi: 10.1097/00001756-200502080-00004
– volume: 382
  start-page: 70
  year: 1996
  ident: ref_80
  article-title: Renal agenesis and the absence of enteric neurons in mice lacking GDNF
  publication-title: Nature
  doi: 10.1038/382070a0
– volume: 497
  start-page: 898
  year: 2006
  ident: ref_46
  article-title: Localization of nerve growth factor, neurotrophin-3, and glial cell line-derived neurotrophic factor in nestin-expressing reactive astrocytes in the caudate-putamen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated C57/Bl mice
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.21014
– volume: 20
  start-page: 1627
  year: 2009
  ident: ref_94
  article-title: Safety evaluation of AAV2-GDNF gene transfer into the dopaminergic nigrostriatal pathway in aged and parkinsonian rhesus monkeys
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2009.103
– volume: 227
  start-page: 27
  year: 2003
  ident: ref_56
  article-title: Soluble and bound forms of GFRα1 elicit different GDNF-independent neurite growth responses in primary sensory neurons
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.10280
– volume: 23
  start-page: e44
  year: 2011
  ident: ref_62
  article-title: Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system
  publication-title: Neurogastroenterol. Motil.
  doi: 10.1111/j.1365-2982.2010.01626.x
– volume: 174
  start-page: 243
  year: 2002
  ident: ref_34
  article-title: Excitatory amino acids differentially regulate the expression of GDNF, neurturin, and their receptors in the adult rat striatum
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.2001.7859
– volume: 9
  start-page: 463
  year: 1997
  ident: ref_20
  article-title: Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.1997.tb01623.x
– volume: 8
  start-page: 3097
  year: 1997
  ident: ref_44
  article-title: Expression of glial cell line-derived neurotrophic factor (GDNF) mRNA following mechanical injury to mouse striatum
  publication-title: Neuroreport
  doi: 10.1097/00001756-199709290-00018
– volume: 260
  start-page: 1130
  year: 1993
  ident: ref_1
  article-title: GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons
  publication-title: Science
  doi: 10.1126/science.8493557
– volume: 130
  start-page: 95
  year: 2005
  ident: ref_16
  article-title: Glial cell line-derived neurotrophic factor (GDNF) is required for differentiation of pontine noradrenergic neurons and patterning of central respiratory output
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2004.08.036
– volume: 45
  start-page: 701
  year: 2005
  ident: ref_15
  article-title: GDNF and GFRalpha1 promote differentiation and tangential migration of cortical GABAergic neurons
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.01.043
– volume: 9
  start-page: 301
  year: 2019
  ident: ref_92
  article-title: Extended treatment with glial cell line-derived neurotrophic factor in Parkinson’s disease
  publication-title: J. Parkinsons Dis.
  doi: 10.3233/JPD-191576
SSID ssj0000884217
Score 2.4302611
SecondaryResourceType review_article
Snippet In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 456
SubjectTerms Clinical medicine
Dopamine
Heparan sulfate
Nervous system
Neurons
Parkinson's disease
Review
Rodents
Spinal cord
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86QXwRv51OieiLYFk_0qZ9krHZDWF7crC3kiYpKrWb-_Dv967tuk3F1yal5e5y97tc8jtC7qQPccRMPEMLFxIUxj1DmJoZ4CsVoG1b-Hkfsv7A6w3Z88gdlRtus_JY5dIn5o5ajSXukTchcAMUYDa3HiefBnaNwupq2UJjm-wgdRlaNR_xao8FVhADyF2wkjqQ3Tff5UeA10GxX_V6HPoFLn-ekVwLOuEB2S_RIm0V6j0kWzo7Irv9sh5-TLrdziB8oC2ac2xkRgfs6UsrGuZddOhwMi1azcOjt4x2UzA22tZpOqPF9UTaKeozJ2QYPr20e0bZGsGQjNtzI1YBpDZC-TEAkCTgSrpSKp_LAAn0bK1FomWifB1I0_UdyQSXAJSwyBiDUGLnlNSycabPCYURy44lk9oSsJpjgaU_j1uJKbUH-VSd3C8FFcmSNxzbV6QR5A8o1Ggl1Dq5reZOCraMP2c1lvKOyhUzi1b6rZObahhsHQsYItPjBcxxXGZxJJWrk7NCPdVnHBtLvA68zTcUV01AHu3NkeztNefT5uDmXNu8-P-3Lsmejbk2ntjmDVKbTxf6CgDJPL7Ore4bo7_fyg
  priority: 102
  providerName: ProQuest
Title GDNF, A Neuron-Derived Factor Upregulated in Glial Cells during Disease
URI https://www.ncbi.nlm.nih.gov/pubmed/32046031
https://www.proquest.com/docview/2641054271
https://www.proquest.com/docview/2354171549
https://pubmed.ncbi.nlm.nih.gov/PMC7073520
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-cgvgifjudI6IvgtU2_Uj7IDL3JcKGiIW9lTRNcVI7nVP0v_fSdtXpHnxtEgJ3l9zvxzX3AzgWLuYRPXY0yW0kKBZzNK5LS8O7MkK0Tbmb6ZD1-s61b90M7MECTPU7CwO-zqV2Sk_KHydnHy-fl3jgLxTjRMp-_iiePPXG03YqsIQZiSklg14B87Mb2XUtmonvUp0xTUdWlncq_bV8Njf9AZy__5v8kYg6a7BaIEjSyF2-Dgsy3YDlXlEj34Rut9XvnJIGyfpupFoLY-xdRqSTKesQ_3mcy8_jp2FKugkGIGnKJHkl-ZNF0sprNlvgd9r3zWutkEvQhMXoRAsjD-kOj9wQLRB7LBK2EJHLhKea6lEpeSxFHLnSE7rtmsLiTCB4UoXHEA0UmtuwmI5SuQsERwwaCktIg-MJD7kqBzrMiHUhHeRYVTiZGioQRS9xJWmRBMgplFGDb6NW4aic-5x30Jg7qza1dzANggDBGsI_izKjCoflMMa_KmrwVI7ecI5po8dVo7kq7OTuKbcxqSr7mriazTiunKB6a8-OpMOHrMc2w6vPpvreP_bdhxWqSLj6lZvVYHEyfpMHiFQmYR0qbMDqsHTV7t_e1bOg_ALZmeg-
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xkAqXqpQCKRQW0R6QsLDXa699qCpESMIjOREpN7NerwUoOIEEEH-qv7EzfgEt6o2rd_zQ7Ow8PLvfB_BdBxhH7NS3jPKwQBHSt5RthIW-MsFsm6sg5yHr9vxOX5wMvMEM_K7OwtC2yson5o46GWn6R76PgRtTAcGl82t8axFrFHVXKwqNwixOzdMjlmyTn8dNnN8fnLeOzg87VskqYGkh-dSKkxCrApUEMcbuNJSJ9rROAqlDwp7jxqjU6DQJTKhtL3C1UFJjjkH9uTgIROzic2dhHgOvTcWeHMj6nw6uWIEpfoGC6rqhvX-tb0I6fkr82C_j3j_J7N97Ml8EudYn-Fhmp-ygMKclmDHZZ_jQLfvvy9BuN3utPXbAckyPzGqi_T6YhLVy1h7WH98V1PZ46Spj7SEaNzs0w-GEFcchWbPoB32B_rsobQXmslFm1oDhiMNjLbRxFHqPWFGr0ZdOamvjY_3WgN1KUZEuccqJLmMYYb1CSo2eldqAnVp2XKBzvCm1Uek7KlfoJHq2pwZs18O4tqhhojIzukcZ1xOOJBC7BqwW01O_xuXUUnbxbvlq4moBwu1-PZJdXeb43RLdqsftr___rC1Y6Jx3z6Kz497pOixyqvNpt7jcgLnp3b35hsnQNN7MLZDBxXub_B_9dx3s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIiEuqC1QtoXWCDhUarSJ48TJAVWUkOW5QqgrcQuO46hU2-yWXVr1r_XXdSYvoK164xo7D40_zyMzng9gRwdoR-zct4zyMEAR0reUbYSFujJDb5uroOQhOx_4R0NxcuVdzcGv5iwMlVU2OrFU1NlY0z_yHhpudAUEl04vr8siLqL4w-SbRQxSlGlt6DQqiJyanz8wfJvuHUe41rucx4efDo6smmHA0kLymZVmIUYIKgtStON5KDPtaZ0FUofUh44bo3Kj8ywwoba9wNVCSY3-BuXq0iAQqYvPnYcFSVFRBxY-Hg4uLts_PLh_BTr8VU9U1w3t3hf9NaTDqMSW_dAK_uXa_lmh-cDkxc9gufZV2X4FrucwZ4oXsHheZ-NXoN-PBvF7ts_KDh-FFSGav5uMxSWHDxtObiuie7x0U7D-CKHODsxoNGXV4UgWVdmhVRg-idjWoFOMC7MODEccnmqhjaNQl6SKEo--dHJbGx-juS68awSV6LprOZFnjBKMXkioyb1Qu7Ddzp1UvTr-OWujkXdS79dpco-uLmy1w7jTKH2iCjO-wzmuJxxJLe268LJanvY1LqcEs4t3y0cL106gLt6PR4qbz2U3b4lK1uP2q_9_1ltYRLgnZ8eD09ewxCnop9JxuQGd2e2d2UTPaJa-qSHI4PqpUf8b7aAjhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GDNF%2C+A+Neuron-Derived+Factor+Upregulated+in+Glial+Cells+during+Disease&rft.jtitle=Journal+of+clinical+medicine&rft.au=Duarte+Azevedo%2C+Marcelo&rft.au=Sander%2C+Sibilla&rft.au=Tenenbaum%2C+Liliane&rft.date=2020-02-07&rft.issn=2077-0383&rft.eissn=2077-0383&rft.volume=9&rft.issue=2&rft_id=info:doi/10.3390%2Fjcm9020456&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0383&client=summon