The AREB1 Transcription Factor Influences Histone Acetylation to Regulate Drought Responses and Tolerance in Populus trichocarpa

Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 o...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 31; no. 3; pp. 663 - 686
Main Authors Li, Shuang, Lin, Ying-Chung Jimmy, Wang, Pengyu, Zhang, Baofeng, Li, Meng, Chen, Su, Shi, Rui, Tunlaya-Anukit, Sermsawat, Liu, Xinying, Wang, Zhifeng, Dai, Xiufang, Yu, Jing, Zhou, Chenguang, Liu, Baoguang, Wang, Jack P., Chiang, Vincent L., Li, Wei
Format Journal Article
LanguageEnglish
Published United States American Society of Plant Biologists (ASPB) 01.03.2019
American Society of Plant Biologists
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment and examined its association with transcriptomes in Populus trichocarpa under drought stress. We revealed that abscisic acid-Responsive Element (ABRE) motifs in promoters of the drought-responsive genes PtrNAC006, PtrNAC007, and PtrNAC120 are involved in H3K9ac enhancement and activation of these genes. Overexpressing these PtrNAC genes in P. trichocarpa resulted in strong drought-tolerance phenotypes. We showed that the ABRE binding protein PtrAREB1-2 binds to ABRE motifs associated with these PtrNAC genes and recruits the histone acetyltransferase unit ADA2b-GCN5, forming AREB1-ADA2b-GCN5 ternary protein complexes. Moreover, this recruitment enables GCN5-mediated histone acetylation to enhance H3K9ac and enrich RNA polymerase II specifically at these PtrNAC genes for the development of drought tolerance. CRISPR editing or RNA interference-mediated downregulation of any of the ternary members results in highly drought-sensitive P. trichocarpa. Thus, the combinatorial function of the ternary proteins establishes a coordinated histone acetylation and transcription factor-mediated gene activation for drought response and tolerance in Populus species.
AbstractList Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment and examined its association with transcriptomes in Populus trichocarpa under drought stress. We revealed that abscisic acid-Responsive Element (ABRE) motifs in promoters of the drought-responsive genes PtrNAC006, PtrNAC007, and PtrNAC120 are involved in H3K9ac enhancement and activation of these genes. Overexpressing these PtrNAC genes in P. trichocarpa resulted in strong drought-tolerance phenotypes. We showed that the ABRE binding protein PtrAREB1-2 binds to ABRE motifs associated with these PtrNAC genes and recruits the histone acetyltransferase unit ADA2b-GCN5, forming AREB1-ADA2b-GCN5 ternary protein complexes. Moreover, this recruitment enables GCN5-mediated histone acetylation to enhance H3K9ac and enrich RNA polymerase II specifically at these PtrNAC genes for the development of drought tolerance. CRISPR editing or RNA interference-mediated downregulation of any of the ternary members results in highly drought-sensitive P. trichocarpa. Thus, the combinatorial function of the ternary proteins establishes a coordinated histone acetylation and transcription factor-mediated gene activation for drought response and tolerance in Populus species.
Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment and examined its association with transcriptomes in Populus trichocarpa under drought stress. We revealed that abscisic acid-Responsive Element (ABRE) motifs in promoters of the drought-responsive genes PtrNAC006, PtrNAC007, and PtrNAC120 are involved in H3K9ac enhancement and activation of these genes. Overexpressing these PtrNAC genes in P trichocarpa resulted in strong drought-tolerance phenotypes. We showed that the ABRE binding protein PtrAREB1-2 binds to ABRE motifs associated with these PtrNAC genes and recruits the histone acetyltransferase unit ADA2b-GCN5, forming AREB1-ADA2b-GCN5 ternary protein complexes. Moreover, this recruitment enables GCN5-mediated histone acetylation to enhance H3K9ac and enrich RNA polymerase II specifically at these PtrNAC genes for the development of drought tolerance. CRISPR editing or RNA interference-mediated downregulation of any of the ternary members results in highly drought-sensitive P trichocarpa Thus, the combinatorial function of the ternary proteins establishes a coordinated histone acetylation and transcription factor-mediated gene activation for drought response and tolerance in Populus species.Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment and examined its association with transcriptomes in Populus trichocarpa under drought stress. We revealed that abscisic acid-Responsive Element (ABRE) motifs in promoters of the drought-responsive genes PtrNAC006, PtrNAC007, and PtrNAC120 are involved in H3K9ac enhancement and activation of these genes. Overexpressing these PtrNAC genes in P trichocarpa resulted in strong drought-tolerance phenotypes. We showed that the ABRE binding protein PtrAREB1-2 binds to ABRE motifs associated with these PtrNAC genes and recruits the histone acetyltransferase unit ADA2b-GCN5, forming AREB1-ADA2b-GCN5 ternary protein complexes. Moreover, this recruitment enables GCN5-mediated histone acetylation to enhance H3K9ac and enrich RNA polymerase II specifically at these PtrNAC genes for the development of drought tolerance. CRISPR editing or RNA interference-mediated downregulation of any of the ternary members results in highly drought-sensitive P trichocarpa Thus, the combinatorial function of the ternary proteins establishes a coordinated histone acetylation and transcription factor-mediated gene activation for drought response and tolerance in Populus species.
Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment and examined its association with transcriptomes in under drought stress. We revealed that abscisic acid-Responsive Element (ABRE) motifs in promoters of the drought-responsive genes , , and are involved in H3K9ac enhancement and activation of these genes. Overexpressing these genes in resulted in strong drought-tolerance phenotypes. We showed that the ABRE binding protein PtrAREB1-2 binds to ABRE motifs associated with these genes and recruits the histone acetyltransferase unit ADA2b-GCN5, forming AREB1-ADA2b-GCN5 ternary protein complexes. Moreover, this recruitment enables GCN5-mediated histone acetylation to enhance H3K9ac and enrich RNA polymerase II specifically at these genes for the development of drought tolerance. CRISPR editing or RNA interference-mediated downregulation of any of the ternary members results in highly drought-sensitive Thus, the combinatorial function of the ternary proteins establishes a coordinated histone acetylation and transcription factor-mediated gene activation for drought response and tolerance in species.
AREB1 recruits the ADA2b-GCN5 complex to control H3K9ac and RNA polymerase II enrichment on drought-responsive genes, thereby driving high expression of these genes for drought tolerance. Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment and examined its association with transcriptomes in Populus trichocarpa under drought stress. We revealed that abscisic acid-Responsive Element (ABRE) motifs in promoters of the drought-responsive genes PtrNAC006 , PtrNAC007 , and PtrNAC120 are involved in H3K9ac enhancement and activation of these genes. Overexpressing these PtrNAC genes in P . trichocarpa resulted in strong drought-tolerance phenotypes. We showed that the ABRE binding protein PtrAREB1-2 binds to ABRE motifs associated with these PtrNAC genes and recruits the histone acetyltransferase unit ADA2b-GCN5, forming AREB1-ADA2b-GCN5 ternary protein complexes. Moreover, this recruitment enables GCN5-mediated histone acetylation to enhance H3K9ac and enrich RNA polymerase II specifically at these PtrNAC genes for the development of drought tolerance. CRISPR editing or RNA interference-mediated downregulation of any of the ternary members results in highly drought-sensitive P . trichocarpa . Thus, the combinatorial function of the ternary proteins establishes a coordinated histone acetylation and transcription factor-mediated gene activation for drought response and tolerance in Populus species.
Author Wang, Jack P.
Liu, Xinying
Zhang, Baofeng
Liu, Baoguang
Li, Meng
Chiang, Vincent L.
Li, Shuang
Li, Wei
Dai, Xiufang
Shi, Rui
Wang, Zhifeng
Tunlaya-Anukit, Sermsawat
Yu, Jing
Chen, Su
Zhou, Chenguang
Wang, Pengyu
Lin, Ying-Chung Jimmy
Author_xml – sequence: 1
  givenname: Shuang
  surname: Li
  fullname: Li, Shuang
– sequence: 2
  givenname: Ying-Chung Jimmy
  surname: Lin
  fullname: Lin, Ying-Chung Jimmy
– sequence: 3
  givenname: Pengyu
  surname: Wang
  fullname: Wang, Pengyu
– sequence: 4
  givenname: Baofeng
  surname: Zhang
  fullname: Zhang, Baofeng
– sequence: 5
  givenname: Meng
  surname: Li
  fullname: Li, Meng
– sequence: 6
  givenname: Su
  surname: Chen
  fullname: Chen, Su
– sequence: 7
  givenname: Rui
  surname: Shi
  fullname: Shi, Rui
– sequence: 8
  givenname: Sermsawat
  surname: Tunlaya-Anukit
  fullname: Tunlaya-Anukit, Sermsawat
– sequence: 9
  givenname: Xinying
  surname: Liu
  fullname: Liu, Xinying
– sequence: 10
  givenname: Zhifeng
  surname: Wang
  fullname: Wang, Zhifeng
– sequence: 11
  givenname: Xiufang
  surname: Dai
  fullname: Dai, Xiufang
– sequence: 12
  givenname: Jing
  surname: Yu
  fullname: Yu, Jing
– sequence: 13
  givenname: Chenguang
  surname: Zhou
  fullname: Zhou, Chenguang
– sequence: 14
  givenname: Baoguang
  surname: Liu
  fullname: Liu, Baoguang
– sequence: 15
  givenname: Jack P.
  surname: Wang
  fullname: Wang, Jack P.
– sequence: 16
  givenname: Vincent L.
  surname: Chiang
  fullname: Chiang, Vincent L.
– sequence: 17
  givenname: Wei
  surname: Li
  fullname: Li, Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30538157$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rVDEUxYNU7Ifu3CpZuvBN8_leZiOMtbWFglJGcBeSvDszKW-SZ5IndOefbpxpiwpdJbn5nXPgnmN0EGIAhF5TMqOUyNMyuhlVM0IE756hIyo5a9hcfT-odyJII1pJD9FxzreEENrR-Qt0yInkisruCP1abgAvbs4_UrxMJmSX_Fh8DPjCuBITvgqrYYLgIONLn0uNxgsH5W4wO6pEfAPrqb4Af0pxWm9KHeQxhlwVJvR4GQeoxg6wD_hrHKdhyrgk7zbRmTSal-j5ygwZXt2fJ-jbxfny7LK5_vL56mxx3TjRsdIYZ-RccGsp451TgvJ-zo21rTDQWkYFkFZwxcC6OXW9JbaXisvOSWcZET0_QR_2vuNkt9A7CCWZQY_Jb02609F4_e9P8Bu9jj91KxRrOa8G7-4NUvwxQS5667ODYTAB4pQ1o1LSjghFK_r276zHkIe1V4DtAZdizglW2vmy22iN9oOmRP_pVtduNVV6120Vvf9P9OD7BP5mj9_W2tIjy9pWCqkk_w3iCLJa
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_126762
crossref_primary_10_3390_ijms231710175
crossref_primary_10_1111_brv_13132
crossref_primary_10_1186_s12864_024_10570_1
crossref_primary_10_1093_jxb_erad425
crossref_primary_10_3390_ijms24054458
crossref_primary_10_3390_f15050873
crossref_primary_10_1186_s12864_024_10593_8
crossref_primary_10_3390_ijms232213986
crossref_primary_10_48130_forres_0024_0008
crossref_primary_10_1111_nph_19481
crossref_primary_10_3390_proteomes11040038
crossref_primary_10_1016_j_molp_2023_12_008
crossref_primary_10_3389_fpls_2019_01748
crossref_primary_10_3390_cells10050979
crossref_primary_10_1093_aob_mcac070
crossref_primary_10_1007_s11033_024_09300_3
crossref_primary_10_1360_TB_2023_1125
crossref_primary_10_1016_j_molp_2022_06_014
crossref_primary_10_1007_s13205_021_02970_x
crossref_primary_10_1016_j_indcrop_2023_116441
crossref_primary_10_2174_1389202923666220510195910
crossref_primary_10_1038_s42003_024_06075_y
crossref_primary_10_3390_f11040476
crossref_primary_10_1111_nph_18028
crossref_primary_10_1111_tpj_17103
crossref_primary_10_1093_plphys_kiac573
crossref_primary_10_1007_s00425_024_04361_x
crossref_primary_10_1186_s12864_023_09556_2
crossref_primary_10_3389_fpls_2021_805879
crossref_primary_10_1016_j_bbagen_2024_130661
crossref_primary_10_1093_jxb_eraa383
crossref_primary_10_1186_s13072_021_00402_x
crossref_primary_10_1111_pce_13744
crossref_primary_10_3390_f11090976
crossref_primary_10_1016_j_indcrop_2024_118638
crossref_primary_10_1111_jipb_13081
crossref_primary_10_7717_peerj_10206
crossref_primary_10_1007_s00344_021_10305_6
crossref_primary_10_3390_plants12091892
crossref_primary_10_1111_jipb_13368
crossref_primary_10_1111_pce_14040
crossref_primary_10_3389_fpls_2019_01236
crossref_primary_10_1007_s11033_022_07391_4
crossref_primary_10_1111_pce_15094
crossref_primary_10_1111_jipb_12901
crossref_primary_10_1186_s12870_024_05051_2
crossref_primary_10_1111_tpj_16588
crossref_primary_10_1186_s12864_023_09459_2
crossref_primary_10_3390_plants10020308
crossref_primary_10_1186_s12864_024_10557_y
crossref_primary_10_1038_s41467_020_19977_2
crossref_primary_10_3389_fpls_2022_886870
crossref_primary_10_3389_fpls_2022_925688
crossref_primary_10_1007_s11240_025_03003_8
crossref_primary_10_3390_ijms24087639
crossref_primary_10_1093_hr_uhad221
crossref_primary_10_1016_j_indcrop_2024_118888
crossref_primary_10_1007_s00425_020_03392_4
crossref_primary_10_1093_plphys_kiac272
crossref_primary_10_1111_ppl_70058
crossref_primary_10_1038_s41438_021_00632_w
crossref_primary_10_1093_jxb_eraa202
crossref_primary_10_3389_freae_2025_1476499
crossref_primary_10_1093_plphys_kiab187
crossref_primary_10_1007_s10142_020_00756_7
crossref_primary_10_3390_f14061196
crossref_primary_10_3389_fpls_2021_655565
crossref_primary_10_34133_2022_9819314
crossref_primary_10_1007_s11427_023_2361_1
crossref_primary_10_1111_nph_20328
crossref_primary_10_1016_j_ijbiomac_2022_06_099
crossref_primary_10_3390_plants13192760
crossref_primary_10_3390_genes12091409
crossref_primary_10_1111_jipb_12850
crossref_primary_10_1111_nph_16902
crossref_primary_10_1186_s12915_021_01140_y
crossref_primary_10_1038_s42003_019_0646_5
crossref_primary_10_3390_ijms232113412
crossref_primary_10_1007_s00344_021_10364_9
crossref_primary_10_1093_jxb_erz532
crossref_primary_10_3389_fgene_2022_818727
crossref_primary_10_3390_ijms241612945
crossref_primary_10_1093_plphys_kiae168
crossref_primary_10_1007_s00425_023_04141_z
crossref_primary_10_1111_jipb_13218
crossref_primary_10_3390_ijms26010188
crossref_primary_10_3389_fpls_2022_1067076
crossref_primary_10_3390_plants10050981
crossref_primary_10_1016_j_ncrops_2024_100059
crossref_primary_10_1016_j_cpb_2024_100408
crossref_primary_10_1111_pce_14866
crossref_primary_10_1007_s00018_021_03794_x
crossref_primary_10_3389_fpls_2021_669143
crossref_primary_10_3389_fpls_2022_1055529
crossref_primary_10_3390_ijms242015039
crossref_primary_10_3390_f13122116
crossref_primary_10_3390_ijms22042013
crossref_primary_10_1016_j_envexpbot_2024_106051
crossref_primary_10_3389_fpls_2020_572137
crossref_primary_10_3389_fpls_2022_1041095
crossref_primary_10_1007_s00299_024_03160_8
crossref_primary_10_1093_plphys_kiae325
crossref_primary_10_1038_s41477_022_01315_7
crossref_primary_10_1016_j_plantsci_2025_112441
crossref_primary_10_1016_j_bbagrm_2020_194626
crossref_primary_10_1016_j_envexpbot_2022_105003
crossref_primary_10_3389_fpls_2024_1404977
crossref_primary_10_1186_s12870_021_02879_w
crossref_primary_10_1007_s10343_025_01115_x
crossref_primary_10_3390_ijms24010788
crossref_primary_10_1111_nph_19671
crossref_primary_10_3389_fpls_2022_860056
crossref_primary_10_3389_fpls_2024_1375506
crossref_primary_10_1016_j_plantsci_2025_112399
crossref_primary_10_1016_j_bbagrm_2020_194613
crossref_primary_10_1111_nph_18508
crossref_primary_10_1093_jxb_erac155
crossref_primary_10_1111_pbi_14613
crossref_primary_10_1016_j_jplph_2021_153375
crossref_primary_10_1016_j_xplc_2021_100250
crossref_primary_10_3389_fpls_2024_1416936
crossref_primary_10_37427_botcro_2025_004
crossref_primary_10_1016_j_rsci_2024_06_002
crossref_primary_10_1007_s13205_023_03519_w
crossref_primary_10_3390_epigenomes7030014
crossref_primary_10_1111_pce_15027
crossref_primary_10_1111_ppl_13936
crossref_primary_10_1016_j_bbrc_2020_12_054
crossref_primary_10_1016_j_ijbiomac_2022_01_202
crossref_primary_10_1016_j_envexpbot_2023_105343
crossref_primary_10_3390_plants11111449
crossref_primary_10_1016_j_jare_2020_10_003
crossref_primary_10_1016_j_envexpbot_2021_104479
crossref_primary_10_1093_plphys_kiab038
crossref_primary_10_1016_S2095_3119_20_63219_1
crossref_primary_10_1093_plphys_kiad441
crossref_primary_10_1186_s43897_024_00126_y
crossref_primary_10_1007_s44154_022_00048_z
crossref_primary_10_1093_plcell_koae261
crossref_primary_10_3390_ijms25169048
crossref_primary_10_1080_07388551_2021_1946004
crossref_primary_10_1093_treephys_tpac026
crossref_primary_10_1111_nph_19251
crossref_primary_10_1093_pnasnexus_pgad229
crossref_primary_10_3390_ijms24010253
crossref_primary_10_1111_pce_14501
crossref_primary_10_1111_tpj_16709
crossref_primary_10_1016_j_scitotenv_2022_157132
crossref_primary_10_1093_hr_uhac044
crossref_primary_10_3390_ijms25042205
crossref_primary_10_1016_j_plaphy_2025_109736
crossref_primary_10_1093_nar_gkab014
crossref_primary_10_1016_j_envexpbot_2019_103952
ContentType Journal Article
Copyright 2019 ASPB
2019 American Society of Plant Biologists. All rights reserved.
2019 American Society of Plant Biologists. All rights reserved. 2019
Copyright_xml – notice: 2019 ASPB
– notice: 2019 American Society of Plant Biologists. All rights reserved.
– notice: 2019 American Society of Plant Biologists. All rights reserved. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1105/tpc.18.00437
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 686
ExternalDocumentID PMC6482633
30538157
10_1105_tpc_18_00437
26654585
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2FS
2WC
2~F
4.4
5VS
5WD
85S
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAXTN
ABBHK
ABDFA
ABEJV
ABGNP
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABVGC
ABXVV
ABXZS
ACBTR
ACGFO
ACGOD
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADVEK
ADYHW
AEEJZ
AENEX
AEUPB
AFAZZ
AFFZL
AFGWE
AFRAH
AGORE
AHMBA
AICQM
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ATGXG
BAWUL
BCRHZ
BEYMZ
BTFSW
CBGCD
CS3
DATOO
DIK
DU5
E3Z
EBS
ECGQY
EJD
F5P
F8P
F9R
FLUFQ
FOEOM
GX1
H13
H~9
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
MV1
N9A
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P2P
Q2X
RHI
ROX
RPB
RWL
RXW
SA0
TAE
TN5
TR2
U5U
W8F
WH7
WOQ
XSW
YBU
YR2
YSK
ZCA
ZCN
~KM
53G
7X2
7X7
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
AAWDT
AAYJJ
AAYXX
ABIME
ABPIB
ABUWG
ABXSQ
ABZEO
ACFRR
ACHIC
ACUTJ
ACVCV
ACZBC
ADULT
ADXHL
AEUYN
AFFNX
AFKRA
AFYAG
AGCDD
AGMDO
AGUYK
AHGBF
AHXOZ
AJBYB
AJDVS
ANFBD
APJGH
AQDSO
AQVQM
AS~
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CITATION
D1J
DWQXO
FYUFA
GNUQQ
GTFYD
HCIFZ
HGD
HMCUK
HTVGU
LK8
M0K
M1P
M2P
M2Q
M7P
MVM
NEJ
NU-
P0-
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
S0X
TCN
UBC
UKHRP
UKR
WHG
XOL
Y6R
ZCG
3V.
88A
ADYWZ
CGR
CUY
CVF
DOOOF
ECM
EIF
FRP
ISR
JSODD
M0L
NPM
RHF
RPM
VQA
VXZ
7X8
5PM
ID FETCH-LOGICAL-c472t-aca5943bb1237c8413d93abb64ae6b214e064382ebc91cdb0bd58357c5cb204d3
ISSN 1040-4651
1532-298X
IngestDate Thu Aug 21 18:16:31 EDT 2025
Fri Jul 11 04:04:13 EDT 2025
Wed Feb 19 02:30:43 EST 2025
Tue Jul 01 03:49:49 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Thu May 29 08:49:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2019 American Society of Plant Biologists. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c472t-aca5943bb1237c8413d93abb64ae6b214e064382ebc91cdb0bd58357c5cb204d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
The authors responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) are: Vincent L. Chiang (vchiang@ncsu.edu) and Wei Li (weili2015@nefu.edu.cn).
www.plantcell.org/cgi/doi/10.1105/tpc.18.00437
ORCID 0000-0002-4407-9334
0000-0001-9070-1369
0000-0001-7120-4690
0000-0002-0595-7018
0000-0002-1675-6940
0000-0002-8814-5444
0000-0002-8419-4230
0000-0001-6414-4693
0000-0002-0282-0083
0000-0003-2352-2904
0000-0002-1153-4337
0000-0002-5392-0076
0000-0002-3611-3731
0000-0001-5761-4079
0000-0002-7152-9601
0000-0001-6046-3136
0000-0002-9737-0897
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6482633
PMID 30538157
PQID 2155170481
PQPubID 23479
PageCount 24
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6482633
proquest_miscellaneous_2155170481
pubmed_primary_30538157
crossref_citationtrail_10_1105_tpc_18_00437
crossref_primary_10_1105_tpc_18_00437
jstor_primary_26654585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2019
Publisher American Society of Plant Biologists (ASPB)
American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists (ASPB)
– name: American Society of Plant Biologists
References 30573471 - Plant Cell. 2019 Mar;31(3):559-560
References_xml – reference: 30573471 - Plant Cell. 2019 Mar;31(3):559-560
SSID ssj0001719
Score 2.641125
Snippet Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this...
AREB1 recruits the ADA2b-GCN5 complex to control H3K9ac and RNA polymerase II enrichment on drought-responsive genes, thereby driving high expression of these...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 663
SubjectTerms Abscisic Acid - metabolism
Acetylation
Droughts
Gene Expression Regulation, Plant
Histone Acetyltransferases - genetics
Histone Acetyltransferases - metabolism
Histones - metabolism
Nucleotide Motifs
Phenotype
Plant Growth Regulators - metabolism
Plant Proteins - genetics
Plant Proteins - metabolism
Populus - genetics
Populus - physiology
Promoter Regions, Genetic - genetics
Protein Processing, Post-Translational
RNA Polymerase II - genetics
RNA Polymerase II - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptional Activation
Title The AREB1 Transcription Factor Influences Histone Acetylation to Regulate Drought Responses and Tolerance in Populus trichocarpa
URI https://www.jstor.org/stable/26654585
https://www.ncbi.nlm.nih.gov/pubmed/30538157
https://www.proquest.com/docview/2155170481
https://pubmed.ncbi.nlm.nih.gov/PMC6482633
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKQIIXBIONcpOR4KnKSJxrH9uyaRoCweik8RTZjkcrbcm0Jg_liZ_CT-Uc23HTrUiDl6pKnTTt-XwuzvH3EfJWFb4oZKK8SHKUMPO5J5JMeUrGnEUFzJEC1zs-fU4OT6Kj0_i01_vd6VpqarEnf27cV_I_VoVjYFfcJfsPlnUXhQPwHuwLr2BheL21jUfH--PAcJQ7B3CgRXRg7lsBkoVhA4F8ciRVvTTtb5h1HhslejX4oNV6sENZt8wqw9w8rc7Vld5TMAdXiVJfzWKAlP6zCp_b8G5mi_eCCkj1AJ8FuD4f3SzwbdZwGyH1Me3pvkPQ9CYzcDaDo_nFRWdp37ifL6r8sWxuLGyPeXWm7MXsagVukGrbtayDxQ5G1F838ad1usxjQy0x7LxyGHTQF3ZcbGIdoonWiSHSvhkIfOTMqC_lXoDNspFhllnn274WB113oq6L_DiHs_Mgy_XZd8hdBoUIamR8_Lriow9SLR3jfpXbWhG_7373WtJj-l43VTTXG3M7mc70EXloSxQ6Mnh7THqq3Cb3xhWUEcttcn_SSgQ-Ib_A6FQDkK4BkBoA0hUAqQUg7QCQ1hVtAUgtAKkDIAUAUgdAOi-pBSDtAPApOTnYn04OPSvp4ckoZbXHJY-HUSgEJEypzCCDKoYhFyKJuEoECyKFKXLGlJDDQBYCHEkMNUIqYymYHxXhDtkq4W6fEeqLNDvDcMNlEcVpwAM_45kM4RhPYsX6ZND-57m0fPcou3Keb7Jvn7xzoy8Nz8tfxu1o87lBDOW7oebukzetPXOwAk41XqqqWeQMq5IUeZn6ZNfY150N0RZS5hgum65Z3g1A9vf1T8r5TLPAJ1HGkjB8fssbf0EerObjS7JVXzXqFeTTtXitIf0Hnp7Pww
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+AREB1+Transcription+Factor+Influences+Histone+Acetylation+to+Regulate+Drought+Responses+and+Tolerance+in+Populus+trichocarpa&rft.jtitle=The+Plant+cell&rft.au=Li%2C+Shuang&rft.au=Lin%2C+Ying-Chung+Jimmy&rft.au=Wang%2C+Pengyu&rft.au=Zhang%2C+Baofeng&rft.date=2019-03-01&rft.issn=1040-4651&rft.eissn=1532-298X&rft.volume=31&rft.issue=3&rft.spage=663&rft.epage=686&rft_id=info:doi/10.1105%2Ftpc.18.00437&rft.externalDBID=n%2Fa&rft.externalDocID=10_1105_tpc_18_00437
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon