OGA activated glycopeptide-based nano-activator to activate PKM2 tetramerization for switching catabolic pathways and sensitizing chemotherapy resistance

Tumor cells intensively engage in metabolic reprogramming for enhancing the availability of glycolytic metabolites and support cell proliferation. As the most important rate-limiting enzyme in aerobic glycolysis, activating the pyruvate kinase muscle isoform 2 (PKM2) from dimers to tetramers has bec...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 284; p. 121523
Main Authors Hou, Da-Yong, Xiao, Wu-Yi, Wang, Jia-Qi, Yaseen, Muhammad, Wang, Zhi-Jia, Fei, Yue, Wang, Man-Di, Wang, Lu, Wang, Hui, Shi, Xinghua, Cai, Meng-meng, Feng, Hai-Tao, Xu, Wanhai, Li, Li-Li
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tumor cells intensively engage in metabolic reprogramming for enhancing the availability of glycolytic metabolites and support cell proliferation. As the most important rate-limiting enzyme in aerobic glycolysis, activating the pyruvate kinase muscle isoform 2 (PKM2) from dimers to tetramers has become a key tumor chemotherapy method to control glucose metabolism. Herein, we developed a glycopeptide-based PKM2 nano-activator, which could induce the tetramerization of PKM2 based on serine bonding to Domain C of PKM2. The bound and trapped PKM2 tetramers significantly hindered glycolytic intermediates, prevented the nucleus translocation of dimeric PKM2, and ultimately inhibited the proliferation, chemoresistance and metastasis of tumor. The glycopeptide assembled into nanoparticles under aqueous conditions and in the circulation, which in situ transformed into PKM2 nano-activator with nanofibrillar structure after specifically activated by O-GlcNAcase recognition upregulated in a wide range of human tumors. Moreover, the glycopeptide-based PKM2 nano-activator successfully accumulated at the tumor sites and boosted the chemo-drug sensitivity against prostate and breast cancers. Attributed to these intriguing results, the newly developed glycopeptide-based PKM2 nano-activator can be envisioned a promising candidate for the treatment of tumors by switching catabolic pathways. Schematic illustration of self-assembly, accumulation and in situ fibrillar transformation of GPNA1 in tumor cells, followed by intracellular anti-proliferative events. [Display omitted]
AbstractList Tumor cells intensively engage in metabolic reprogramming for enhancing the availability of glycolytic metabolites and support cell proliferation. As the most important rate-limiting enzyme in aerobic glycolysis, activating the pyruvate kinase muscle isoform 2 (PKM2) from dimers to tetramers has become a key tumor chemotherapy method to control glucose metabolism. Herein, we developed a glycopeptide-based PKM2 nano-activator, which could induce the tetramerization of PKM2 based on serine bonding to Domain C of PKM2. The bound and trapped PKM2 tetramers significantly hindered glycolytic intermediates, prevented the nucleus translocation of dimeric PKM2, and ultimately inhibited the proliferation, chemoresistance and metastasis of tumor. The glycopeptide assembled into nanoparticles under aqueous conditions and in the circulation, which in situ transformed into PKM2 nano-activator with nanofibrillar structure after specifically activated by O-GlcNAcase recognition upregulated in a wide range of human tumors. Moreover, the glycopeptide-based PKM2 nano-activator successfully accumulated at the tumor sites and boosted the chemo-drug sensitivity against prostate and breast cancers. Attributed to these intriguing results, the newly developed glycopeptide-based PKM2 nano-activator can be envisioned a promising candidate for the treatment of tumors by switching catabolic pathways. Schematic illustration of self-assembly, accumulation and in situ fibrillar transformation of GPNA1 in tumor cells, followed by intracellular anti-proliferative events. [Display omitted]
Tumor cells intensively engage in metabolic reprogramming for enhancing the availability of glycolytic metabolites and support cell proliferation. As the most important rate-limiting enzyme in aerobic glycolysis, activating the pyruvate kinase muscle isoform 2 (PKM2) from dimers to tetramers has become a key tumor chemotherapy method to control glucose metabolism. Herein, we developed a glycopeptide-based PKM2 nano-activator, which could induce the tetramerization of PKM2 based on serine bonding to Domain C of PKM2. The bound and trapped PKM2 tetramers significantly hindered glycolytic intermediates, prevented the nucleus translocation of dimeric PKM2, and ultimately inhibited the proliferation, chemoresistance and metastasis of tumor. The glycopeptide assembled into nanoparticles under aqueous conditions and in the circulation, which in situ transformed into PKM2 nano-activator with nanofibrillar structure after specifically activated by O-GlcNAcase recognition upregulated in a wide range of human tumors. Moreover, the glycopeptide-based PKM2 nano-activator successfully accumulated at the tumor sites and boosted the chemo-drug sensitivity against prostate and breast cancers. Attributed to these intriguing results, the newly developed glycopeptide-based PKM2 nano-activator can be envisioned a promising candidate for the treatment of tumors by switching catabolic pathways.
Tumor cells intensively engage in metabolic reprogramming for enhancing the availability of glycolytic metabolites and support cell proliferation. As the most important rate-limiting enzyme in aerobic glycolysis, activating the pyruvate kinase muscle isoform 2 (PKM2) from dimers to tetramers has become a key tumor chemotherapy method to control glucose metabolism. Herein, we developed a glycopeptide-based PKM2 nano-activator, which could induce the tetramerization of PKM2 based on serine bonding to Domain C of PKM2. The bound and trapped PKM2 tetramers significantly hindered glycolytic intermediates, prevented the nucleus translocation of dimeric PKM2, and ultimately inhibited the proliferation, chemoresistance and metastasis of tumor. The glycopeptide assembled into nanoparticles under aqueous conditions and in the circulation, which in situ transformed into PKM2 nano-activator with nanofibrillar structure after specifically activated by O-GlcNAcase recognition upregulated in a wide range of human tumors. Moreover, the glycopeptide-based PKM2 nano-activator successfully accumulated at the tumor sites and boosted the chemo-drug sensitivity against prostate and breast cancers. Attributed to these intriguing results, the newly developed glycopeptide-based PKM2 nano-activator can be envisioned a promising candidate for the treatment of tumors by switching catabolic pathways.Tumor cells intensively engage in metabolic reprogramming for enhancing the availability of glycolytic metabolites and support cell proliferation. As the most important rate-limiting enzyme in aerobic glycolysis, activating the pyruvate kinase muscle isoform 2 (PKM2) from dimers to tetramers has become a key tumor chemotherapy method to control glucose metabolism. Herein, we developed a glycopeptide-based PKM2 nano-activator, which could induce the tetramerization of PKM2 based on serine bonding to Domain C of PKM2. The bound and trapped PKM2 tetramers significantly hindered glycolytic intermediates, prevented the nucleus translocation of dimeric PKM2, and ultimately inhibited the proliferation, chemoresistance and metastasis of tumor. The glycopeptide assembled into nanoparticles under aqueous conditions and in the circulation, which in situ transformed into PKM2 nano-activator with nanofibrillar structure after specifically activated by O-GlcNAcase recognition upregulated in a wide range of human tumors. Moreover, the glycopeptide-based PKM2 nano-activator successfully accumulated at the tumor sites and boosted the chemo-drug sensitivity against prostate and breast cancers. Attributed to these intriguing results, the newly developed glycopeptide-based PKM2 nano-activator can be envisioned a promising candidate for the treatment of tumors by switching catabolic pathways.
ArticleNumber 121523
Author Wang, Hui
Li, Li-Li
Wang, Man-Di
Wang, Jia-Qi
Wang, Zhi-Jia
Yaseen, Muhammad
Feng, Hai-Tao
Hou, Da-Yong
Xiao, Wu-Yi
Wang, Lu
Cai, Meng-meng
Fei, Yue
Shi, Xinghua
Xu, Wanhai
Author_xml – sequence: 1
  givenname: Da-Yong
  surname: Hou
  fullname: Hou, Da-Yong
  organization: Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
– sequence: 2
  givenname: Wu-Yi
  surname: Xiao
  fullname: Xiao, Wu-Yi
  organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
– sequence: 3
  givenname: Jia-Qi
  surname: Wang
  fullname: Wang, Jia-Qi
  organization: Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
– sequence: 4
  givenname: Muhammad
  surname: Yaseen
  fullname: Yaseen, Muhammad
  organization: Institute of Chemical Sciences, University of Peshawar, 25120, KP, Pakistan
– sequence: 5
  givenname: Zhi-Jia
  surname: Wang
  fullname: Wang, Zhi-Jia
  organization: Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
– sequence: 6
  givenname: Yue
  surname: Fei
  fullname: Fei, Yue
  organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
– sequence: 7
  givenname: Man-Di
  surname: Wang
  fullname: Wang, Man-Di
  organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
– sequence: 8
  givenname: Lu
  surname: Wang
  fullname: Wang, Lu
  organization: Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
– sequence: 9
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
– sequence: 10
  givenname: Xinghua
  surname: Shi
  fullname: Shi, Xinghua
  organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
– sequence: 11
  givenname: Meng-meng
  surname: Cai
  fullname: Cai, Meng-meng
  organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
– sequence: 12
  givenname: Hai-Tao
  surname: Feng
  fullname: Feng, Hai-Tao
  email: haitaofeng907@163.com
  organization: AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
– sequence: 13
  givenname: Wanhai
  surname: Xu
  fullname: Xu, Wanhai
  email: xuwanhai@hrbmu.edu.cn
  organization: Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
– sequence: 14
  givenname: Li-Li
  surname: Li
  fullname: Li, Li-Li
  email: lill@nanoctr.cn
  organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35462306$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1uEzEURi1URH_gFZDFis0E2zOecVhRChREUVnA2rpj3zQOM_ZgO63SN-FtcZtQoa6ysmyde-T7fcfkwAePhLzibMYZb9-sZr0LI2SMDoY0E0yIGRdcivoJOeKqU5WcM3lAjhhvRDVvuTgkxymtWLmzRjwjh7VsWlGz9oj8uTw_pWCyuy4-S6-GjQkTTtlZrHpI5cmDD9WOCJHm8IDT71-_CZoxRxjLX24hu-DpokDpxmWzdP6KGsjQh8EZOkFe3sAmUfCWJvTJZXd7jyxxDHmJEaYNjZhcyuANPidPF2U9fLE7T8jPTx9_nH2uLi7Pv5ydXlSm6USuoKm7nhujTMOUUlYhcGy57Go7Z71FqaRqbQ_zZrFALk2tBIPaqqZvYN5JW5-Q11vvFMPvNaasR5cMDgN4DOukRdtyxlTT8T1QKTmrW9EW9OUOXfcjWj1FN0Lc6H_JF-DtFjAxpBRx8YBwpu9q1iv9f836rma9rbkMv3s0bFy-j7904Yb9FB-2CizZXjuMOhmHJXfrIpqsbXD7ad4_0pjBeWdg-IWbfSV_AWwG51k
CitedBy_id crossref_primary_10_3389_fbioe_2022_1046234
crossref_primary_10_1016_j_biomaterials_2024_122550
crossref_primary_10_1002_adma_202303831
crossref_primary_10_1016_j_canlet_2024_216742
crossref_primary_10_1177_03008916241299244
crossref_primary_10_1007_s12672_023_00740_0
crossref_primary_10_1007_s12672_025_01790_2
crossref_primary_10_1093_nsr_nwae028
crossref_primary_10_1126_sciadv_abq8225
crossref_primary_10_1016_j_colsurfb_2022_112655
crossref_primary_10_1016_j_jddst_2023_105128
crossref_primary_10_1016_j_biopha_2024_117465
crossref_primary_10_1021_acsbiomaterials_4c00388
crossref_primary_10_1016_j_nantod_2024_102313
crossref_primary_10_1016_j_freeradbiomed_2023_09_006
crossref_primary_10_1038_s41392_024_01885_2
crossref_primary_10_1002_adma_202309582
crossref_primary_10_1016_j_ijpharm_2024_125028
crossref_primary_10_1021_acsnano_4c11903
crossref_primary_10_1016_j_jlumin_2024_120963
crossref_primary_10_1021_acsmaterialslett_3c00063
crossref_primary_10_1038_s41467_023_44665_2
crossref_primary_10_1038_s41419_025_07431_4
crossref_primary_10_1016_j_scib_2024_10_032
crossref_primary_10_1002_advs_202305662
Cites_doi 10.1016/j.biomaterials.2015.01.068
10.1038/nature06734
10.3389/fonc.2020.00159
10.1073/pnas.1704145115
10.1016/j.phrs.2019.104511
10.1002/EXP.20210089
10.1038/nchembio.1060
10.1039/C9BM00898E
10.1186/s12935-020-01612-1
10.18632/aging.102866
10.1016/j.biomaterials.2019.119305
10.1016/j.chemosphere.2016.07.047
10.1021/acsnano.9b08209
10.1002/adma.201703444
10.1111/bpa.12311
10.2174/13816128113199990484
10.1038/sj.onc.1209597
10.1038/s41467-019-12848-5
10.1021/acs.jmedchem.8b00241
10.1002/EXP.20210153
10.1016/j.biocel.2010.02.005
10.1038/nrc3038
10.1016/j.ejmech.2019.03.003
10.1021/jm901577g
10.1016/j.bioactmat.2021.12.003
10.1080/09553002.2019.1589653
10.1002/EXP.20210144
10.1159/000375435
10.1002/adma.201904639
10.1016/j.bmcl.2010.04.015
10.1158/0008-5472.CAN-20-4190
10.1016/j.saa.2015.03.069
10.1002/pro.3691
10.1001/archgenpsychiatry.2009.137
10.1002/anie.202002649
10.1038/s41565-019-0626-4
10.1038/nature11540
10.1038/nrm.2017.22
10.1021/acs.jmedchem.9b01328
10.1002/EXP.20210005
10.1038/s41388-019-0975-3
10.7150/thno.30224
10.1039/C7CS00460E
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier Ltd.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2022.121523
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
ExternalDocumentID 35462306
10_1016_j_biomaterials_2022_121523
S0142961222001624
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
BNPGV
RIG
SSH
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c472t-a437b1cc8c40888d8ea1e61573d90bde58586dba94ffe15c3820a3d84b4a975d3
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Fri Jul 11 03:35:01 EDT 2025
Fri Jul 11 11:38:58 EDT 2025
Mon Jul 21 06:00:59 EDT 2025
Tue Jul 01 01:19:47 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Sun Apr 06 06:54:07 EDT 2025
Tue Aug 26 17:20:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Glycolysis
Nano-activator
Glycopeptide
PKM2
Switching catabolic pathways
Language English
License Copyright © 2022. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-a437b1cc8c40888d8ea1e61573d90bde58586dba94ffe15c3820a3d84b4a975d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35462306
PQID 2655103626
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2661008471
proquest_miscellaneous_2655103626
pubmed_primary_35462306
crossref_primary_10_1016_j_biomaterials_2022_121523
crossref_citationtrail_10_1016_j_biomaterials_2022_121523
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2022_121523
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2022_121523
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ding, Xue, Liu, Hu, Wang, Wang, Li, Guo, Hao, Ge, Zhang, Li, Li, Chen, Zhang (bib39) 2020; 63
Chen, Sheng, Qin, Zhu, Wu, Jia, Meng, He, Yan (bib42) 2019; 9
Zhang, Jing, Jiang, Rojalin, Baehr, Zhang, Xiao, Wu, Cong, Li, Li, Wang, Lam (bib34) 2020; 15
Liu, Vander Heiden (bib19) 2015; 25
Abdel-Wahab, Mahmoud, Al-Harizy (bib8) 2019; 150
Chaneton, Hillmann, Zheng, Martin, Maddocks, Chokkathukalam, Coyle, Jankevics, Holding, Vousden, Frezza, O'Reilly, Gottlieb (bib36) 2012; 491
Koppenol, Bounds, Dang (bib5) 2011; 11
Zahra, Dey, Ashish, Mishra, Pandey (bib22) 2020; 10
Liu, Yuan, Xu, Zhang, Li, Wang, Ge, Li (bib40) 2019; 170
Xu, Liu, Shen, Zhu, Wang (bib13) 2015; 51
Wang, Liu, Xu, Cheng (bib11) 2019; 7
Gao, Tang, Liu, Zou, Huang, Liu, Zhang (bib10) 2019; 31
Jiang, Mei, Ma, Jiang, Zhang, Yi, Feng, Liu, Liu (bib3) 2022; 2
Chen, Wang, Wang, Fan, Liu, Li, Han, Cheng, Zhang (bib9) 2020; 59
Li, Li, Guo, Li, Long, Ma, Ding, Yan, Li, Wu, Zhu, Li, Wen, Zhang, Xue, Zhao, Liu, Ivanov, Luo, Xi, Long, Wang, Chen (bib38) 2018; 61
Israelsen, Vander Heiden (bib6) 2015; 43
Guo, Ren, Yao, Ye, Sun, Lin, Wang, Guo, Xiao, Xu (bib26) 2020; 12
Anastasiou, Yu, Israelsen, Jiang, Boxer, Hong, Tempel, Dimov, Shen, Jha, Yang, Mattaini, Metallo, Fiske, Courtney, Malstrom, Khan, Kung, Skoumbourdis, Veith, Southall, Walsh, Brimacombe, Leister, Lunt, Johnson, Yen, Kunii, Davidson, Christofk, Austin, Inglese, Harris, Asara, Stephanopoulos, Salituro, Jin, Dang, Auld, Park, Cantley, Thomas, Vander Heiden (bib2) 2012; 8
Christofk, Vander Heiden, Harris, Ramanathan, Gerszten, Wei, Fleming, Schreiber, Cantley (bib16) 2008; 452
Jiang, Boxer, Vander Heiden, Shen, Skoumbourdis, Southall, Veith, Leister, Austin, Park, Inglese, Cantley, Auld, Thomas (bib24) 2010; 20
Lee, Ho, Troxler, Lin, Chung (bib27) 2021; 13
Nakamura, Sekine, Ouchi, Tsujii, Yoshikawa, Futatsubashi, Tsuchiya, Sugihara, Iwata, Suzuki, Matsuzaki, Suda, Sugiyama, Takei, Mori (bib44) 2010; 67
An, Hou, Zheng, Wang, Zeng, Xiao, Yan, Wang, Zhao, Cheng, Zhang, Wang, Wang, Wang, Xu (bib37) 2020; 14
Boxer, Jiang, Vander Heiden, Shen, Skoumbourdis, Southall, Veith, Leister, Austin, Park, Inglese, Cantley, Auld, Thomas (bib23) 2010; 53
Pelicano, Martin, Xu, Huang (bib7) 2006; 25
An, Li, Wang, Wang, Hou, Lin, Qiao, Wang, Yang, Cong, Ma, Zhao, Cai, Chen, Lu, Xu, Wang, Zhao (bib32) 2019; 10
Wang, Liu, Jin, Zhang, Li, Hao, Feng, Gu, Meng, Tian, Zheng, Xin, Zhang, Han, Aravind, Wei (bib43) 2017; 114
An, Mamuti, Wang, Yao, Wang, Zhao, Li (bib28) 2021; 1
Qi, Gao, Wang, Wang (bib31) 2018; 30
Zhao, Zhang, Pan, Liu (bib29) 2021; 1
Wang, Bo, Liu, Xu, Cai, Wang, Cheng (bib12) 2019; 218
Gupta, Wellen, Mazurek, Bamezai (bib21) 2014; 20
Vaupel, Schmidberger, Mayer (bib1) 2019; 95
Hou, Wang, Hu, Wang, Zhang, Lv, Wang, Wu, Wang, Wang, Xu (bib33) 2022; 14
Song, Han, Lv, Chen, Chen, Yin, Cheng (bib35) 2017; 46
Xu, Shao, Jiang, Cao, Wang, Yang, Wang, Wang, Niu (bib4) 2015; 38
Yang, Lu (bib18) 2015; 128
Tang, He, Liu, Yan, Fan (bib30) 2021; 1
Schormann, Hayden, Lee, Banerjee, Chattopadhyay (bib15) 2019; 28
Chen, Chen, Yu (bib20) 2020; 20
Apostolidi, Vathiotis, Muthusamy, Gaule, Gassaway, Rimm, Rinehart (bib25) 2021; 81
Liu, Yue, Wang, Yan, Liu, Sun, Li (bib45) 2015; 145
Yue, Sun, Yan, Liu, Zhao, Zhang (bib46) 2016; 161
Singh, Qian, Lee, Zhou, Han, Zhang, Ong, Ni, Jiang, Ruan, Li, Zhang, Ding, Lee, Singh, Wu, Herzog, Kaech, Wendel, Yates, Han, Sherwin, Nie, Yang (bib14) 2020; 39
Mazurek (bib17) 2011; 43
Yang, Qian (bib41) 2017; 18
Gupta (10.1016/j.biomaterials.2022.121523_bib21) 2014; 20
Song (10.1016/j.biomaterials.2022.121523_bib35) 2017; 46
Zhao (10.1016/j.biomaterials.2022.121523_bib29) 2021; 1
Christofk (10.1016/j.biomaterials.2022.121523_bib16) 2008; 452
Yue (10.1016/j.biomaterials.2022.121523_bib46) 2016; 161
Zhang (10.1016/j.biomaterials.2022.121523_bib34) 2020; 15
Wang (10.1016/j.biomaterials.2022.121523_bib11) 2019; 7
Li (10.1016/j.biomaterials.2022.121523_bib38) 2018; 61
Koppenol (10.1016/j.biomaterials.2022.121523_bib5) 2011; 11
An (10.1016/j.biomaterials.2022.121523_bib28) 2021; 1
Chaneton (10.1016/j.biomaterials.2022.121523_bib36) 2012; 491
Yang (10.1016/j.biomaterials.2022.121523_bib18) 2015; 128
Mazurek (10.1016/j.biomaterials.2022.121523_bib17) 2011; 43
Anastasiou (10.1016/j.biomaterials.2022.121523_bib2) 2012; 8
Ding (10.1016/j.biomaterials.2022.121523_bib39) 2020; 63
Singh (10.1016/j.biomaterials.2022.121523_bib14) 2020; 39
Guo (10.1016/j.biomaterials.2022.121523_bib26) 2020; 12
Qi (10.1016/j.biomaterials.2022.121523_bib31) 2018; 30
Chen (10.1016/j.biomaterials.2022.121523_bib9) 2020; 59
Gao (10.1016/j.biomaterials.2022.121523_bib10) 2019; 31
Chen (10.1016/j.biomaterials.2022.121523_bib20) 2020; 20
Zahra (10.1016/j.biomaterials.2022.121523_bib22) 2020; 10
Nakamura (10.1016/j.biomaterials.2022.121523_bib44) 2010; 67
Apostolidi (10.1016/j.biomaterials.2022.121523_bib25) 2021; 81
Liu (10.1016/j.biomaterials.2022.121523_bib45) 2015; 145
Wang (10.1016/j.biomaterials.2022.121523_bib43) 2017; 114
An (10.1016/j.biomaterials.2022.121523_bib37) 2020; 14
Xu (10.1016/j.biomaterials.2022.121523_bib4) 2015; 38
Xu (10.1016/j.biomaterials.2022.121523_bib13) 2015; 51
Yang (10.1016/j.biomaterials.2022.121523_bib41) 2017; 18
Israelsen (10.1016/j.biomaterials.2022.121523_bib6) 2015; 43
Liu (10.1016/j.biomaterials.2022.121523_bib40) 2019; 170
Abdel-Wahab (10.1016/j.biomaterials.2022.121523_bib8) 2019; 150
Vaupel (10.1016/j.biomaterials.2022.121523_bib1) 2019; 95
Wang (10.1016/j.biomaterials.2022.121523_bib12) 2019; 218
An (10.1016/j.biomaterials.2022.121523_bib32) 2019; 10
Boxer (10.1016/j.biomaterials.2022.121523_bib23) 2010; 53
Lee (10.1016/j.biomaterials.2022.121523_bib27) 2021; 13
Jiang (10.1016/j.biomaterials.2022.121523_bib24) 2010; 20
Hou (10.1016/j.biomaterials.2022.121523_bib33) 2022; 14
Pelicano (10.1016/j.biomaterials.2022.121523_bib7) 2006; 25
Liu (10.1016/j.biomaterials.2022.121523_bib19) 2015; 25
Tang (10.1016/j.biomaterials.2022.121523_bib30) 2021; 1
Chen (10.1016/j.biomaterials.2022.121523_bib42) 2019; 9
Jiang (10.1016/j.biomaterials.2022.121523_bib3) 2022; 2
Schormann (10.1016/j.biomaterials.2022.121523_bib15) 2019; 28
References_xml – volume: 150
  start-page: 104511
  year: 2019
  ident: bib8
  article-title: Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy
  publication-title: Pharmacol. Res.
– volume: 161
  start-page: 475
  year: 2016
  end-page: 481
  ident: bib46
  article-title: Evaluation of the binding of perfluorinated compound to pepsin: spectroscopic analysis and molecular docking
  publication-title: Chemosphere
– volume: 9
  start-page: 676
  year: 2019
  end-page: 690
  ident: bib42
  article-title: TBC1D8 amplification drives tumorigenesis through metabolism reprogramming in ovarian cancer
  publication-title: Theranostics
– volume: 53
  start-page: 1048
  year: 2010
  end-page: 1055
  ident: bib23
  article-title: Evaluation of substituted N,N'-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase
  publication-title: J. Med. Chem.
– volume: 18
  start-page: 452
  year: 2017
  end-page: 465
  ident: bib41
  article-title: Protein O-GlcNAcylation: emerging mechanisms and functions
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 20
  start-page: 523
  year: 2020
  ident: bib20
  article-title: Protein kinase function of pyruvate kinase M2 and cancer
  publication-title: Cancer Cell Int.
– volume: 10
  start-page: 4861
  year: 2019
  ident: bib32
  article-title: A tumour-selective cascade activatable self-detained system for drug delivery and cancer imaging
  publication-title: Nat. Commun.
– volume: 43
  start-page: 43
  year: 2015
  end-page: 51
  ident: bib6
  article-title: Pyruvate kinase: function, regulation and role in cancer, Semin
  publication-title: Cell Dev. Biol.
– volume: 12
  start-page: 3976
  year: 2020
  end-page: 3992
  ident: bib26
  article-title: PKM2 suppresses osteogenesis and facilitates adipogenesis by regulating β-catenin signaling and mitochondrial fusion and fission
  publication-title: Aging
– volume: 1
  start-page: 20210153
  year: 2021
  ident: bib28
  article-title: Rationally designed modular drug delivery platform based on intracellular peptide self-assembly
  publication-title: Explorations
– volume: 491
  start-page: 458
  year: 2012
  end-page: 462
  ident: bib36
  article-title: Serine is a natural ligand and allosteric activator of pyruvate kinase M2
  publication-title: Nature
– volume: 61
  start-page: 4155
  year: 2018
  end-page: 4164
  ident: bib38
  article-title: Natural product micheliolide (MCL) irreversibly activates pyruvate kinase M2 and suppresses leukemia
  publication-title: J. Med. Chem.
– volume: 25
  start-page: 781
  year: 2015
  end-page: 783
  ident: bib19
  article-title: The role of pyruvate kinase M2 in cancer metabolism
  publication-title: Brain Pathol.
– volume: 67
  start-page: 59
  year: 2010
  end-page: 68
  ident: bib44
  article-title: Brain serotonin and dopamine transporter bindings in adults with high-functioning autism
  publication-title: Arch. Gen. Psychiatry
– volume: 38
  start-page: 117
  year: 2015
  end-page: 122
  ident: bib4
  article-title: Warburg effect or reverse Warburg effect? A review of cancer metabolism
  publication-title: Oncol. Res. Treat.
– volume: 25
  start-page: 4633
  year: 2006
  end-page: 4646
  ident: bib7
  article-title: Glycolysis inhibition for anticancer treatment
  publication-title: Oncogene
– volume: 170
  start-page: 1
  year: 2019
  end-page: 15
  ident: bib40
  article-title: Synthesis of novel 7-azaindole derivatives containing pyridin-3-ylmethyl dithiocarbamate moiety as potent PKM2 activators and PKM2 nucleus translocation inhibitors
  publication-title: Eur. J. Med. Chem.
– volume: 10
  start-page: 159
  year: 2020
  ident: bib22
  article-title: Pyruvate kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis
  publication-title: Front. Oncol.
– volume: 39
  start-page: 560
  year: 2020
  end-page: 573
  ident: bib14
  article-title: O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth
  publication-title: Oncogene
– volume: 43
  start-page: 969
  year: 2011
  end-page: 980
  ident: bib17
  article-title: Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 14
  start-page: 110
  year: 2022
  end-page: 119
  ident: bib33
  article-title: An activated excretion-retarded tumor imaging strategy towards metabolic organs
  publication-title: Bioact. Mater.
– volume: 63
  start-page: 1597
  year: 2020
  end-page: 1611
  ident: bib39
  article-title: Identification of parthenolide dimers as activators of pyruvate kinase M2 in xenografts of glioblastoma multiforme in vivo
  publication-title: J. Med. Chem.
– volume: 2
  start-page: 20210144
  year: 2022
  ident: bib3
  article-title: Tumor hijacks macrophages and microbiota through extracellular vesicles
  publication-title: Explorations
– volume: 15
  start-page: 145
  year: 2020
  end-page: 153
  ident: bib34
  article-title: Transformable peptide nanoparticles arrest HER2 signalling and cause cancer cell death in vivo
  publication-title: Nat. Nanotechnol.
– volume: 114
  start-page: 13732
  year: 2017
  end-page: 13737
  ident: bib43
  article-title: O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 145
  start-page: 473
  year: 2015
  end-page: 481
  ident: bib45
  article-title: Study of interaction between human serum albumin and three phenanthridine derivatives: fluorescence spectroscopy and computational approach
  publication-title: Spectrochim. Acta. A. Mol. Biomol. Spectrosc.
– volume: 8
  start-page: 839
  year: 2012
  end-page: 847
  ident: bib2
  article-title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
  publication-title: Nat. Chem. Biol.
– volume: 20
  start-page: 3387
  year: 2010
  end-page: 3393
  ident: bib24
  article-title: Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase
  publication-title: Bioorg. Med. Chem. Lett
– volume: 13
  year: 2021
  ident: bib27
  article-title: Non-metabolic functions of PKM2 contribute to cervical cancer cell proliferation induced by the HPV16 E7 oncoprotein
  publication-title: Viruses
– volume: 1
  start-page: 75
  year: 2021
  end-page: 89
  ident: bib30
  article-title: Nanozyme for tumor therapy: surface modification matters
  publication-title: Explorations
– volume: 46
  start-page: 6570
  year: 2017
  end-page: 6599
  ident: bib35
  article-title: Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 20210089
  year: 2021
  ident: bib29
  article-title: Advanced bioactive nanomaterials for biomedical applications
  publication-title: Explorations
– volume: 7
  start-page: 4166
  year: 2019
  end-page: 4173
  ident: bib11
  article-title: Azido-galactose outperforms azido-mannose for metabolic labeling and targeting of hepatocellular carcinoma
  publication-title: Biomater. Sci.
– volume: 95
  start-page: 912
  year: 2019
  end-page: 919
  ident: bib1
  article-title: The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression
  publication-title: Int. J. Radiat. Biol.
– volume: 51
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib13
  article-title: Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy
  publication-title: Biomaterials
– volume: 128
  start-page: 1655
  year: 2015
  end-page: 1660
  ident: bib18
  article-title: Pyruvate kinase M2 at a glance
  publication-title: J. Cell Sci.
– volume: 30
  start-page: 1703444
  year: 2018
  ident: bib31
  article-title: Self-assembled peptide-based nanomaterials for biomedical imaging and therapy
  publication-title: Adv. Mater.
– volume: 11
  start-page: 325
  year: 2011
  end-page: 337
  ident: bib5
  article-title: Otto Warburg's contributions to current concepts of cancer metabolism
  publication-title: Nat. Rev. Cancer
– volume: 59
  start-page: 21562
  year: 2020
  end-page: 21570
  ident: bib9
  article-title: Inhibition of tumor progression through the coupling of bacterial respiration with tumor metabolism
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 14
  start-page: 927
  year: 2020
  end-page: 936
  ident: bib37
  article-title: A near-infrared peptide probe with tumor-specific excretion-retarded effect for image-guided surgery of renal cell carcinoma
  publication-title: ACS Nano
– volume: 28
  start-page: 1771
  year: 2019
  end-page: 1784
  ident: bib15
  article-title: An overview of structure, function, and regulation of pyruvate kinases
  publication-title: Protein Sci.
– volume: 20
  start-page: 2595
  year: 2014
  end-page: 2606
  ident: bib21
  article-title: Pyruvate kinase M2: regulatory circuits and potential for therapeutic intervention
  publication-title: Curr. Pharmaceut. Des.
– volume: 31
  year: 2019
  ident: bib10
  article-title: Intra/Extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors
  publication-title: Adv. Mater.
– volume: 452
  start-page: 230
  year: 2008
  end-page: 233
  ident: bib16
  article-title: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
  publication-title: Nature
– volume: 218
  start-page: 119305
  year: 2019
  ident: bib12
  article-title: In vivo cancer targeting via glycopolyester nanoparticle mediated metabolic cell labeling followed by click reaction
  publication-title: Biomaterials
– volume: 81
  start-page: 4346
  year: 2021
  end-page: 4359
  ident: bib25
  article-title: Targeting pyruvate kinase M2 phosphorylation reverses aggressive cancer phenotypes
  publication-title: Cancer Res.
– volume: 51
  start-page: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2022.121523_bib13
  article-title: Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.01.068
– volume: 452
  start-page: 230
  year: 2008
  ident: 10.1016/j.biomaterials.2022.121523_bib16
  article-title: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
  publication-title: Nature
  doi: 10.1038/nature06734
– volume: 10
  start-page: 159
  year: 2020
  ident: 10.1016/j.biomaterials.2022.121523_bib22
  article-title: Pyruvate kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.00159
– volume: 114
  start-page: 13732
  year: 2017
  ident: 10.1016/j.biomaterials.2022.121523_bib43
  article-title: O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1704145115
– volume: 150
  start-page: 104511
  year: 2019
  ident: 10.1016/j.biomaterials.2022.121523_bib8
  article-title: Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2019.104511
– volume: 1
  start-page: 20210089
  year: 2021
  ident: 10.1016/j.biomaterials.2022.121523_bib29
  article-title: Advanced bioactive nanomaterials for biomedical applications
  publication-title: Explorations
  doi: 10.1002/EXP.20210089
– volume: 8
  start-page: 839
  year: 2012
  ident: 10.1016/j.biomaterials.2022.121523_bib2
  article-title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1060
– volume: 7
  start-page: 4166
  year: 2019
  ident: 10.1016/j.biomaterials.2022.121523_bib11
  article-title: Azido-galactose outperforms azido-mannose for metabolic labeling and targeting of hepatocellular carcinoma
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM00898E
– volume: 20
  start-page: 523
  year: 2020
  ident: 10.1016/j.biomaterials.2022.121523_bib20
  article-title: Protein kinase function of pyruvate kinase M2 and cancer
  publication-title: Cancer Cell Int.
  doi: 10.1186/s12935-020-01612-1
– volume: 12
  start-page: 3976
  year: 2020
  ident: 10.1016/j.biomaterials.2022.121523_bib26
  article-title: PKM2 suppresses osteogenesis and facilitates adipogenesis by regulating β-catenin signaling and mitochondrial fusion and fission
  publication-title: Aging
  doi: 10.18632/aging.102866
– volume: 218
  start-page: 119305
  year: 2019
  ident: 10.1016/j.biomaterials.2022.121523_bib12
  article-title: In vivo cancer targeting via glycopolyester nanoparticle mediated metabolic cell labeling followed by click reaction
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119305
– volume: 161
  start-page: 475
  year: 2016
  ident: 10.1016/j.biomaterials.2022.121523_bib46
  article-title: Evaluation of the binding of perfluorinated compound to pepsin: spectroscopic analysis and molecular docking
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.07.047
– volume: 14
  start-page: 927
  year: 2020
  ident: 10.1016/j.biomaterials.2022.121523_bib37
  article-title: A near-infrared peptide probe with tumor-specific excretion-retarded effect for image-guided surgery of renal cell carcinoma
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08209
– volume: 30
  start-page: 1703444
  year: 2018
  ident: 10.1016/j.biomaterials.2022.121523_bib31
  article-title: Self-assembled peptide-based nanomaterials for biomedical imaging and therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703444
– volume: 25
  start-page: 781
  year: 2015
  ident: 10.1016/j.biomaterials.2022.121523_bib19
  article-title: The role of pyruvate kinase M2 in cancer metabolism
  publication-title: Brain Pathol.
  doi: 10.1111/bpa.12311
– volume: 20
  start-page: 2595
  year: 2014
  ident: 10.1016/j.biomaterials.2022.121523_bib21
  article-title: Pyruvate kinase M2: regulatory circuits and potential for therapeutic intervention
  publication-title: Curr. Pharmaceut. Des.
  doi: 10.2174/13816128113199990484
– volume: 25
  start-page: 4633
  year: 2006
  ident: 10.1016/j.biomaterials.2022.121523_bib7
  article-title: Glycolysis inhibition for anticancer treatment
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209597
– volume: 13
  year: 2021
  ident: 10.1016/j.biomaterials.2022.121523_bib27
  article-title: Non-metabolic functions of PKM2 contribute to cervical cancer cell proliferation induced by the HPV16 E7 oncoprotein
  publication-title: Viruses
– volume: 128
  start-page: 1655
  year: 2015
  ident: 10.1016/j.biomaterials.2022.121523_bib18
  article-title: Pyruvate kinase M2 at a glance
  publication-title: J. Cell Sci.
– volume: 10
  start-page: 4861
  year: 2019
  ident: 10.1016/j.biomaterials.2022.121523_bib32
  article-title: A tumour-selective cascade activatable self-detained system for drug delivery and cancer imaging
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12848-5
– volume: 61
  start-page: 4155
  year: 2018
  ident: 10.1016/j.biomaterials.2022.121523_bib38
  article-title: Natural product micheliolide (MCL) irreversibly activates pyruvate kinase M2 and suppresses leukemia
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.8b00241
– volume: 1
  start-page: 20210153
  year: 2021
  ident: 10.1016/j.biomaterials.2022.121523_bib28
  article-title: Rationally designed modular drug delivery platform based on intracellular peptide self-assembly
  publication-title: Explorations
  doi: 10.1002/EXP.20210153
– volume: 43
  start-page: 969
  year: 2011
  ident: 10.1016/j.biomaterials.2022.121523_bib17
  article-title: Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2010.02.005
– volume: 11
  start-page: 325
  year: 2011
  ident: 10.1016/j.biomaterials.2022.121523_bib5
  article-title: Otto Warburg's contributions to current concepts of cancer metabolism
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3038
– volume: 170
  start-page: 1
  year: 2019
  ident: 10.1016/j.biomaterials.2022.121523_bib40
  article-title: Synthesis of novel 7-azaindole derivatives containing pyridin-3-ylmethyl dithiocarbamate moiety as potent PKM2 activators and PKM2 nucleus translocation inhibitors
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2019.03.003
– volume: 53
  start-page: 1048
  year: 2010
  ident: 10.1016/j.biomaterials.2022.121523_bib23
  article-title: Evaluation of substituted N,N'-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase
  publication-title: J. Med. Chem.
  doi: 10.1021/jm901577g
– volume: 14
  start-page: 110
  year: 2022
  ident: 10.1016/j.biomaterials.2022.121523_bib33
  article-title: An activated excretion-retarded tumor imaging strategy towards metabolic organs
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2021.12.003
– volume: 95
  start-page: 912
  year: 2019
  ident: 10.1016/j.biomaterials.2022.121523_bib1
  article-title: The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression
  publication-title: Int. J. Radiat. Biol.
  doi: 10.1080/09553002.2019.1589653
– volume: 2
  start-page: 20210144
  year: 2022
  ident: 10.1016/j.biomaterials.2022.121523_bib3
  article-title: Tumor hijacks macrophages and microbiota through extracellular vesicles
  publication-title: Explorations
  doi: 10.1002/EXP.20210144
– volume: 38
  start-page: 117
  year: 2015
  ident: 10.1016/j.biomaterials.2022.121523_bib4
  article-title: Warburg effect or reverse Warburg effect? A review of cancer metabolism
  publication-title: Oncol. Res. Treat.
  doi: 10.1159/000375435
– volume: 43
  start-page: 43
  year: 2015
  ident: 10.1016/j.biomaterials.2022.121523_bib6
  article-title: Pyruvate kinase: function, regulation and role in cancer, Semin
  publication-title: Cell Dev. Biol.
– volume: 31
  year: 2019
  ident: 10.1016/j.biomaterials.2022.121523_bib10
  article-title: Intra/Extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904639
– volume: 20
  start-page: 3387
  year: 2010
  ident: 10.1016/j.biomaterials.2022.121523_bib24
  article-title: Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase
  publication-title: Bioorg. Med. Chem. Lett
  doi: 10.1016/j.bmcl.2010.04.015
– volume: 81
  start-page: 4346
  year: 2021
  ident: 10.1016/j.biomaterials.2022.121523_bib25
  article-title: Targeting pyruvate kinase M2 phosphorylation reverses aggressive cancer phenotypes
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-20-4190
– volume: 145
  start-page: 473
  year: 2015
  ident: 10.1016/j.biomaterials.2022.121523_bib45
  article-title: Study of interaction between human serum albumin and three phenanthridine derivatives: fluorescence spectroscopy and computational approach
  publication-title: Spectrochim. Acta. A. Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2015.03.069
– volume: 28
  start-page: 1771
  year: 2019
  ident: 10.1016/j.biomaterials.2022.121523_bib15
  article-title: An overview of structure, function, and regulation of pyruvate kinases
  publication-title: Protein Sci.
  doi: 10.1002/pro.3691
– volume: 67
  start-page: 59
  year: 2010
  ident: 10.1016/j.biomaterials.2022.121523_bib44
  article-title: Brain serotonin and dopamine transporter bindings in adults with high-functioning autism
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archgenpsychiatry.2009.137
– volume: 59
  start-page: 21562
  year: 2020
  ident: 10.1016/j.biomaterials.2022.121523_bib9
  article-title: Inhibition of tumor progression through the coupling of bacterial respiration with tumor metabolism
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202002649
– volume: 15
  start-page: 145
  year: 2020
  ident: 10.1016/j.biomaterials.2022.121523_bib34
  article-title: Transformable peptide nanoparticles arrest HER2 signalling and cause cancer cell death in vivo
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0626-4
– volume: 491
  start-page: 458
  year: 2012
  ident: 10.1016/j.biomaterials.2022.121523_bib36
  article-title: Serine is a natural ligand and allosteric activator of pyruvate kinase M2
  publication-title: Nature
  doi: 10.1038/nature11540
– volume: 18
  start-page: 452
  year: 2017
  ident: 10.1016/j.biomaterials.2022.121523_bib41
  article-title: Protein O-GlcNAcylation: emerging mechanisms and functions
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.22
– volume: 63
  start-page: 1597
  year: 2020
  ident: 10.1016/j.biomaterials.2022.121523_bib39
  article-title: Identification of parthenolide dimers as activators of pyruvate kinase M2 in xenografts of glioblastoma multiforme in vivo
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.9b01328
– volume: 1
  start-page: 75
  year: 2021
  ident: 10.1016/j.biomaterials.2022.121523_bib30
  article-title: Nanozyme for tumor therapy: surface modification matters
  publication-title: Explorations
  doi: 10.1002/EXP.20210005
– volume: 39
  start-page: 560
  year: 2020
  ident: 10.1016/j.biomaterials.2022.121523_bib14
  article-title: O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth
  publication-title: Oncogene
  doi: 10.1038/s41388-019-0975-3
– volume: 9
  start-page: 676
  year: 2019
  ident: 10.1016/j.biomaterials.2022.121523_bib42
  article-title: TBC1D8 amplification drives tumorigenesis through metabolism reprogramming in ovarian cancer
  publication-title: Theranostics
  doi: 10.7150/thno.30224
– volume: 46
  start-page: 6570
  year: 2017
  ident: 10.1016/j.biomaterials.2022.121523_bib35
  article-title: Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00460E
SSID ssj0014042
Score 2.525202
Snippet Tumor cells intensively engage in metabolic reprogramming for enhancing the availability of glycolytic metabolites and support cell proliferation. As the most...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121523
SubjectTerms biocompatible materials
Breast Neoplasms - drug therapy
Breast Neoplasms - metabolism
breasts
cell proliferation
drug therapy
glucose
Glycolysis
Glycopeptide
glycopeptides
Glycopeptides - metabolism
Humans
Male
metabolites
metastasis
muscles
Muscles - metabolism
Nano-activator
PKM2
Protein Isoforms - metabolism
pyruvate kinase
Pyruvate Kinase - metabolism
serine
Switching catabolic pathways
Title OGA activated glycopeptide-based nano-activator to activate PKM2 tetramerization for switching catabolic pathways and sensitizing chemotherapy resistance
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961222001624
https://dx.doi.org/10.1016/j.biomaterials.2022.121523
https://www.ncbi.nlm.nih.gov/pubmed/35462306
https://www.proquest.com/docview/2655103626
https://www.proquest.com/docview/2661008471
Volume 284
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxEB1VRUJwQLR8BWhlJK4mie39EuohqtoGqrQ9UKm3lb32QlDZrRKXKhz4H_23zOx6V-VQFIljohnJ2fHOvInfPAO8L0qtpbGGIxbFBkU4y_WoNDyyo8Q4nY1Nc2I6O4mn5-rzRXSxAfvdLAzRKkPub3N6k63DN8PwNIdX8_mQaEkiwwItiBYUC9IEVSqhXf7hd0_zIPUY0dIYBSfrTni04XjRiLv2baixVxSiEVsQ8r4idR8IbYrR4VN4ElAkm7QL3YINV23D4zvagtvwcBZOzZ_B7enRhNEAw09chWVfL1c0ioK5wjpOVcyySlc1Dxb1gvm6N2dnxzPBvPNE4lqEoU2GSJctb-a-IWIy-gvIkL4wo_uNb_RqyXRl2ZK48X7-qzH55n6EWa8Vww6fUCs-6udwfnjwZX_Kw5UMvFCJ8FwrmZhxUaSFwvSU2tTpsUNQlEibjYx12HyksTU6U2XpxlEhEWBoaVNllM6SyMoXsFnVlXsFLIuw0zOITzO0HhUI_UyJzaBw0ppYq3QAWReDvAh65XRtxmXeEdO-53fjl1P88jZ-A5C971Wr2rGW18cu1Hk3l4qZNMfispb3Xu_91w5e2_9dt7tyfMXp3EZXrr5Gozgi3UNsPf9lE5NME0KNAbxst2b_y2WkYuo0X__nCt_AI_rU0j3fwqZfXLsdhGTe7Dbv3C48mHw6np78AQonO8g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIvE4ICgUlqeRuJrN2s5LiENVURbaLRxaqbfIjh1YVJJq16VaDvwP_i0ziROVQ9FKXJMZyfHYM9_E34wBXpWV1tJYwxGLYoIinOU6qgyPbZQap_OJaU9MZ4fJ9Fh9PIlPNmC3r4UhWmXw_Z1Pb711eDIOszk-m8_HREsSOQZoQbSgRKhrcF3h9qVrDF7_Gnge1D5GdDxGwUm87zzakryoxl37ztaYLArRdlsQ8qoodRUKbaPR3l24E2Ak2-lGeg82XL0Fty81F9yCG7NwbH4ffn96v8OoguEHjsKyL6crqkVBZ2EdpzBmWa3rhgeJZsF8M4izz_szwbzzxOJahKpNhlCXLS_mvmViMvoHZKjBMKMLji_0asl0bdmSyPF-_rMV-eq-h2KvFcMUn2ArzvUDON57d7Q75eFOBl6qVHiulUzNpCyzUqF_ymzm9MQhKkqlzSNjHWYfWWKNzlVVuUlcoj0iLW2mjNJ5Glu5DZt1U7tHwPIYUz2DADVH6ahE7GcqzAaFk9YkWmUjyHsbFGVoWE73ZpwWPTPtW3HZfgXZr-jsNwI56J51bTvW0nrTm7roC1PRlRYYXdbSfjto_7WE19Z_2a-uAvc4Hdzo2jXnKJTE1PgQc89_ySTUpwmxxggedktz-HIZq4RSzcf_OcIXcHN6NDsoDj4c7j-BW_Sm434-hU2_OHfPEJ9587zdf38A5BM9Vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OGA+activated+glycopeptide-based+nano-activator+to+activate+PKM2+tetramerization+for+switching+catabolic+pathways+and+sensitizing+chemotherapy+resistance&rft.jtitle=Biomaterials&rft.au=Hou%2C+Da-Yong&rft.au=Xiao%2C+Wu-Yi&rft.au=Wang%2C+Jia-Qi&rft.au=Yaseen%2C+Muhammad&rft.date=2022-05-01&rft.issn=0142-9612&rft.volume=284+p.121523-&rft_id=info:doi/10.1016%2Fj.biomaterials.2022.121523&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon