The Methylation of the PcMYB10 Promoter Is Associated with Green-Skinned Sport in Max Red Bartlett Pear
Varieties of the European pear (Pyrus communis) can produce trees with both red-and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its gre...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 162; no. 2; pp. 885 - 896 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Rockville, MD
American Society of Plant Biologists
01.06.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0032-0889 1532-2548 1532-2548 |
DOI | 10.1104/pp.113.214700 |
Cover
Loading…
Abstract | Varieties of the European pear (Pyrus communis) can produce trees with both red-and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport (MRB-G). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3-O-glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT. An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions -604 to -911 bp and -1,218 to -1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT. We suggest that the methylation level of PcMYB10 is associated with the formation of the greenskinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed. |
---|---|
AbstractList | In MRB-G fruits, the expression of PcMYB10 was reduced by the methylation of regions −604 to −911 bp and −1,218 to −1,649 bp in its promoter. As a result, the expression of PcUFGT, a key gene involved in anthocyanin biosynthesis and regulated by PcMYB10, was also reduced. This might cause the inhibition of anthocyanin biosynthesis and the formation of green-skinned sport. Varieties of the European pear (Pyrus communis) can produce trees with both red- and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport (MRB-G). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3-O-glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT. An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions -604 to -911 bp and -1,218 to -1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT. We suggest that the methylation level of PcMYB10 is associated with the formation of the green-skinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed.Varieties of the European pear (Pyrus communis) can produce trees with both red- and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport (MRB-G). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3-O-glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT. An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions -604 to -911 bp and -1,218 to -1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT. We suggest that the methylation level of PcMYB10 is associated with the formation of the green-skinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed. Varieties of the European pear (Pyrus communis) can produce trees with both red- and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport (MRB-G). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3-O-glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT. An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions −604 to −911 bp and −1,218 to −1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT. We suggest that the methylation level of PcMYB10 is associated with the formation of the green-skinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed. Varieties of the European pear (Pyrus communis) can produce trees with both red-and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport (MRB-G). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3-O-glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT. An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions -604 to -911 bp and -1,218 to -1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT. We suggest that the methylation level of PcMYB10 is associated with the formation of the greenskinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed. In MRB-G fruits, the expression of PcMYB10 was reduced by the methylation of regions −604 to −911 bp and −1,218 to −1,649 bp in its promoter. As a result, the expression of PcUFGT, a key gene involved in anthocyanin biosynthesis and regulated by PcMYB10, was also reduced. This might cause the inhibition of anthocyanin biosynthesis and the formation of green-skinned sport. Varieties of the European pear ( Pyrus communis ) can produce trees with both red- and green-skinned fruits, such as the Max Red Bartlett ( MRB ) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport ( MRB-G ). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3- O -glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT . An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions −604 to −911 bp and −1,218 to −1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT . We suggest that the methylation level of PcMYB10 is associated with the formation of the green-skinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed. Varieties of the European pear (Pyrus communis) can produce trees with both red- and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport (MRB-G). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3-O-glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT. An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions -604 to -911 bp and -1,218 to -1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT. We suggest that the methylation level of PcMYB10 is associated with the formation of the green-skinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed. |
Author | Jiang, Shuling Wang, Zhigang Cong, Peihua Meng, Dong Wang, Aide Li, Tianlai Li, Tianzhong |
Author_xml | – sequence: 1 givenname: Zhigang surname: Wang fullname: Wang, Zhigang – sequence: 2 givenname: Dong surname: Meng fullname: Meng, Dong – sequence: 3 givenname: Aide surname: Wang fullname: Wang, Aide – sequence: 4 givenname: Tianlai surname: Li fullname: Li, Tianlai – sequence: 5 givenname: Shuling surname: Jiang fullname: Jiang, Shuling – sequence: 6 givenname: Peihua surname: Cong fullname: Cong, Peihua – sequence: 7 givenname: Tianzhong surname: Li fullname: Li, Tianzhong |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27448492$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23629835$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhi1URNPCkSPIFyQuW8Zfa-8Fqa2gVGpERMuBk-U63sZlY29tB-i_xyEhfEiI01ivn3ln7JkDtBdicAg9JXBECPBX41gjO6KES4AHaEIEow0VXO2hCUA9g1LdPjrI-RYACCP8EdqnrKWdYmKCbq4WDk9dWdwPpvgYcOxxqdLMTj-dEMCzFJexuITPMz7OOVpvipvjr74s8FlyLjSXn30IVbocYyrYBzw13_CHKpyYVAZXCp45kx6jh70ZsnuyjYfo49s3V6fvmov3Z-enxxeN5ZKWxpg5KGN72TNBGFeOUN7yTgprXWuVM4QKyomEriWq7-ZgroU1zK7TqJwzdoheb3zH1fXSza0LJZlBj8kvTbrX0Xj9503wC30Tv2jWtgqkrAYvtwYp3q1cLnrps3XDYIKLq6zp-hcpERz-ixLWChB1FKKiz39va9fPz0FU4MUWMNmaoU8mWJ9_cZJzxTtauWbD2RRzTq7fIQT0eiH0ONbI9GYhKs_-4q0vPyZdX--Hf2Y922Td5hLTrgQnHWdUAvsO9szBCA |
CODEN | PPHYA5 |
CitedBy_id | crossref_primary_10_1080_01140671_2023_2206141 crossref_primary_10_1111_pbi_12331 crossref_primary_10_1080_01140671_2017_1351378 crossref_primary_10_1016_j_phytochem_2014_08_001 crossref_primary_10_1093_hr_uhad080 crossref_primary_10_3389_fpls_2017_01178 crossref_primary_10_3390_ijms232012120 crossref_primary_10_1007_s11105_014_0732_2 crossref_primary_10_1038_srep45324 crossref_primary_10_1093_dnares_dsx021 crossref_primary_10_3390_horticulturae8040332 crossref_primary_10_3389_fpls_2023_1079292 crossref_primary_10_1371_journal_pone_0135159 crossref_primary_10_1007_s11105_015_0920_8 crossref_primary_10_1007_s13205_019_1844_z crossref_primary_10_1007_s12041_019_1141_y crossref_primary_10_1371_journal_pone_0091945 crossref_primary_10_1038_s41598_017_00069_z crossref_primary_10_1016_j_plantsci_2020_110598 crossref_primary_10_1016_j_plantsci_2020_110476 crossref_primary_10_1016_j_foodres_2021_110183 crossref_primary_10_1016_j_gene_2018_01_022 crossref_primary_10_2139_ssrn_4100213 crossref_primary_10_1007_s00344_015_9552_3 crossref_primary_10_3390_ijms21041528 crossref_primary_10_3390_agronomy14071467 crossref_primary_10_1093_treephys_tpaa156 crossref_primary_10_3390_horticulturae10090989 crossref_primary_10_1007_s11033_023_08618_8 crossref_primary_10_3390_plants12061316 crossref_primary_10_1134_S1022795424700042 crossref_primary_10_1007_s11032_017_0625_9 crossref_primary_10_1038_s41438_021_00590_3 crossref_primary_10_1111_tpj_14680 crossref_primary_10_1016_j_plaphy_2025_109821 crossref_primary_10_3389_fpls_2022_1027567 crossref_primary_10_1093_jxb_erx029 crossref_primary_10_1111_pbi_13337 crossref_primary_10_1016_j_scienta_2021_110633 crossref_primary_10_1016_j_foodchem_2023_135540 crossref_primary_10_1093_hr_uhad170 crossref_primary_10_1093_jxb_erv524 crossref_primary_10_3390_biom10020278 crossref_primary_10_1038_hortres_2017_15 crossref_primary_10_1111_pce_13697 crossref_primary_10_1111_ppl_12655 crossref_primary_10_1016_j_ygeno_2020_08_018 crossref_primary_10_1007_s00299_014_1698_0 crossref_primary_10_1155_2016_5620106 crossref_primary_10_1186_s12870_022_03518_8 crossref_primary_10_1007_s11103_021_01185_1 crossref_primary_10_3390_ijms23063319 crossref_primary_10_1016_j_scienta_2018_09_040 crossref_primary_10_15302_J_FASE_2014002 crossref_primary_10_3390_ijms19103133 crossref_primary_10_3389_fpls_2022_1074965 crossref_primary_10_3390_plants8040100 crossref_primary_10_1371_journal_pgen_1007993 crossref_primary_10_3390_genes13071256 crossref_primary_10_1038_s41438_020_0258_8 crossref_primary_10_1186_s12870_018_1388_0 crossref_primary_10_1016_j_hpj_2024_04_002 crossref_primary_10_1186_s41065_018_0063_7 crossref_primary_10_1038_s41438_019_0118_6 crossref_primary_10_1016_j_plaphy_2017_04_007 crossref_primary_10_3389_fpls_2020_592540 crossref_primary_10_1038_s41438_019_0220_9 crossref_primary_10_1111_nph_16724 crossref_primary_10_3390_plants12010082 crossref_primary_10_1371_journal_pone_0136439 crossref_primary_10_3389_fpls_2015_00795 crossref_primary_10_1007_s11240_019_01622_6 crossref_primary_10_1016_j_scienta_2019_108944 crossref_primary_10_1093_jxb_eraa010 crossref_primary_10_1093_jxb_erv433 crossref_primary_10_3390_biology11121721 crossref_primary_10_1007_s00299_023_03015_8 crossref_primary_10_1093_jxb_ert377 crossref_primary_10_1016_j_plaphy_2019_07_023 crossref_primary_10_1093_pcp_pcu205 crossref_primary_10_1186_s13059_024_03200_2 crossref_primary_10_1073_pnas_1503362112 crossref_primary_10_1186_s12864_022_09107_1 crossref_primary_10_3389_fpls_2017_01507 crossref_primary_10_1186_s12870_020_02344_0 crossref_primary_10_1186_s12870_018_1320_7 crossref_primary_10_1080_15592294_2016_1185580 crossref_primary_10_3390_ijms242316807 crossref_primary_10_1016_j_scienta_2022_111648 crossref_primary_10_1016_j_plaphy_2023_107647 crossref_primary_10_1038_s41438_020_0319_z crossref_primary_10_1038_s41438_021_00679_9 crossref_primary_10_1093_plphys_kiad160 crossref_primary_10_1007_s11103_019_00870_6 crossref_primary_10_1016_j_plantsci_2020_110578 crossref_primary_10_1002_pmic_202200104 crossref_primary_10_3390_plants12173162 crossref_primary_10_1007_s11105_018_1070_6 crossref_primary_10_1021_acs_jafc_3c03029 crossref_primary_10_1038_hortres_2017_53 crossref_primary_10_31857_S0016675824050014 crossref_primary_10_1016_j_plgene_2018_05_001 crossref_primary_10_1016_j_scienta_2019_01_034 crossref_primary_10_1111_nph_16705 crossref_primary_10_1007_s11105_025_01545_x crossref_primary_10_1016_j_hpj_2023_09_011 crossref_primary_10_1038_srep32534 crossref_primary_10_3390_genes10120949 crossref_primary_10_1080_07352689_2020_1866829 crossref_primary_10_3390_biology13050329 crossref_primary_10_3390_f11010090 crossref_primary_10_3389_fpls_2016_01245 crossref_primary_10_1093_hr_uhac158 crossref_primary_10_3389_fpls_2016_00153 crossref_primary_10_1186_s12870_020_02744_2 crossref_primary_10_1111_nph_20347 crossref_primary_10_1111_nph_18389 crossref_primary_10_1080_13102818_2019_1628662 crossref_primary_10_1007_s11032_018_0926_7 crossref_primary_10_1111_tpj_13666 crossref_primary_10_1016_j_plaphy_2020_09_021 crossref_primary_10_1016_j_postharvbio_2022_112108 crossref_primary_10_3389_fpls_2022_1021617 crossref_primary_10_3390_horticulturae9091036 crossref_primary_10_3389_fpls_2016_01338 crossref_primary_10_1016_j_ijbiomac_2024_137086 crossref_primary_10_3389_fpls_2016_00807 crossref_primary_10_3389_fpls_2017_00455 crossref_primary_10_3390_plants10071386 crossref_primary_10_1093_hr_uhab040 crossref_primary_10_3390_horticulturae10030276 crossref_primary_10_1093_hr_uhac013 crossref_primary_10_1016_j_plantsci_2022_111499 crossref_primary_10_1093_hr_uhad100 crossref_primary_10_1016_j_jia_2023_07_017 crossref_primary_10_1007_s11427_024_2784_3 crossref_primary_10_1111_nph_17397 crossref_primary_10_1111_nph_16500 crossref_primary_10_1186_s12870_021_03188_y crossref_primary_10_1016_j_scienta_2024_113283 crossref_primary_10_2139_ssrn_4046691 crossref_primary_10_3390_ijms252011100 crossref_primary_10_3389_fpls_2022_1072185 crossref_primary_10_3389_fgene_2024_1405604 crossref_primary_10_1111_tpj_12792 crossref_primary_10_1371_journal_pone_0171506 crossref_primary_10_1186_s12870_015_0664_5 crossref_primary_10_3389_fgene_2021_779557 crossref_primary_10_1016_j_scienta_2022_111392 crossref_primary_10_3389_fpls_2017_01247 crossref_primary_10_17660_ActaHortic_2022_1344_8 crossref_primary_10_1016_j_scienta_2019_109052 crossref_primary_10_1021_acs_jafc_1c04550 crossref_primary_10_1080_15592324_2017_1422467 crossref_primary_10_3390_agronomy9120871 crossref_primary_10_3390_ijms23094575 crossref_primary_10_1186_s12864_019_5499_2 crossref_primary_10_1111_pbi_13351 crossref_primary_10_1016_j_scienta_2015_01_003 crossref_primary_10_1093_pcp_pcu013 crossref_primary_10_1007_s00344_020_10124_1 crossref_primary_10_1111_pbi_12820 crossref_primary_10_1007_s11627_021_10208_x crossref_primary_10_1080_87559129_2024_2404471 crossref_primary_10_3389_fpls_2021_655267 crossref_primary_10_3390_f15010011 crossref_primary_10_1007_s10725_020_00634_z crossref_primary_10_1007_s00425_016_2524_4 crossref_primary_10_3390_f14020416 crossref_primary_10_1093_pcp_pcv111 crossref_primary_10_7717_peerj_3776 crossref_primary_10_1016_j_plaphy_2024_109268 crossref_primary_10_1371_journal_pone_0235073 crossref_primary_10_1021_acs_jafc_0c07037 crossref_primary_10_1038_s41477_018_0287_6 crossref_primary_10_1016_j_plantsci_2021_110925 crossref_primary_10_3390_horticulturae10060535 crossref_primary_10_1093_hr_uhac175 crossref_primary_10_1016_j_plantsci_2022_111290 crossref_primary_10_1093_hr_uhac179 crossref_primary_10_1021_acs_jafc_9b07098 crossref_primary_10_3390_plants8020039 crossref_primary_10_3390_ijms19082315 crossref_primary_10_1038_s41438_018_0112_4 crossref_primary_10_1016_j_plantsci_2019_01_008 crossref_primary_10_1007_s00425_019_03266_4 crossref_primary_10_1093_plcell_koac006 crossref_primary_10_1186_s12870_019_1898_4 crossref_primary_10_48130_frures_0024_0042 crossref_primary_10_1016_j_plaphy_2023_107913 crossref_primary_10_1016_j_plantsci_2022_111501 crossref_primary_10_17221_55_2016_CJGPB crossref_primary_10_1111_tpj_13289 |
Cites_doi | 10.1371/journal.pone.0010326 10.1016/j.tree.2004.08.003 10.1007/s00425-008-0841-y 10.1093/pcp/pcj012 10.1111/j.1365-313X.2006.02988.x 10.1093/jxb/err163 10.1186/1471-2229-11-93 10.1093/genetics/135.2.575 10.1111/j.1365-313X.2007.03373.x 10.1104/pp.010063 10.1016/j.pbi.2011.03.009 10.1126/science.1095011 10.1016/S0168-9452(02)00417-X 10.1104/pp.126.2.485 10.1104/pp.110.164160 10.1104/pp.81.3.922 10.1105/tpc.105.039255 10.1016/j.tplants.2007.11.012 10.1534/genetics.108.097170 10.1186/1471-2105-9-371 10.1016/j.plantsci.2005.10.009 10.1007/s10681-008-9767-5 10.1111/j.1365-313X.2010.04353.x 10.1126/science.1159151 10.1093/pcp/pcm066 10.1016/S0981-9428(02)01454-7 10.1111/j.1365-313X.2005.02441.x 10.1590/S0102-05362011000400029 10.1071/BT9610099 10.1146/annurev.food.080708.100754 10.1016/0092-8674(95)90185-X 10.1002/fedr.200311011 10.1105/tpc.108.059329 10.1016/j.tplants.2005.03.002 10.1111/j.1751-1097.1963.tb08220.x 10.1098/rstb.2000.0773 10.1016/j.plaphy.2010.09.002 10.21273/JASHS.129.1.0013 10.1242/dev.00681 10.1038/43657 10.1007/BF00037199 10.3390/ijms10125350 10.2307/3870058 10.1104/pp.111.4.1059 10.1016/S0031-9422(99)00620-2 10.1007/s00425-002-0830-5 10.1155/S111072430440401X 10.1007/s11816-008-0069-0 10.1002/(SICI)1097-0010(199607)71:3<313::AID-JSFA586>3.0.CO;2-N |
ContentType | Journal Article |
Copyright | 2013 American Society of Plant Biologists 2014 INIST-CNRS 2013 American Society of Plant Biologists. All Rights Reserved. 2013 |
Copyright_xml | – notice: 2013 American Society of Plant Biologists – notice: 2014 INIST-CNRS – notice: 2013 American Society of Plant Biologists. All Rights Reserved. 2013 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1104/pp.113.214700 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 896 |
ExternalDocumentID | PMC3668077 23629835 27448492 10_1104_pp_113_214700 41943270 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2WC 2~F 4.4 5VS 5WD 85S 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN ABBHK ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABVGC ABXSQ ABXVV ABXZS ACBTR ACGOD ACHIC ACNCT ACPRK ACUFI ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADXHL ADYHW AEEJZ AENEX AEUPB AFAZZ AFFZL AFGWE AFRAH AGORE AGUYK AHMBA AHXOZ AICQM AJBYB AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AQVQM ATGXG BAWUL BCRHZ BEYMZ BTFSW CBGCD CS3 DATOO DIK DU5 E3Z EBS ECGQY EJD F5P FLUFQ FOEOM H13 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN MV1 NOMLY NU- OBOKY OJZSN OK1 OWPYF P2P Q2X RHI ROX RPB RWL RXW SA0 TAE TN5 TR2 W8F WH7 WOQ XSW YBU YKV YNT YSK YZZ ZCA ZCN ~02 ~KM AAYXX CITATION 53G 7X2 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 AAWDT AAYJJ ABIME ABPIB ABUWG ABZEO ACFRR ACIPB ACUTJ ACVCV ACZBC AEUYN AFFDN AFKRA AFYAG AGMDO AHGBF AIDAL AIDBO AJDVS ANFBD APJGH AQDSO AS~ ATCPS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C1A CCPQU D1J DWQXO FYUFA GNUQQ GTFYD GUQSH HCIFZ HMCUK HTVGU IQODW LK8 LU7 M0K M1P M2O M2P M2Q M7P MVM P0- PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO QZG S0X TCN UBC UKHRP UKR WHG XOL Y6R ZCG ADYWZ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c472t-aad08acf7f351348e12464975cce6c8ea125241709618f9d0ab5ca3cad0827d33 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Thu Aug 21 18:19:08 EDT 2025 Sun Aug 24 04:02:58 EDT 2025 Fri Jul 11 03:31:10 EDT 2025 Thu Apr 03 07:09:38 EDT 2025 Mon Jul 21 09:13:26 EDT 2025 Thu Apr 24 22:59:22 EDT 2025 Tue Jul 01 03:07:59 EDT 2025 Fri May 30 11:59:03 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Promoter Pear Plant physiology Methylation |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c472t-aad08acf7f351348e12464975cce6c8ea125241709618f9d0ab5ca3cad0827d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Some figures in this article are displayed in color online but in black and white in the print edition. www.plantphysiol.org/cgi/doi/10.1104/pp.113.214700 The online version of this article contains Web-only data. The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Tianzhong Li (litianzhong1535@163.com). This work was supported by the Doctoral Program Special Fund of the Ministry of Education in China (grant no. 20100008110036) and the Beijing Natural Science Foundation (grant no. 6102017). |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3668077 |
PMID | 23629835 |
PQID | 1365055485 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3668077 proquest_miscellaneous_2000121540 proquest_miscellaneous_1365055485 pubmed_primary_23629835 pascalfrancis_primary_27448492 crossref_primary_10_1104_pp_113_214700 crossref_citationtrail_10_1104_pp_113_214700 jstor_primary_41943270 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-01 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Rockville, MD |
PublicationPlace_xml | – name: Rockville, MD – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2013 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | Cubas (2021041917080347700_b15) 1999; 401 Tegopati (2021041917080347700_b52) 2001; 6 Lister (2021041917080347700_b35) 1996; 71 Pierantoni (2021041917080347700_b40) 2010; 48 Fu (2021041917080347700_b21) 2005; 43 Vanholme (2021041917080347700_b56) 2010; 64 Dela (2021041917080347700_b17) 2003; 164 Gonzalez (2021041917080347700_b24) 2008; 53 Stracke (2021041917080347700_b50) 2009; 229 Honda (2021041917080347700_b28) 2002; 40 Bain (2021041917080347700_b5) 1961; 9 Cocciolone (2021041917080347700_b14) 1993; 135 Ma (2021041917080347700_b36) 2009; 22 Wu (2021041917080347700_b59) 2012; 1 Telias (2021041917080347700_b53) 2011; 11 Abu-Qaoud (2021041917080347700_b1) 1990; 48 Brodersen (2021041917080347700_b10) 2008; 320 Schwinn (2021041917080347700_b47) 2006; 18 Koes (2021041917080347700_b31) 2005; 10 Poudel (2021041917080347700_b42) 2008; 2 Lila (2021041917080347700_b33) 2004; 2004 Kobayashi (2021041917080347700_b29) 2004; 304 Vitrac (2021041917080347700_b57) 2000; 53 Zhang (2021041917080347700_b61) 2003; 130 Gong (2021041917080347700_b22) 2011; 1 Park (2021041917080347700_b39) 2007; 49 Gruntman (2021041917080347700_b25) 2008; 9 Lira-Medeiros (2021041917080347700_b34) 2010; 5 Yamaguchi (2021041917080347700_b60) 2009; 165 Bai (2021041917080347700_b4) 2011; 62 Feild (2021041917080347700_b20) 2001; 127 Palai (2021041917080347700_b38) 2011; 29 Holton (2021041917080347700_b27) 1995; 7 Espley (2021041917080347700_b18) 2009; 21 Sekhon (2021041917080347700_b48) 2009; 181 Bender (2021041917080347700_b8) 1995; 83 Chiu (2021041917080347700_b13) 2010; 154 Gong (2021041917080347700_b23) 2008; 24 Li (2021041917080347700_b32) 2005; 27 Kobayashi (2021041917080347700_b30) 2002; 215 Pohlheim (2021041917080347700_b41) 2003; 114 Schaefer (2021041917080347700_b46) 2004; 19 He (2021041917080347700_b26) 2010; 1 Boss (2021041917080347700_b9) 1996; 111 Rabino (2021041917080347700_b43) 1986; 81 Thomas (2021041917080347700_b54) 2010; 9 Bruuinsma (2021041917080347700_b12) 1963; 2 Regan (2021041917080347700_b44) 2001; 356 Tanaka (2021041917080347700_b51) 2009; 10 Ban (2021041917080347700_b6) 2007; 48 Winkel-Shirley (2021041917080347700_b58) 2001; 126 Morita (2021041917080347700_b37) 2006; 47 Ubi (2021041917080347700_b55) 2006; 170 Allan (2021041917080347700_b2) 2008; 13 Steyn (2021041917080347700_b49) 2004; 129 Richards (2021041917080347700_b45) 2011; 14 16664926 - Plant Physiol. 1986 Jul;81(3):922-4 18280199 - Trends Plant Sci. 2008 Mar;13(3):99-102 18786255 - BMC Bioinformatics. 2008;9:371 18998159 - Planta. 2009 Jan;229(2):427-45 16378944 - Yi Chuan. 2005 Nov;27(6):948-52 21599973 - BMC Plant Biol. 2011;11:93 15882656 - Trends Plant Sci. 2005 May;10(5):236-42 11402179 - Plant Physiol. 2001 Jun;126(2):485-93 17270013 - Plant J. 2007 Feb;49(4):641-54 18483398 - Science. 2008 May 30;320(5880):1185-90 10490023 - Nature. 1999 Sep 9;401(6749):157-61 20054474 - Int J Mol Sci. 2009 Dec;10(12):5350-69 15998315 - Plant J. 2005 Jul;43(2):299-308 20436669 - PLoS One. 2010;5(4):e10326 10746878 - Phytochemistry. 2000 Mar;53(6):659-65 20951056 - Plant Physiol Biochem. 2010 Dec;48(12):1020-6 12355152 - Planta. 2002 Oct;215(6):924-33 15143274 - Science. 2004 May 14;304(5673):982 19151225 - Plant Cell. 2009 Jan;21(1):168-83 22129334 - Annu Rev Food Sci Technol. 2010;1:163-87 16531495 - Plant Cell. 2006 Apr;18(4):831-51 17526919 - Plant Cell Physiol. 2007 Jul;48(7):958-70 19001287 - Genetics. 2009 Jan;181(1):81-91 12917293 - Development. 2003 Oct;130(20):4859-69 7694886 - Genetics. 1993 Oct;135(2):575-88 20855520 - Plant Physiol. 2010 Nov;154(3):1470-80 16446312 - Plant Cell Physiol. 2006 Apr;47(4):457-70 18036197 - Plant J. 2008 Mar;53(5):814-27 11598230 - Plant Physiol. 2001 Oct;127(2):566-74 12242398 - Plant Cell. 1995 Jul;7(7):1071-1083 12226348 - Plant Physiol. 1996 Aug;111(4):1059-1066 20822504 - Plant J. 2010 Dec;64(6):885-97 21652532 - J Exp Bot. 2011 Aug;62(13):4561-70 15577194 - J Biomed Biotechnol. 2004;2004(5):306-313 21478048 - Curr Opin Plant Biol. 2011 Apr;14(2):204-9 8521489 - Cell. 1995 Dec 1;83(5):725-34 11316480 - Philos Trans R Soc Lond B Biol Sci. 2001 Mar 29;356(1407):229-83 |
References_xml | – volume: 5 start-page: e10326 year: 2010 ident: 2021041917080347700_b34 article-title: Epigenetic variation in mangrove plants occurring in contrasting natural environment publication-title: PLoS ONE doi: 10.1371/journal.pone.0010326 – volume: 19 start-page: 577 year: 2004 ident: 2021041917080347700_b46 article-title: How plant-animal interactions signal new insights in communication publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2004.08.003 – volume: 229 start-page: 427 year: 2009 ident: 2021041917080347700_b50 article-title: Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase publication-title: Planta doi: 10.1007/s00425-008-0841-y – volume: 47 start-page: 457 year: 2006 ident: 2021041917080347700_b37 article-title: Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcj012 – volume: 9 start-page: 4334 year: 2010 ident: 2021041917080347700_b54 article-title: Establishment of proteome spot profiles and comparative analysis of the red and green phenotypes of ‘Bon Rouge’ pear (Pyrus communis L.) leaves publication-title: Afr J Biotechnol – volume: 22 start-page: 1042 year: 2009 ident: 2021041917080347700_b36 article-title: Effect of different tissues in Pyrus L. for genome DNA extract on RAPD publication-title: Southwest China J Agr Sci – volume: 1 start-page: 1 year: 2011 ident: 2021041917080347700_b22 article-title: Three methods for extracting total RNA from leaves of pear varieties publication-title: Hubei Agricultural Sciences – volume: 49 start-page: 641 year: 2007 ident: 2021041917080347700_b39 article-title: A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation publication-title: Plant J doi: 10.1111/j.1365-313X.2006.02988.x – volume: 24 start-page: 65 year: 2008 ident: 2021041917080347700_b23 article-title: Process of somaclone variation in plant publication-title: Chinese Agricultural Science Bulletin – volume: 62 start-page: 4561 year: 2011 ident: 2021041917080347700_b4 article-title: A mobile signal transported over a long distance induces systemic transcriptional gene silencing in a grafted partner publication-title: J Exp Bot doi: 10.1093/jxb/err163 – volume: 11 start-page: 93 year: 2011 ident: 2021041917080347700_b53 article-title: Apple skin patterning is associated with differential expression of MYB10 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-11-93 – volume: 135 start-page: 575 year: 1993 ident: 2021041917080347700_b14 article-title: Pl-Bh, an anthocyanin regulatory gene of maize that leads to variegated pigmentation publication-title: Genetics doi: 10.1093/genetics/135.2.575 – volume: 53 start-page: 814 year: 2008 ident: 2021041917080347700_b24 article-title: Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings publication-title: Plant J doi: 10.1111/j.1365-313X.2007.03373.x – volume: 127 start-page: 566 year: 2001 ident: 2021041917080347700_b20 article-title: Why leaves turn red in autumn: the role of anthocyanins in senescing leaves of red-osier dogwood publication-title: Plant Physiol doi: 10.1104/pp.010063 – volume: 14 start-page: 204 year: 2011 ident: 2021041917080347700_b45 article-title: Natural epigenetic variation in plant species: a view from the field publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2011.03.009 – volume: 304 start-page: 982 year: 2004 ident: 2021041917080347700_b29 article-title: Retrotransposon-induced mutations in grape skin color publication-title: Science doi: 10.1126/science.1095011 – volume: 1 start-page: 1 year: 2012 ident: 2021041917080347700_b59 article-title: Identification of differentially expressed genes related to coloration in red/green mutant pear (Pyrus communis L.) publication-title: Tree Genet Genomes – volume: 164 start-page: 333 year: 2003 ident: 2021041917080347700_b17 article-title: Changes in anthocyanin concentration and composition in Jaguarrose flowers due to transient high-temperature conditions publication-title: Plant Sci doi: 10.1016/S0168-9452(02)00417-X – volume: 126 start-page: 485 year: 2001 ident: 2021041917080347700_b58 article-title: Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology publication-title: Plant Physiol doi: 10.1104/pp.126.2.485 – volume: 154 start-page: 1470 year: 2010 ident: 2021041917080347700_b13 article-title: The purple cauliflower arises from activation of a MYB transcription factor publication-title: Plant Physiol doi: 10.1104/pp.110.164160 – volume: 81 start-page: 922 year: 1986 ident: 2021041917080347700_b43 article-title: Light, temperature, and anthocyanin production publication-title: Plant Physiol doi: 10.1104/pp.81.3.922 – volume: 18 start-page: 831 year: 2006 ident: 2021041917080347700_b47 article-title: A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum publication-title: Plant Cell doi: 10.1105/tpc.105.039255 – volume: 13 start-page: 99 year: 2008 ident: 2021041917080347700_b2 article-title: MYB transcription factors that colour our fruit publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2007.11.012 – volume: 181 start-page: 81 year: 2009 ident: 2021041917080347700_b48 article-title: Progressive loss of DNA methylation releases epigenetic gene silencing from a tandemly repeated maize Myb gene publication-title: Genetics doi: 10.1534/genetics.108.097170 – volume: 9 start-page: 371 year: 2008 ident: 2021041917080347700_b25 article-title: Kismeth: analyzer of plant methylation states through bisulfite sequencing publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-371 – volume: 170 start-page: 571 year: 2006 ident: 2021041917080347700_b55 article-title: Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature publication-title: Plant Sci doi: 10.1016/j.plantsci.2005.10.009 – volume: 165 start-page: 97 year: 2009 ident: 2021041917080347700_b60 article-title: Mutation induction with ion beam irradiation of lateral buds of chrysanthemum and analysis of chimeric structure of induced mutants publication-title: Euphytica doi: 10.1007/s10681-008-9767-5 – volume: 64 start-page: 885 year: 2010 ident: 2021041917080347700_b56 article-title: Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04353.x – volume: 320 start-page: 1185 year: 2008 ident: 2021041917080347700_b10 article-title: Widespread translational inhibition by plant miRNAs and siRNAs publication-title: Science doi: 10.1126/science.1159151 – volume: 48 start-page: 958 year: 2007 ident: 2021041917080347700_b6 article-title: Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcm066 – volume: 40 start-page: 955 year: 2002 ident: 2021041917080347700_b28 article-title: Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin publication-title: Plant Physiol Biochem doi: 10.1016/S0981-9428(02)01454-7 – volume: 43 start-page: 299 year: 2005 ident: 2021041917080347700_b21 article-title: Virus-induced gene silencing in tomato fruit publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02441.x – volume: 29 start-page: 613 year: 2011 ident: 2021041917080347700_b38 article-title: Characterization of new variety of chrysanthemum by using ISSR markers publication-title: Hortic Bras doi: 10.1590/S0102-05362011000400029 – volume: 9 start-page: 99 year: 1961 ident: 2021041917080347700_b5 article-title: Some morphological, anatomical, and physiological changes in the pear fruit (Pyrus communis var. Williams Bon Chrétien) during development and following harvest publication-title: Aust J Bot doi: 10.1071/BT9610099 – volume: 1 start-page: 163 year: 2010 ident: 2021041917080347700_b26 article-title: Anthocyanins: natural colorants with health-promoting properties publication-title: Annu Rev Food Sci Technol doi: 10.1146/annurev.food.080708.100754 – volume: 83 start-page: 725 year: 1995 ident: 2021041917080347700_b8 article-title: Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis publication-title: Cell doi: 10.1016/0092-8674(95)90185-X – volume: 114 start-page: 488 year: 2003 ident: 2021041917080347700_b41 article-title: Vergleichende Untersuchungen zur Sprossvariation bei Plectranthus L'Herit. (Lamiaceae) publication-title: Feddes Repert doi: 10.1002/fedr.200311011 – volume: 21 start-page: 168 year: 2009 ident: 2021041917080347700_b18 article-title: Multiple repeats of a promoter segment causes transcription factor autoregulation in red apple publication-title: Plant Cell doi: 10.1105/tpc.108.059329 – volume: 10 start-page: 236 year: 2005 ident: 2021041917080347700_b31 article-title: Flavonoids: a colorful model for the regulation and evolution of biochemical pathways publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2005.03.002 – volume: 2 start-page: 241 year: 1963 ident: 2021041917080347700_b12 article-title: The quantitative analysis of chlorophylls a and b in plant extracts publication-title: Photochem Photobiol doi: 10.1111/j.1751-1097.1963.tb08220.x – volume: 356 start-page: 229 year: 2001 ident: 2021041917080347700_b44 article-title: Fruits, foliage and the evolution of primate colour vision publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2000.0773 – volume: 48 start-page: 1020 year: 2010 ident: 2021041917080347700_b40 article-title: Mapping of an anthocyanin-regulating MYB transcription factor and its expression in red and green pear, Pyrus communis publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2010.09.002 – volume: 129 start-page: 13 year: 2004 ident: 2021041917080347700_b49 article-title: Anthocyanin degradation in detached pome fruit with reference to preharvest red color loss and pigmentation patterns of blushed and fully red pears publication-title: J Am Soc Hortic Sci doi: 10.21273/JASHS.129.1.0013 – volume: 27 start-page: 948 year: 2005 ident: 2021041917080347700_b32 article-title: [The heredity of flower colors and the discovery of flower color chimera in Chrysanthemum species] publication-title: Yi Chuan – volume: 130 start-page: 4859 year: 2003 ident: 2021041917080347700_b61 article-title: A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis publication-title: Development doi: 10.1242/dev.00681 – volume: 401 start-page: 157 year: 1999 ident: 2021041917080347700_b15 article-title: An epigenetic mutation responsible for natural variation in floral symmetry publication-title: Nature doi: 10.1038/43657 – volume: 48 start-page: 189 year: 1990 ident: 2021041917080347700_b1 article-title: In vitro separation of chimeral pears into their component genotypes publication-title: Euphytica doi: 10.1007/BF00037199 – volume: 10 start-page: 5350 year: 2009 ident: 2021041917080347700_b51 article-title: Recent progress of flower colour modification by biotechnology publication-title: Int J Mol Sci doi: 10.3390/ijms10125350 – volume: 7 start-page: 1071 year: 1995 ident: 2021041917080347700_b27 article-title: Genetics and biochemistry of anthocyanin biosynthesis publication-title: Plant Cell doi: 10.2307/3870058 – volume: 111 start-page: 1059 year: 1996 ident: 2021041917080347700_b9 article-title: Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation publication-title: Plant Physiol doi: 10.1104/pp.111.4.1059 – volume: 53 start-page: 659 year: 2000 ident: 2021041917080347700_b57 article-title: Sugar sensing and Ca2+-calmodulin requirement in Vitis vinifera cells producing anthocyanins publication-title: Phytochemistry doi: 10.1016/S0031-9422(99)00620-2 – volume: 215 start-page: 924 year: 2002 ident: 2021041917080347700_b30 article-title: Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis publication-title: Planta doi: 10.1007/s00425-002-0830-5 – volume: 2004 start-page: 306 year: 2004 ident: 2021041917080347700_b33 article-title: Anthocyanins and human health: an in vitro investigative approach publication-title: J Biomed Biotechnol doi: 10.1155/S111072430440401X – volume: 2 start-page: 233 year: 2008 ident: 2021041917080347700_b42 article-title: Expression analysis of UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) gene in an interspecific hybrid grape between Vitis ficifolia var. Ganebu and Vitis vinifera cv. Muscat of Alexandria publication-title: Plant Biotechnol Rep doi: 10.1007/s11816-008-0069-0 – volume: 6 start-page: 1 year: 2001 ident: 2021041917080347700_b52 article-title: The study on growth and development of mango flower publication-title: Chimera – volume: 71 start-page: 313 year: 1996 ident: 2021041917080347700_b35 article-title: Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars publication-title: J Sci Food Agric doi: 10.1002/(SICI)1097-0010(199607)71:3<313::AID-JSFA586>3.0.CO;2-N – reference: 20855520 - Plant Physiol. 2010 Nov;154(3):1470-80 – reference: 20054474 - Int J Mol Sci. 2009 Dec;10(12):5350-69 – reference: 16664926 - Plant Physiol. 1986 Jul;81(3):922-4 – reference: 11598230 - Plant Physiol. 2001 Oct;127(2):566-74 – reference: 18998159 - Planta. 2009 Jan;229(2):427-45 – reference: 16446312 - Plant Cell Physiol. 2006 Apr;47(4):457-70 – reference: 12242398 - Plant Cell. 1995 Jul;7(7):1071-1083 – reference: 20822504 - Plant J. 2010 Dec;64(6):885-97 – reference: 11402179 - Plant Physiol. 2001 Jun;126(2):485-93 – reference: 19151225 - Plant Cell. 2009 Jan;21(1):168-83 – reference: 15577194 - J Biomed Biotechnol. 2004;2004(5):306-313 – reference: 7694886 - Genetics. 1993 Oct;135(2):575-88 – reference: 12917293 - Development. 2003 Oct;130(20):4859-69 – reference: 16531495 - Plant Cell. 2006 Apr;18(4):831-51 – reference: 15882656 - Trends Plant Sci. 2005 May;10(5):236-42 – reference: 18036197 - Plant J. 2008 Mar;53(5):814-27 – reference: 15998315 - Plant J. 2005 Jul;43(2):299-308 – reference: 17270013 - Plant J. 2007 Feb;49(4):641-54 – reference: 17526919 - Plant Cell Physiol. 2007 Jul;48(7):958-70 – reference: 8521489 - Cell. 1995 Dec 1;83(5):725-34 – reference: 20436669 - PLoS One. 2010;5(4):e10326 – reference: 22129334 - Annu Rev Food Sci Technol. 2010;1:163-87 – reference: 21652532 - J Exp Bot. 2011 Aug;62(13):4561-70 – reference: 20951056 - Plant Physiol Biochem. 2010 Dec;48(12):1020-6 – reference: 21478048 - Curr Opin Plant Biol. 2011 Apr;14(2):204-9 – reference: 16378944 - Yi Chuan. 2005 Nov;27(6):948-52 – reference: 21599973 - BMC Plant Biol. 2011;11:93 – reference: 19001287 - Genetics. 2009 Jan;181(1):81-91 – reference: 15143274 - Science. 2004 May 14;304(5673):982 – reference: 10746878 - Phytochemistry. 2000 Mar;53(6):659-65 – reference: 11316480 - Philos Trans R Soc Lond B Biol Sci. 2001 Mar 29;356(1407):229-83 – reference: 12226348 - Plant Physiol. 1996 Aug;111(4):1059-1066 – reference: 18483398 - Science. 2008 May 30;320(5880):1185-90 – reference: 18280199 - Trends Plant Sci. 2008 Mar;13(3):99-102 – reference: 10490023 - Nature. 1999 Sep 9;401(6749):157-61 – reference: 12355152 - Planta. 2002 Oct;215(6):924-33 – reference: 18786255 - BMC Bioinformatics. 2008;9:371 |
SSID | ssj0001314 |
Score | 2.5291703 |
Snippet | Varieties of the European pear (Pyrus communis) can produce trees with both red-and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although... Varieties of the European pear (Pyrus communis) can produce trees with both red- and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although... In MRB-G fruits, the expression of PcMYB10 was reduced by the methylation of regions −604 to −911 bp and −1,218 to −1,649 bp in its promoter. As a result, the... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 885 |
SubjectTerms | Agrobacterium tumefaciens - genetics anthocyanins Anthocyanins - metabolism Biological and medical sciences Biosynthesis Chlorophylls Cloning, Molecular color DNA Methylation Fruit - physiology fruits Fundamental and applied biological sciences. Psychology gene expression Gene Expression Regulation, Plant Gene Silencing Genes GENES, DEVELOPMENT, AND EVOLUTION Genetic mutation Glucosyltransferases - genetics Glucosyltransferases - metabolism Methylation Molecular Sequence Data pears Peels Pigmentation Pigmentation - genetics Plant physiology and development Plant Proteins - genetics Plant Proteins - metabolism Plants Promoter regions Promoter Regions, Genetic Pyrus - genetics Pyrus - physiology Transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
Title | The Methylation of the PcMYB10 Promoter Is Associated with Green-Skinned Sport in Max Red Bartlett Pear |
URI | https://www.jstor.org/stable/41943270 https://www.ncbi.nlm.nih.gov/pubmed/23629835 https://www.proquest.com/docview/1365055485 https://www.proquest.com/docview/2000121540 https://pubmed.ncbi.nlm.nih.gov/PMC3668077 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdg8MALGh9jZTAZCfFSMtzY-XpcYdMG7RhSKwYvkeM4W6QqrdZMAv567ux8wiYNXtLKvsZV7hf7d-fzHSGvtdBCcM4dH5YbMFAYd0LNEkezVKgUOHNm8mxPT_yjufh45nU22s3pkjLZU7-uPVfyP1qFNtArnpL9B802N4UG-A76hStoGK631vFUw6NeNMQPeeSpmn4bjxgeAgBF6Mvh8bpRQx1tbuJtHFt6CygnsnB0fUzlD3jiKW5DwABlOTy1gbYNgcUiR6X1h9jsTcBQx3hoeJ3Kjlfha-WG_n6Rn8tqcTRpfm3zh2XbVovu52kDsklucSSLhcy7jglTJKJ2TFSTLXcdjKLqTba-20GVO1yBTj0njLqTaGiL-NTrse37e6pnAusTr7AqzR5WW2KsXdPqffyTz_HhfDKJZwdns7vkngu2BM7en760KeVH3CaAr_9tk4hVvOvdvEdcbOwqBtLKNbxLmS2Ccp2V8mewbYe9zDbJw8rsoPsWQ4_IHV08JvfHSzANfj4h5wAk2gESXWYUVEorINEaSPR4TVsgUQQS7QGJGiDRvKAAJApAojWQKALpKZkfHszeHzlVBQ5HicAtHSlTFkqVBRn3RlyEGtigL6LAU0r7KtQS6DFQwMDUDcqilMnEU5Ir_JkbpJxvkY1iWehtQhPFMo_rAAsWCCF5qEa-n6hIC8WZVMGAvK0fb6yq9PRYJWURGzOViXi1gk8eW20MyJtGfGXzstwkuGV01UiJUSS4G0DHbk95jQDmzAxF5A7Iq1qbMcy5uJEmC728WscYGsqAh4fezTKu8fGCgQIDPbMIaEcA1hiB6TMgQQ8bjQDmfO_3FPmFyf3OfT9kQfD8FuPukAfta_mCbJSXV_olMOgy2TVvwG-1AcLg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Methylation+of+the+PcMYB10+Promoter+Is+Associated+with+Green-Skinned+Sport+in+Max+Red+Bartlett+Pear&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Wang%2C+Zhigang&rft.au=Meng%2C+Dong&rft.au=Wang%2C+Aide&rft.au=Li%2C+Tianlai&rft.date=2013-06-01&rft.issn=0032-0889&rft.volume=162&rft.issue=2+p.885-896&rft.spage=885&rft.epage=896&rft_id=info:doi/10.1104%2Fpp.113.214700&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |