The Methylation of the PcMYB10 Promoter Is Associated with Green-Skinned Sport in Max Red Bartlett Pear

Varieties of the European pear (Pyrus communis) can produce trees with both red-and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its gre...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 162; no. 2; pp. 885 - 896
Main Authors Wang, Zhigang, Meng, Dong, Wang, Aide, Li, Tianlai, Jiang, Shuling, Cong, Peihua, Li, Tianzhong
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 01.06.2013
Subjects
Online AccessGet full text
ISSN0032-0889
1532-2548
1532-2548
DOI10.1104/pp.113.214700

Cover

Loading…
Abstract Varieties of the European pear (Pyrus communis) can produce trees with both red-and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport (MRB-G). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3-O-glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT. An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions -604 to -911 bp and -1,218 to -1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT. We suggest that the methylation level of PcMYB10 is associated with the formation of the greenskinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed.
AbstractList In MRB-G fruits, the expression of PcMYB10 was reduced by the methylation of regions −604 to −911 bp and −1,218 to −1,649 bp in its promoter. As a result, the expression of PcUFGT, a key gene involved in anthocyanin biosynthesis and regulated by PcMYB10, was also reduced. This might cause the inhibition of anthocyanin biosynthesis and the formation of green-skinned sport.
Varieties of the European pear (Pyrus communis) can produce trees with both red- and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport (MRB-G). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3-O-glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT. An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions -604 to -911 bp and -1,218 to -1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT. We suggest that the methylation level of PcMYB10 is associated with the formation of the green-skinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed.Varieties of the European pear (Pyrus communis) can produce trees with both red- and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport (MRB-G). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3-O-glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT. An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions -604 to -911 bp and -1,218 to -1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT. We suggest that the methylation level of PcMYB10 is associated with the formation of the green-skinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed.
Varieties of the European pear (Pyrus communis) can produce trees with both red- and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport (MRB-G). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3-O-glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT. An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions −604 to −911 bp and −1,218 to −1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT. We suggest that the methylation level of PcMYB10 is associated with the formation of the green-skinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed.
Varieties of the European pear (Pyrus communis) can produce trees with both red-and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport (MRB-G). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3-O-glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT. An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions -604 to -911 bp and -1,218 to -1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT. We suggest that the methylation level of PcMYB10 is associated with the formation of the greenskinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed.
In MRB-G fruits, the expression of PcMYB10 was reduced by the methylation of regions −604 to −911 bp and −1,218 to −1,649 bp in its promoter. As a result, the expression of PcUFGT, a key gene involved in anthocyanin biosynthesis and regulated by PcMYB10, was also reduced. This might cause the inhibition of anthocyanin biosynthesis and the formation of green-skinned sport. Varieties of the European pear ( Pyrus communis ) can produce trees with both red- and green-skinned fruits, such as the Max Red Bartlett ( MRB ) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport ( MRB-G ). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3- O -glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT . An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions −604 to −911 bp and −1,218 to −1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT . We suggest that the methylation level of PcMYB10 is associated with the formation of the green-skinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed.
Varieties of the European pear (Pyrus communis) can produce trees with both red- and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport (MRB-G). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3-O-glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT. An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions -604 to -911 bp and -1,218 to -1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT. We suggest that the methylation level of PcMYB10 is associated with the formation of the green-skinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed.
Author Jiang, Shuling
Wang, Zhigang
Cong, Peihua
Meng, Dong
Wang, Aide
Li, Tianlai
Li, Tianzhong
Author_xml – sequence: 1
  givenname: Zhigang
  surname: Wang
  fullname: Wang, Zhigang
– sequence: 2
  givenname: Dong
  surname: Meng
  fullname: Meng, Dong
– sequence: 3
  givenname: Aide
  surname: Wang
  fullname: Wang, Aide
– sequence: 4
  givenname: Tianlai
  surname: Li
  fullname: Li, Tianlai
– sequence: 5
  givenname: Shuling
  surname: Jiang
  fullname: Jiang, Shuling
– sequence: 6
  givenname: Peihua
  surname: Cong
  fullname: Cong, Peihua
– sequence: 7
  givenname: Tianzhong
  surname: Li
  fullname: Li, Tianzhong
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27448492$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23629835$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhi1URNPCkSPIFyQuW8Zfa-8Fqa2gVGpERMuBk-U63sZlY29tB-i_xyEhfEiI01ivn3ln7JkDtBdicAg9JXBECPBX41gjO6KES4AHaEIEow0VXO2hCUA9g1LdPjrI-RYACCP8EdqnrKWdYmKCbq4WDk9dWdwPpvgYcOxxqdLMTj-dEMCzFJexuITPMz7OOVpvipvjr74s8FlyLjSXn30IVbocYyrYBzw13_CHKpyYVAZXCp45kx6jh70ZsnuyjYfo49s3V6fvmov3Z-enxxeN5ZKWxpg5KGN72TNBGFeOUN7yTgprXWuVM4QKyomEriWq7-ZgroU1zK7TqJwzdoheb3zH1fXSza0LJZlBj8kvTbrX0Xj9503wC30Tv2jWtgqkrAYvtwYp3q1cLnrps3XDYIKLq6zp-hcpERz-ixLWChB1FKKiz39va9fPz0FU4MUWMNmaoU8mWJ9_cZJzxTtauWbD2RRzTq7fIQT0eiH0ONbI9GYhKs_-4q0vPyZdX--Hf2Y922Td5hLTrgQnHWdUAvsO9szBCA
CODEN PPHYA5
CitedBy_id crossref_primary_10_1080_01140671_2023_2206141
crossref_primary_10_1111_pbi_12331
crossref_primary_10_1080_01140671_2017_1351378
crossref_primary_10_1016_j_phytochem_2014_08_001
crossref_primary_10_1093_hr_uhad080
crossref_primary_10_3389_fpls_2017_01178
crossref_primary_10_3390_ijms232012120
crossref_primary_10_1007_s11105_014_0732_2
crossref_primary_10_1038_srep45324
crossref_primary_10_1093_dnares_dsx021
crossref_primary_10_3390_horticulturae8040332
crossref_primary_10_3389_fpls_2023_1079292
crossref_primary_10_1371_journal_pone_0135159
crossref_primary_10_1007_s11105_015_0920_8
crossref_primary_10_1007_s13205_019_1844_z
crossref_primary_10_1007_s12041_019_1141_y
crossref_primary_10_1371_journal_pone_0091945
crossref_primary_10_1038_s41598_017_00069_z
crossref_primary_10_1016_j_plantsci_2020_110598
crossref_primary_10_1016_j_plantsci_2020_110476
crossref_primary_10_1016_j_foodres_2021_110183
crossref_primary_10_1016_j_gene_2018_01_022
crossref_primary_10_2139_ssrn_4100213
crossref_primary_10_1007_s00344_015_9552_3
crossref_primary_10_3390_ijms21041528
crossref_primary_10_3390_agronomy14071467
crossref_primary_10_1093_treephys_tpaa156
crossref_primary_10_3390_horticulturae10090989
crossref_primary_10_1007_s11033_023_08618_8
crossref_primary_10_3390_plants12061316
crossref_primary_10_1134_S1022795424700042
crossref_primary_10_1007_s11032_017_0625_9
crossref_primary_10_1038_s41438_021_00590_3
crossref_primary_10_1111_tpj_14680
crossref_primary_10_1016_j_plaphy_2025_109821
crossref_primary_10_3389_fpls_2022_1027567
crossref_primary_10_1093_jxb_erx029
crossref_primary_10_1111_pbi_13337
crossref_primary_10_1016_j_scienta_2021_110633
crossref_primary_10_1016_j_foodchem_2023_135540
crossref_primary_10_1093_hr_uhad170
crossref_primary_10_1093_jxb_erv524
crossref_primary_10_3390_biom10020278
crossref_primary_10_1038_hortres_2017_15
crossref_primary_10_1111_pce_13697
crossref_primary_10_1111_ppl_12655
crossref_primary_10_1016_j_ygeno_2020_08_018
crossref_primary_10_1007_s00299_014_1698_0
crossref_primary_10_1155_2016_5620106
crossref_primary_10_1186_s12870_022_03518_8
crossref_primary_10_1007_s11103_021_01185_1
crossref_primary_10_3390_ijms23063319
crossref_primary_10_1016_j_scienta_2018_09_040
crossref_primary_10_15302_J_FASE_2014002
crossref_primary_10_3390_ijms19103133
crossref_primary_10_3389_fpls_2022_1074965
crossref_primary_10_3390_plants8040100
crossref_primary_10_1371_journal_pgen_1007993
crossref_primary_10_3390_genes13071256
crossref_primary_10_1038_s41438_020_0258_8
crossref_primary_10_1186_s12870_018_1388_0
crossref_primary_10_1016_j_hpj_2024_04_002
crossref_primary_10_1186_s41065_018_0063_7
crossref_primary_10_1038_s41438_019_0118_6
crossref_primary_10_1016_j_plaphy_2017_04_007
crossref_primary_10_3389_fpls_2020_592540
crossref_primary_10_1038_s41438_019_0220_9
crossref_primary_10_1111_nph_16724
crossref_primary_10_3390_plants12010082
crossref_primary_10_1371_journal_pone_0136439
crossref_primary_10_3389_fpls_2015_00795
crossref_primary_10_1007_s11240_019_01622_6
crossref_primary_10_1016_j_scienta_2019_108944
crossref_primary_10_1093_jxb_eraa010
crossref_primary_10_1093_jxb_erv433
crossref_primary_10_3390_biology11121721
crossref_primary_10_1007_s00299_023_03015_8
crossref_primary_10_1093_jxb_ert377
crossref_primary_10_1016_j_plaphy_2019_07_023
crossref_primary_10_1093_pcp_pcu205
crossref_primary_10_1186_s13059_024_03200_2
crossref_primary_10_1073_pnas_1503362112
crossref_primary_10_1186_s12864_022_09107_1
crossref_primary_10_3389_fpls_2017_01507
crossref_primary_10_1186_s12870_020_02344_0
crossref_primary_10_1186_s12870_018_1320_7
crossref_primary_10_1080_15592294_2016_1185580
crossref_primary_10_3390_ijms242316807
crossref_primary_10_1016_j_scienta_2022_111648
crossref_primary_10_1016_j_plaphy_2023_107647
crossref_primary_10_1038_s41438_020_0319_z
crossref_primary_10_1038_s41438_021_00679_9
crossref_primary_10_1093_plphys_kiad160
crossref_primary_10_1007_s11103_019_00870_6
crossref_primary_10_1016_j_plantsci_2020_110578
crossref_primary_10_1002_pmic_202200104
crossref_primary_10_3390_plants12173162
crossref_primary_10_1007_s11105_018_1070_6
crossref_primary_10_1021_acs_jafc_3c03029
crossref_primary_10_1038_hortres_2017_53
crossref_primary_10_31857_S0016675824050014
crossref_primary_10_1016_j_plgene_2018_05_001
crossref_primary_10_1016_j_scienta_2019_01_034
crossref_primary_10_1111_nph_16705
crossref_primary_10_1007_s11105_025_01545_x
crossref_primary_10_1016_j_hpj_2023_09_011
crossref_primary_10_1038_srep32534
crossref_primary_10_3390_genes10120949
crossref_primary_10_1080_07352689_2020_1866829
crossref_primary_10_3390_biology13050329
crossref_primary_10_3390_f11010090
crossref_primary_10_3389_fpls_2016_01245
crossref_primary_10_1093_hr_uhac158
crossref_primary_10_3389_fpls_2016_00153
crossref_primary_10_1186_s12870_020_02744_2
crossref_primary_10_1111_nph_20347
crossref_primary_10_1111_nph_18389
crossref_primary_10_1080_13102818_2019_1628662
crossref_primary_10_1007_s11032_018_0926_7
crossref_primary_10_1111_tpj_13666
crossref_primary_10_1016_j_plaphy_2020_09_021
crossref_primary_10_1016_j_postharvbio_2022_112108
crossref_primary_10_3389_fpls_2022_1021617
crossref_primary_10_3390_horticulturae9091036
crossref_primary_10_3389_fpls_2016_01338
crossref_primary_10_1016_j_ijbiomac_2024_137086
crossref_primary_10_3389_fpls_2016_00807
crossref_primary_10_3389_fpls_2017_00455
crossref_primary_10_3390_plants10071386
crossref_primary_10_1093_hr_uhab040
crossref_primary_10_3390_horticulturae10030276
crossref_primary_10_1093_hr_uhac013
crossref_primary_10_1016_j_plantsci_2022_111499
crossref_primary_10_1093_hr_uhad100
crossref_primary_10_1016_j_jia_2023_07_017
crossref_primary_10_1007_s11427_024_2784_3
crossref_primary_10_1111_nph_17397
crossref_primary_10_1111_nph_16500
crossref_primary_10_1186_s12870_021_03188_y
crossref_primary_10_1016_j_scienta_2024_113283
crossref_primary_10_2139_ssrn_4046691
crossref_primary_10_3390_ijms252011100
crossref_primary_10_3389_fpls_2022_1072185
crossref_primary_10_3389_fgene_2024_1405604
crossref_primary_10_1111_tpj_12792
crossref_primary_10_1371_journal_pone_0171506
crossref_primary_10_1186_s12870_015_0664_5
crossref_primary_10_3389_fgene_2021_779557
crossref_primary_10_1016_j_scienta_2022_111392
crossref_primary_10_3389_fpls_2017_01247
crossref_primary_10_17660_ActaHortic_2022_1344_8
crossref_primary_10_1016_j_scienta_2019_109052
crossref_primary_10_1021_acs_jafc_1c04550
crossref_primary_10_1080_15592324_2017_1422467
crossref_primary_10_3390_agronomy9120871
crossref_primary_10_3390_ijms23094575
crossref_primary_10_1186_s12864_019_5499_2
crossref_primary_10_1111_pbi_13351
crossref_primary_10_1016_j_scienta_2015_01_003
crossref_primary_10_1093_pcp_pcu013
crossref_primary_10_1007_s00344_020_10124_1
crossref_primary_10_1111_pbi_12820
crossref_primary_10_1007_s11627_021_10208_x
crossref_primary_10_1080_87559129_2024_2404471
crossref_primary_10_3389_fpls_2021_655267
crossref_primary_10_3390_f15010011
crossref_primary_10_1007_s10725_020_00634_z
crossref_primary_10_1007_s00425_016_2524_4
crossref_primary_10_3390_f14020416
crossref_primary_10_1093_pcp_pcv111
crossref_primary_10_7717_peerj_3776
crossref_primary_10_1016_j_plaphy_2024_109268
crossref_primary_10_1371_journal_pone_0235073
crossref_primary_10_1021_acs_jafc_0c07037
crossref_primary_10_1038_s41477_018_0287_6
crossref_primary_10_1016_j_plantsci_2021_110925
crossref_primary_10_3390_horticulturae10060535
crossref_primary_10_1093_hr_uhac175
crossref_primary_10_1016_j_plantsci_2022_111290
crossref_primary_10_1093_hr_uhac179
crossref_primary_10_1021_acs_jafc_9b07098
crossref_primary_10_3390_plants8020039
crossref_primary_10_3390_ijms19082315
crossref_primary_10_1038_s41438_018_0112_4
crossref_primary_10_1016_j_plantsci_2019_01_008
crossref_primary_10_1007_s00425_019_03266_4
crossref_primary_10_1093_plcell_koac006
crossref_primary_10_1186_s12870_019_1898_4
crossref_primary_10_48130_frures_0024_0042
crossref_primary_10_1016_j_plaphy_2023_107913
crossref_primary_10_1016_j_plantsci_2022_111501
crossref_primary_10_17221_55_2016_CJGPB
crossref_primary_10_1111_tpj_13289
Cites_doi 10.1371/journal.pone.0010326
10.1016/j.tree.2004.08.003
10.1007/s00425-008-0841-y
10.1093/pcp/pcj012
10.1111/j.1365-313X.2006.02988.x
10.1093/jxb/err163
10.1186/1471-2229-11-93
10.1093/genetics/135.2.575
10.1111/j.1365-313X.2007.03373.x
10.1104/pp.010063
10.1016/j.pbi.2011.03.009
10.1126/science.1095011
10.1016/S0168-9452(02)00417-X
10.1104/pp.126.2.485
10.1104/pp.110.164160
10.1104/pp.81.3.922
10.1105/tpc.105.039255
10.1016/j.tplants.2007.11.012
10.1534/genetics.108.097170
10.1186/1471-2105-9-371
10.1016/j.plantsci.2005.10.009
10.1007/s10681-008-9767-5
10.1111/j.1365-313X.2010.04353.x
10.1126/science.1159151
10.1093/pcp/pcm066
10.1016/S0981-9428(02)01454-7
10.1111/j.1365-313X.2005.02441.x
10.1590/S0102-05362011000400029
10.1071/BT9610099
10.1146/annurev.food.080708.100754
10.1016/0092-8674(95)90185-X
10.1002/fedr.200311011
10.1105/tpc.108.059329
10.1016/j.tplants.2005.03.002
10.1111/j.1751-1097.1963.tb08220.x
10.1098/rstb.2000.0773
10.1016/j.plaphy.2010.09.002
10.21273/JASHS.129.1.0013
10.1242/dev.00681
10.1038/43657
10.1007/BF00037199
10.3390/ijms10125350
10.2307/3870058
10.1104/pp.111.4.1059
10.1016/S0031-9422(99)00620-2
10.1007/s00425-002-0830-5
10.1155/S111072430440401X
10.1007/s11816-008-0069-0
10.1002/(SICI)1097-0010(199607)71:3<313::AID-JSFA586>3.0.CO;2-N
ContentType Journal Article
Copyright 2013 American Society of Plant Biologists
2014 INIST-CNRS
2013 American Society of Plant Biologists. All Rights Reserved. 2013
Copyright_xml – notice: 2013 American Society of Plant Biologists
– notice: 2014 INIST-CNRS
– notice: 2013 American Society of Plant Biologists. All Rights Reserved. 2013
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1104/pp.113.214700
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1532-2548
EndPage 896
ExternalDocumentID PMC3668077
23629835
27448492
10_1104_pp_113_214700
41943270
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2WC
2~F
4.4
5VS
5WD
85S
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAXTN
ABBHK
ABDFA
ABEJV
ABGNP
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABVGC
ABXSQ
ABXVV
ABXZS
ACBTR
ACGOD
ACHIC
ACNCT
ACPRK
ACUFI
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADXHL
ADYHW
AEEJZ
AENEX
AEUPB
AFAZZ
AFFZL
AFGWE
AFRAH
AGORE
AGUYK
AHMBA
AHXOZ
AICQM
AJBYB
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AQVQM
ATGXG
BAWUL
BCRHZ
BEYMZ
BTFSW
CBGCD
CS3
DATOO
DIK
DU5
E3Z
EBS
ECGQY
EJD
F5P
FLUFQ
FOEOM
H13
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
MV1
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P2P
Q2X
RHI
ROX
RPB
RWL
RXW
SA0
TAE
TN5
TR2
W8F
WH7
WOQ
XSW
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCN
~02
~KM
AAYXX
CITATION
53G
7X2
7X7
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
AAWDT
AAYJJ
ABIME
ABPIB
ABUWG
ABZEO
ACFRR
ACIPB
ACUTJ
ACVCV
ACZBC
AEUYN
AFFDN
AFKRA
AFYAG
AGMDO
AHGBF
AIDAL
AIDBO
AJDVS
ANFBD
APJGH
AQDSO
AS~
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
D1J
DWQXO
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HMCUK
HTVGU
IQODW
LK8
LU7
M0K
M1P
M2O
M2P
M2Q
M7P
MVM
P0-
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
QZG
S0X
TCN
UBC
UKHRP
UKR
WHG
XOL
Y6R
ZCG
ADYWZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c472t-aad08acf7f351348e12464975cce6c8ea125241709618f9d0ab5ca3cad0827d33
ISSN 0032-0889
1532-2548
IngestDate Thu Aug 21 18:19:08 EDT 2025
Sun Aug 24 04:02:58 EDT 2025
Fri Jul 11 03:31:10 EDT 2025
Thu Apr 03 07:09:38 EDT 2025
Mon Jul 21 09:13:26 EDT 2025
Thu Apr 24 22:59:22 EDT 2025
Tue Jul 01 03:07:59 EDT 2025
Fri May 30 11:59:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Promoter
Pear
Plant physiology
Methylation
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c472t-aad08acf7f351348e12464975cce6c8ea125241709618f9d0ab5ca3cad0827d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Some figures in this article are displayed in color online but in black and white in the print edition.
www.plantphysiol.org/cgi/doi/10.1104/pp.113.214700
The online version of this article contains Web-only data.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Tianzhong Li (litianzhong1535@163.com).
This work was supported by the Doctoral Program Special Fund of the Ministry of Education in China (grant no. 20100008110036) and the Beijing Natural Science Foundation (grant no. 6102017).
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3668077
PMID 23629835
PQID 1365055485
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3668077
proquest_miscellaneous_2000121540
proquest_miscellaneous_1365055485
pubmed_primary_23629835
pascalfrancis_primary_27448492
crossref_primary_10_1104_pp_113_214700
crossref_citationtrail_10_1104_pp_113_214700
jstor_primary_41943270
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2013
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References Cubas (2021041917080347700_b15) 1999; 401
Tegopati (2021041917080347700_b52) 2001; 6
Lister (2021041917080347700_b35) 1996; 71
Pierantoni (2021041917080347700_b40) 2010; 48
Fu (2021041917080347700_b21) 2005; 43
Vanholme (2021041917080347700_b56) 2010; 64
Dela (2021041917080347700_b17) 2003; 164
Gonzalez (2021041917080347700_b24) 2008; 53
Stracke (2021041917080347700_b50) 2009; 229
Honda (2021041917080347700_b28) 2002; 40
Bain (2021041917080347700_b5) 1961; 9
Cocciolone (2021041917080347700_b14) 1993; 135
Ma (2021041917080347700_b36) 2009; 22
Wu (2021041917080347700_b59) 2012; 1
Telias (2021041917080347700_b53) 2011; 11
Abu-Qaoud (2021041917080347700_b1) 1990; 48
Brodersen (2021041917080347700_b10) 2008; 320
Schwinn (2021041917080347700_b47) 2006; 18
Koes (2021041917080347700_b31) 2005; 10
Poudel (2021041917080347700_b42) 2008; 2
Lila (2021041917080347700_b33) 2004; 2004
Kobayashi (2021041917080347700_b29) 2004; 304
Vitrac (2021041917080347700_b57) 2000; 53
Zhang (2021041917080347700_b61) 2003; 130
Gong (2021041917080347700_b22) 2011; 1
Park (2021041917080347700_b39) 2007; 49
Gruntman (2021041917080347700_b25) 2008; 9
Lira-Medeiros (2021041917080347700_b34) 2010; 5
Yamaguchi (2021041917080347700_b60) 2009; 165
Bai (2021041917080347700_b4) 2011; 62
Feild (2021041917080347700_b20) 2001; 127
Palai (2021041917080347700_b38) 2011; 29
Holton (2021041917080347700_b27) 1995; 7
Espley (2021041917080347700_b18) 2009; 21
Sekhon (2021041917080347700_b48) 2009; 181
Bender (2021041917080347700_b8) 1995; 83
Chiu (2021041917080347700_b13) 2010; 154
Gong (2021041917080347700_b23) 2008; 24
Li (2021041917080347700_b32) 2005; 27
Kobayashi (2021041917080347700_b30) 2002; 215
Pohlheim (2021041917080347700_b41) 2003; 114
Schaefer (2021041917080347700_b46) 2004; 19
He (2021041917080347700_b26) 2010; 1
Boss (2021041917080347700_b9) 1996; 111
Rabino (2021041917080347700_b43) 1986; 81
Thomas (2021041917080347700_b54) 2010; 9
Bruuinsma (2021041917080347700_b12) 1963; 2
Regan (2021041917080347700_b44) 2001; 356
Tanaka (2021041917080347700_b51) 2009; 10
Ban (2021041917080347700_b6) 2007; 48
Winkel-Shirley (2021041917080347700_b58) 2001; 126
Morita (2021041917080347700_b37) 2006; 47
Ubi (2021041917080347700_b55) 2006; 170
Allan (2021041917080347700_b2) 2008; 13
Steyn (2021041917080347700_b49) 2004; 129
Richards (2021041917080347700_b45) 2011; 14
16664926 - Plant Physiol. 1986 Jul;81(3):922-4
18280199 - Trends Plant Sci. 2008 Mar;13(3):99-102
18786255 - BMC Bioinformatics. 2008;9:371
18998159 - Planta. 2009 Jan;229(2):427-45
16378944 - Yi Chuan. 2005 Nov;27(6):948-52
21599973 - BMC Plant Biol. 2011;11:93
15882656 - Trends Plant Sci. 2005 May;10(5):236-42
11402179 - Plant Physiol. 2001 Jun;126(2):485-93
17270013 - Plant J. 2007 Feb;49(4):641-54
18483398 - Science. 2008 May 30;320(5880):1185-90
10490023 - Nature. 1999 Sep 9;401(6749):157-61
20054474 - Int J Mol Sci. 2009 Dec;10(12):5350-69
15998315 - Plant J. 2005 Jul;43(2):299-308
20436669 - PLoS One. 2010;5(4):e10326
10746878 - Phytochemistry. 2000 Mar;53(6):659-65
20951056 - Plant Physiol Biochem. 2010 Dec;48(12):1020-6
12355152 - Planta. 2002 Oct;215(6):924-33
15143274 - Science. 2004 May 14;304(5673):982
19151225 - Plant Cell. 2009 Jan;21(1):168-83
22129334 - Annu Rev Food Sci Technol. 2010;1:163-87
16531495 - Plant Cell. 2006 Apr;18(4):831-51
17526919 - Plant Cell Physiol. 2007 Jul;48(7):958-70
19001287 - Genetics. 2009 Jan;181(1):81-91
12917293 - Development. 2003 Oct;130(20):4859-69
7694886 - Genetics. 1993 Oct;135(2):575-88
20855520 - Plant Physiol. 2010 Nov;154(3):1470-80
16446312 - Plant Cell Physiol. 2006 Apr;47(4):457-70
18036197 - Plant J. 2008 Mar;53(5):814-27
11598230 - Plant Physiol. 2001 Oct;127(2):566-74
12242398 - Plant Cell. 1995 Jul;7(7):1071-1083
12226348 - Plant Physiol. 1996 Aug;111(4):1059-1066
20822504 - Plant J. 2010 Dec;64(6):885-97
21652532 - J Exp Bot. 2011 Aug;62(13):4561-70
15577194 - J Biomed Biotechnol. 2004;2004(5):306-313
21478048 - Curr Opin Plant Biol. 2011 Apr;14(2):204-9
8521489 - Cell. 1995 Dec 1;83(5):725-34
11316480 - Philos Trans R Soc Lond B Biol Sci. 2001 Mar 29;356(1407):229-83
References_xml – volume: 5
  start-page: e10326
  year: 2010
  ident: 2021041917080347700_b34
  article-title: Epigenetic variation in mangrove plants occurring in contrasting natural environment
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0010326
– volume: 19
  start-page: 577
  year: 2004
  ident: 2021041917080347700_b46
  article-title: How plant-animal interactions signal new insights in communication
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2004.08.003
– volume: 229
  start-page: 427
  year: 2009
  ident: 2021041917080347700_b50
  article-title: Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase
  publication-title: Planta
  doi: 10.1007/s00425-008-0841-y
– volume: 47
  start-page: 457
  year: 2006
  ident: 2021041917080347700_b37
  article-title: Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcj012
– volume: 9
  start-page: 4334
  year: 2010
  ident: 2021041917080347700_b54
  article-title: Establishment of proteome spot profiles and comparative analysis of the red and green phenotypes of ‘Bon Rouge’ pear (Pyrus communis L.) leaves
  publication-title: Afr J Biotechnol
– volume: 22
  start-page: 1042
  year: 2009
  ident: 2021041917080347700_b36
  article-title: Effect of different tissues in Pyrus L. for genome DNA extract on RAPD
  publication-title: Southwest China J Agr Sci
– volume: 1
  start-page: 1
  year: 2011
  ident: 2021041917080347700_b22
  article-title: Three methods for extracting total RNA from leaves of pear varieties
  publication-title: Hubei Agricultural Sciences
– volume: 49
  start-page: 641
  year: 2007
  ident: 2021041917080347700_b39
  article-title: A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2006.02988.x
– volume: 24
  start-page: 65
  year: 2008
  ident: 2021041917080347700_b23
  article-title: Process of somaclone variation in plant
  publication-title: Chinese Agricultural Science Bulletin
– volume: 62
  start-page: 4561
  year: 2011
  ident: 2021041917080347700_b4
  article-title: A mobile signal transported over a long distance induces systemic transcriptional gene silencing in a grafted partner
  publication-title: J Exp Bot
  doi: 10.1093/jxb/err163
– volume: 11
  start-page: 93
  year: 2011
  ident: 2021041917080347700_b53
  article-title: Apple skin patterning is associated with differential expression of MYB10
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-11-93
– volume: 135
  start-page: 575
  year: 1993
  ident: 2021041917080347700_b14
  article-title: Pl-Bh, an anthocyanin regulatory gene of maize that leads to variegated pigmentation
  publication-title: Genetics
  doi: 10.1093/genetics/135.2.575
– volume: 53
  start-page: 814
  year: 2008
  ident: 2021041917080347700_b24
  article-title: Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2007.03373.x
– volume: 127
  start-page: 566
  year: 2001
  ident: 2021041917080347700_b20
  article-title: Why leaves turn red in autumn: the role of anthocyanins in senescing leaves of red-osier dogwood
  publication-title: Plant Physiol
  doi: 10.1104/pp.010063
– volume: 14
  start-page: 204
  year: 2011
  ident: 2021041917080347700_b45
  article-title: Natural epigenetic variation in plant species: a view from the field
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2011.03.009
– volume: 304
  start-page: 982
  year: 2004
  ident: 2021041917080347700_b29
  article-title: Retrotransposon-induced mutations in grape skin color
  publication-title: Science
  doi: 10.1126/science.1095011
– volume: 1
  start-page: 1
  year: 2012
  ident: 2021041917080347700_b59
  article-title: Identification of differentially expressed genes related to coloration in red/green mutant pear (Pyrus communis L.)
  publication-title: Tree Genet Genomes
– volume: 164
  start-page: 333
  year: 2003
  ident: 2021041917080347700_b17
  article-title: Changes in anthocyanin concentration and composition in Jaguarrose flowers due to transient high-temperature conditions
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(02)00417-X
– volume: 126
  start-page: 485
  year: 2001
  ident: 2021041917080347700_b58
  article-title: Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology
  publication-title: Plant Physiol
  doi: 10.1104/pp.126.2.485
– volume: 154
  start-page: 1470
  year: 2010
  ident: 2021041917080347700_b13
  article-title: The purple cauliflower arises from activation of a MYB transcription factor
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.164160
– volume: 81
  start-page: 922
  year: 1986
  ident: 2021041917080347700_b43
  article-title: Light, temperature, and anthocyanin production
  publication-title: Plant Physiol
  doi: 10.1104/pp.81.3.922
– volume: 18
  start-page: 831
  year: 2006
  ident: 2021041917080347700_b47
  article-title: A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.039255
– volume: 13
  start-page: 99
  year: 2008
  ident: 2021041917080347700_b2
  article-title: MYB transcription factors that colour our fruit
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2007.11.012
– volume: 181
  start-page: 81
  year: 2009
  ident: 2021041917080347700_b48
  article-title: Progressive loss of DNA methylation releases epigenetic gene silencing from a tandemly repeated maize Myb gene
  publication-title: Genetics
  doi: 10.1534/genetics.108.097170
– volume: 9
  start-page: 371
  year: 2008
  ident: 2021041917080347700_b25
  article-title: Kismeth: analyzer of plant methylation states through bisulfite sequencing
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-371
– volume: 170
  start-page: 571
  year: 2006
  ident: 2021041917080347700_b55
  article-title: Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2005.10.009
– volume: 165
  start-page: 97
  year: 2009
  ident: 2021041917080347700_b60
  article-title: Mutation induction with ion beam irradiation of lateral buds of chrysanthemum and analysis of chimeric structure of induced mutants
  publication-title: Euphytica
  doi: 10.1007/s10681-008-9767-5
– volume: 64
  start-page: 885
  year: 2010
  ident: 2021041917080347700_b56
  article-title: Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04353.x
– volume: 320
  start-page: 1185
  year: 2008
  ident: 2021041917080347700_b10
  article-title: Widespread translational inhibition by plant miRNAs and siRNAs
  publication-title: Science
  doi: 10.1126/science.1159151
– volume: 48
  start-page: 958
  year: 2007
  ident: 2021041917080347700_b6
  article-title: Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcm066
– volume: 40
  start-page: 955
  year: 2002
  ident: 2021041917080347700_b28
  article-title: Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin
  publication-title: Plant Physiol Biochem
  doi: 10.1016/S0981-9428(02)01454-7
– volume: 43
  start-page: 299
  year: 2005
  ident: 2021041917080347700_b21
  article-title: Virus-induced gene silencing in tomato fruit
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02441.x
– volume: 29
  start-page: 613
  year: 2011
  ident: 2021041917080347700_b38
  article-title: Characterization of new variety of chrysanthemum by using ISSR markers
  publication-title: Hortic Bras
  doi: 10.1590/S0102-05362011000400029
– volume: 9
  start-page: 99
  year: 1961
  ident: 2021041917080347700_b5
  article-title: Some morphological, anatomical, and physiological changes in the pear fruit (Pyrus communis var. Williams Bon Chrétien) during development and following harvest
  publication-title: Aust J Bot
  doi: 10.1071/BT9610099
– volume: 1
  start-page: 163
  year: 2010
  ident: 2021041917080347700_b26
  article-title: Anthocyanins: natural colorants with health-promoting properties
  publication-title: Annu Rev Food Sci Technol
  doi: 10.1146/annurev.food.080708.100754
– volume: 83
  start-page: 725
  year: 1995
  ident: 2021041917080347700_b8
  article-title: Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90185-X
– volume: 114
  start-page: 488
  year: 2003
  ident: 2021041917080347700_b41
  article-title: Vergleichende Untersuchungen zur Sprossvariation bei Plectranthus L'Herit. (Lamiaceae)
  publication-title: Feddes Repert
  doi: 10.1002/fedr.200311011
– volume: 21
  start-page: 168
  year: 2009
  ident: 2021041917080347700_b18
  article-title: Multiple repeats of a promoter segment causes transcription factor autoregulation in red apple
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.059329
– volume: 10
  start-page: 236
  year: 2005
  ident: 2021041917080347700_b31
  article-title: Flavonoids: a colorful model for the regulation and evolution of biochemical pathways
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2005.03.002
– volume: 2
  start-page: 241
  year: 1963
  ident: 2021041917080347700_b12
  article-title: The quantitative analysis of chlorophylls a and b in plant extracts
  publication-title: Photochem Photobiol
  doi: 10.1111/j.1751-1097.1963.tb08220.x
– volume: 356
  start-page: 229
  year: 2001
  ident: 2021041917080347700_b44
  article-title: Fruits, foliage and the evolution of primate colour vision
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2000.0773
– volume: 48
  start-page: 1020
  year: 2010
  ident: 2021041917080347700_b40
  article-title: Mapping of an anthocyanin-regulating MYB transcription factor and its expression in red and green pear, Pyrus communis
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2010.09.002
– volume: 129
  start-page: 13
  year: 2004
  ident: 2021041917080347700_b49
  article-title: Anthocyanin degradation in detached pome fruit with reference to preharvest red color loss and pigmentation patterns of blushed and fully red pears
  publication-title: J Am Soc Hortic Sci
  doi: 10.21273/JASHS.129.1.0013
– volume: 27
  start-page: 948
  year: 2005
  ident: 2021041917080347700_b32
  article-title: [The heredity of flower colors and the discovery of flower color chimera in Chrysanthemum species]
  publication-title: Yi Chuan
– volume: 130
  start-page: 4859
  year: 2003
  ident: 2021041917080347700_b61
  article-title: A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis
  publication-title: Development
  doi: 10.1242/dev.00681
– volume: 401
  start-page: 157
  year: 1999
  ident: 2021041917080347700_b15
  article-title: An epigenetic mutation responsible for natural variation in floral symmetry
  publication-title: Nature
  doi: 10.1038/43657
– volume: 48
  start-page: 189
  year: 1990
  ident: 2021041917080347700_b1
  article-title: In vitro separation of chimeral pears into their component genotypes
  publication-title: Euphytica
  doi: 10.1007/BF00037199
– volume: 10
  start-page: 5350
  year: 2009
  ident: 2021041917080347700_b51
  article-title: Recent progress of flower colour modification by biotechnology
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms10125350
– volume: 7
  start-page: 1071
  year: 1995
  ident: 2021041917080347700_b27
  article-title: Genetics and biochemistry of anthocyanin biosynthesis
  publication-title: Plant Cell
  doi: 10.2307/3870058
– volume: 111
  start-page: 1059
  year: 1996
  ident: 2021041917080347700_b9
  article-title: Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.4.1059
– volume: 53
  start-page: 659
  year: 2000
  ident: 2021041917080347700_b57
  article-title: Sugar sensing and Ca2+-calmodulin requirement in Vitis vinifera cells producing anthocyanins
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(99)00620-2
– volume: 215
  start-page: 924
  year: 2002
  ident: 2021041917080347700_b30
  article-title: Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis
  publication-title: Planta
  doi: 10.1007/s00425-002-0830-5
– volume: 2004
  start-page: 306
  year: 2004
  ident: 2021041917080347700_b33
  article-title: Anthocyanins and human health: an in vitro investigative approach
  publication-title: J Biomed Biotechnol
  doi: 10.1155/S111072430440401X
– volume: 2
  start-page: 233
  year: 2008
  ident: 2021041917080347700_b42
  article-title: Expression analysis of UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) gene in an interspecific hybrid grape between Vitis ficifolia var. Ganebu and Vitis vinifera cv. Muscat of Alexandria
  publication-title: Plant Biotechnol Rep
  doi: 10.1007/s11816-008-0069-0
– volume: 6
  start-page: 1
  year: 2001
  ident: 2021041917080347700_b52
  article-title: The study on growth and development of mango flower
  publication-title: Chimera
– volume: 71
  start-page: 313
  year: 1996
  ident: 2021041917080347700_b35
  article-title: Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars
  publication-title: J Sci Food Agric
  doi: 10.1002/(SICI)1097-0010(199607)71:3<313::AID-JSFA586>3.0.CO;2-N
– reference: 20855520 - Plant Physiol. 2010 Nov;154(3):1470-80
– reference: 20054474 - Int J Mol Sci. 2009 Dec;10(12):5350-69
– reference: 16664926 - Plant Physiol. 1986 Jul;81(3):922-4
– reference: 11598230 - Plant Physiol. 2001 Oct;127(2):566-74
– reference: 18998159 - Planta. 2009 Jan;229(2):427-45
– reference: 16446312 - Plant Cell Physiol. 2006 Apr;47(4):457-70
– reference: 12242398 - Plant Cell. 1995 Jul;7(7):1071-1083
– reference: 20822504 - Plant J. 2010 Dec;64(6):885-97
– reference: 11402179 - Plant Physiol. 2001 Jun;126(2):485-93
– reference: 19151225 - Plant Cell. 2009 Jan;21(1):168-83
– reference: 15577194 - J Biomed Biotechnol. 2004;2004(5):306-313
– reference: 7694886 - Genetics. 1993 Oct;135(2):575-88
– reference: 12917293 - Development. 2003 Oct;130(20):4859-69
– reference: 16531495 - Plant Cell. 2006 Apr;18(4):831-51
– reference: 15882656 - Trends Plant Sci. 2005 May;10(5):236-42
– reference: 18036197 - Plant J. 2008 Mar;53(5):814-27
– reference: 15998315 - Plant J. 2005 Jul;43(2):299-308
– reference: 17270013 - Plant J. 2007 Feb;49(4):641-54
– reference: 17526919 - Plant Cell Physiol. 2007 Jul;48(7):958-70
– reference: 8521489 - Cell. 1995 Dec 1;83(5):725-34
– reference: 20436669 - PLoS One. 2010;5(4):e10326
– reference: 22129334 - Annu Rev Food Sci Technol. 2010;1:163-87
– reference: 21652532 - J Exp Bot. 2011 Aug;62(13):4561-70
– reference: 20951056 - Plant Physiol Biochem. 2010 Dec;48(12):1020-6
– reference: 21478048 - Curr Opin Plant Biol. 2011 Apr;14(2):204-9
– reference: 16378944 - Yi Chuan. 2005 Nov;27(6):948-52
– reference: 21599973 - BMC Plant Biol. 2011;11:93
– reference: 19001287 - Genetics. 2009 Jan;181(1):81-91
– reference: 15143274 - Science. 2004 May 14;304(5673):982
– reference: 10746878 - Phytochemistry. 2000 Mar;53(6):659-65
– reference: 11316480 - Philos Trans R Soc Lond B Biol Sci. 2001 Mar 29;356(1407):229-83
– reference: 12226348 - Plant Physiol. 1996 Aug;111(4):1059-1066
– reference: 18483398 - Science. 2008 May 30;320(5880):1185-90
– reference: 18280199 - Trends Plant Sci. 2008 Mar;13(3):99-102
– reference: 10490023 - Nature. 1999 Sep 9;401(6749):157-61
– reference: 12355152 - Planta. 2002 Oct;215(6):924-33
– reference: 18786255 - BMC Bioinformatics. 2008;9:371
SSID ssj0001314
Score 2.5291703
Snippet Varieties of the European pear (Pyrus communis) can produce trees with both red-and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although...
Varieties of the European pear (Pyrus communis) can produce trees with both red- and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although...
In MRB-G fruits, the expression of PcMYB10 was reduced by the methylation of regions −604 to −911 bp and −1,218 to −1,649 bp in its promoter. As a result, the...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 885
SubjectTerms Agrobacterium tumefaciens - genetics
anthocyanins
Anthocyanins - metabolism
Biological and medical sciences
Biosynthesis
Chlorophylls
Cloning, Molecular
color
DNA Methylation
Fruit - physiology
fruits
Fundamental and applied biological sciences. Psychology
gene expression
Gene Expression Regulation, Plant
Gene Silencing
Genes
GENES, DEVELOPMENT, AND EVOLUTION
Genetic mutation
Glucosyltransferases - genetics
Glucosyltransferases - metabolism
Methylation
Molecular Sequence Data
pears
Peels
Pigmentation
Pigmentation - genetics
Plant physiology and development
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Promoter regions
Promoter Regions, Genetic
Pyrus - genetics
Pyrus - physiology
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Title The Methylation of the PcMYB10 Promoter Is Associated with Green-Skinned Sport in Max Red Bartlett Pear
URI https://www.jstor.org/stable/41943270
https://www.ncbi.nlm.nih.gov/pubmed/23629835
https://www.proquest.com/docview/1365055485
https://www.proquest.com/docview/2000121540
https://pubmed.ncbi.nlm.nih.gov/PMC3668077
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdg8MALGh9jZTAZCfFSMtzY-XpcYdMG7RhSKwYvkeM4W6QqrdZMAv567ux8wiYNXtLKvsZV7hf7d-fzHSGvtdBCcM4dH5YbMFAYd0LNEkezVKgUOHNm8mxPT_yjufh45nU22s3pkjLZU7-uPVfyP1qFNtArnpL9B802N4UG-A76hStoGK631vFUw6NeNMQPeeSpmn4bjxgeAgBF6Mvh8bpRQx1tbuJtHFt6CygnsnB0fUzlD3jiKW5DwABlOTy1gbYNgcUiR6X1h9jsTcBQx3hoeJ3Kjlfha-WG_n6Rn8tqcTRpfm3zh2XbVovu52kDsklucSSLhcy7jglTJKJ2TFSTLXcdjKLqTba-20GVO1yBTj0njLqTaGiL-NTrse37e6pnAusTr7AqzR5WW2KsXdPqffyTz_HhfDKJZwdns7vkngu2BM7en760KeVH3CaAr_9tk4hVvOvdvEdcbOwqBtLKNbxLmS2Ccp2V8mewbYe9zDbJw8rsoPsWQ4_IHV08JvfHSzANfj4h5wAk2gESXWYUVEorINEaSPR4TVsgUQQS7QGJGiDRvKAAJApAojWQKALpKZkfHszeHzlVBQ5HicAtHSlTFkqVBRn3RlyEGtigL6LAU0r7KtQS6DFQwMDUDcqilMnEU5Ir_JkbpJxvkY1iWehtQhPFMo_rAAsWCCF5qEa-n6hIC8WZVMGAvK0fb6yq9PRYJWURGzOViXi1gk8eW20MyJtGfGXzstwkuGV01UiJUSS4G0DHbk95jQDmzAxF5A7Iq1qbMcy5uJEmC728WscYGsqAh4fezTKu8fGCgQIDPbMIaEcA1hiB6TMgQQ8bjQDmfO_3FPmFyf3OfT9kQfD8FuPukAfta_mCbJSXV_olMOgy2TVvwG-1AcLg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Methylation+of+the+PcMYB10+Promoter+Is+Associated+with+Green-Skinned+Sport+in+Max+Red+Bartlett+Pear&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Wang%2C+Zhigang&rft.au=Meng%2C+Dong&rft.au=Wang%2C+Aide&rft.au=Li%2C+Tianlai&rft.date=2013-06-01&rft.issn=0032-0889&rft.volume=162&rft.issue=2+p.885-896&rft.spage=885&rft.epage=896&rft_id=info:doi/10.1104%2Fpp.113.214700&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon