OGA activated glycopeptide-based nano-activator to activate PKM2 tetramerization for switching catabolic pathways and sensitizing chemotherapy resistance
Tumor cells intensively engage in metabolic reprogramming for enhancing the availability of glycolytic metabolites and support cell proliferation. As the most important rate-limiting enzyme in aerobic glycolysis, activating the pyruvate kinase muscle isoform 2 (PKM2) from dimers to tetramers has bec...
Saved in:
Published in | Biomaterials Vol. 284; p. 121523 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tumor cells intensively engage in metabolic reprogramming for enhancing the availability of glycolytic metabolites and support cell proliferation. As the most important rate-limiting enzyme in aerobic glycolysis, activating the pyruvate kinase muscle isoform 2 (PKM2) from dimers to tetramers has become a key tumor chemotherapy method to control glucose metabolism. Herein, we developed a glycopeptide-based PKM2 nano-activator, which could induce the tetramerization of PKM2 based on serine bonding to Domain C of PKM2. The bound and trapped PKM2 tetramers significantly hindered glycolytic intermediates, prevented the nucleus translocation of dimeric PKM2, and ultimately inhibited the proliferation, chemoresistance and metastasis of tumor. The glycopeptide assembled into nanoparticles under aqueous conditions and in the circulation, which in situ transformed into PKM2 nano-activator with nanofibrillar structure after specifically activated by O-GlcNAcase recognition upregulated in a wide range of human tumors. Moreover, the glycopeptide-based PKM2 nano-activator successfully accumulated at the tumor sites and boosted the chemo-drug sensitivity against prostate and breast cancers. Attributed to these intriguing results, the newly developed glycopeptide-based PKM2 nano-activator can be envisioned a promising candidate for the treatment of tumors by switching catabolic pathways.
Schematic illustration of self-assembly, accumulation and in situ fibrillar transformation of GPNA1 in tumor cells, followed by intracellular anti-proliferative events. [Display omitted] |
---|---|
AbstractList | Tumor cells intensively engage in metabolic reprogramming for enhancing the availability of glycolytic metabolites and support cell proliferation. As the most important rate-limiting enzyme in aerobic glycolysis, activating the pyruvate kinase muscle isoform 2 (PKM2) from dimers to tetramers has become a key tumor chemotherapy method to control glucose metabolism. Herein, we developed a glycopeptide-based PKM2 nano-activator, which could induce the tetramerization of PKM2 based on serine bonding to Domain C of PKM2. The bound and trapped PKM2 tetramers significantly hindered glycolytic intermediates, prevented the nucleus translocation of dimeric PKM2, and ultimately inhibited the proliferation, chemoresistance and metastasis of tumor. The glycopeptide assembled into nanoparticles under aqueous conditions and in the circulation, which in situ transformed into PKM2 nano-activator with nanofibrillar structure after specifically activated by O-GlcNAcase recognition upregulated in a wide range of human tumors. Moreover, the glycopeptide-based PKM2 nano-activator successfully accumulated at the tumor sites and boosted the chemo-drug sensitivity against prostate and breast cancers. Attributed to these intriguing results, the newly developed glycopeptide-based PKM2 nano-activator can be envisioned a promising candidate for the treatment of tumors by switching catabolic pathways.
Schematic illustration of self-assembly, accumulation and in situ fibrillar transformation of GPNA1 in tumor cells, followed by intracellular anti-proliferative events. [Display omitted] Tumor cells intensively engage in metabolic reprogramming for enhancing the availability of glycolytic metabolites and support cell proliferation. As the most important rate-limiting enzyme in aerobic glycolysis, activating the pyruvate kinase muscle isoform 2 (PKM2) from dimers to tetramers has become a key tumor chemotherapy method to control glucose metabolism. Herein, we developed a glycopeptide-based PKM2 nano-activator, which could induce the tetramerization of PKM2 based on serine bonding to Domain C of PKM2. The bound and trapped PKM2 tetramers significantly hindered glycolytic intermediates, prevented the nucleus translocation of dimeric PKM2, and ultimately inhibited the proliferation, chemoresistance and metastasis of tumor. The glycopeptide assembled into nanoparticles under aqueous conditions and in the circulation, which in situ transformed into PKM2 nano-activator with nanofibrillar structure after specifically activated by O-GlcNAcase recognition upregulated in a wide range of human tumors. Moreover, the glycopeptide-based PKM2 nano-activator successfully accumulated at the tumor sites and boosted the chemo-drug sensitivity against prostate and breast cancers. Attributed to these intriguing results, the newly developed glycopeptide-based PKM2 nano-activator can be envisioned a promising candidate for the treatment of tumors by switching catabolic pathways. Tumor cells intensively engage in metabolic reprogramming for enhancing the availability of glycolytic metabolites and support cell proliferation. As the most important rate-limiting enzyme in aerobic glycolysis, activating the pyruvate kinase muscle isoform 2 (PKM2) from dimers to tetramers has become a key tumor chemotherapy method to control glucose metabolism. Herein, we developed a glycopeptide-based PKM2 nano-activator, which could induce the tetramerization of PKM2 based on serine bonding to Domain C of PKM2. The bound and trapped PKM2 tetramers significantly hindered glycolytic intermediates, prevented the nucleus translocation of dimeric PKM2, and ultimately inhibited the proliferation, chemoresistance and metastasis of tumor. The glycopeptide assembled into nanoparticles under aqueous conditions and in the circulation, which in situ transformed into PKM2 nano-activator with nanofibrillar structure after specifically activated by O-GlcNAcase recognition upregulated in a wide range of human tumors. Moreover, the glycopeptide-based PKM2 nano-activator successfully accumulated at the tumor sites and boosted the chemo-drug sensitivity against prostate and breast cancers. Attributed to these intriguing results, the newly developed glycopeptide-based PKM2 nano-activator can be envisioned a promising candidate for the treatment of tumors by switching catabolic pathways.Tumor cells intensively engage in metabolic reprogramming for enhancing the availability of glycolytic metabolites and support cell proliferation. As the most important rate-limiting enzyme in aerobic glycolysis, activating the pyruvate kinase muscle isoform 2 (PKM2) from dimers to tetramers has become a key tumor chemotherapy method to control glucose metabolism. Herein, we developed a glycopeptide-based PKM2 nano-activator, which could induce the tetramerization of PKM2 based on serine bonding to Domain C of PKM2. The bound and trapped PKM2 tetramers significantly hindered glycolytic intermediates, prevented the nucleus translocation of dimeric PKM2, and ultimately inhibited the proliferation, chemoresistance and metastasis of tumor. The glycopeptide assembled into nanoparticles under aqueous conditions and in the circulation, which in situ transformed into PKM2 nano-activator with nanofibrillar structure after specifically activated by O-GlcNAcase recognition upregulated in a wide range of human tumors. Moreover, the glycopeptide-based PKM2 nano-activator successfully accumulated at the tumor sites and boosted the chemo-drug sensitivity against prostate and breast cancers. Attributed to these intriguing results, the newly developed glycopeptide-based PKM2 nano-activator can be envisioned a promising candidate for the treatment of tumors by switching catabolic pathways. |
ArticleNumber | 121523 |
Author | Wang, Hui Li, Li-Li Wang, Man-Di Wang, Jia-Qi Wang, Zhi-Jia Yaseen, Muhammad Feng, Hai-Tao Hou, Da-Yong Xiao, Wu-Yi Wang, Lu Cai, Meng-meng Fei, Yue Shi, Xinghua Xu, Wanhai |
Author_xml | – sequence: 1 givenname: Da-Yong surname: Hou fullname: Hou, Da-Yong organization: Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China – sequence: 2 givenname: Wu-Yi surname: Xiao fullname: Xiao, Wu-Yi organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China – sequence: 3 givenname: Jia-Qi surname: Wang fullname: Wang, Jia-Qi organization: Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China – sequence: 4 givenname: Muhammad surname: Yaseen fullname: Yaseen, Muhammad organization: Institute of Chemical Sciences, University of Peshawar, 25120, KP, Pakistan – sequence: 5 givenname: Zhi-Jia surname: Wang fullname: Wang, Zhi-Jia organization: Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China – sequence: 6 givenname: Yue surname: Fei fullname: Fei, Yue organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China – sequence: 7 givenname: Man-Di surname: Wang fullname: Wang, Man-Di organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China – sequence: 8 givenname: Lu surname: Wang fullname: Wang, Lu organization: Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China – sequence: 9 givenname: Hui surname: Wang fullname: Wang, Hui organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China – sequence: 10 givenname: Xinghua surname: Shi fullname: Shi, Xinghua organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China – sequence: 11 givenname: Meng-meng surname: Cai fullname: Cai, Meng-meng organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China – sequence: 12 givenname: Hai-Tao surname: Feng fullname: Feng, Hai-Tao email: haitaofeng907@163.com organization: AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China – sequence: 13 givenname: Wanhai surname: Xu fullname: Xu, Wanhai email: xuwanhai@hrbmu.edu.cn organization: Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China – sequence: 14 givenname: Li-Li surname: Li fullname: Li, Li-Li email: lill@nanoctr.cn organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35462306$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1uEzEURi1URH_gFZDFis0E2zOecVhRChREUVnA2rpj3zQOM_ZgO63SN-FtcZtQoa6ysmyde-T7fcfkwAePhLzibMYZb9-sZr0LI2SMDoY0E0yIGRdcivoJOeKqU5WcM3lAjhhvRDVvuTgkxymtWLmzRjwjh7VsWlGz9oj8uTw_pWCyuy4-S6-GjQkTTtlZrHpI5cmDD9WOCJHm8IDT71-_CZoxRxjLX24hu-DpokDpxmWzdP6KGsjQh8EZOkFe3sAmUfCWJvTJZXd7jyxxDHmJEaYNjZhcyuANPidPF2U9fLE7T8jPTx9_nH2uLi7Pv5ydXlSm6USuoKm7nhujTMOUUlYhcGy57Go7Z71FqaRqbQ_zZrFALk2tBIPaqqZvYN5JW5-Q11vvFMPvNaasR5cMDgN4DOukRdtyxlTT8T1QKTmrW9EW9OUOXfcjWj1FN0Lc6H_JF-DtFjAxpBRx8YBwpu9q1iv9f836rma9rbkMv3s0bFy-j7904Yb9FB-2CizZXjuMOhmHJXfrIpqsbXD7ad4_0pjBeWdg-IWbfSV_AWwG51k |
CitedBy_id | crossref_primary_10_3389_fbioe_2022_1046234 crossref_primary_10_1016_j_biomaterials_2024_122550 crossref_primary_10_1002_adma_202303831 crossref_primary_10_1016_j_canlet_2024_216742 crossref_primary_10_1177_03008916241299244 crossref_primary_10_1007_s12672_023_00740_0 crossref_primary_10_1007_s12672_025_01790_2 crossref_primary_10_1093_nsr_nwae028 crossref_primary_10_1126_sciadv_abq8225 crossref_primary_10_1016_j_colsurfb_2022_112655 crossref_primary_10_1016_j_jddst_2023_105128 crossref_primary_10_1016_j_biopha_2024_117465 crossref_primary_10_1021_acsbiomaterials_4c00388 crossref_primary_10_1016_j_nantod_2024_102313 crossref_primary_10_1016_j_freeradbiomed_2023_09_006 crossref_primary_10_1038_s41392_024_01885_2 crossref_primary_10_1002_adma_202309582 crossref_primary_10_1016_j_ijpharm_2024_125028 crossref_primary_10_1021_acsnano_4c11903 crossref_primary_10_1016_j_jlumin_2024_120963 crossref_primary_10_1021_acsmaterialslett_3c00063 crossref_primary_10_1038_s41467_023_44665_2 crossref_primary_10_1038_s41419_025_07431_4 crossref_primary_10_1016_j_scib_2024_10_032 crossref_primary_10_1002_advs_202305662 |
Cites_doi | 10.1016/j.biomaterials.2015.01.068 10.1038/nature06734 10.3389/fonc.2020.00159 10.1073/pnas.1704145115 10.1016/j.phrs.2019.104511 10.1002/EXP.20210089 10.1038/nchembio.1060 10.1039/C9BM00898E 10.1186/s12935-020-01612-1 10.18632/aging.102866 10.1016/j.biomaterials.2019.119305 10.1016/j.chemosphere.2016.07.047 10.1021/acsnano.9b08209 10.1002/adma.201703444 10.1111/bpa.12311 10.2174/13816128113199990484 10.1038/sj.onc.1209597 10.1038/s41467-019-12848-5 10.1021/acs.jmedchem.8b00241 10.1002/EXP.20210153 10.1016/j.biocel.2010.02.005 10.1038/nrc3038 10.1016/j.ejmech.2019.03.003 10.1021/jm901577g 10.1016/j.bioactmat.2021.12.003 10.1080/09553002.2019.1589653 10.1002/EXP.20210144 10.1159/000375435 10.1002/adma.201904639 10.1016/j.bmcl.2010.04.015 10.1158/0008-5472.CAN-20-4190 10.1016/j.saa.2015.03.069 10.1002/pro.3691 10.1001/archgenpsychiatry.2009.137 10.1002/anie.202002649 10.1038/s41565-019-0626-4 10.1038/nature11540 10.1038/nrm.2017.22 10.1021/acs.jmedchem.9b01328 10.1002/EXP.20210005 10.1038/s41388-019-0975-3 10.7150/thno.30224 10.1039/C7CS00460E |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2022.121523 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1878-5905 |
ExternalDocumentID | 35462306 10_1016_j_biomaterials_2022_121523 S0142961222001624 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW BNPGV RIG SSH AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c472t-a437b1cc8c40888d8ea1e61573d90bde58586dba94ffe15c3820a3d84b4a975d3 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Fri Jul 11 03:35:01 EDT 2025 Fri Jul 11 11:38:58 EDT 2025 Mon Jul 21 06:00:59 EDT 2025 Tue Jul 01 01:19:47 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Sun Apr 06 06:54:07 EDT 2025 Tue Aug 26 17:20:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Glycolysis Nano-activator Glycopeptide PKM2 Switching catabolic pathways |
Language | English |
License | Copyright © 2022. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-a437b1cc8c40888d8ea1e61573d90bde58586dba94ffe15c3820a3d84b4a975d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 35462306 |
PQID | 2655103626 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2661008471 proquest_miscellaneous_2655103626 pubmed_primary_35462306 crossref_primary_10_1016_j_biomaterials_2022_121523 crossref_citationtrail_10_1016_j_biomaterials_2022_121523 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2022_121523 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2022_121523 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ding, Xue, Liu, Hu, Wang, Wang, Li, Guo, Hao, Ge, Zhang, Li, Li, Chen, Zhang (bib39) 2020; 63 Chen, Sheng, Qin, Zhu, Wu, Jia, Meng, He, Yan (bib42) 2019; 9 Zhang, Jing, Jiang, Rojalin, Baehr, Zhang, Xiao, Wu, Cong, Li, Li, Wang, Lam (bib34) 2020; 15 Liu, Vander Heiden (bib19) 2015; 25 Abdel-Wahab, Mahmoud, Al-Harizy (bib8) 2019; 150 Chaneton, Hillmann, Zheng, Martin, Maddocks, Chokkathukalam, Coyle, Jankevics, Holding, Vousden, Frezza, O'Reilly, Gottlieb (bib36) 2012; 491 Koppenol, Bounds, Dang (bib5) 2011; 11 Zahra, Dey, Ashish, Mishra, Pandey (bib22) 2020; 10 Liu, Yuan, Xu, Zhang, Li, Wang, Ge, Li (bib40) 2019; 170 Xu, Liu, Shen, Zhu, Wang (bib13) 2015; 51 Wang, Liu, Xu, Cheng (bib11) 2019; 7 Gao, Tang, Liu, Zou, Huang, Liu, Zhang (bib10) 2019; 31 Jiang, Mei, Ma, Jiang, Zhang, Yi, Feng, Liu, Liu (bib3) 2022; 2 Chen, Wang, Wang, Fan, Liu, Li, Han, Cheng, Zhang (bib9) 2020; 59 Li, Li, Guo, Li, Long, Ma, Ding, Yan, Li, Wu, Zhu, Li, Wen, Zhang, Xue, Zhao, Liu, Ivanov, Luo, Xi, Long, Wang, Chen (bib38) 2018; 61 Israelsen, Vander Heiden (bib6) 2015; 43 Guo, Ren, Yao, Ye, Sun, Lin, Wang, Guo, Xiao, Xu (bib26) 2020; 12 Anastasiou, Yu, Israelsen, Jiang, Boxer, Hong, Tempel, Dimov, Shen, Jha, Yang, Mattaini, Metallo, Fiske, Courtney, Malstrom, Khan, Kung, Skoumbourdis, Veith, Southall, Walsh, Brimacombe, Leister, Lunt, Johnson, Yen, Kunii, Davidson, Christofk, Austin, Inglese, Harris, Asara, Stephanopoulos, Salituro, Jin, Dang, Auld, Park, Cantley, Thomas, Vander Heiden (bib2) 2012; 8 Christofk, Vander Heiden, Harris, Ramanathan, Gerszten, Wei, Fleming, Schreiber, Cantley (bib16) 2008; 452 Jiang, Boxer, Vander Heiden, Shen, Skoumbourdis, Southall, Veith, Leister, Austin, Park, Inglese, Cantley, Auld, Thomas (bib24) 2010; 20 Lee, Ho, Troxler, Lin, Chung (bib27) 2021; 13 Nakamura, Sekine, Ouchi, Tsujii, Yoshikawa, Futatsubashi, Tsuchiya, Sugihara, Iwata, Suzuki, Matsuzaki, Suda, Sugiyama, Takei, Mori (bib44) 2010; 67 An, Hou, Zheng, Wang, Zeng, Xiao, Yan, Wang, Zhao, Cheng, Zhang, Wang, Wang, Wang, Xu (bib37) 2020; 14 Boxer, Jiang, Vander Heiden, Shen, Skoumbourdis, Southall, Veith, Leister, Austin, Park, Inglese, Cantley, Auld, Thomas (bib23) 2010; 53 Pelicano, Martin, Xu, Huang (bib7) 2006; 25 An, Li, Wang, Wang, Hou, Lin, Qiao, Wang, Yang, Cong, Ma, Zhao, Cai, Chen, Lu, Xu, Wang, Zhao (bib32) 2019; 10 Wang, Liu, Jin, Zhang, Li, Hao, Feng, Gu, Meng, Tian, Zheng, Xin, Zhang, Han, Aravind, Wei (bib43) 2017; 114 An, Mamuti, Wang, Yao, Wang, Zhao, Li (bib28) 2021; 1 Qi, Gao, Wang, Wang (bib31) 2018; 30 Zhao, Zhang, Pan, Liu (bib29) 2021; 1 Wang, Bo, Liu, Xu, Cai, Wang, Cheng (bib12) 2019; 218 Gupta, Wellen, Mazurek, Bamezai (bib21) 2014; 20 Vaupel, Schmidberger, Mayer (bib1) 2019; 95 Hou, Wang, Hu, Wang, Zhang, Lv, Wang, Wu, Wang, Wang, Xu (bib33) 2022; 14 Song, Han, Lv, Chen, Chen, Yin, Cheng (bib35) 2017; 46 Xu, Shao, Jiang, Cao, Wang, Yang, Wang, Wang, Niu (bib4) 2015; 38 Yang, Lu (bib18) 2015; 128 Tang, He, Liu, Yan, Fan (bib30) 2021; 1 Schormann, Hayden, Lee, Banerjee, Chattopadhyay (bib15) 2019; 28 Chen, Chen, Yu (bib20) 2020; 20 Apostolidi, Vathiotis, Muthusamy, Gaule, Gassaway, Rimm, Rinehart (bib25) 2021; 81 Liu, Yue, Wang, Yan, Liu, Sun, Li (bib45) 2015; 145 Yue, Sun, Yan, Liu, Zhao, Zhang (bib46) 2016; 161 Singh, Qian, Lee, Zhou, Han, Zhang, Ong, Ni, Jiang, Ruan, Li, Zhang, Ding, Lee, Singh, Wu, Herzog, Kaech, Wendel, Yates, Han, Sherwin, Nie, Yang (bib14) 2020; 39 Mazurek (bib17) 2011; 43 Yang, Qian (bib41) 2017; 18 Gupta (10.1016/j.biomaterials.2022.121523_bib21) 2014; 20 Song (10.1016/j.biomaterials.2022.121523_bib35) 2017; 46 Zhao (10.1016/j.biomaterials.2022.121523_bib29) 2021; 1 Christofk (10.1016/j.biomaterials.2022.121523_bib16) 2008; 452 Yue (10.1016/j.biomaterials.2022.121523_bib46) 2016; 161 Zhang (10.1016/j.biomaterials.2022.121523_bib34) 2020; 15 Wang (10.1016/j.biomaterials.2022.121523_bib11) 2019; 7 Li (10.1016/j.biomaterials.2022.121523_bib38) 2018; 61 Koppenol (10.1016/j.biomaterials.2022.121523_bib5) 2011; 11 An (10.1016/j.biomaterials.2022.121523_bib28) 2021; 1 Chaneton (10.1016/j.biomaterials.2022.121523_bib36) 2012; 491 Yang (10.1016/j.biomaterials.2022.121523_bib18) 2015; 128 Mazurek (10.1016/j.biomaterials.2022.121523_bib17) 2011; 43 Anastasiou (10.1016/j.biomaterials.2022.121523_bib2) 2012; 8 Ding (10.1016/j.biomaterials.2022.121523_bib39) 2020; 63 Singh (10.1016/j.biomaterials.2022.121523_bib14) 2020; 39 Guo (10.1016/j.biomaterials.2022.121523_bib26) 2020; 12 Qi (10.1016/j.biomaterials.2022.121523_bib31) 2018; 30 Chen (10.1016/j.biomaterials.2022.121523_bib9) 2020; 59 Gao (10.1016/j.biomaterials.2022.121523_bib10) 2019; 31 Chen (10.1016/j.biomaterials.2022.121523_bib20) 2020; 20 Zahra (10.1016/j.biomaterials.2022.121523_bib22) 2020; 10 Nakamura (10.1016/j.biomaterials.2022.121523_bib44) 2010; 67 Apostolidi (10.1016/j.biomaterials.2022.121523_bib25) 2021; 81 Liu (10.1016/j.biomaterials.2022.121523_bib45) 2015; 145 Wang (10.1016/j.biomaterials.2022.121523_bib43) 2017; 114 An (10.1016/j.biomaterials.2022.121523_bib37) 2020; 14 Xu (10.1016/j.biomaterials.2022.121523_bib4) 2015; 38 Xu (10.1016/j.biomaterials.2022.121523_bib13) 2015; 51 Yang (10.1016/j.biomaterials.2022.121523_bib41) 2017; 18 Israelsen (10.1016/j.biomaterials.2022.121523_bib6) 2015; 43 Liu (10.1016/j.biomaterials.2022.121523_bib40) 2019; 170 Abdel-Wahab (10.1016/j.biomaterials.2022.121523_bib8) 2019; 150 Vaupel (10.1016/j.biomaterials.2022.121523_bib1) 2019; 95 Wang (10.1016/j.biomaterials.2022.121523_bib12) 2019; 218 An (10.1016/j.biomaterials.2022.121523_bib32) 2019; 10 Boxer (10.1016/j.biomaterials.2022.121523_bib23) 2010; 53 Lee (10.1016/j.biomaterials.2022.121523_bib27) 2021; 13 Jiang (10.1016/j.biomaterials.2022.121523_bib24) 2010; 20 Hou (10.1016/j.biomaterials.2022.121523_bib33) 2022; 14 Pelicano (10.1016/j.biomaterials.2022.121523_bib7) 2006; 25 Liu (10.1016/j.biomaterials.2022.121523_bib19) 2015; 25 Tang (10.1016/j.biomaterials.2022.121523_bib30) 2021; 1 Chen (10.1016/j.biomaterials.2022.121523_bib42) 2019; 9 Jiang (10.1016/j.biomaterials.2022.121523_bib3) 2022; 2 Schormann (10.1016/j.biomaterials.2022.121523_bib15) 2019; 28 |
References_xml | – volume: 150 start-page: 104511 year: 2019 ident: bib8 article-title: Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy publication-title: Pharmacol. Res. – volume: 161 start-page: 475 year: 2016 end-page: 481 ident: bib46 article-title: Evaluation of the binding of perfluorinated compound to pepsin: spectroscopic analysis and molecular docking publication-title: Chemosphere – volume: 9 start-page: 676 year: 2019 end-page: 690 ident: bib42 article-title: TBC1D8 amplification drives tumorigenesis through metabolism reprogramming in ovarian cancer publication-title: Theranostics – volume: 53 start-page: 1048 year: 2010 end-page: 1055 ident: bib23 article-title: Evaluation of substituted N,N'-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase publication-title: J. Med. Chem. – volume: 18 start-page: 452 year: 2017 end-page: 465 ident: bib41 article-title: Protein O-GlcNAcylation: emerging mechanisms and functions publication-title: Nat. Rev. Mol. Cell Biol. – volume: 20 start-page: 523 year: 2020 ident: bib20 article-title: Protein kinase function of pyruvate kinase M2 and cancer publication-title: Cancer Cell Int. – volume: 10 start-page: 4861 year: 2019 ident: bib32 article-title: A tumour-selective cascade activatable self-detained system for drug delivery and cancer imaging publication-title: Nat. Commun. – volume: 43 start-page: 43 year: 2015 end-page: 51 ident: bib6 article-title: Pyruvate kinase: function, regulation and role in cancer, Semin publication-title: Cell Dev. Biol. – volume: 12 start-page: 3976 year: 2020 end-page: 3992 ident: bib26 article-title: PKM2 suppresses osteogenesis and facilitates adipogenesis by regulating β-catenin signaling and mitochondrial fusion and fission publication-title: Aging – volume: 1 start-page: 20210153 year: 2021 ident: bib28 article-title: Rationally designed modular drug delivery platform based on intracellular peptide self-assembly publication-title: Explorations – volume: 491 start-page: 458 year: 2012 end-page: 462 ident: bib36 article-title: Serine is a natural ligand and allosteric activator of pyruvate kinase M2 publication-title: Nature – volume: 61 start-page: 4155 year: 2018 end-page: 4164 ident: bib38 article-title: Natural product micheliolide (MCL) irreversibly activates pyruvate kinase M2 and suppresses leukemia publication-title: J. Med. Chem. – volume: 25 start-page: 781 year: 2015 end-page: 783 ident: bib19 article-title: The role of pyruvate kinase M2 in cancer metabolism publication-title: Brain Pathol. – volume: 67 start-page: 59 year: 2010 end-page: 68 ident: bib44 article-title: Brain serotonin and dopamine transporter bindings in adults with high-functioning autism publication-title: Arch. Gen. Psychiatry – volume: 38 start-page: 117 year: 2015 end-page: 122 ident: bib4 article-title: Warburg effect or reverse Warburg effect? A review of cancer metabolism publication-title: Oncol. Res. Treat. – volume: 25 start-page: 4633 year: 2006 end-page: 4646 ident: bib7 article-title: Glycolysis inhibition for anticancer treatment publication-title: Oncogene – volume: 170 start-page: 1 year: 2019 end-page: 15 ident: bib40 article-title: Synthesis of novel 7-azaindole derivatives containing pyridin-3-ylmethyl dithiocarbamate moiety as potent PKM2 activators and PKM2 nucleus translocation inhibitors publication-title: Eur. J. Med. Chem. – volume: 10 start-page: 159 year: 2020 ident: bib22 article-title: Pyruvate kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis publication-title: Front. Oncol. – volume: 39 start-page: 560 year: 2020 end-page: 573 ident: bib14 article-title: O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth publication-title: Oncogene – volume: 43 start-page: 969 year: 2011 end-page: 980 ident: bib17 article-title: Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells publication-title: Int. J. Biochem. Cell Biol. – volume: 14 start-page: 110 year: 2022 end-page: 119 ident: bib33 article-title: An activated excretion-retarded tumor imaging strategy towards metabolic organs publication-title: Bioact. Mater. – volume: 63 start-page: 1597 year: 2020 end-page: 1611 ident: bib39 article-title: Identification of parthenolide dimers as activators of pyruvate kinase M2 in xenografts of glioblastoma multiforme in vivo publication-title: J. Med. Chem. – volume: 2 start-page: 20210144 year: 2022 ident: bib3 article-title: Tumor hijacks macrophages and microbiota through extracellular vesicles publication-title: Explorations – volume: 15 start-page: 145 year: 2020 end-page: 153 ident: bib34 article-title: Transformable peptide nanoparticles arrest HER2 signalling and cause cancer cell death in vivo publication-title: Nat. Nanotechnol. – volume: 114 start-page: 13732 year: 2017 end-page: 13737 ident: bib43 article-title: O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 145 start-page: 473 year: 2015 end-page: 481 ident: bib45 article-title: Study of interaction between human serum albumin and three phenanthridine derivatives: fluorescence spectroscopy and computational approach publication-title: Spectrochim. Acta. A. Mol. Biomol. Spectrosc. – volume: 8 start-page: 839 year: 2012 end-page: 847 ident: bib2 article-title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis publication-title: Nat. Chem. Biol. – volume: 20 start-page: 3387 year: 2010 end-page: 3393 ident: bib24 article-title: Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase publication-title: Bioorg. Med. Chem. Lett – volume: 13 year: 2021 ident: bib27 article-title: Non-metabolic functions of PKM2 contribute to cervical cancer cell proliferation induced by the HPV16 E7 oncoprotein publication-title: Viruses – volume: 1 start-page: 75 year: 2021 end-page: 89 ident: bib30 article-title: Nanozyme for tumor therapy: surface modification matters publication-title: Explorations – volume: 46 start-page: 6570 year: 2017 end-page: 6599 ident: bib35 article-title: Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application publication-title: Chem. Soc. Rev. – volume: 1 start-page: 20210089 year: 2021 ident: bib29 article-title: Advanced bioactive nanomaterials for biomedical applications publication-title: Explorations – volume: 7 start-page: 4166 year: 2019 end-page: 4173 ident: bib11 article-title: Azido-galactose outperforms azido-mannose for metabolic labeling and targeting of hepatocellular carcinoma publication-title: Biomater. Sci. – volume: 95 start-page: 912 year: 2019 end-page: 919 ident: bib1 article-title: The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression publication-title: Int. J. Radiat. Biol. – volume: 51 start-page: 1 year: 2015 end-page: 11 ident: bib13 article-title: Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy publication-title: Biomaterials – volume: 128 start-page: 1655 year: 2015 end-page: 1660 ident: bib18 article-title: Pyruvate kinase M2 at a glance publication-title: J. Cell Sci. – volume: 30 start-page: 1703444 year: 2018 ident: bib31 article-title: Self-assembled peptide-based nanomaterials for biomedical imaging and therapy publication-title: Adv. Mater. – volume: 11 start-page: 325 year: 2011 end-page: 337 ident: bib5 article-title: Otto Warburg's contributions to current concepts of cancer metabolism publication-title: Nat. Rev. Cancer – volume: 59 start-page: 21562 year: 2020 end-page: 21570 ident: bib9 article-title: Inhibition of tumor progression through the coupling of bacterial respiration with tumor metabolism publication-title: Angew. Chem. Int. Ed. Engl. – volume: 14 start-page: 927 year: 2020 end-page: 936 ident: bib37 article-title: A near-infrared peptide probe with tumor-specific excretion-retarded effect for image-guided surgery of renal cell carcinoma publication-title: ACS Nano – volume: 28 start-page: 1771 year: 2019 end-page: 1784 ident: bib15 article-title: An overview of structure, function, and regulation of pyruvate kinases publication-title: Protein Sci. – volume: 20 start-page: 2595 year: 2014 end-page: 2606 ident: bib21 article-title: Pyruvate kinase M2: regulatory circuits and potential for therapeutic intervention publication-title: Curr. Pharmaceut. Des. – volume: 31 year: 2019 ident: bib10 article-title: Intra/Extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors publication-title: Adv. Mater. – volume: 452 start-page: 230 year: 2008 end-page: 233 ident: bib16 article-title: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth publication-title: Nature – volume: 218 start-page: 119305 year: 2019 ident: bib12 article-title: In vivo cancer targeting via glycopolyester nanoparticle mediated metabolic cell labeling followed by click reaction publication-title: Biomaterials – volume: 81 start-page: 4346 year: 2021 end-page: 4359 ident: bib25 article-title: Targeting pyruvate kinase M2 phosphorylation reverses aggressive cancer phenotypes publication-title: Cancer Res. – volume: 51 start-page: 1 year: 2015 ident: 10.1016/j.biomaterials.2022.121523_bib13 article-title: Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.01.068 – volume: 452 start-page: 230 year: 2008 ident: 10.1016/j.biomaterials.2022.121523_bib16 article-title: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth publication-title: Nature doi: 10.1038/nature06734 – volume: 10 start-page: 159 year: 2020 ident: 10.1016/j.biomaterials.2022.121523_bib22 article-title: Pyruvate kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis publication-title: Front. Oncol. doi: 10.3389/fonc.2020.00159 – volume: 114 start-page: 13732 year: 2017 ident: 10.1016/j.biomaterials.2022.121523_bib43 article-title: O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1704145115 – volume: 150 start-page: 104511 year: 2019 ident: 10.1016/j.biomaterials.2022.121523_bib8 article-title: Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2019.104511 – volume: 1 start-page: 20210089 year: 2021 ident: 10.1016/j.biomaterials.2022.121523_bib29 article-title: Advanced bioactive nanomaterials for biomedical applications publication-title: Explorations doi: 10.1002/EXP.20210089 – volume: 8 start-page: 839 year: 2012 ident: 10.1016/j.biomaterials.2022.121523_bib2 article-title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1060 – volume: 7 start-page: 4166 year: 2019 ident: 10.1016/j.biomaterials.2022.121523_bib11 article-title: Azido-galactose outperforms azido-mannose for metabolic labeling and targeting of hepatocellular carcinoma publication-title: Biomater. Sci. doi: 10.1039/C9BM00898E – volume: 20 start-page: 523 year: 2020 ident: 10.1016/j.biomaterials.2022.121523_bib20 article-title: Protein kinase function of pyruvate kinase M2 and cancer publication-title: Cancer Cell Int. doi: 10.1186/s12935-020-01612-1 – volume: 12 start-page: 3976 year: 2020 ident: 10.1016/j.biomaterials.2022.121523_bib26 article-title: PKM2 suppresses osteogenesis and facilitates adipogenesis by regulating β-catenin signaling and mitochondrial fusion and fission publication-title: Aging doi: 10.18632/aging.102866 – volume: 218 start-page: 119305 year: 2019 ident: 10.1016/j.biomaterials.2022.121523_bib12 article-title: In vivo cancer targeting via glycopolyester nanoparticle mediated metabolic cell labeling followed by click reaction publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119305 – volume: 161 start-page: 475 year: 2016 ident: 10.1016/j.biomaterials.2022.121523_bib46 article-title: Evaluation of the binding of perfluorinated compound to pepsin: spectroscopic analysis and molecular docking publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.07.047 – volume: 14 start-page: 927 year: 2020 ident: 10.1016/j.biomaterials.2022.121523_bib37 article-title: A near-infrared peptide probe with tumor-specific excretion-retarded effect for image-guided surgery of renal cell carcinoma publication-title: ACS Nano doi: 10.1021/acsnano.9b08209 – volume: 30 start-page: 1703444 year: 2018 ident: 10.1016/j.biomaterials.2022.121523_bib31 article-title: Self-assembled peptide-based nanomaterials for biomedical imaging and therapy publication-title: Adv. Mater. doi: 10.1002/adma.201703444 – volume: 25 start-page: 781 year: 2015 ident: 10.1016/j.biomaterials.2022.121523_bib19 article-title: The role of pyruvate kinase M2 in cancer metabolism publication-title: Brain Pathol. doi: 10.1111/bpa.12311 – volume: 20 start-page: 2595 year: 2014 ident: 10.1016/j.biomaterials.2022.121523_bib21 article-title: Pyruvate kinase M2: regulatory circuits and potential for therapeutic intervention publication-title: Curr. Pharmaceut. Des. doi: 10.2174/13816128113199990484 – volume: 25 start-page: 4633 year: 2006 ident: 10.1016/j.biomaterials.2022.121523_bib7 article-title: Glycolysis inhibition for anticancer treatment publication-title: Oncogene doi: 10.1038/sj.onc.1209597 – volume: 13 year: 2021 ident: 10.1016/j.biomaterials.2022.121523_bib27 article-title: Non-metabolic functions of PKM2 contribute to cervical cancer cell proliferation induced by the HPV16 E7 oncoprotein publication-title: Viruses – volume: 128 start-page: 1655 year: 2015 ident: 10.1016/j.biomaterials.2022.121523_bib18 article-title: Pyruvate kinase M2 at a glance publication-title: J. Cell Sci. – volume: 10 start-page: 4861 year: 2019 ident: 10.1016/j.biomaterials.2022.121523_bib32 article-title: A tumour-selective cascade activatable self-detained system for drug delivery and cancer imaging publication-title: Nat. Commun. doi: 10.1038/s41467-019-12848-5 – volume: 61 start-page: 4155 year: 2018 ident: 10.1016/j.biomaterials.2022.121523_bib38 article-title: Natural product micheliolide (MCL) irreversibly activates pyruvate kinase M2 and suppresses leukemia publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.8b00241 – volume: 1 start-page: 20210153 year: 2021 ident: 10.1016/j.biomaterials.2022.121523_bib28 article-title: Rationally designed modular drug delivery platform based on intracellular peptide self-assembly publication-title: Explorations doi: 10.1002/EXP.20210153 – volume: 43 start-page: 969 year: 2011 ident: 10.1016/j.biomaterials.2022.121523_bib17 article-title: Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2010.02.005 – volume: 11 start-page: 325 year: 2011 ident: 10.1016/j.biomaterials.2022.121523_bib5 article-title: Otto Warburg's contributions to current concepts of cancer metabolism publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3038 – volume: 170 start-page: 1 year: 2019 ident: 10.1016/j.biomaterials.2022.121523_bib40 article-title: Synthesis of novel 7-azaindole derivatives containing pyridin-3-ylmethyl dithiocarbamate moiety as potent PKM2 activators and PKM2 nucleus translocation inhibitors publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2019.03.003 – volume: 53 start-page: 1048 year: 2010 ident: 10.1016/j.biomaterials.2022.121523_bib23 article-title: Evaluation of substituted N,N'-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase publication-title: J. Med. Chem. doi: 10.1021/jm901577g – volume: 14 start-page: 110 year: 2022 ident: 10.1016/j.biomaterials.2022.121523_bib33 article-title: An activated excretion-retarded tumor imaging strategy towards metabolic organs publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2021.12.003 – volume: 95 start-page: 912 year: 2019 ident: 10.1016/j.biomaterials.2022.121523_bib1 article-title: The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression publication-title: Int. J. Radiat. Biol. doi: 10.1080/09553002.2019.1589653 – volume: 2 start-page: 20210144 year: 2022 ident: 10.1016/j.biomaterials.2022.121523_bib3 article-title: Tumor hijacks macrophages and microbiota through extracellular vesicles publication-title: Explorations doi: 10.1002/EXP.20210144 – volume: 38 start-page: 117 year: 2015 ident: 10.1016/j.biomaterials.2022.121523_bib4 article-title: Warburg effect or reverse Warburg effect? A review of cancer metabolism publication-title: Oncol. Res. Treat. doi: 10.1159/000375435 – volume: 43 start-page: 43 year: 2015 ident: 10.1016/j.biomaterials.2022.121523_bib6 article-title: Pyruvate kinase: function, regulation and role in cancer, Semin publication-title: Cell Dev. Biol. – volume: 31 year: 2019 ident: 10.1016/j.biomaterials.2022.121523_bib10 article-title: Intra/Extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors publication-title: Adv. Mater. doi: 10.1002/adma.201904639 – volume: 20 start-page: 3387 year: 2010 ident: 10.1016/j.biomaterials.2022.121523_bib24 article-title: Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase publication-title: Bioorg. Med. Chem. Lett doi: 10.1016/j.bmcl.2010.04.015 – volume: 81 start-page: 4346 year: 2021 ident: 10.1016/j.biomaterials.2022.121523_bib25 article-title: Targeting pyruvate kinase M2 phosphorylation reverses aggressive cancer phenotypes publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-20-4190 – volume: 145 start-page: 473 year: 2015 ident: 10.1016/j.biomaterials.2022.121523_bib45 article-title: Study of interaction between human serum albumin and three phenanthridine derivatives: fluorescence spectroscopy and computational approach publication-title: Spectrochim. Acta. A. Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2015.03.069 – volume: 28 start-page: 1771 year: 2019 ident: 10.1016/j.biomaterials.2022.121523_bib15 article-title: An overview of structure, function, and regulation of pyruvate kinases publication-title: Protein Sci. doi: 10.1002/pro.3691 – volume: 67 start-page: 59 year: 2010 ident: 10.1016/j.biomaterials.2022.121523_bib44 article-title: Brain serotonin and dopamine transporter bindings in adults with high-functioning autism publication-title: Arch. Gen. Psychiatry doi: 10.1001/archgenpsychiatry.2009.137 – volume: 59 start-page: 21562 year: 2020 ident: 10.1016/j.biomaterials.2022.121523_bib9 article-title: Inhibition of tumor progression through the coupling of bacterial respiration with tumor metabolism publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202002649 – volume: 15 start-page: 145 year: 2020 ident: 10.1016/j.biomaterials.2022.121523_bib34 article-title: Transformable peptide nanoparticles arrest HER2 signalling and cause cancer cell death in vivo publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0626-4 – volume: 491 start-page: 458 year: 2012 ident: 10.1016/j.biomaterials.2022.121523_bib36 article-title: Serine is a natural ligand and allosteric activator of pyruvate kinase M2 publication-title: Nature doi: 10.1038/nature11540 – volume: 18 start-page: 452 year: 2017 ident: 10.1016/j.biomaterials.2022.121523_bib41 article-title: Protein O-GlcNAcylation: emerging mechanisms and functions publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.22 – volume: 63 start-page: 1597 year: 2020 ident: 10.1016/j.biomaterials.2022.121523_bib39 article-title: Identification of parthenolide dimers as activators of pyruvate kinase M2 in xenografts of glioblastoma multiforme in vivo publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.9b01328 – volume: 1 start-page: 75 year: 2021 ident: 10.1016/j.biomaterials.2022.121523_bib30 article-title: Nanozyme for tumor therapy: surface modification matters publication-title: Explorations doi: 10.1002/EXP.20210005 – volume: 39 start-page: 560 year: 2020 ident: 10.1016/j.biomaterials.2022.121523_bib14 article-title: O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth publication-title: Oncogene doi: 10.1038/s41388-019-0975-3 – volume: 9 start-page: 676 year: 2019 ident: 10.1016/j.biomaterials.2022.121523_bib42 article-title: TBC1D8 amplification drives tumorigenesis through metabolism reprogramming in ovarian cancer publication-title: Theranostics doi: 10.7150/thno.30224 – volume: 46 start-page: 6570 year: 2017 ident: 10.1016/j.biomaterials.2022.121523_bib35 article-title: Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00460E |
SSID | ssj0014042 |
Score | 2.525202 |
Snippet | Tumor cells intensively engage in metabolic reprogramming for enhancing the availability of glycolytic metabolites and support cell proliferation. As the most... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121523 |
SubjectTerms | biocompatible materials Breast Neoplasms - drug therapy Breast Neoplasms - metabolism breasts cell proliferation drug therapy glucose Glycolysis Glycopeptide glycopeptides Glycopeptides - metabolism Humans Male metabolites metastasis muscles Muscles - metabolism Nano-activator PKM2 Protein Isoforms - metabolism pyruvate kinase Pyruvate Kinase - metabolism serine Switching catabolic pathways |
Title | OGA activated glycopeptide-based nano-activator to activate PKM2 tetramerization for switching catabolic pathways and sensitizing chemotherapy resistance |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961222001624 https://dx.doi.org/10.1016/j.biomaterials.2022.121523 https://www.ncbi.nlm.nih.gov/pubmed/35462306 https://www.proquest.com/docview/2655103626 https://www.proquest.com/docview/2661008471 |
Volume | 284 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxEB1VRUJwQLR8BWhlJK4mie39EuohqtoGqrQ9UKm3lb32QlDZrRKXKhz4H_23zOx6V-VQFIljohnJ2fHOvInfPAO8L0qtpbGGIxbFBkU4y_WoNDyyo8Q4nY1Nc2I6O4mn5-rzRXSxAfvdLAzRKkPub3N6k63DN8PwNIdX8_mQaEkiwwItiBYUC9IEVSqhXf7hd0_zIPUY0dIYBSfrTni04XjRiLv2baixVxSiEVsQ8r4idR8IbYrR4VN4ElAkm7QL3YINV23D4zvagtvwcBZOzZ_B7enRhNEAw09chWVfL1c0ioK5wjpOVcyySlc1Dxb1gvm6N2dnxzPBvPNE4lqEoU2GSJctb-a-IWIy-gvIkL4wo_uNb_RqyXRl2ZK48X7-qzH55n6EWa8Vww6fUCs-6udwfnjwZX_Kw5UMvFCJ8FwrmZhxUaSFwvSU2tTpsUNQlEibjYx12HyksTU6U2XpxlEhEWBoaVNllM6SyMoXsFnVlXsFLIuw0zOITzO0HhUI_UyJzaBw0ppYq3QAWReDvAh65XRtxmXeEdO-53fjl1P88jZ-A5C971Wr2rGW18cu1Hk3l4qZNMfispb3Xu_91w5e2_9dt7tyfMXp3EZXrr5Gozgi3UNsPf9lE5NME0KNAbxst2b_y2WkYuo0X__nCt_AI_rU0j3fwqZfXLsdhGTe7Dbv3C48mHw6np78AQonO8g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIvE4ICgUlqeRuJrN2s5LiENVURbaLRxaqbfIjh1YVJJq16VaDvwP_i0ziROVQ9FKXJMZyfHYM9_E34wBXpWV1tJYwxGLYoIinOU6qgyPbZQap_OJaU9MZ4fJ9Fh9PIlPNmC3r4UhWmXw_Z1Pb711eDIOszk-m8_HREsSOQZoQbSgRKhrcF3h9qVrDF7_Gnge1D5GdDxGwUm87zzakryoxl37ztaYLArRdlsQ8qoodRUKbaPR3l24E2Ak2-lGeg82XL0Fty81F9yCG7NwbH4ffn96v8OoguEHjsKyL6crqkVBZ2EdpzBmWa3rhgeJZsF8M4izz_szwbzzxOJahKpNhlCXLS_mvmViMvoHZKjBMKMLji_0asl0bdmSyPF-_rMV-eq-h2KvFcMUn2ArzvUDON57d7Q75eFOBl6qVHiulUzNpCyzUqF_ymzm9MQhKkqlzSNjHWYfWWKNzlVVuUlcoj0iLW2mjNJ5Glu5DZt1U7tHwPIYUz2DADVH6ahE7GcqzAaFk9YkWmUjyHsbFGVoWE73ZpwWPTPtW3HZfgXZr-jsNwI56J51bTvW0nrTm7roC1PRlRYYXdbSfjto_7WE19Z_2a-uAvc4Hdzo2jXnKJTE1PgQc89_ySTUpwmxxggedktz-HIZq4RSzcf_OcIXcHN6NDsoDj4c7j-BW_Sm434-hU2_OHfPEJ9587zdf38A5BM9Vg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OGA+activated+glycopeptide-based+nano-activator+to+activate+PKM2+tetramerization+for+switching+catabolic+pathways+and+sensitizing+chemotherapy+resistance&rft.jtitle=Biomaterials&rft.au=Hou%2C+Da-Yong&rft.au=Xiao%2C+Wu-Yi&rft.au=Wang%2C+Jia-Qi&rft.au=Yaseen%2C+Muhammad&rft.date=2022-05-01&rft.issn=0142-9612&rft.volume=284+p.121523-&rft_id=info:doi/10.1016%2Fj.biomaterials.2022.121523&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |