The AREB1 Transcription Factor Influences Histone Acetylation to Regulate Drought Responses and Tolerance in Populus trichocarpa
Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 o...
Saved in:
Published in | The Plant cell Vol. 31; no. 3; pp. 663 - 686 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Plant Biologists (ASPB)
01.03.2019
American Society of Plant Biologists |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment and examined its association with transcriptomes in Populus trichocarpa under drought stress. We revealed that abscisic acid-Responsive Element (ABRE) motifs in promoters of the drought-responsive genes PtrNAC006, PtrNAC007, and PtrNAC120 are involved in H3K9ac enhancement and activation of these genes. Overexpressing these PtrNAC genes in P. trichocarpa resulted in strong drought-tolerance phenotypes. We showed that the ABRE binding protein PtrAREB1-2 binds to ABRE motifs associated with these PtrNAC genes and recruits the histone acetyltransferase unit ADA2b-GCN5, forming AREB1-ADA2b-GCN5 ternary protein complexes. Moreover, this recruitment enables GCN5-mediated histone acetylation to enhance H3K9ac and enrich RNA polymerase II specifically at these PtrNAC genes for the development of drought tolerance. CRISPR editing or RNA interference-mediated downregulation of any of the ternary members results in highly drought-sensitive P. trichocarpa. Thus, the combinatorial function of the ternary proteins establishes a coordinated histone acetylation and transcription factor-mediated gene activation for drought response and tolerance in Populus species. |
---|---|
AbstractList | Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment and examined its association with transcriptomes in Populus trichocarpa under drought stress. We revealed that abscisic acid-Responsive Element (ABRE) motifs in promoters of the drought-responsive genes PtrNAC006, PtrNAC007, and PtrNAC120 are involved in H3K9ac enhancement and activation of these genes. Overexpressing these PtrNAC genes in P. trichocarpa resulted in strong drought-tolerance phenotypes. We showed that the ABRE binding protein PtrAREB1-2 binds to ABRE motifs associated with these PtrNAC genes and recruits the histone acetyltransferase unit ADA2b-GCN5, forming AREB1-ADA2b-GCN5 ternary protein complexes. Moreover, this recruitment enables GCN5-mediated histone acetylation to enhance H3K9ac and enrich RNA polymerase II specifically at these PtrNAC genes for the development of drought tolerance. CRISPR editing or RNA interference-mediated downregulation of any of the ternary members results in highly drought-sensitive P. trichocarpa. Thus, the combinatorial function of the ternary proteins establishes a coordinated histone acetylation and transcription factor-mediated gene activation for drought response and tolerance in Populus species. Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment and examined its association with transcriptomes in Populus trichocarpa under drought stress. We revealed that abscisic acid-Responsive Element (ABRE) motifs in promoters of the drought-responsive genes PtrNAC006, PtrNAC007, and PtrNAC120 are involved in H3K9ac enhancement and activation of these genes. Overexpressing these PtrNAC genes in P trichocarpa resulted in strong drought-tolerance phenotypes. We showed that the ABRE binding protein PtrAREB1-2 binds to ABRE motifs associated with these PtrNAC genes and recruits the histone acetyltransferase unit ADA2b-GCN5, forming AREB1-ADA2b-GCN5 ternary protein complexes. Moreover, this recruitment enables GCN5-mediated histone acetylation to enhance H3K9ac and enrich RNA polymerase II specifically at these PtrNAC genes for the development of drought tolerance. CRISPR editing or RNA interference-mediated downregulation of any of the ternary members results in highly drought-sensitive P trichocarpa Thus, the combinatorial function of the ternary proteins establishes a coordinated histone acetylation and transcription factor-mediated gene activation for drought response and tolerance in Populus species.Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment and examined its association with transcriptomes in Populus trichocarpa under drought stress. We revealed that abscisic acid-Responsive Element (ABRE) motifs in promoters of the drought-responsive genes PtrNAC006, PtrNAC007, and PtrNAC120 are involved in H3K9ac enhancement and activation of these genes. Overexpressing these PtrNAC genes in P trichocarpa resulted in strong drought-tolerance phenotypes. We showed that the ABRE binding protein PtrAREB1-2 binds to ABRE motifs associated with these PtrNAC genes and recruits the histone acetyltransferase unit ADA2b-GCN5, forming AREB1-ADA2b-GCN5 ternary protein complexes. Moreover, this recruitment enables GCN5-mediated histone acetylation to enhance H3K9ac and enrich RNA polymerase II specifically at these PtrNAC genes for the development of drought tolerance. CRISPR editing or RNA interference-mediated downregulation of any of the ternary members results in highly drought-sensitive P trichocarpa Thus, the combinatorial function of the ternary proteins establishes a coordinated histone acetylation and transcription factor-mediated gene activation for drought response and tolerance in Populus species. Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment and examined its association with transcriptomes in under drought stress. We revealed that abscisic acid-Responsive Element (ABRE) motifs in promoters of the drought-responsive genes , , and are involved in H3K9ac enhancement and activation of these genes. Overexpressing these genes in resulted in strong drought-tolerance phenotypes. We showed that the ABRE binding protein PtrAREB1-2 binds to ABRE motifs associated with these genes and recruits the histone acetyltransferase unit ADA2b-GCN5, forming AREB1-ADA2b-GCN5 ternary protein complexes. Moreover, this recruitment enables GCN5-mediated histone acetylation to enhance H3K9ac and enrich RNA polymerase II specifically at these genes for the development of drought tolerance. CRISPR editing or RNA interference-mediated downregulation of any of the ternary members results in highly drought-sensitive Thus, the combinatorial function of the ternary proteins establishes a coordinated histone acetylation and transcription factor-mediated gene activation for drought response and tolerance in species. AREB1 recruits the ADA2b-GCN5 complex to control H3K9ac and RNA polymerase II enrichment on drought-responsive genes, thereby driving high expression of these genes for drought tolerance. Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment and examined its association with transcriptomes in Populus trichocarpa under drought stress. We revealed that abscisic acid-Responsive Element (ABRE) motifs in promoters of the drought-responsive genes PtrNAC006 , PtrNAC007 , and PtrNAC120 are involved in H3K9ac enhancement and activation of these genes. Overexpressing these PtrNAC genes in P . trichocarpa resulted in strong drought-tolerance phenotypes. We showed that the ABRE binding protein PtrAREB1-2 binds to ABRE motifs associated with these PtrNAC genes and recruits the histone acetyltransferase unit ADA2b-GCN5, forming AREB1-ADA2b-GCN5 ternary protein complexes. Moreover, this recruitment enables GCN5-mediated histone acetylation to enhance H3K9ac and enrich RNA polymerase II specifically at these PtrNAC genes for the development of drought tolerance. CRISPR editing or RNA interference-mediated downregulation of any of the ternary members results in highly drought-sensitive P . trichocarpa . Thus, the combinatorial function of the ternary proteins establishes a coordinated histone acetylation and transcription factor-mediated gene activation for drought response and tolerance in Populus species. |
Author | Wang, Jack P. Liu, Xinying Zhang, Baofeng Liu, Baoguang Li, Meng Chiang, Vincent L. Li, Shuang Li, Wei Dai, Xiufang Shi, Rui Wang, Zhifeng Tunlaya-Anukit, Sermsawat Yu, Jing Chen, Su Zhou, Chenguang Wang, Pengyu Lin, Ying-Chung Jimmy |
Author_xml | – sequence: 1 givenname: Shuang surname: Li fullname: Li, Shuang – sequence: 2 givenname: Ying-Chung Jimmy surname: Lin fullname: Lin, Ying-Chung Jimmy – sequence: 3 givenname: Pengyu surname: Wang fullname: Wang, Pengyu – sequence: 4 givenname: Baofeng surname: Zhang fullname: Zhang, Baofeng – sequence: 5 givenname: Meng surname: Li fullname: Li, Meng – sequence: 6 givenname: Su surname: Chen fullname: Chen, Su – sequence: 7 givenname: Rui surname: Shi fullname: Shi, Rui – sequence: 8 givenname: Sermsawat surname: Tunlaya-Anukit fullname: Tunlaya-Anukit, Sermsawat – sequence: 9 givenname: Xinying surname: Liu fullname: Liu, Xinying – sequence: 10 givenname: Zhifeng surname: Wang fullname: Wang, Zhifeng – sequence: 11 givenname: Xiufang surname: Dai fullname: Dai, Xiufang – sequence: 12 givenname: Jing surname: Yu fullname: Yu, Jing – sequence: 13 givenname: Chenguang surname: Zhou fullname: Zhou, Chenguang – sequence: 14 givenname: Baoguang surname: Liu fullname: Liu, Baoguang – sequence: 15 givenname: Jack P. surname: Wang fullname: Wang, Jack P. – sequence: 16 givenname: Vincent L. surname: Chiang fullname: Chiang, Vincent L. – sequence: 17 givenname: Wei surname: Li fullname: Li, Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30538157$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rVDEUxYNU7Ifu3CpZuvBN8_leZiOMtbWFglJGcBeSvDszKW-SZ5IndOefbpxpiwpdJbn5nXPgnmN0EGIAhF5TMqOUyNMyuhlVM0IE756hIyo5a9hcfT-odyJII1pJD9FxzreEENrR-Qt0yInkisruCP1abgAvbs4_UrxMJmSX_Fh8DPjCuBITvgqrYYLgIONLn0uNxgsH5W4wO6pEfAPrqb4Af0pxWm9KHeQxhlwVJvR4GQeoxg6wD_hrHKdhyrgk7zbRmTSal-j5ygwZXt2fJ-jbxfny7LK5_vL56mxx3TjRsdIYZ-RccGsp451TgvJ-zo21rTDQWkYFkFZwxcC6OXW9JbaXisvOSWcZET0_QR_2vuNkt9A7CCWZQY_Jb02609F4_e9P8Bu9jj91KxRrOa8G7-4NUvwxQS5667ODYTAB4pQ1o1LSjghFK_r276zHkIe1V4DtAZdizglW2vmy22iN9oOmRP_pVtduNVV6120Vvf9P9OD7BP5mj9_W2tIjy9pWCqkk_w3iCLJa |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_126762 crossref_primary_10_3390_ijms231710175 crossref_primary_10_1111_brv_13132 crossref_primary_10_1186_s12864_024_10570_1 crossref_primary_10_1093_jxb_erad425 crossref_primary_10_3390_ijms24054458 crossref_primary_10_3390_f15050873 crossref_primary_10_1186_s12864_024_10593_8 crossref_primary_10_3390_ijms232213986 crossref_primary_10_48130_forres_0024_0008 crossref_primary_10_1111_nph_19481 crossref_primary_10_3390_proteomes11040038 crossref_primary_10_1016_j_molp_2023_12_008 crossref_primary_10_3389_fpls_2019_01748 crossref_primary_10_3390_cells10050979 crossref_primary_10_1093_aob_mcac070 crossref_primary_10_1007_s11033_024_09300_3 crossref_primary_10_1360_TB_2023_1125 crossref_primary_10_1016_j_molp_2022_06_014 crossref_primary_10_1007_s13205_021_02970_x crossref_primary_10_1016_j_indcrop_2023_116441 crossref_primary_10_2174_1389202923666220510195910 crossref_primary_10_1038_s42003_024_06075_y crossref_primary_10_3390_f11040476 crossref_primary_10_1111_nph_18028 crossref_primary_10_1111_tpj_17103 crossref_primary_10_1093_plphys_kiac573 crossref_primary_10_1007_s00425_024_04361_x crossref_primary_10_1186_s12864_023_09556_2 crossref_primary_10_3389_fpls_2021_805879 crossref_primary_10_1016_j_bbagen_2024_130661 crossref_primary_10_1093_jxb_eraa383 crossref_primary_10_1186_s13072_021_00402_x crossref_primary_10_1111_pce_13744 crossref_primary_10_3390_f11090976 crossref_primary_10_1016_j_indcrop_2024_118638 crossref_primary_10_1111_jipb_13081 crossref_primary_10_7717_peerj_10206 crossref_primary_10_1007_s00344_021_10305_6 crossref_primary_10_3390_plants12091892 crossref_primary_10_1111_jipb_13368 crossref_primary_10_1111_pce_14040 crossref_primary_10_3389_fpls_2019_01236 crossref_primary_10_1007_s11033_022_07391_4 crossref_primary_10_1111_pce_15094 crossref_primary_10_1111_jipb_12901 crossref_primary_10_1186_s12870_024_05051_2 crossref_primary_10_1111_tpj_16588 crossref_primary_10_1186_s12864_023_09459_2 crossref_primary_10_3390_plants10020308 crossref_primary_10_1186_s12864_024_10557_y crossref_primary_10_1038_s41467_020_19977_2 crossref_primary_10_3389_fpls_2022_886870 crossref_primary_10_3389_fpls_2022_925688 crossref_primary_10_1007_s11240_025_03003_8 crossref_primary_10_3390_ijms24087639 crossref_primary_10_1093_hr_uhad221 crossref_primary_10_1016_j_indcrop_2024_118888 crossref_primary_10_1007_s00425_020_03392_4 crossref_primary_10_1093_plphys_kiac272 crossref_primary_10_1111_ppl_70058 crossref_primary_10_1038_s41438_021_00632_w crossref_primary_10_1093_jxb_eraa202 crossref_primary_10_3389_freae_2025_1476499 crossref_primary_10_1093_plphys_kiab187 crossref_primary_10_1007_s10142_020_00756_7 crossref_primary_10_3390_f14061196 crossref_primary_10_3389_fpls_2021_655565 crossref_primary_10_34133_2022_9819314 crossref_primary_10_1007_s11427_023_2361_1 crossref_primary_10_1111_nph_20328 crossref_primary_10_1016_j_ijbiomac_2022_06_099 crossref_primary_10_3390_plants13192760 crossref_primary_10_3390_genes12091409 crossref_primary_10_1111_jipb_12850 crossref_primary_10_1111_nph_16902 crossref_primary_10_1186_s12915_021_01140_y crossref_primary_10_1038_s42003_019_0646_5 crossref_primary_10_3390_ijms232113412 crossref_primary_10_1007_s00344_021_10364_9 crossref_primary_10_1093_jxb_erz532 crossref_primary_10_3389_fgene_2022_818727 crossref_primary_10_3390_ijms241612945 crossref_primary_10_1093_plphys_kiae168 crossref_primary_10_1007_s00425_023_04141_z crossref_primary_10_1111_jipb_13218 crossref_primary_10_3390_ijms26010188 crossref_primary_10_3389_fpls_2022_1067076 crossref_primary_10_3390_plants10050981 crossref_primary_10_1016_j_ncrops_2024_100059 crossref_primary_10_1016_j_cpb_2024_100408 crossref_primary_10_1111_pce_14866 crossref_primary_10_1007_s00018_021_03794_x crossref_primary_10_3389_fpls_2021_669143 crossref_primary_10_3389_fpls_2022_1055529 crossref_primary_10_3390_ijms242015039 crossref_primary_10_3390_f13122116 crossref_primary_10_3390_ijms22042013 crossref_primary_10_1016_j_envexpbot_2024_106051 crossref_primary_10_3389_fpls_2020_572137 crossref_primary_10_3389_fpls_2022_1041095 crossref_primary_10_1007_s00299_024_03160_8 crossref_primary_10_1093_plphys_kiae325 crossref_primary_10_1038_s41477_022_01315_7 crossref_primary_10_1016_j_plantsci_2025_112441 crossref_primary_10_1016_j_bbagrm_2020_194626 crossref_primary_10_1016_j_envexpbot_2022_105003 crossref_primary_10_3389_fpls_2024_1404977 crossref_primary_10_1186_s12870_021_02879_w crossref_primary_10_1007_s10343_025_01115_x crossref_primary_10_3390_ijms24010788 crossref_primary_10_1111_nph_19671 crossref_primary_10_3389_fpls_2022_860056 crossref_primary_10_3389_fpls_2024_1375506 crossref_primary_10_1016_j_plantsci_2025_112399 crossref_primary_10_1016_j_bbagrm_2020_194613 crossref_primary_10_1111_nph_18508 crossref_primary_10_1093_jxb_erac155 crossref_primary_10_1111_pbi_14613 crossref_primary_10_1016_j_jplph_2021_153375 crossref_primary_10_1016_j_xplc_2021_100250 crossref_primary_10_3389_fpls_2024_1416936 crossref_primary_10_37427_botcro_2025_004 crossref_primary_10_1016_j_rsci_2024_06_002 crossref_primary_10_1007_s13205_023_03519_w crossref_primary_10_3390_epigenomes7030014 crossref_primary_10_1111_pce_15027 crossref_primary_10_1111_ppl_13936 crossref_primary_10_1016_j_bbrc_2020_12_054 crossref_primary_10_1016_j_ijbiomac_2022_01_202 crossref_primary_10_1016_j_envexpbot_2023_105343 crossref_primary_10_3390_plants11111449 crossref_primary_10_1016_j_jare_2020_10_003 crossref_primary_10_1016_j_envexpbot_2021_104479 crossref_primary_10_1093_plphys_kiab038 crossref_primary_10_1016_S2095_3119_20_63219_1 crossref_primary_10_1093_plphys_kiad441 crossref_primary_10_1186_s43897_024_00126_y crossref_primary_10_1007_s44154_022_00048_z crossref_primary_10_1093_plcell_koae261 crossref_primary_10_3390_ijms25169048 crossref_primary_10_1080_07388551_2021_1946004 crossref_primary_10_1093_treephys_tpac026 crossref_primary_10_1111_nph_19251 crossref_primary_10_1093_pnasnexus_pgad229 crossref_primary_10_3390_ijms24010253 crossref_primary_10_1111_pce_14501 crossref_primary_10_1111_tpj_16709 crossref_primary_10_1016_j_scitotenv_2022_157132 crossref_primary_10_1093_hr_uhac044 crossref_primary_10_3390_ijms25042205 crossref_primary_10_1016_j_plaphy_2025_109736 crossref_primary_10_1093_nar_gkab014 crossref_primary_10_1016_j_envexpbot_2019_103952 |
ContentType | Journal Article |
Copyright | 2019 ASPB 2019 American Society of Plant Biologists. All rights reserved. 2019 American Society of Plant Biologists. All rights reserved. 2019 |
Copyright_xml | – notice: 2019 ASPB – notice: 2019 American Society of Plant Biologists. All rights reserved. – notice: 2019 American Society of Plant Biologists. All rights reserved. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1105/tpc.18.00437 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1532-298X |
EndPage | 686 |
ExternalDocumentID | PMC6482633 30538157 10_1105_tpc_18_00437 26654585 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2FS 2WC 2~F 4.4 5VS 5WD 85S 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN ABBHK ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABVGC ABXVV ABXZS ACBTR ACGFO ACGOD ACIPB ACIWK ACNCT ACPRK ACUFI ADBBV ADGKP ADIPN ADIYS ADQBN ADVEK ADYHW AEEJZ AENEX AEUPB AFAZZ AFFZL AFGWE AFRAH AGORE AHMBA AICQM AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX ATGXG BAWUL BCRHZ BEYMZ BTFSW CBGCD CS3 DATOO DIK DU5 E3Z EBS ECGQY EJD F5P F8P F9R FLUFQ FOEOM GX1 H13 H~9 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN MV1 N9A NOMLY OBOKY OJZSN OK1 OWPYF P2P Q2X RHI ROX RPB RWL RXW SA0 TAE TN5 TR2 U5U W8F WH7 WOQ XSW YBU YR2 YSK ZCA ZCN ~KM 53G 7X2 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW AAWDT AAYJJ AAYXX ABIME ABPIB ABUWG ABXSQ ABZEO ACFRR ACHIC ACUTJ ACVCV ACZBC ADULT ADXHL AEUYN AFFNX AFKRA AFYAG AGCDD AGMDO AGUYK AHGBF AHXOZ AJBYB AJDVS ANFBD APJGH AQDSO AQVQM AS~ ATCPS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C1A CCPQU CITATION D1J DWQXO FYUFA GNUQQ GTFYD HCIFZ HGD HMCUK HTVGU LK8 M0K M1P M2P M2Q M7P MVM NEJ NU- P0- PHGZM PHGZT PQQKQ PROAC PSQYO S0X TCN UBC UKHRP UKR WHG XOL Y6R ZCG 3V. 88A ADYWZ CGR CUY CVF DOOOF ECM EIF FRP ISR JSODD M0L NPM RHF RPM VQA VXZ 7X8 5PM |
ID | FETCH-LOGICAL-c472t-aca5943bb1237c8413d93abb64ae6b214e064382ebc91cdb0bd58357c5cb204d3 |
ISSN | 1040-4651 1532-298X |
IngestDate | Thu Aug 21 18:16:31 EDT 2025 Fri Jul 11 04:04:13 EDT 2025 Wed Feb 19 02:30:43 EST 2025 Tue Jul 01 03:49:49 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Thu May 29 08:49:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2019 American Society of Plant Biologists. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c472t-aca5943bb1237c8413d93abb64ae6b214e064382ebc91cdb0bd58357c5cb204d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. The authors responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) are: Vincent L. Chiang (vchiang@ncsu.edu) and Wei Li (weili2015@nefu.edu.cn). www.plantcell.org/cgi/doi/10.1105/tpc.18.00437 |
ORCID | 0000-0002-4407-9334 0000-0001-9070-1369 0000-0001-7120-4690 0000-0002-0595-7018 0000-0002-1675-6940 0000-0002-8814-5444 0000-0002-8419-4230 0000-0001-6414-4693 0000-0002-0282-0083 0000-0003-2352-2904 0000-0002-1153-4337 0000-0002-5392-0076 0000-0002-3611-3731 0000-0001-5761-4079 0000-0002-7152-9601 0000-0001-6046-3136 0000-0002-9737-0897 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6482633 |
PMID | 30538157 |
PQID | 2155170481 |
PQPubID | 23479 |
PageCount | 24 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6482633 proquest_miscellaneous_2155170481 pubmed_primary_30538157 crossref_citationtrail_10_1105_tpc_18_00437 crossref_primary_10_1105_tpc_18_00437 jstor_primary_26654585 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Plant cell |
PublicationTitleAlternate | Plant Cell |
PublicationYear | 2019 |
Publisher | American Society of Plant Biologists (ASPB) American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists (ASPB) – name: American Society of Plant Biologists |
References | 30573471 - Plant Cell. 2019 Mar;31(3):559-560 |
References_xml | – reference: 30573471 - Plant Cell. 2019 Mar;31(3):559-560 |
SSID | ssj0001719 |
Score | 2.641125 |
Snippet | Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this... AREB1 recruits the ADA2b-GCN5 complex to control H3K9ac and RNA polymerase II enrichment on drought-responsive genes, thereby driving high expression of these... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 663 |
SubjectTerms | Abscisic Acid - metabolism Acetylation Droughts Gene Expression Regulation, Plant Histone Acetyltransferases - genetics Histone Acetyltransferases - metabolism Histones - metabolism Nucleotide Motifs Phenotype Plant Growth Regulators - metabolism Plant Proteins - genetics Plant Proteins - metabolism Populus - genetics Populus - physiology Promoter Regions, Genetic - genetics Protein Processing, Post-Translational RNA Polymerase II - genetics RNA Polymerase II - metabolism Transcription Factors - genetics Transcription Factors - metabolism Transcriptional Activation |
Title | The AREB1 Transcription Factor Influences Histone Acetylation to Regulate Drought Responses and Tolerance in Populus trichocarpa |
URI | https://www.jstor.org/stable/26654585 https://www.ncbi.nlm.nih.gov/pubmed/30538157 https://www.proquest.com/docview/2155170481 https://pubmed.ncbi.nlm.nih.gov/PMC6482633 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKQIIXBIONcpOR4KnKSJxrH9uyaRoCweik8RTZjkcrbcm0Jg_liZ_CT-Uc23HTrUiDl6pKnTTt-XwuzvH3EfJWFb4oZKK8SHKUMPO5J5JMeUrGnEUFzJEC1zs-fU4OT6Kj0_i01_vd6VpqarEnf27cV_I_VoVjYFfcJfsPlnUXhQPwHuwLr2BheL21jUfH--PAcJQ7B3CgRXRg7lsBkoVhA4F8ciRVvTTtb5h1HhslejX4oNV6sENZt8wqw9w8rc7Vld5TMAdXiVJfzWKAlP6zCp_b8G5mi_eCCkj1AJ8FuD4f3SzwbdZwGyH1Me3pvkPQ9CYzcDaDo_nFRWdp37ifL6r8sWxuLGyPeXWm7MXsagVukGrbtayDxQ5G1F838ad1usxjQy0x7LxyGHTQF3ZcbGIdoonWiSHSvhkIfOTMqC_lXoDNspFhllnn274WB113oq6L_DiHs_Mgy_XZd8hdBoUIamR8_Lriow9SLR3jfpXbWhG_7373WtJj-l43VTTXG3M7mc70EXloSxQ6Mnh7THqq3Cb3xhWUEcttcn_SSgQ-Ib_A6FQDkK4BkBoA0hUAqQUg7QCQ1hVtAUgtAKkDIAUAUgdAOi-pBSDtAPApOTnYn04OPSvp4ckoZbXHJY-HUSgEJEypzCCDKoYhFyKJuEoECyKFKXLGlJDDQBYCHEkMNUIqYymYHxXhDtkq4W6fEeqLNDvDcMNlEcVpwAM_45kM4RhPYsX6ZND-57m0fPcou3Keb7Jvn7xzoy8Nz8tfxu1o87lBDOW7oebukzetPXOwAk41XqqqWeQMq5IUeZn6ZNfY150N0RZS5hgum65Z3g1A9vf1T8r5TLPAJ1HGkjB8fssbf0EerObjS7JVXzXqFeTTtXitIf0Hnp7Pww |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+AREB1+Transcription+Factor+Influences+Histone+Acetylation+to+Regulate+Drought+Responses+and+Tolerance+in+Populus+trichocarpa&rft.jtitle=The+Plant+cell&rft.au=Li%2C+Shuang&rft.au=Lin%2C+Ying-Chung+Jimmy&rft.au=Wang%2C+Pengyu&rft.au=Zhang%2C+Baofeng&rft.date=2019-03-01&rft.issn=1040-4651&rft.eissn=1532-298X&rft.volume=31&rft.issue=3&rft.spage=663&rft.epage=686&rft_id=info:doi/10.1105%2Ftpc.18.00437&rft.externalDBID=n%2Fa&rft.externalDocID=10_1105_tpc_18_00437 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon |