Two mechanisms for direction selectivity in a model of the primate starburst amacrine cell
In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a large...
Saved in:
Published in | Visual neuroscience Vol. 40; p. E003 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, USA
Cambridge University Press
23.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0952-5238 1469-8714 1469-8714 |
DOI | 10.1017/S0952523823000019 |
Cover
Abstract | In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a larger calcium signal than motion from the tip toward the soma. Two mechanisms affecting the spatiotemporal summation of excitatory postsynaptic currents have been proposed to contribute to directional signaling at the dendritic tips of starbursts: (1) a “morphological” mechanism in which electrotonic propagation of excitatory synaptic currents along a dendrite sums bipolar cell inputs at the dendritic tip preferentially for stimulus motion in the centrifugal direction; (2) a “space–time” mechanism that relies on differences in the time-courses of proximal and distal bipolar cell inputs to favor centrifugal stimulus motion. To explore the contributions of these two mechanisms in the primate, we developed a realistic computational model based on connectomic reconstruction of a macaque starburst cell and the distribution of its synaptic inputs from sustained and transient bipolar cell types. Our model suggests that both mechanisms can initiate direction selectivity in starburst dendrites, but their contributions differ depending on the spatiotemporal properties of the stimulus. Specifically, the morphological mechanism dominates when small visual objects are moving at high velocities, and the space–time mechanism contributes most for large visual objects moving at low velocities. |
---|---|
AbstractList | In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a larger calcium signal than motion from the tip toward the soma. Two mechanisms affecting the spatiotemporal summation of excitatory postsynaptic currents have been proposed to contribute to directional signaling at the dendritic tips of starbursts: (1) a "morphological" mechanism in which electrotonic propagation of excitatory synaptic currents along a dendrite sums bipolar cell inputs at the dendritic tip preferentially for stimulus motion in the centrifugal direction; (2) a "space-time" mechanism that relies on differences in the time-courses of proximal and distal bipolar cell inputs to favor centrifugal stimulus motion. To explore the contributions of these two mechanisms in the primate, we developed a realistic computational model based on connectomic reconstruction of a macaque starburst cell and the distribution of its synaptic inputs from sustained and transient bipolar cell types. Our model suggests that both mechanisms can initiate direction selectivity in starburst dendrites, but their contributions differ depending on the spatiotemporal properties of the stimulus. Specifically, the morphological mechanism dominates when small visual objects are moving at high velocities, and the space-time mechanism contributes most for large visual objects moving at low velocities. In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a larger calcium signal than motion from the tip toward the soma. Two mechanisms affecting the spatiotemporal summation of excitatory postsynaptic currents have been proposed to contribute to directional signaling at the dendritic tips of starbursts: (1) a "morphological" mechanism in which electrotonic propagation of excitatory synaptic currents along a dendrite sums bipolar cell inputs at the dendritic tip preferentially for stimulus motion in the centrifugal direction; (2) a "space-time" mechanism that relies on differences in the time-courses of proximal and distal bipolar cell inputs to favor centrifugal stimulus motion. To explore the contributions of these two mechanisms in the primate, we developed a realistic computational model based on connectomic reconstruction of a macaque starburst cell and the distribution of its synaptic inputs from sustained and transient bipolar cell types. Our model suggests that both mechanisms can initiate direction selectivity in starburst dendrites, but their contributions differ depending on the spatiotemporal properties of the stimulus. Specifically, the morphological mechanism dominates when small visual objects are moving at high velocities, and the space-time mechanism contributes most for large visual objects moving at low velocities.In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a larger calcium signal than motion from the tip toward the soma. Two mechanisms affecting the spatiotemporal summation of excitatory postsynaptic currents have been proposed to contribute to directional signaling at the dendritic tips of starbursts: (1) a "morphological" mechanism in which electrotonic propagation of excitatory synaptic currents along a dendrite sums bipolar cell inputs at the dendritic tip preferentially for stimulus motion in the centrifugal direction; (2) a "space-time" mechanism that relies on differences in the time-courses of proximal and distal bipolar cell inputs to favor centrifugal stimulus motion. To explore the contributions of these two mechanisms in the primate, we developed a realistic computational model based on connectomic reconstruction of a macaque starburst cell and the distribution of its synaptic inputs from sustained and transient bipolar cell types. Our model suggests that both mechanisms can initiate direction selectivity in starburst dendrites, but their contributions differ depending on the spatiotemporal properties of the stimulus. Specifically, the morphological mechanism dominates when small visual objects are moving at high velocities, and the space-time mechanism contributes most for large visual objects moving at low velocities. |
ArticleNumber | E003 |
Author | Troy, John B. Wu, Jiajia Smith, Robert G. Dacey, Dennis M. Kim, Yeon Jin |
AuthorAffiliation | 2 Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle , WA , USA 1 Department of Biomedical Engineering, Northwestern University , Evanston , IL , USA 3 Department of Neuroscience, University of Pennsylvania , Philadelphia , PA , USA |
AuthorAffiliation_xml | – name: 1 Department of Biomedical Engineering, Northwestern University , Evanston , IL , USA – name: 3 Department of Neuroscience, University of Pennsylvania , Philadelphia , PA , USA – name: 2 Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle , WA , USA |
Author_xml | – sequence: 1 givenname: Jiajia orcidid: 0000-0002-4321-9868 surname: Wu fullname: Wu, Jiajia organization: 1Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA – sequence: 2 givenname: Yeon Jin orcidid: 0000-0002-6722-4063 surname: Kim fullname: Kim, Yeon Jin organization: 2Department of Biological Structure, Washington National Primate Research Center, University of Washington, Seattle, WA, USA – sequence: 3 givenname: Dennis M. surname: Dacey fullname: Dacey, Dennis M. organization: 2Department of Biological Structure, Washington National Primate Research Center, University of Washington, Seattle, WA, USA – sequence: 4 givenname: John B. surname: Troy fullname: Troy, John B. organization: 1Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA – sequence: 5 givenname: Robert G. orcidid: 0000-0001-5703-1324 surname: Smith fullname: Smith, Robert G. email: rob@retina.anatomy.upenn.edu organization: 3Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37218623$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1TAQhS3Uit4WfgAbZIkNm1A_42SFUMVLqtQFZcPGcuxJr6vELrbTqv8eh94CLQJvxtJ85-jMzCHaCzEAQi8oeUMJVcdfSC-ZZLxjnNRH-ydoQ0XbN52iYg9t1naz9g_QYc6XleBU8qfogCtGu5bxDfp2fhPxDHZrgs9zxmNM2PkEtvgYcIZp_V37cot9wAbP0cGE44jLFvBV8rMpgHMxaVhSLtjMxiYfAFuYpmdofzRThue7eoS-fnh_fvKpOT37-Pnk3WljhWKlGYSFzjjDaD907ciFYW4kyvVykFzQtqViaB1l0nZScSFa0Q2DEMAdyHZ0hh-ht3e-V8swg7MQSjKT_pku3epovH7YCX6rL-K1poQRJSSvDq93Dil-XyAXPfu8jmACxCVr1tGOSNUTVdFXj9DLuKRQ51spxXrOWlKpl39G-pXlfu8VUHeATTHnBKO2vph15zWhn2o0vV5Y_3XhqqSPlPfm_9PwncbMQ_LuAn6n_rfqBxpjtqM |
CitedBy_id | crossref_primary_10_7554_eLife_90456 crossref_primary_10_7554_eLife_90456_3 crossref_primary_10_1073_pnas_2405138121 |
Cites_doi | 10.1016/j.celrep.2017.01.026 10.1016/j.celrep.2021.110106 10.1038/s41467-022-32761-8 10.1038/s41467-022-30405-5 10.1523/JNEUROSCI.1275-04.2004 10.1371/journal.pbio.0050185 10.1002/cne.903090105 10.1038/s41467-022-32762-7 10.1016/0165-0270(92)90019-A 10.1017/S0952523802194119 10.1016/0006-8993(83)91293-3 10.1523/JNEUROSCI.6456-09.2010 10.1073/pnas.80.10.3069 10.1038/nature09818 10.1016/j.neuron.2016.02.020 10.7554/eLife.21053 10.1113/jphysiol.2006.115857 10.1523/JNEUROSCI.3551-07.2008 10.7554/eLife.62618 10.1016/j.neuron.2005.02.007 10.1016/j.neuron.2017.07.020 10.1523/JNEUROSCI.1661-05.2005 10.1016/j.preteyeres.2010.08.004 10.1038/nature00931 10.1371/journal.pone.0012447 10.1113/jphysiol.2004.076695 10.1017/S0952523804214109 10.1038/nature13240 10.1016/j.neuron.2006.08.007 10.1038/nature18609 10.1038/nature01179 10.1016/j.neuron.2015.11.032 10.1017/S0952523811000393 10.1016/S0896-6273(01)00316-6 10.1152/jn.00628.2005 10.1523/JNEUROSCI.1249-13.2013 10.1016/j.cub.2018.03.001 10.1113/jphysiol.1975.sp011086 10.7554/eLife.81533 10.1523/JNEUROSCI.1688-17.2017 10.1016/j.celrep.2022.110410 10.1016/0042-6989(84)90140-8 10.1016/0042-6989(88)90064-8 10.1017/S0952523813000230 10.3389/fnana.2016.00104 10.1113/jphysiol.1964.sp007463 |
ContentType | Journal Article |
Copyright | The Author(s), 2023. Published by Cambridge University Press The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2023 2023 The Author(s) |
Copyright_xml | – notice: The Author(s), 2023. Published by Cambridge University Press – notice: The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2023 2023 The Author(s) |
DBID | IKXGN AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ K9. M0S M1P M2M PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PSYQQ Q9U 7X8 5PM |
DOI | 10.1017/S0952523823000019 |
DatabaseName | Cambridge University Press Wholly Gold Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Psychology Database Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Psychology CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: IKXGN name: Cambridge University Press Wholly Gold Open Access Journals url: http://journals.cambridge.org/action/login sourceTypes: Publisher – sequence: 4 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1469-8714 |
ExternalDocumentID | PMC10207453 37218623 10_1017_S0952523823000019 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY032045 – fundername: NEI NIH HHS grantid: EY022070 – fundername: NIBIB NIH HHS grantid: R21EB028069 – fundername: NIH HHS grantid: P51 OD010425 – fundername: NEI NIH HHS grantid: R01 EY022070 – fundername: NEI NIH HHS grantid: EY032045 – fundername: ; grantid: R21EB028069 – fundername: ; grantid: EY032045 – fundername: ; grantid: EY022070 |
GroupedDBID | --- -E. -~X .FH 09C 09E 0E1 0R~ 123 4.4 53G 5RE 5VS 74X 74Y 7~V AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AATID AAUIS AAUKB ABBXD ABITZ ABIVO ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABWCF ABZCX ACBEK ACBMC ACCHT ACGFS ACIMK ACNCT ACPRK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADAZD ADBBV ADDNB ADFEC ADGEJ ADKIL ADOCW ADVJH AEBAK AEMTW AENEX AENGE AEYHU AEYYC AFFUJ AFKQG AFKSM AFLOS AFLVW AFUTZ AGABE AGJUD AGOOT AHIPN AHLTW AHMBA AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO ANPSP AQJOH ARABE ATUCA AUXHV AZGZS BBLKV BENPR BGHMG BLZWO BMAJL BRIRG C0O CBIIA CCQAD CFAFE CHEAL CJCSC CS3 DOHLZ DU5 EBS F5P FYUFA HG- HST HZ~ I.6 I.9 IH6 IKXGN IOEEP IPYYG IS6 I~P J36 J38 J3A JHPGK JKPOH JQKCU JVRFK KCGVB KFECR L98 LW7 M-V M7~ NIKVX O9- OYBOY P2P RAMDC RCA ROL RR0 S6- S6U SAAAG SY4 T9M UT1 UU6 WFFJZ WQ3 WXU WXY WYP ZYDXJ -1D -1F -2P -2V -~6 -~N .GJ 29R 6~7 7X7 88E 8FI 8FJ 8R4 8R5 9M5 AAKNA AATMM AAYXX ABBZL ABGDZ ABHFL ABUWG ABVFV ABVKB ABVZP ABXAU ABZUI ACAJB ACEJA ACETC ACOZI ACQPF ACRPL ADNMO ADOVH ADOVT AEBPU AEHGV AEMFK AENCP AFKRA AGLWM AGQPQ AKZCZ ALIPV ANOYL ARZZG AYIQA AZQEC BCGOX BESQT BJBOZ BPHCQ BQFHP BVXVI CAG CCPQU CCUQV CDIZJ CFBFF CGQII CITATION COF DC4 DWQXO EGQIC EJD EMOBN FA8 FRJ GNUQQ HMCUK I.7 IOO KAFGG LHUNA M1P M2M M48 M8. MVM NMFBF NZEOI PHGZM PHGZT PQQKQ PROAC PSQYO PSYQQ Q2X RIG UKHRP ZDLDU ZJOSE ZMEZD ~V1 CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c472t-b4ce8ada219b86f34a2df07d95b53416614b6d125c857344648bb44e3de56fda3 |
IEDL.DBID | IKXGN |
ISSN | 0952-5238 1469-8714 |
IngestDate | Thu Aug 21 18:37:54 EDT 2025 Fri Sep 05 13:26:30 EDT 2025 Fri Jul 25 09:23:49 EDT 2025 Thu Apr 03 07:08:31 EDT 2025 Thu Apr 24 23:09:38 EDT 2025 Tue Jul 01 03:26:16 EDT 2025 Wed Mar 13 05:49:53 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | electrotonic propagation modeling Direction selectivity starburst amacrine primate retina |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-b4ce8ada219b86f34a2df07d95b53416614b6d125c857344648bb44e3de56fda3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4321-9868 0000-0002-6722-4063 0000-0001-5703-1324 |
OpenAccessLink | https://www.cambridge.org/core/product/identifier/S0952523823000019/type/journal_article |
PMID | 37218623 |
PQID | 2817293260 |
PQPubID | 31753 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10207453 proquest_miscellaneous_2818057907 proquest_journals_2817293260 pubmed_primary_37218623 crossref_citationtrail_10_1017_S0952523823000019 crossref_primary_10_1017_S0952523823000019 cambridge_journals_10_1017_S0952523823000019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-23 |
PublicationDateYYYYMMDD | 2023-05-23 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | New York, USA |
PublicationPlace_xml | – name: New York, USA – name: England – name: Cambridge |
PublicationTitle | Visual neuroscience |
PublicationTitleAlternate | Vis Neurosci |
PublicationYear | 2023 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2004; 21 2018; 28 2006; 96 1984; 220 2002; 19 2006; 51 1984; 223 1984; 24 2004; 24 2016; 10 1975; 251 2002; 418 1964; 173 2011; 471 2005; 46 2006; 576 2005; 25 2017; 95 2016; 5 2021; 37 2013; 33 2005; 562 1983; 261 2014; 509 2010; 29 2020; 9 1988; 28 2002; 420 2008; 28 2022; 13 2016; 535 2012; 29 2017; 18 2007; 5 1983; 80 2022; 11 1992; 43 2010; 5 1991; 309 2010; 30 2022; 38 2018; 38 2001; 30 2016; 89 2014; 31 S0952523823000019_r5 S0952523823000019_r41 S0952523823000019_r6 S0952523823000019_r42 S0952523823000019_r3 S0952523823000019_r43 S0952523823000019_r4 S0952523823000019_r44 S0952523823000019_r1 S0952523823000019_r2 S0952523823000019_r49 S0952523823000019_r46 S0952523823000019_r47 S0952523823000019_r48 S0952523823000019_r10 S0952523823000019_r11 S0952523823000019_r50 S0952523823000019_r16 S0952523823000019_r17 S0952523823000019_r18 S0952523823000019_r19 S0952523823000019_r12 S0952523823000019_r13 S0952523823000019_r14 S0952523823000019_r15 Tauchi (S0952523823000019_r40) 1984; 223 S0952523823000019_r20 S0952523823000019_r21 S0952523823000019_r22 S0952523823000019_r27 S0952523823000019_r28 S0952523823000019_r29 S0952523823000019_r23 S0952523823000019_r24 S0952523823000019_r25 S0952523823000019_r26 Vaney (S0952523823000019_r45) 1984; 220 S0952523823000019_r30 S0952523823000019_r31 S0952523823000019_r32 S0952523823000019_r33 S0952523823000019_r38 S0952523823000019_r39 Rall (S0952523823000019_r35) 1989 S0952523823000019_r36 S0952523823000019_r37 Rall (S0952523823000019_r34) 1964 S0952523823000019_r9 S0952523823000019_r7 S0952523823000019_r8 |
References_xml | – volume: 28 start-page: 1204 year: 2018 end-page: 1212 article-title: A dense starburst plexus is critical for generating direction selectivity publication-title: Current Biology – volume: 21 start-page: 611 year: 2004 end-page: 625 article-title: Direction selectivity in a model of the starburst amacrine cell publication-title: Visual Neuroscience – volume: 9 start-page: e62618 year: 2020 article-title: Preserving inhibition with a disinhibitory microcircuit in the retina publication-title: eLife – volume: 13 start-page: 2862 year: 2022 article-title: Origins of direction selectivity in the primate retina publication-title: Nature Communications – volume: 10 start-page: 104 year: 2016 article-title: On bipolar cells in macaque retina: Type-specific synaptic connectivity with special reference to off counterparts publication-title: Frontiers in Neuroanatomy – volume: 33 start-page: 16045 year: 2013 end-page: 16059 article-title: NaV1.1 channels in axon initial segments of retinal bipolar cells augment input to magnocellular visual pathways publication-title: Journal of Neuroscience – volume: 95 start-page: 914 year: 2017 end-page: 927 article-title: Cross-compartmental modulation of dendritic signals for retinal direction selectivity publication-title: Neuron – volume: 471 start-page: 183 year: 2011 end-page: 188 article-title: Wiring specificity in the direction-selectivity circuit of the retina publication-title: Nature – volume: 37 start-page: 110106 year: 2021 article-title: Cholinergic feedback to bipolar cells contributes to motion detection in the mouse retina publication-title: Cell Reports – volume: 220 start-page: 501 year: 1984 end-page: 508 article-title: Coronate’ amacrine cells in the rabbit retina have the ‘starburst’ dendritic morphology publication-title: Proceedings of the Royal Society of London, Series B, Biological Sciences – volume: 89 start-page: 177 year: 2016 end-page: 183 article-title: Congenital nystagmus gene FRMD7 is necessary for establishing a neuronal circuit asymmetry for direction selectivity publication-title: Neuron – volume: 5 start-page: e185 year: 2007 article-title: A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells publication-title: PLoS Biology – volume: 5 start-page: e21053 year: 2016 article-title: Stimulus-dependent recruitment of lateral inhibition underlies retinal direction selectivity publication-title: eLife – volume: 223 start-page: 101 year: 1984 end-page: 119 article-title: The shape and arrangement of the cholinergic neurons in the rabbit retina publication-title: Proceedings of the Royal Society of London. Series B, Biological Sciences – volume: 29 start-page: 73 year: 2012 end-page: 81 article-title: The role of starburst amacrine cells in visual signal processing publication-title: Visual Neuroscience – volume: 261 start-page: 138 year: 1983 end-page: 144 article-title: ‘Starburst’ amacrine cells and cholinergic neurons: Mirror-symmetric ON and OFF amacrine cells of rabbit retina publication-title: Brain Research – volume: 29 start-page: 622 year: 2010 end-page: 639 article-title: Retinal connectivity and primate vision publication-title: Progress in Retinal and Eye Research – volume: 96 start-page: 471 year: 2006 end-page: 477 article-title: Symmetric interactions within a homogeneous starburst cell network can lead to robust asymmetries in dendrites of starburst amacrine cells publication-title: Journal of Neurophysiology – volume: 251 start-page: 167 year: 1975 end-page: 195 article-title: Functional properties of ganglion cells of the rhesus monkey retina publication-title: Journal of Physiology – volume: 28 start-page: 189 year: 2008 end-page: 198 article-title: Speed, spatial and temporal tuning of rod and cone vision in mouse publication-title: Journal of Neuroscience – volume: 89 start-page: 1317 year: 2016 end-page: 1330 article-title: A role for synaptic input distribution in a dendritic computation of motion direction in the retina publication-title: Neuron – volume: 509 start-page: 331 year: 2014 end-page: 336 article-title: Space-time wiring specificity supports direction selectivity in the retina publication-title: Nature – volume: 13 start-page: 5575 year: 2022 article-title: Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells publication-title: Nature Communications – volume: 173 start-page: 377 year: 1964 end-page: 407 article-title: Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit publication-title: Journal of Physiology – volume: 43 start-page: 83 year: 1992 end-page: 108 article-title: NeuronC: A computational language for investigating functional architecture of neural circuits publication-title: Journal of Neuroscience Methods – volume: 309 start-page: 40 year: 1991 end-page: 70 article-title: Synaptic organization of starburst amacrine cells in rabbit retina: Analysis of serial thin sections by electron microscopy and graphic reconstruction publication-title: Journal of Comparative Neurology – volume: 38 start-page: 1520 year: 2018 end-page: 1540 article-title: Nonselective wiring accounts for red-green Opponency in midget ganglion cells of the primate retina publication-title: Journal of Neuroscience – volume: 19 start-page: 495 year: 2002 end-page: 509 article-title: Effects of the destruction of starburst-cholinergic amacrine cells by the toxin AF64A on rabbit retinal directional selectivity publication-title: Visual Neuroscience – volume: 28 year: 1988 article-title: Human velocity and direction discrimination measured with random dot patterns publication-title: Vision Research – volume: 11 start-page: e81533 year: 2022 article-title: Spatiotemporal properties of glutamate input support direction selectivity in the dendrites of retinal starburst amacrine cells publication-title: eLife – volume: 46 start-page: 117 year: 2005 end-page: 127 article-title: Directional selectivity is formed at multiple levels by laterally offset inhibition in the rabbit retina publication-title: Neuron – volume: 25 start-page: 10049 year: 2005 end-page: 10060 article-title: A logarithmic, scale-invariant representation of speed in macaque middle temporal area accounts for speed discrimination performance publication-title: Journal of Neuroscience – volume: 24 start-page: 7335 year: 2004 end-page: 7343 article-title: A unique role for Kv3 voltage-gated potassium channels in starburst amacrine cell signaling in mouse retina publication-title: Journal of Neuroscience – volume: 24 start-page: 25 year: 1984 end-page: 32 article-title: The detection of motion in the peripheral visual field publication-title: Vision Research – volume: 5 start-page: e12447 year: 2010 article-title: Tetrodotoxin-resistant sodium channels contribute to directional responses in starburst amacrine cells publication-title: PLoS One – volume: 18 start-page: 1356 year: 2017 end-page: 1365 article-title: Temporally diverse excitation generates direction-selective responses in ON- and OFF-type retinal starburst Amacrine cells publication-title: Cell Reports – volume: 30 start-page: 5912 year: 2010 end-page: 5926 article-title: Parallel input channels to mouse primary visual cortex publication-title: Journal of Neuroscience – volume: 30 start-page: 771 year: 2001 end-page: 780 article-title: A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement publication-title: Neuron – volume: 80 start-page: 3069 year: 1983 end-page: 3073 article-title: Electroanatomy of a unique amacrine cell in the rabbit retina publication-title: Proceedings of the National Academy of Sciences of USA – volume: 13 start-page: 5574 year: 2022 article-title: Center-surround interactions underlie bipolar cell motion sensing in the mouse retina publication-title: Nature Communications – volume: 31 start-page: 139 year: 2014 end-page: 151 article-title: Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina publication-title: Visual Neuroscience – volume: 420 start-page: 411 year: 2002 end-page: 414 article-title: Mechanisms and circuitry underlying directional selectivity in the retina publication-title: Nature – volume: 562 start-page: 915 year: 2005 end-page: 923 article-title: Identification of ON-OFF directionally-selective ganglion cells in mouse retina publication-title: Journal of Physiology – volume: 418 start-page: 845 year: 2002 end-page: 852 article-title: Directionally selective calcium signals in dendrites of starburst amacrine cells publication-title: Nature – volume: 38 start-page: 110410 year: 2022 article-title: Gain control by sparse, ultra-slow glycinergic synapses publication-title: Cell Reports – volume: 576 start-page: 197 year: 2006 end-page: 202 article-title: ON direction-selective ganglion cells in the mouse retina publication-title: Journal of Physiology – volume: 51 start-page: 787 year: 2006 end-page: 799 article-title: The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells publication-title: Neuron – volume: 535 start-page: 105 year: 2016 end-page: 110 article-title: Species-specific wiring for direction selectivity in the mammalian retina publication-title: Nature – ident: S0952523823000019_r13 doi: 10.1016/j.celrep.2017.01.026 – ident: S0952523823000019_r19 doi: 10.1016/j.celrep.2021.110106 – ident: S0952523823000019_r17 doi: 10.1038/s41467-022-32761-8 – ident: S0952523823000019_r22 doi: 10.1038/s41467-022-30405-5 – ident: S0952523823000019_r32 doi: 10.1523/JNEUROSCI.1275-04.2004 – start-page: 27 volume-title: Methods in Neuronal Modeling year: 1989 ident: S0952523823000019_r35 – ident: S0952523823000019_r18 doi: 10.1371/journal.pbio.0050185 – ident: S0952523823000019_r12 doi: 10.1002/cne.903090105 – ident: S0952523823000019_r38 doi: 10.1038/s41467-022-32762-7 – ident: S0952523823000019_r36 doi: 10.1016/0165-0270(92)90019-A – ident: S0952523823000019_r1 doi: 10.1017/S0952523802194119 – ident: S0952523823000019_r11 doi: 10.1016/0006-8993(83)91293-3 – ident: S0952523823000019_r16 doi: 10.1523/JNEUROSCI.6456-09.2010 – ident: S0952523823000019_r27 doi: 10.1073/pnas.80.10.3069 – ident: S0952523823000019_r3 doi: 10.1038/nature09818 – ident: S0952523823000019_r46 doi: 10.1016/j.neuron.2016.02.020 – ident: S0952523823000019_r4 doi: 10.7554/eLife.21053 – ident: S0952523823000019_r39 doi: 10.1113/jphysiol.2006.115857 – start-page: 73 volume-title: Neural Theory and Modeling year: 1964 ident: S0952523823000019_r34 – ident: S0952523823000019_r44 doi: 10.1523/JNEUROSCI.3551-07.2008 – ident: S0952523823000019_r5 doi: 10.7554/eLife.62618 – ident: S0952523823000019_r15 doi: 10.1016/j.neuron.2005.02.007 – volume: 223 start-page: 101 year: 1984 ident: S0952523823000019_r40 article-title: The shape and arrangement of the cholinergic neurons in the rabbit retina publication-title: Proceedings of the Royal Society of London. Series B, Biological Sciences – ident: S0952523823000019_r23 doi: 10.1016/j.neuron.2017.07.020 – ident: S0952523823000019_r30 doi: 10.1523/JNEUROSCI.1661-05.2005 – ident: S0952523823000019_r24 doi: 10.1016/j.preteyeres.2010.08.004 – ident: S0952523823000019_r10 doi: 10.1038/nature00931 – ident: S0952523823000019_r31 doi: 10.1371/journal.pone.0012447 – ident: S0952523823000019_r47 doi: 10.1113/jphysiol.2004.076695 – ident: S0952523823000019_r43 doi: 10.1017/S0952523804214109 – ident: S0952523823000019_r21 doi: 10.1038/nature13240 – ident: S0952523823000019_r25 doi: 10.1016/j.neuron.2006.08.007 – volume: 220 start-page: 501 year: 1984 ident: S0952523823000019_r45 article-title: Coronate’ amacrine cells in the rabbit retina have the ‘starburst’ dendritic morphology publication-title: Proceedings of the Royal Society of London, Series B, Biological Sciences – ident: S0952523823000019_r9 doi: 10.1038/nature18609 – ident: S0952523823000019_r14 doi: 10.1038/nature01179 – ident: S0952523823000019_r49 doi: 10.1016/j.neuron.2015.11.032 – ident: S0952523823000019_r41 doi: 10.1017/S0952523811000393 – ident: S0952523823000019_r50 doi: 10.1016/S0896-6273(01)00316-6 – ident: S0952523823000019_r29 doi: 10.1152/jn.00628.2005 – ident: S0952523823000019_r33 doi: 10.1523/JNEUROSCI.1249-13.2013 – ident: S0952523823000019_r28 doi: 10.1016/j.cub.2018.03.001 – ident: S0952523823000019_r8 doi: 10.1113/jphysiol.1975.sp011086 – ident: S0952523823000019_r37 doi: 10.7554/eLife.81533 – ident: S0952523823000019_r48 doi: 10.1523/JNEUROSCI.1688-17.2017 – ident: S0952523823000019_r20 doi: 10.1016/j.celrep.2022.110410 – ident: S0952523823000019_r26 doi: 10.1016/0042-6989(84)90140-8 – ident: S0952523823000019_r7 doi: 10.1016/0042-6989(88)90064-8 – ident: S0952523823000019_r6 doi: 10.1017/S0952523813000230 – ident: S0952523823000019_r42 doi: 10.3389/fnana.2016.00104 – ident: S0952523823000019_r2 doi: 10.1113/jphysiol.1964.sp007463 |
SSID | ssj0013153 |
Score | 2.382105 |
Snippet | In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a... |
SourceID | pubmedcentral proquest pubmed crossref cambridge |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E003 |
SubjectTerms | Amacrine cells Amacrine Cells - metabolism Animals Bipolar cells Calcium signalling Calcium, Dietary - metabolism Dendrites Excitatory postsynaptic potentials Mice Morphology Primates Rabbits Retina Signal Transduction |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9RAEB60gvhStPVHtJYRxAcxeN3dZPeepEhLEepTC4cvxya7iwdecjYp4n_vzGYv17NwL3lINiRkJjvf7sx8H8B77pe0hmVSa69y5SxT3no6CGempqYgIbjB-fJ7eXGtvs2KWdpw61JZ5XpOjBO1a2veI_8sDIVaBhuTL6vfOatGcXY1SWg8hEeRuoz8Wc_0JotwUiQp-bjgMuusZqSMppN8jiB4xDl3uRW2Y9Q94Pl__eSdgHT-FPYTksTTwfTP4IFvDuDwtKFV9PIvfsBY2xk3zQ_g8WVKoR_Cj6s_LS49N_wuumWHBFpxiGtkIeyiLE4UlMBFgxajUg62AQko4oqpKXqPhCjZGF2Pdmlr7h9ETgA8h-vzs6uvF3kSWMhrpUWfV6r2xjpLs1ZlyiCVFS5MtJsWVUHRjUN3VTqCQLUptKSFozJVpZSXzhdlcFa-gL2mbfwrwEDOUJa-1PIkKGlpWghFEKV2Vukgpj6DT-PnnaffpJsPJWZ6fs8aGUzWFpjXiaycNTN-7brl43jLamDq2DX4aG3WzdtsXCyDd-Nl-t34E9rGt7dxjOH-3YnO4OXgBePTpGaBLyEzMFv-MQ5gKu_tK83iZ6T0JphHWK6Qr3e_1xt4wnL3XL0g5BHs9Te3_i2Bor46jp7_D787BbA priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEC6MgZBLiJrHGA0dCB5CNln7vYcQJEQksLnoguSy9Ex3kwV31jgj6r-3queR3ShCLnPpxwxdVVNfdXfVB_Ce8iWdJZrUIsiB9I5K3gZ8cG9HtkAnwSnBefxTH03kj1N1ugYdvVW7gNW9oR3xSU0uzj5d_7n5igb_pa0S9PkYYQJXNK1Im9WjR_AYHZOmWGwslw4V9lXLLJ_iL9sdct43xXKphVWXdQeH_nudcsk_HT6HZy2wZAeNJmzAWig3YeugxKB6fsP2WLrqmfbQN-HJuD1R34JfJ1cLNg-U_zur5hVDDMsaN4cCY1ViyUn8EmxWMscScQ5bRIa4kZ1TpYo6MASYJJuqZm7uCkonZHQe8AImh99Pvh0NWr6FQSENrwe5LIJ13uFPLLc6Cum4j0PjRypX6OzIk-faIyIqrDIC40hp81zKIHxQOnonXsJ6uSjDa2ARdUProI3Yj1I4_EtEFbk23kkT-Shk8LFf3mkn9Glz48xM70gjg2EngWnR1i4nCo2zh4Z86IecN4U7Huq804n179dwi-CO4O0wg3d9M1ofLaErw-Iy9bGUzjs0GbxqtKB_mzDE98VFBnZFP_oOVNl7taWc_U4VvhH1IbRTYvv_lukNPOVofHS5gYsdWK8vLsMuYqY6f5ss4Ra1LQwm priority: 102 providerName: Scholars Portal |
Title | Two mechanisms for direction selectivity in a model of the primate starburst amacrine cell |
URI | https://www.cambridge.org/core/product/identifier/S0952523823000019/type/journal_article https://www.ncbi.nlm.nih.gov/pubmed/37218623 https://www.proquest.com/docview/2817293260 https://www.proquest.com/docview/2818057907 https://pubmed.ncbi.nlm.nih.gov/PMC10207453 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_aBsZextruw1sXNBh7GAtJJNlSHrvRr42EsbVg9mJkS6aBxQm1y9h_vztZcZsWCn3xgy1_oJN8P-nufj-AD1QvaTTJpBZODqQ1RHnr8MCtnugCnQSnAufpLDm9kN_SON2CdF0LQ2mVHceBj-R7fbRVS386nNs2h8ZdDX8hOOAxPUz4LerJkDYth8EEWej4beghZhjjDOidfU9PZjcRhnEcZOb9YkyvI56eTvrOk2_zLmz6r3ug9G5u5S1ndfwcngWUyQ7br9uFLVftwf5hhSvsxT_2kfm8T7-hvgdPpiG8vg-_z_8u2cJRMfC8XtQMAS1rfR5aj9VeMseLTbB5xQzzKjpsWTIEkWxFtBWNY4g2yVB1w8zCFFRbyCg48AIujo_Ov54OgvjCoJCKN4NcFk4ba_CPluukFNJwW46UncR5jJ6P3HqeWIRHhY6VwEWl1HkupRPWxUlpjXgJO9Wycq-BlThQksQlSoxLKQz-Msq45ImyRqqST1wEn7vuzYL96qxNP1PZPWtEMFpbICsCkTnpafx56JZP3S2rlsXjocYHa7PefA3XiPQI644ieN9dxqlIXWgqt7z2bTTV9o5UBK_aUdC9TSgS_-IiAr0xProGRPO9eaWaX3q6b4SAiPNi8eZx3fQWnnKciZTpwMUB7DRX1-4dAqgm78O2SlUfel-OZj9-9sPMwLNTqf8DqSEWzg |
linkProvider | Cambridge University Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcELQ8AgWMBBwQEVvbSbyHqirQaku7K4S2UsUlOLEjVmKTbZOq6p_iNzLjPLZLpb31kkPiPOSZ8XzOPD6At1QvqRXRpKZW-tJoanlr8cCNGqgUnQSnAufROByeyG-nweka_G1rYSitsl0T3UJtipT-kX_iCl0tgY3-7vzMJ9Yoiq62FBq1WhzZq0vcspU7h19Rvu84P9iffBn6DauAn8qIV34iU6u00WiqiQozITU3WT8ygyAJcEknf5WEBv1-qoJI4G5JqiSR0gpjgzAzWuBz78C6pIrWHqx_3h9__7GIW2wHDXm92-KpNo7qmlTjSTqHoN8hq-vdHJa94g2o-3_G5jUXePAQHjTYle3VyvYI1my-AZt7Oe7bZ1fsPXPZpO43_QbcHTVB-034Obks2MxSifG0nJUMYTKrPSnqBCsdEY-jsGDTnGnmuHlYkTGEpmxOzTAqyxDDkvjLiumZTqlikVHI4TGc3MrkP4FeXuT2GbAM1S8MbRiJ7UwKjQtRFmQ8jIyWUcYH1oOP3fTGjWGWcZ3UFsU3pOFBv5VAnDbt0Yml48-qWz50t8zr3iCrBm-1Yl18zUKpPXjTXUYDpynUuS0u3BhFFcP9yIOntRZ0bxMRUYpx4YFa0o9uADUPX76ST3-7JuIILBE9BuL56u96DfeGk9FxfHw4PnoB9znaNuVOcLEFver8wr5ESFYlrxo7YPDrtk3vH272Q8k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcELRAAwWMBBwQq25tJ_YeEKooq5bSikMrrbgEJ7bFSmyykFRV_xq_jhnnsV0q7a2XHBw7iewZz-fM4wN4TfmSRhNNau7kQFpDJW8dXrjVI52jkeCU4Hxymhyeyy-TeLIGf7tcGAqr7PbEsFHbMqd_5Ltco6klsDHc9W1YxLeD8cf57wExSJGntaPTaETk2F1d4vGt-nB0gGv9hvPx57NPh4OWYWCQS8XrQSZzp401qLaZTryQhls_VHYUZzFu72S7ssQiBsh1rASenKTOMimdsC5OvDUCn3sH7iqBqAp1SU3UwoOxF7c09uGwpzuPaihXjY3UhvA_YKzrdR2W7eMN0Pt_7OY1Yzh-APdbFMv2G7F7CGuu2ISt_QJP8LMr9paFuNLww34TNk5a9_0WfD-7LNnMUbLxtJpVDAEza2wqSgerAiVPILNg04IZFlh6WOkZglQ2p7IYtWOIZkkQqpqZmckpd5GR8-ERnN_K1D-G9aIs3DYwj4KYJC5RYs9LYXBL8rHnibJGKs9HLoL3_fSmrYpWaRPeptIbqxHBsFuBNG8LpRNfx69VQ971Q-ZNlZBVnXe6ZV18zUK8I3jV30ZVpyk0hSsvQh9NucNDFcGTRgr6twlF5GJcRKCX5KPvQGXEl-8U05-hnDhCTMSRsXi6-rtewgYqXPr16PT4GdzjqOQURMHFDqzXfy7cc8RmdfYiKAGDH7etdf8AB45GkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+mechanisms+for+direction+selectivity+in+a+model+of+the+primate+starburst+amacrine+cell&rft.jtitle=Visual+neuroscience&rft.au=Wu%2C+Jiajia&rft.au=Kim%2C+Yeon+Jin&rft.au=Dacey%2C+Dennis+M.&rft.au=Troy%2C+John+B.&rft.date=2023-05-23&rft.pub=Cambridge+University+Press&rft.issn=0952-5238&rft.eissn=1469-8714&rft.volume=40&rft_id=info:doi/10.1017%2FS0952523823000019&rft.externalDocID=10_1017_S0952523823000019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-5238&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-5238&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-5238&client=summon |