Two mechanisms for direction selectivity in a model of the primate starburst amacrine cell

In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a large...

Full description

Saved in:
Bibliographic Details
Published inVisual neuroscience Vol. 40; p. E003
Main Authors Wu, Jiajia, Kim, Yeon Jin, Dacey, Dennis M., Troy, John B., Smith, Robert G.
Format Journal Article
LanguageEnglish
Published New York, USA Cambridge University Press 23.05.2023
Subjects
Online AccessGet full text
ISSN0952-5238
1469-8714
1469-8714
DOI10.1017/S0952523823000019

Cover

Abstract In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a larger calcium signal than motion from the tip toward the soma. Two mechanisms affecting the spatiotemporal summation of excitatory postsynaptic currents have been proposed to contribute to directional signaling at the dendritic tips of starbursts: (1) a “morphological” mechanism in which electrotonic propagation of excitatory synaptic currents along a dendrite sums bipolar cell inputs at the dendritic tip preferentially for stimulus motion in the centrifugal direction; (2) a “space–time” mechanism that relies on differences in the time-courses of proximal and distal bipolar cell inputs to favor centrifugal stimulus motion. To explore the contributions of these two mechanisms in the primate, we developed a realistic computational model based on connectomic reconstruction of a macaque starburst cell and the distribution of its synaptic inputs from sustained and transient bipolar cell types. Our model suggests that both mechanisms can initiate direction selectivity in starburst dendrites, but their contributions differ depending on the spatiotemporal properties of the stimulus. Specifically, the morphological mechanism dominates when small visual objects are moving at high velocities, and the space–time mechanism contributes most for large visual objects moving at low velocities.
AbstractList In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a larger calcium signal than motion from the tip toward the soma. Two mechanisms affecting the spatiotemporal summation of excitatory postsynaptic currents have been proposed to contribute to directional signaling at the dendritic tips of starbursts: (1) a "morphological" mechanism in which electrotonic propagation of excitatory synaptic currents along a dendrite sums bipolar cell inputs at the dendritic tip preferentially for stimulus motion in the centrifugal direction; (2) a "space-time" mechanism that relies on differences in the time-courses of proximal and distal bipolar cell inputs to favor centrifugal stimulus motion. To explore the contributions of these two mechanisms in the primate, we developed a realistic computational model based on connectomic reconstruction of a macaque starburst cell and the distribution of its synaptic inputs from sustained and transient bipolar cell types. Our model suggests that both mechanisms can initiate direction selectivity in starburst dendrites, but their contributions differ depending on the spatiotemporal properties of the stimulus. Specifically, the morphological mechanism dominates when small visual objects are moving at high velocities, and the space-time mechanism contributes most for large visual objects moving at low velocities.
In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a larger calcium signal than motion from the tip toward the soma. Two mechanisms affecting the spatiotemporal summation of excitatory postsynaptic currents have been proposed to contribute to directional signaling at the dendritic tips of starbursts: (1) a "morphological" mechanism in which electrotonic propagation of excitatory synaptic currents along a dendrite sums bipolar cell inputs at the dendritic tip preferentially for stimulus motion in the centrifugal direction; (2) a "space-time" mechanism that relies on differences in the time-courses of proximal and distal bipolar cell inputs to favor centrifugal stimulus motion. To explore the contributions of these two mechanisms in the primate, we developed a realistic computational model based on connectomic reconstruction of a macaque starburst cell and the distribution of its synaptic inputs from sustained and transient bipolar cell types. Our model suggests that both mechanisms can initiate direction selectivity in starburst dendrites, but their contributions differ depending on the spatiotemporal properties of the stimulus. Specifically, the morphological mechanism dominates when small visual objects are moving at high velocities, and the space-time mechanism contributes most for large visual objects moving at low velocities.In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a larger calcium signal than motion from the tip toward the soma. Two mechanisms affecting the spatiotemporal summation of excitatory postsynaptic currents have been proposed to contribute to directional signaling at the dendritic tips of starbursts: (1) a "morphological" mechanism in which electrotonic propagation of excitatory synaptic currents along a dendrite sums bipolar cell inputs at the dendritic tip preferentially for stimulus motion in the centrifugal direction; (2) a "space-time" mechanism that relies on differences in the time-courses of proximal and distal bipolar cell inputs to favor centrifugal stimulus motion. To explore the contributions of these two mechanisms in the primate, we developed a realistic computational model based on connectomic reconstruction of a macaque starburst cell and the distribution of its synaptic inputs from sustained and transient bipolar cell types. Our model suggests that both mechanisms can initiate direction selectivity in starburst dendrites, but their contributions differ depending on the spatiotemporal properties of the stimulus. Specifically, the morphological mechanism dominates when small visual objects are moving at high velocities, and the space-time mechanism contributes most for large visual objects moving at low velocities.
ArticleNumber E003
Author Troy, John B.
Wu, Jiajia
Smith, Robert G.
Dacey, Dennis M.
Kim, Yeon Jin
AuthorAffiliation 2 Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle , WA , USA
1 Department of Biomedical Engineering, Northwestern University , Evanston , IL , USA
3 Department of Neuroscience, University of Pennsylvania , Philadelphia , PA , USA
AuthorAffiliation_xml – name: 1 Department of Biomedical Engineering, Northwestern University , Evanston , IL , USA
– name: 3 Department of Neuroscience, University of Pennsylvania , Philadelphia , PA , USA
– name: 2 Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle , WA , USA
Author_xml – sequence: 1
  givenname: Jiajia
  orcidid: 0000-0002-4321-9868
  surname: Wu
  fullname: Wu, Jiajia
  organization: 1Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
– sequence: 2
  givenname: Yeon Jin
  orcidid: 0000-0002-6722-4063
  surname: Kim
  fullname: Kim, Yeon Jin
  organization: 2Department of Biological Structure, Washington National Primate Research Center, University of Washington, Seattle, WA, USA
– sequence: 3
  givenname: Dennis M.
  surname: Dacey
  fullname: Dacey, Dennis M.
  organization: 2Department of Biological Structure, Washington National Primate Research Center, University of Washington, Seattle, WA, USA
– sequence: 4
  givenname: John B.
  surname: Troy
  fullname: Troy, John B.
  organization: 1Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
– sequence: 5
  givenname: Robert G.
  orcidid: 0000-0001-5703-1324
  surname: Smith
  fullname: Smith, Robert G.
  email: rob@retina.anatomy.upenn.edu
  organization: 3Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37218623$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS3Uit4WfgAbZIkNm1A_42SFUMVLqtQFZcPGcuxJr6vELrbTqv8eh94CLQJvxtJ85-jMzCHaCzEAQi8oeUMJVcdfSC-ZZLxjnNRH-ydoQ0XbN52iYg9t1naz9g_QYc6XleBU8qfogCtGu5bxDfp2fhPxDHZrgs9zxmNM2PkEtvgYcIZp_V37cot9wAbP0cGE44jLFvBV8rMpgHMxaVhSLtjMxiYfAFuYpmdofzRThue7eoS-fnh_fvKpOT37-Pnk3WljhWKlGYSFzjjDaD907ciFYW4kyvVykFzQtqViaB1l0nZScSFa0Q2DEMAdyHZ0hh-ht3e-V8swg7MQSjKT_pku3epovH7YCX6rL-K1poQRJSSvDq93Dil-XyAXPfu8jmACxCVr1tGOSNUTVdFXj9DLuKRQ51spxXrOWlKpl39G-pXlfu8VUHeATTHnBKO2vph15zWhn2o0vV5Y_3XhqqSPlPfm_9PwncbMQ_LuAn6n_rfqBxpjtqM
CitedBy_id crossref_primary_10_7554_eLife_90456
crossref_primary_10_7554_eLife_90456_3
crossref_primary_10_1073_pnas_2405138121
Cites_doi 10.1016/j.celrep.2017.01.026
10.1016/j.celrep.2021.110106
10.1038/s41467-022-32761-8
10.1038/s41467-022-30405-5
10.1523/JNEUROSCI.1275-04.2004
10.1371/journal.pbio.0050185
10.1002/cne.903090105
10.1038/s41467-022-32762-7
10.1016/0165-0270(92)90019-A
10.1017/S0952523802194119
10.1016/0006-8993(83)91293-3
10.1523/JNEUROSCI.6456-09.2010
10.1073/pnas.80.10.3069
10.1038/nature09818
10.1016/j.neuron.2016.02.020
10.7554/eLife.21053
10.1113/jphysiol.2006.115857
10.1523/JNEUROSCI.3551-07.2008
10.7554/eLife.62618
10.1016/j.neuron.2005.02.007
10.1016/j.neuron.2017.07.020
10.1523/JNEUROSCI.1661-05.2005
10.1016/j.preteyeres.2010.08.004
10.1038/nature00931
10.1371/journal.pone.0012447
10.1113/jphysiol.2004.076695
10.1017/S0952523804214109
10.1038/nature13240
10.1016/j.neuron.2006.08.007
10.1038/nature18609
10.1038/nature01179
10.1016/j.neuron.2015.11.032
10.1017/S0952523811000393
10.1016/S0896-6273(01)00316-6
10.1152/jn.00628.2005
10.1523/JNEUROSCI.1249-13.2013
10.1016/j.cub.2018.03.001
10.1113/jphysiol.1975.sp011086
10.7554/eLife.81533
10.1523/JNEUROSCI.1688-17.2017
10.1016/j.celrep.2022.110410
10.1016/0042-6989(84)90140-8
10.1016/0042-6989(88)90064-8
10.1017/S0952523813000230
10.3389/fnana.2016.00104
10.1113/jphysiol.1964.sp007463
ContentType Journal Article
Copyright The Author(s), 2023. Published by Cambridge University Press
The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023 2023 The Author(s)
Copyright_xml – notice: The Author(s), 2023. Published by Cambridge University Press
– notice: The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023 2023 The Author(s)
DBID IKXGN
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
K9.
M0S
M1P
M2M
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PSYQQ
Q9U
7X8
5PM
DOI 10.1017/S0952523823000019
DatabaseName Cambridge University Press Wholly Gold Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest One Psychology

CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: IKXGN
  name: Cambridge University Press Wholly Gold Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 4
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1469-8714
ExternalDocumentID PMC10207453
37218623
10_1017_S0952523823000019
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY032045
– fundername: NEI NIH HHS
  grantid: EY022070
– fundername: NIBIB NIH HHS
  grantid: R21EB028069
– fundername: NIH HHS
  grantid: P51 OD010425
– fundername: NEI NIH HHS
  grantid: R01 EY022070
– fundername: NEI NIH HHS
  grantid: EY032045
– fundername: ;
  grantid: R21EB028069
– fundername: ;
  grantid: EY032045
– fundername: ;
  grantid: EY022070
GroupedDBID ---
-E.
-~X
.FH
09C
09E
0E1
0R~
123
4.4
53G
5RE
5VS
74X
74Y
7~V
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATID
AAUIS
AAUKB
ABBXD
ABITZ
ABIVO
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABWCF
ABZCX
ACBEK
ACBMC
ACCHT
ACGFS
ACIMK
ACNCT
ACPRK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADAZD
ADBBV
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYHU
AEYYC
AFFUJ
AFKQG
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGJUD
AGOOT
AHIPN
AHLTW
AHMBA
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
ANPSP
AQJOH
ARABE
ATUCA
AUXHV
AZGZS
BBLKV
BENPR
BGHMG
BLZWO
BMAJL
BRIRG
C0O
CBIIA
CCQAD
CFAFE
CHEAL
CJCSC
CS3
DOHLZ
DU5
EBS
F5P
FYUFA
HG-
HST
HZ~
I.6
I.9
IH6
IKXGN
IOEEP
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
JVRFK
KCGVB
KFECR
L98
LW7
M-V
M7~
NIKVX
O9-
OYBOY
P2P
RAMDC
RCA
ROL
RR0
S6-
S6U
SAAAG
SY4
T9M
UT1
UU6
WFFJZ
WQ3
WXU
WXY
WYP
ZYDXJ
-1D
-1F
-2P
-2V
-~6
-~N
.GJ
29R
6~7
7X7
88E
8FI
8FJ
8R4
8R5
9M5
AAKNA
AATMM
AAYXX
ABBZL
ABGDZ
ABHFL
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABZUI
ACAJB
ACEJA
ACETC
ACOZI
ACQPF
ACRPL
ADNMO
ADOVH
ADOVT
AEBPU
AEHGV
AEMFK
AENCP
AFKRA
AGLWM
AGQPQ
AKZCZ
ALIPV
ANOYL
ARZZG
AYIQA
AZQEC
BCGOX
BESQT
BJBOZ
BPHCQ
BQFHP
BVXVI
CAG
CCPQU
CCUQV
CDIZJ
CFBFF
CGQII
CITATION
COF
DC4
DWQXO
EGQIC
EJD
EMOBN
FA8
FRJ
GNUQQ
HMCUK
I.7
IOO
KAFGG
LHUNA
M1P
M2M
M48
M8.
MVM
NMFBF
NZEOI
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PSYQQ
Q2X
RIG
UKHRP
ZDLDU
ZJOSE
ZMEZD
~V1
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c472t-b4ce8ada219b86f34a2df07d95b53416614b6d125c857344648bb44e3de56fda3
IEDL.DBID IKXGN
ISSN 0952-5238
1469-8714
IngestDate Thu Aug 21 18:37:54 EDT 2025
Fri Sep 05 13:26:30 EDT 2025
Fri Jul 25 09:23:49 EDT 2025
Thu Apr 03 07:08:31 EDT 2025
Thu Apr 24 23:09:38 EDT 2025
Tue Jul 01 03:26:16 EDT 2025
Wed Mar 13 05:49:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords electrotonic propagation
modeling
Direction selectivity
starburst amacrine
primate retina
Language English
License http://creativecommons.org/licenses/by/4.0 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-b4ce8ada219b86f34a2df07d95b53416614b6d125c857344648bb44e3de56fda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4321-9868
0000-0002-6722-4063
0000-0001-5703-1324
OpenAccessLink https://www.cambridge.org/core/product/identifier/S0952523823000019/type/journal_article
PMID 37218623
PQID 2817293260
PQPubID 31753
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10207453
proquest_miscellaneous_2818057907
proquest_journals_2817293260
pubmed_primary_37218623
crossref_citationtrail_10_1017_S0952523823000019
crossref_primary_10_1017_S0952523823000019
cambridge_journals_10_1017_S0952523823000019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-23
PublicationDateYYYYMMDD 2023-05-23
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-23
  day: 23
PublicationDecade 2020
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: England
– name: Cambridge
PublicationTitle Visual neuroscience
PublicationTitleAlternate Vis Neurosci
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2004; 21
2018; 28
2006; 96
1984; 220
2002; 19
2006; 51
1984; 223
1984; 24
2004; 24
2016; 10
1975; 251
2002; 418
1964; 173
2011; 471
2005; 46
2006; 576
2005; 25
2017; 95
2016; 5
2021; 37
2013; 33
2005; 562
1983; 261
2014; 509
2010; 29
2020; 9
1988; 28
2002; 420
2008; 28
2022; 13
2016; 535
2012; 29
2017; 18
2007; 5
1983; 80
2022; 11
1992; 43
2010; 5
1991; 309
2010; 30
2022; 38
2018; 38
2001; 30
2016; 89
2014; 31
S0952523823000019_r5
S0952523823000019_r41
S0952523823000019_r6
S0952523823000019_r42
S0952523823000019_r3
S0952523823000019_r43
S0952523823000019_r4
S0952523823000019_r44
S0952523823000019_r1
S0952523823000019_r2
S0952523823000019_r49
S0952523823000019_r46
S0952523823000019_r47
S0952523823000019_r48
S0952523823000019_r10
S0952523823000019_r11
S0952523823000019_r50
S0952523823000019_r16
S0952523823000019_r17
S0952523823000019_r18
S0952523823000019_r19
S0952523823000019_r12
S0952523823000019_r13
S0952523823000019_r14
S0952523823000019_r15
Tauchi (S0952523823000019_r40) 1984; 223
S0952523823000019_r20
S0952523823000019_r21
S0952523823000019_r22
S0952523823000019_r27
S0952523823000019_r28
S0952523823000019_r29
S0952523823000019_r23
S0952523823000019_r24
S0952523823000019_r25
S0952523823000019_r26
Vaney (S0952523823000019_r45) 1984; 220
S0952523823000019_r30
S0952523823000019_r31
S0952523823000019_r32
S0952523823000019_r33
S0952523823000019_r38
S0952523823000019_r39
Rall (S0952523823000019_r35) 1989
S0952523823000019_r36
S0952523823000019_r37
Rall (S0952523823000019_r34) 1964
S0952523823000019_r9
S0952523823000019_r7
S0952523823000019_r8
References_xml – volume: 28
  start-page: 1204
  year: 2018
  end-page: 1212
  article-title: A dense starburst plexus is critical for generating direction selectivity
  publication-title: Current Biology
– volume: 21
  start-page: 611
  year: 2004
  end-page: 625
  article-title: Direction selectivity in a model of the starburst amacrine cell
  publication-title: Visual Neuroscience
– volume: 9
  start-page: e62618
  year: 2020
  article-title: Preserving inhibition with a disinhibitory microcircuit in the retina
  publication-title: eLife
– volume: 13
  start-page: 2862
  year: 2022
  article-title: Origins of direction selectivity in the primate retina
  publication-title: Nature Communications
– volume: 10
  start-page: 104
  year: 2016
  article-title: On bipolar cells in macaque retina: Type-specific synaptic connectivity with special reference to off counterparts
  publication-title: Frontiers in Neuroanatomy
– volume: 33
  start-page: 16045
  year: 2013
  end-page: 16059
  article-title: NaV1.1 channels in axon initial segments of retinal bipolar cells augment input to magnocellular visual pathways
  publication-title: Journal of Neuroscience
– volume: 95
  start-page: 914
  year: 2017
  end-page: 927
  article-title: Cross-compartmental modulation of dendritic signals for retinal direction selectivity
  publication-title: Neuron
– volume: 471
  start-page: 183
  year: 2011
  end-page: 188
  article-title: Wiring specificity in the direction-selectivity circuit of the retina
  publication-title: Nature
– volume: 37
  start-page: 110106
  year: 2021
  article-title: Cholinergic feedback to bipolar cells contributes to motion detection in the mouse retina
  publication-title: Cell Reports
– volume: 220
  start-page: 501
  year: 1984
  end-page: 508
  article-title: Coronate’ amacrine cells in the rabbit retina have the ‘starburst’ dendritic morphology
  publication-title: Proceedings of the Royal Society of London, Series B, Biological Sciences
– volume: 89
  start-page: 177
  year: 2016
  end-page: 183
  article-title: Congenital nystagmus gene FRMD7 is necessary for establishing a neuronal circuit asymmetry for direction selectivity
  publication-title: Neuron
– volume: 5
  start-page: e185
  year: 2007
  article-title: A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells
  publication-title: PLoS Biology
– volume: 5
  start-page: e21053
  year: 2016
  article-title: Stimulus-dependent recruitment of lateral inhibition underlies retinal direction selectivity
  publication-title: eLife
– volume: 223
  start-page: 101
  year: 1984
  end-page: 119
  article-title: The shape and arrangement of the cholinergic neurons in the rabbit retina
  publication-title: Proceedings of the Royal Society of London. Series B, Biological Sciences
– volume: 29
  start-page: 73
  year: 2012
  end-page: 81
  article-title: The role of starburst amacrine cells in visual signal processing
  publication-title: Visual Neuroscience
– volume: 261
  start-page: 138
  year: 1983
  end-page: 144
  article-title: ‘Starburst’ amacrine cells and cholinergic neurons: Mirror-symmetric ON and OFF amacrine cells of rabbit retina
  publication-title: Brain Research
– volume: 29
  start-page: 622
  year: 2010
  end-page: 639
  article-title: Retinal connectivity and primate vision
  publication-title: Progress in Retinal and Eye Research
– volume: 96
  start-page: 471
  year: 2006
  end-page: 477
  article-title: Symmetric interactions within a homogeneous starburst cell network can lead to robust asymmetries in dendrites of starburst amacrine cells
  publication-title: Journal of Neurophysiology
– volume: 251
  start-page: 167
  year: 1975
  end-page: 195
  article-title: Functional properties of ganglion cells of the rhesus monkey retina
  publication-title: Journal of Physiology
– volume: 28
  start-page: 189
  year: 2008
  end-page: 198
  article-title: Speed, spatial and temporal tuning of rod and cone vision in mouse
  publication-title: Journal of Neuroscience
– volume: 89
  start-page: 1317
  year: 2016
  end-page: 1330
  article-title: A role for synaptic input distribution in a dendritic computation of motion direction in the retina
  publication-title: Neuron
– volume: 509
  start-page: 331
  year: 2014
  end-page: 336
  article-title: Space-time wiring specificity supports direction selectivity in the retina
  publication-title: Nature
– volume: 13
  start-page: 5575
  year: 2022
  article-title: Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells
  publication-title: Nature Communications
– volume: 173
  start-page: 377
  year: 1964
  end-page: 407
  article-title: Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit
  publication-title: Journal of Physiology
– volume: 43
  start-page: 83
  year: 1992
  end-page: 108
  article-title: NeuronC: A computational language for investigating functional architecture of neural circuits
  publication-title: Journal of Neuroscience Methods
– volume: 309
  start-page: 40
  year: 1991
  end-page: 70
  article-title: Synaptic organization of starburst amacrine cells in rabbit retina: Analysis of serial thin sections by electron microscopy and graphic reconstruction
  publication-title: Journal of Comparative Neurology
– volume: 38
  start-page: 1520
  year: 2018
  end-page: 1540
  article-title: Nonselective wiring accounts for red-green Opponency in midget ganglion cells of the primate retina
  publication-title: Journal of Neuroscience
– volume: 19
  start-page: 495
  year: 2002
  end-page: 509
  article-title: Effects of the destruction of starburst-cholinergic amacrine cells by the toxin AF64A on rabbit retinal directional selectivity
  publication-title: Visual Neuroscience
– volume: 28
  year: 1988
  article-title: Human velocity and direction discrimination measured with random dot patterns
  publication-title: Vision Research
– volume: 11
  start-page: e81533
  year: 2022
  article-title: Spatiotemporal properties of glutamate input support direction selectivity in the dendrites of retinal starburst amacrine cells
  publication-title: eLife
– volume: 46
  start-page: 117
  year: 2005
  end-page: 127
  article-title: Directional selectivity is formed at multiple levels by laterally offset inhibition in the rabbit retina
  publication-title: Neuron
– volume: 25
  start-page: 10049
  year: 2005
  end-page: 10060
  article-title: A logarithmic, scale-invariant representation of speed in macaque middle temporal area accounts for speed discrimination performance
  publication-title: Journal of Neuroscience
– volume: 24
  start-page: 7335
  year: 2004
  end-page: 7343
  article-title: A unique role for Kv3 voltage-gated potassium channels in starburst amacrine cell signaling in mouse retina
  publication-title: Journal of Neuroscience
– volume: 24
  start-page: 25
  year: 1984
  end-page: 32
  article-title: The detection of motion in the peripheral visual field
  publication-title: Vision Research
– volume: 5
  start-page: e12447
  year: 2010
  article-title: Tetrodotoxin-resistant sodium channels contribute to directional responses in starburst amacrine cells
  publication-title: PLoS One
– volume: 18
  start-page: 1356
  year: 2017
  end-page: 1365
  article-title: Temporally diverse excitation generates direction-selective responses in ON- and OFF-type retinal starburst Amacrine cells
  publication-title: Cell Reports
– volume: 30
  start-page: 5912
  year: 2010
  end-page: 5926
  article-title: Parallel input channels to mouse primary visual cortex
  publication-title: Journal of Neuroscience
– volume: 30
  start-page: 771
  year: 2001
  end-page: 780
  article-title: A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement
  publication-title: Neuron
– volume: 80
  start-page: 3069
  year: 1983
  end-page: 3073
  article-title: Electroanatomy of a unique amacrine cell in the rabbit retina
  publication-title: Proceedings of the National Academy of Sciences of USA
– volume: 13
  start-page: 5574
  year: 2022
  article-title: Center-surround interactions underlie bipolar cell motion sensing in the mouse retina
  publication-title: Nature Communications
– volume: 31
  start-page: 139
  year: 2014
  end-page: 151
  article-title: Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina
  publication-title: Visual Neuroscience
– volume: 420
  start-page: 411
  year: 2002
  end-page: 414
  article-title: Mechanisms and circuitry underlying directional selectivity in the retina
  publication-title: Nature
– volume: 562
  start-page: 915
  year: 2005
  end-page: 923
  article-title: Identification of ON-OFF directionally-selective ganglion cells in mouse retina
  publication-title: Journal of Physiology
– volume: 418
  start-page: 845
  year: 2002
  end-page: 852
  article-title: Directionally selective calcium signals in dendrites of starburst amacrine cells
  publication-title: Nature
– volume: 38
  start-page: 110410
  year: 2022
  article-title: Gain control by sparse, ultra-slow glycinergic synapses
  publication-title: Cell Reports
– volume: 576
  start-page: 197
  year: 2006
  end-page: 202
  article-title: ON direction-selective ganglion cells in the mouse retina
  publication-title: Journal of Physiology
– volume: 51
  start-page: 787
  year: 2006
  end-page: 799
  article-title: The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells
  publication-title: Neuron
– volume: 535
  start-page: 105
  year: 2016
  end-page: 110
  article-title: Species-specific wiring for direction selectivity in the mammalian retina
  publication-title: Nature
– ident: S0952523823000019_r13
  doi: 10.1016/j.celrep.2017.01.026
– ident: S0952523823000019_r19
  doi: 10.1016/j.celrep.2021.110106
– ident: S0952523823000019_r17
  doi: 10.1038/s41467-022-32761-8
– ident: S0952523823000019_r22
  doi: 10.1038/s41467-022-30405-5
– ident: S0952523823000019_r32
  doi: 10.1523/JNEUROSCI.1275-04.2004
– start-page: 27
  volume-title: Methods in Neuronal Modeling
  year: 1989
  ident: S0952523823000019_r35
– ident: S0952523823000019_r18
  doi: 10.1371/journal.pbio.0050185
– ident: S0952523823000019_r12
  doi: 10.1002/cne.903090105
– ident: S0952523823000019_r38
  doi: 10.1038/s41467-022-32762-7
– ident: S0952523823000019_r36
  doi: 10.1016/0165-0270(92)90019-A
– ident: S0952523823000019_r1
  doi: 10.1017/S0952523802194119
– ident: S0952523823000019_r11
  doi: 10.1016/0006-8993(83)91293-3
– ident: S0952523823000019_r16
  doi: 10.1523/JNEUROSCI.6456-09.2010
– ident: S0952523823000019_r27
  doi: 10.1073/pnas.80.10.3069
– ident: S0952523823000019_r3
  doi: 10.1038/nature09818
– ident: S0952523823000019_r46
  doi: 10.1016/j.neuron.2016.02.020
– ident: S0952523823000019_r4
  doi: 10.7554/eLife.21053
– ident: S0952523823000019_r39
  doi: 10.1113/jphysiol.2006.115857
– start-page: 73
  volume-title: Neural Theory and Modeling
  year: 1964
  ident: S0952523823000019_r34
– ident: S0952523823000019_r44
  doi: 10.1523/JNEUROSCI.3551-07.2008
– ident: S0952523823000019_r5
  doi: 10.7554/eLife.62618
– ident: S0952523823000019_r15
  doi: 10.1016/j.neuron.2005.02.007
– volume: 223
  start-page: 101
  year: 1984
  ident: S0952523823000019_r40
  article-title: The shape and arrangement of the cholinergic neurons in the rabbit retina
  publication-title: Proceedings of the Royal Society of London. Series B, Biological Sciences
– ident: S0952523823000019_r23
  doi: 10.1016/j.neuron.2017.07.020
– ident: S0952523823000019_r30
  doi: 10.1523/JNEUROSCI.1661-05.2005
– ident: S0952523823000019_r24
  doi: 10.1016/j.preteyeres.2010.08.004
– ident: S0952523823000019_r10
  doi: 10.1038/nature00931
– ident: S0952523823000019_r31
  doi: 10.1371/journal.pone.0012447
– ident: S0952523823000019_r47
  doi: 10.1113/jphysiol.2004.076695
– ident: S0952523823000019_r43
  doi: 10.1017/S0952523804214109
– ident: S0952523823000019_r21
  doi: 10.1038/nature13240
– ident: S0952523823000019_r25
  doi: 10.1016/j.neuron.2006.08.007
– volume: 220
  start-page: 501
  year: 1984
  ident: S0952523823000019_r45
  article-title: Coronate’ amacrine cells in the rabbit retina have the ‘starburst’ dendritic morphology
  publication-title: Proceedings of the Royal Society of London, Series B, Biological Sciences
– ident: S0952523823000019_r9
  doi: 10.1038/nature18609
– ident: S0952523823000019_r14
  doi: 10.1038/nature01179
– ident: S0952523823000019_r49
  doi: 10.1016/j.neuron.2015.11.032
– ident: S0952523823000019_r41
  doi: 10.1017/S0952523811000393
– ident: S0952523823000019_r50
  doi: 10.1016/S0896-6273(01)00316-6
– ident: S0952523823000019_r29
  doi: 10.1152/jn.00628.2005
– ident: S0952523823000019_r33
  doi: 10.1523/JNEUROSCI.1249-13.2013
– ident: S0952523823000019_r28
  doi: 10.1016/j.cub.2018.03.001
– ident: S0952523823000019_r8
  doi: 10.1113/jphysiol.1975.sp011086
– ident: S0952523823000019_r37
  doi: 10.7554/eLife.81533
– ident: S0952523823000019_r48
  doi: 10.1523/JNEUROSCI.1688-17.2017
– ident: S0952523823000019_r20
  doi: 10.1016/j.celrep.2022.110410
– ident: S0952523823000019_r26
  doi: 10.1016/0042-6989(84)90140-8
– ident: S0952523823000019_r7
  doi: 10.1016/0042-6989(88)90064-8
– ident: S0952523823000019_r6
  doi: 10.1017/S0952523813000230
– ident: S0952523823000019_r42
  doi: 10.3389/fnana.2016.00104
– ident: S0952523823000019_r2
  doi: 10.1113/jphysiol.1964.sp007463
SSID ssj0013153
Score 2.382105
Snippet In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a...
SourceID pubmedcentral
proquest
pubmed
crossref
cambridge
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E003
SubjectTerms Amacrine cells
Amacrine Cells - metabolism
Animals
Bipolar cells
Calcium signalling
Calcium, Dietary - metabolism
Dendrites
Excitatory postsynaptic potentials
Mice
Morphology
Primates
Rabbits
Retina
Signal Transduction
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9RAEB60gvhStPVHtJYRxAcxeN3dZPeepEhLEepTC4cvxya7iwdecjYp4n_vzGYv17NwL3lINiRkJjvf7sx8H8B77pe0hmVSa69y5SxT3no6CGempqYgIbjB-fJ7eXGtvs2KWdpw61JZ5XpOjBO1a2veI_8sDIVaBhuTL6vfOatGcXY1SWg8hEeRuoz8Wc_0JotwUiQp-bjgMuusZqSMppN8jiB4xDl3uRW2Y9Q94Pl__eSdgHT-FPYTksTTwfTP4IFvDuDwtKFV9PIvfsBY2xk3zQ_g8WVKoR_Cj6s_LS49N_wuumWHBFpxiGtkIeyiLE4UlMBFgxajUg62AQko4oqpKXqPhCjZGF2Pdmlr7h9ETgA8h-vzs6uvF3kSWMhrpUWfV6r2xjpLs1ZlyiCVFS5MtJsWVUHRjUN3VTqCQLUptKSFozJVpZSXzhdlcFa-gL2mbfwrwEDOUJa-1PIkKGlpWghFEKV2Vukgpj6DT-PnnaffpJsPJWZ6fs8aGUzWFpjXiaycNTN-7brl43jLamDq2DX4aG3WzdtsXCyDd-Nl-t34E9rGt7dxjOH-3YnO4OXgBePTpGaBLyEzMFv-MQ5gKu_tK83iZ6T0JphHWK6Qr3e_1xt4wnL3XL0g5BHs9Te3_i2Bor46jp7_D787BbA
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEC6MgZBLiJrHGA0dCB5CNln7vYcQJEQksLnoguSy9Ex3kwV31jgj6r-3queR3ShCLnPpxwxdVVNfdXfVB_Ce8iWdJZrUIsiB9I5K3gZ8cG9HtkAnwSnBefxTH03kj1N1ugYdvVW7gNW9oR3xSU0uzj5d_7n5igb_pa0S9PkYYQJXNK1Im9WjR_AYHZOmWGwslw4V9lXLLJ_iL9sdct43xXKphVWXdQeH_nudcsk_HT6HZy2wZAeNJmzAWig3YeugxKB6fsP2WLrqmfbQN-HJuD1R34JfJ1cLNg-U_zur5hVDDMsaN4cCY1ViyUn8EmxWMscScQ5bRIa4kZ1TpYo6MASYJJuqZm7uCkonZHQe8AImh99Pvh0NWr6FQSENrwe5LIJ13uFPLLc6Cum4j0PjRypX6OzIk-faIyIqrDIC40hp81zKIHxQOnonXsJ6uSjDa2ARdUProI3Yj1I4_EtEFbk23kkT-Shk8LFf3mkn9Glz48xM70gjg2EngWnR1i4nCo2zh4Z86IecN4U7Huq804n179dwi-CO4O0wg3d9M1ofLaErw-Iy9bGUzjs0GbxqtKB_mzDE98VFBnZFP_oOVNl7taWc_U4VvhH1IbRTYvv_lukNPOVofHS5gYsdWK8vLsMuYqY6f5ss4Ra1LQwm
  priority: 102
  providerName: Scholars Portal
Title Two mechanisms for direction selectivity in a model of the primate starburst amacrine cell
URI https://www.cambridge.org/core/product/identifier/S0952523823000019/type/journal_article
https://www.ncbi.nlm.nih.gov/pubmed/37218623
https://www.proquest.com/docview/2817293260
https://www.proquest.com/docview/2818057907
https://pubmed.ncbi.nlm.nih.gov/PMC10207453
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_aBsZextruw1sXNBh7GAtJJNlSHrvRr42EsbVg9mJkS6aBxQm1y9h_vztZcZsWCn3xgy1_oJN8P-nufj-AD1QvaTTJpBZODqQ1RHnr8MCtnugCnQSnAufpLDm9kN_SON2CdF0LQ2mVHceBj-R7fbRVS386nNs2h8ZdDX8hOOAxPUz4LerJkDYth8EEWej4beghZhjjDOidfU9PZjcRhnEcZOb9YkyvI56eTvrOk2_zLmz6r3ug9G5u5S1ndfwcngWUyQ7br9uFLVftwf5hhSvsxT_2kfm8T7-hvgdPpiG8vg-_z_8u2cJRMfC8XtQMAS1rfR5aj9VeMseLTbB5xQzzKjpsWTIEkWxFtBWNY4g2yVB1w8zCFFRbyCg48AIujo_Ov54OgvjCoJCKN4NcFk4ba_CPluukFNJwW46UncR5jJ6P3HqeWIRHhY6VwEWl1HkupRPWxUlpjXgJO9Wycq-BlThQksQlSoxLKQz-Msq45ImyRqqST1wEn7vuzYL96qxNP1PZPWtEMFpbICsCkTnpafx56JZP3S2rlsXjocYHa7PefA3XiPQI644ieN9dxqlIXWgqt7z2bTTV9o5UBK_aUdC9TSgS_-IiAr0xProGRPO9eaWaX3q6b4SAiPNi8eZx3fQWnnKciZTpwMUB7DRX1-4dAqgm78O2SlUfel-OZj9-9sPMwLNTqf8DqSEWzg
linkProvider Cambridge University Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcELQ8AgWMBBwQEVvbSbyHqirQaku7K4S2UsUlOLEjVmKTbZOq6p_iNzLjPLZLpb31kkPiPOSZ8XzOPD6At1QvqRXRpKZW-tJoanlr8cCNGqgUnQSnAufROByeyG-nweka_G1rYSitsl0T3UJtipT-kX_iCl0tgY3-7vzMJ9Yoiq62FBq1WhzZq0vcspU7h19Rvu84P9iffBn6DauAn8qIV34iU6u00WiqiQozITU3WT8ygyAJcEknf5WEBv1-qoJI4G5JqiSR0gpjgzAzWuBz78C6pIrWHqx_3h9__7GIW2wHDXm92-KpNo7qmlTjSTqHoN8hq-vdHJa94g2o-3_G5jUXePAQHjTYle3VyvYI1my-AZt7Oe7bZ1fsPXPZpO43_QbcHTVB-034Obks2MxSifG0nJUMYTKrPSnqBCsdEY-jsGDTnGnmuHlYkTGEpmxOzTAqyxDDkvjLiumZTqlikVHI4TGc3MrkP4FeXuT2GbAM1S8MbRiJ7UwKjQtRFmQ8jIyWUcYH1oOP3fTGjWGWcZ3UFsU3pOFBv5VAnDbt0Yml48-qWz50t8zr3iCrBm-1Yl18zUKpPXjTXUYDpynUuS0u3BhFFcP9yIOntRZ0bxMRUYpx4YFa0o9uADUPX76ST3-7JuIILBE9BuL56u96DfeGk9FxfHw4PnoB9znaNuVOcLEFver8wr5ESFYlrxo7YPDrtk3vH272Q8k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcELRAAwWMBBwQq25tJ_YeEKooq5bSikMrrbgEJ7bFSmyykFRV_xq_jhnnsV0q7a2XHBw7iewZz-fM4wN4TfmSRhNNau7kQFpDJW8dXrjVI52jkeCU4Hxymhyeyy-TeLIGf7tcGAqr7PbEsFHbMqd_5Ltco6klsDHc9W1YxLeD8cf57wExSJGntaPTaETk2F1d4vGt-nB0gGv9hvPx57NPh4OWYWCQS8XrQSZzp401qLaZTryQhls_VHYUZzFu72S7ssQiBsh1rASenKTOMimdsC5OvDUCn3sH7iqBqAp1SU3UwoOxF7c09uGwpzuPaihXjY3UhvA_YKzrdR2W7eMN0Pt_7OY1Yzh-APdbFMv2G7F7CGuu2ISt_QJP8LMr9paFuNLww34TNk5a9_0WfD-7LNnMUbLxtJpVDAEza2wqSgerAiVPILNg04IZFlh6WOkZglQ2p7IYtWOIZkkQqpqZmckpd5GR8-ERnN_K1D-G9aIs3DYwj4KYJC5RYs9LYXBL8rHnibJGKs9HLoL3_fSmrYpWaRPeptIbqxHBsFuBNG8LpRNfx69VQ971Q-ZNlZBVnXe6ZV18zUK8I3jV30ZVpyk0hSsvQh9NucNDFcGTRgr6twlF5GJcRKCX5KPvQGXEl-8U05-hnDhCTMSRsXi6-rtewgYqXPr16PT4GdzjqOQURMHFDqzXfy7cc8RmdfYiKAGDH7etdf8AB45GkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+mechanisms+for+direction+selectivity+in+a+model+of+the+primate+starburst+amacrine+cell&rft.jtitle=Visual+neuroscience&rft.au=Wu%2C+Jiajia&rft.au=Kim%2C+Yeon+Jin&rft.au=Dacey%2C+Dennis+M.&rft.au=Troy%2C+John+B.&rft.date=2023-05-23&rft.pub=Cambridge+University+Press&rft.issn=0952-5238&rft.eissn=1469-8714&rft.volume=40&rft_id=info:doi/10.1017%2FS0952523823000019&rft.externalDocID=10_1017_S0952523823000019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-5238&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-5238&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-5238&client=summon