Robust and thermo-response graphene–PNIPAm hybrid hydrogels reinforced by hectorite clay
Graphene oxide (GO) based hydrogels were proposed to be used as biomaterials and stimuli-response materials, but their poor mechanical properties restricted their applications. We enhanced GO–poly(N-isopropylacrylamide) (PNIPAm) hydrogels by hybrid with the hectorite clay through in situ polymerizat...
Saved in:
Published in | Carbon (New York) Vol. 62; pp. 117 - 126 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.10.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene oxide (GO) based hydrogels were proposed to be used as biomaterials and stimuli-response materials, but their poor mechanical properties restricted their applications. We enhanced GO–poly(N-isopropylacrylamide) (PNIPAm) hydrogels by hybrid with the hectorite clay through in situ polymerization for the first time. This clay was found to stabilize the GO in the aqueous suspension when a reducer was added in a redox initiating pair. These GO–clay–PNIPAm hybrid hydrogels exhibited a high mechanical strength and extensibility with the GO sheets as the cross-linker and with the hectorite clay as both the cross-linker and reinforcing agent. They were thermal-responsive with the volume phase transition at ∼34°C. Reduction of the GO with l-ascorbic acid under environmental friendly conditions resulted in a high conductivity to the graphene–clay–PNIPAm hydrogels. These graphene–clay–PNIPAm hydrogels still had desirable mechanical properties. This finding has provided an easy method to prepare strong and stimuli-response graphene–polymer hydrogels to meet the demand for the newly developed soft matter. |
---|---|
AbstractList | Graphene oxide (GO) based hydrogels were proposed to be used as biomaterials and stimuli-response materials, but their poor mechanical properties restricted their applications. We enhanced GO–poly(N-isopropylacrylamide) (PNIPAm) hydrogels by hybrid with the hectorite clay through in situ polymerization for the first time. This clay was found to stabilize the GO in the aqueous suspension when a reducer was added in a redox initiating pair. These GO–clay–PNIPAm hybrid hydrogels exhibited a high mechanical strength and extensibility with the GO sheets as the cross-linker and with the hectorite clay as both the cross-linker and reinforcing agent. They were thermal-responsive with the volume phase transition at ∼34°C. Reduction of the GO with l-ascorbic acid under environmental friendly conditions resulted in a high conductivity to the graphene–clay–PNIPAm hydrogels. These graphene–clay–PNIPAm hydrogels still had desirable mechanical properties. This finding has provided an easy method to prepare strong and stimuli-response graphene–polymer hydrogels to meet the demand for the newly developed soft matter. Graphene oxide (GO) based hydrogels were proposed to be used as biomaterials and stimuli-response materials, but their poor mechanical properties restricted their applications. We enhanced GO-poly(N-isopropylacrylamide) (PNIPAm) hydrogels by hybrid with the hectorite clay through in situ polymerization for the first time. This clay was found to stabilize the GO in the aqueous suspension when a reducer was added in a redox initiating pair. These GO-clay-PNIPAm hybrid hydrogels exhibited a high mechanical strength and extensibility with the GO sheets as the cross-linker and with the hectorite clay as both the cross-linker and reinforcing agent. They were thermal-responsive with the volume phase transition at similar to 34 degree C. Reduction of the GO with L-ascorbic acid under environmental friendly conditions resulted in a high conductivity to the graphene-clay-PNIPAm hydrogels. These graphene-clay-PNIPAm hydrogels still had desirable mechanical properties. This finding has provided an easy method to prepare strong and stimuli-response graphene-polymer hydrogels to meet the demand for the newly developed soft matter. |
Author | Liu, Xinxing Zhang, Enzhong Wang, Tao Tong, Zhen Sun, Weixiang Lian, Cuixia |
Author_xml | – sequence: 1 givenname: Enzhong surname: Zhang fullname: Zhang, Enzhong organization: Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China – sequence: 2 givenname: Tao surname: Wang fullname: Wang, Tao organization: Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China – sequence: 3 givenname: Cuixia surname: Lian fullname: Lian, Cuixia organization: Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China – sequence: 4 givenname: Weixiang surname: Sun fullname: Sun, Weixiang organization: Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China – sequence: 5 givenname: Xinxing surname: Liu fullname: Liu, Xinxing organization: Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China – sequence: 6 givenname: Zhen surname: Tong fullname: Tong, Zhen email: mcztong@scut.edu.cn organization: Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27584170$$DView record in Pascal Francis |
BookMark | eNqFkc2KFDEUhYOMYM_oG7iojeCmypufSqVcCMPgz8Cgg-jGTUhSt6bTVCdtkhZ65zv4hvMkk6HHjQtndbjwncOF75SchBiQkJcUOgpUvtl0ziQbQ8eA8g5kB8CfkBVVA2-5GukJWQGAaiVj_Bk5zXlTT6GoWJEfX6Pd59KYMDVljWkb24R5F0PG5iaZ3RoD3v7-c_358vp826wPNvmpxpTiDS65SejDHJPDqbGHZo2uxOQLNm4xh-fk6WyWjC8e8ox8__D-28Wn9urLx8uL86vWiYGV1jCKM6-PczG70eDAORs5jmKSo-x7UD1IGJUQbFYCOLNgRS8tY1JaZ3vFz8jr4-4uxZ97zEVvfXa4LCZg3GdNB-gFlxz6x1Eh1EBhULSirx5Qk51Z5mSC81nvkt-adNBs6JWoy5V7e-RcijknnLXzxRQfQ0nGL5qCvnekN_roSN870iB1dVTL4p_y3_1Hau-OtaoAf3lMOjuPoVrwqSrQU_T_H7gDGOSuwg |
CODEN | CRBNAH |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2015_09_039 crossref_primary_10_1021_acs_langmuir_8b03660 crossref_primary_10_1002_macp_201600398 crossref_primary_10_1016_j_reactfunctpolym_2014_03_013 crossref_primary_10_1016_j_jconrel_2015_05_172 crossref_primary_10_1002_app_41530 crossref_primary_10_1002_app_44963 crossref_primary_10_1002_marc_201800337 crossref_primary_10_1039_C8SM00232K crossref_primary_10_1002_mame_201700184 crossref_primary_10_1021_acsami_6b00867 crossref_primary_10_1016_j_apsusc_2016_11_182 crossref_primary_10_1016_j_jcis_2014_07_031 crossref_primary_10_1021_acsapm_9b00221 crossref_primary_10_1002_app_51509 crossref_primary_10_1039_C8NJ05186K crossref_primary_10_1002_chem_201804947 crossref_primary_10_1016_j_cej_2023_148205 crossref_primary_10_2174_0929867325666180831151055 crossref_primary_10_1021_acsapm_0c00464 crossref_primary_10_1039_C4RA05592F crossref_primary_10_1016_j_mtchem_2023_101384 crossref_primary_10_1016_j_compositesa_2017_05_019 crossref_primary_10_1039_C4TA02866J crossref_primary_10_1016_j_molliq_2021_118092 crossref_primary_10_1002_chem_202002244 crossref_primary_10_1021_jp510526j crossref_primary_10_1016_j_electacta_2020_137243 crossref_primary_10_1002_mame_201600359 crossref_primary_10_1021_acs_macromol_5b02352 crossref_primary_10_1038_srep18419 crossref_primary_10_1021_acsami_5b08609 crossref_primary_10_1016_j_molliq_2019_110949 crossref_primary_10_1039_D0BM01699C crossref_primary_10_1007_s41204_017_0014_y crossref_primary_10_1021_acsnano_5b05120 crossref_primary_10_1016_j_clay_2018_01_026 crossref_primary_10_1039_C8NR09728C crossref_primary_10_1039_C5TA04470G crossref_primary_10_1021_acsami_7b01710 crossref_primary_10_1088_2053_1591_ac2bd2 crossref_primary_10_1016_j_jcis_2016_11_075 crossref_primary_10_3390_polym13142375 crossref_primary_10_1002_mame_201500141 crossref_primary_10_1016_j_talanta_2021_122368 crossref_primary_10_1016_j_polymer_2019_121637 crossref_primary_10_1007_s13204_020_01358_2 crossref_primary_10_1016_j_matlet_2015_05_091 crossref_primary_10_1039_C6RA04234A crossref_primary_10_1039_C7TA10898B crossref_primary_10_1002_app_41557 crossref_primary_10_1021_acsami_5b08248 crossref_primary_10_1039_D3TA02948D crossref_primary_10_1016_j_progpolymsci_2017_09_001 crossref_primary_10_1038_s41598_017_08907_w crossref_primary_10_3390_pr11072069 crossref_primary_10_1002_pol_20210762 crossref_primary_10_1016_j_msec_2016_06_065 crossref_primary_10_1016_j_ultsonch_2019_104797 crossref_primary_10_1080_09205063_2020_1775760 crossref_primary_10_1016_j_colsurfa_2015_09_024 crossref_primary_10_1021_acsami_7b00138 crossref_primary_10_1021_acs_biomac_6b00646 crossref_primary_10_1039_C7CC03230G crossref_primary_10_1021_acs_chemrev_6b00520 crossref_primary_10_1007_s13738_019_01675_6 crossref_primary_10_1177_8756087919884607 crossref_primary_10_1002_adem_201600272 crossref_primary_10_1016_j_compscitech_2017_08_016 crossref_primary_10_1021_acs_macromol_6b00584 crossref_primary_10_1016_j_matlet_2018_11_116 crossref_primary_10_1002_mame_201700660 crossref_primary_10_3390_polym9060237 crossref_primary_10_1039_C8QI01303A crossref_primary_10_1016_j_compscitech_2023_109947 crossref_primary_10_1039_C6TA07211A crossref_primary_10_1021_am507100m crossref_primary_10_1016_j_compscitech_2016_03_029 crossref_primary_10_1039_C8SM00297E crossref_primary_10_1021_acs_chemmater_7b03953 |
Cites_doi | 10.1002/anie.201100723 10.1039/c1jm10276a 10.1021/nl201503e 10.1039/C1SM06484C 10.1021/ma021301r 10.1038/nnano.2009.58 10.1021/nl801384y 10.1038/nature04235 10.1021/nn1027104 10.1038/nature04969 10.1016/j.carbon.2011.12.049 10.1039/c1sm00011j 10.1016/j.polymer.2008.09.021 10.1002/adfm.201201020 10.1038/442254a 10.1021/ma034366i 10.1021/ma300874n 10.1103/PhysRevB.61.14095 10.1038/nature06016 10.1039/c1jm10239g 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9 10.1039/c1sm05498h 10.1021/jp9035887 10.1039/c000051e 10.1021/nn101187z 10.1039/C1SM06970E 10.1016/j.carbon.2007.02.034 10.1021/nn2025644 10.1038/nmat1967 10.1021/nn1008897 10.1126/science.1162369 10.1021/ja01539a017 10.1038/nnano.2007.300 10.1021/ma201272j 10.1021/nn101781v 10.1021/nn2001728 10.1021/ja201269b 10.1149/1.3119548 10.1016/j.eurpolymj.2012.10.034 10.1126/science.1102896 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SR 7U5 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1016/j.carbon.2013.06.003 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1873-3891 |
EndPage | 126 |
ExternalDocumentID | 27584170 10_1016_j_carbon_2013_06_003 S000862231300496X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSR SSZ T5K TWZ WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SR 7U5 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c472t-a21ef301334fc9ae733293e94d6965508506098442f84032b0b456b2266bcb583 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Fri Jul 11 09:28:04 EDT 2025 Mon Jul 21 11:12:00 EDT 2025 Mon Jul 21 09:13:56 EDT 2025 Tue Jul 01 01:14:30 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 Fri Feb 23 02:24:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ascorbic acid Aqueous suspension Gels Mechanical strength In situ Conductivity Soft matter Polymerization Mechanical properties Phase transitions Clays Chemical reduction Biomedical materials Graphene Graphene oxide Hydrogel Polymers |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-a21ef301334fc9ae733293e94d6965508506098442f84032b0b456b2266bcb583 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1448710781 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1705436305 proquest_miscellaneous_1448710781 pascalfrancis_primary_27584170 crossref_citationtrail_10_1016_j_carbon_2013_06_003 crossref_primary_10_1016_j_carbon_2013_06_003 elsevier_sciencedirect_doi_10_1016_j_carbon_2013_06_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Carbon (New York) |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Shen, Yan, Li, Long, Li, Ye (b0135) 2012; 8 Zu, Han (b0115) 2009; 113 Haraguchi, Takehisa, Fan (b0165) 2002; 35 Lian, Lin, Wang, Sun, Liu, Tong (b0145) 2012; 45 Ren, Zhu, Haraguchi (b0180) 2011; 44 Xiong, Hu, Liu, Tong (b0175) 2008; 49 Yin, Zhang, Kong, Zou, Li, Lu (b0020) 2011; 5 Wang, Liu, Lian, Zheng, Liu, Tong (b0140) 2012; 8 Yang, Qiu, Cheng, Wu, Ma, Li (b0060) 2011; 50 Zhu, Lu, Peng, Chen, Yu (b0080) 2012; 22 Zhang, Tan, Stormer, Kim (b0050) 2005; 438 Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos (b0005) 2004; 306 Chandra, Park, Chun, Lee, Hwang, Kim (b0025) 2010; 4 Haraguchi, Farnworth, Ohbayashi, Takehisa (b0170) 2003; 36 Zhang, Li, Zhang, Chen, Wang, Liu (b0075) 2011; 7 Gómez-Navarro, Burghard, Kern (b0040) 2008; 8 Haraguchi, Takehisa (b0190) 2002; 14 Suk, Piner, An, Ruoff (b0200) 2010; 4 Bai, Li, Wang, Shi (b0120) 2010; 46 Kotov (b0035) 2006; 442 Stankovich, Dikin, Dommett, Kohlhaas, Zimney, Stach (b0045) 2006; 442 Xu, Sheng, Li, Shi (b0125) 2010; 4 Schedin, Geim, Morozov, Hill, Blake, Katsnelson (b0010) 2007; 6 Wang J, Ellsworth MW. Graphene aerogels. In: Obeng Y, DeGendt S, Srinivasan P, Misra D, Iwai H, Karim Z, et al., editors. Graphene and emerging materials for post-Cmos applications; 2009. p. 241–7. Hummers, Offeman (b0150) 1958; 80 Avouris, Chen, Perebeinos (b0055) 2007; 2 Xu, Wu, Sun, Bai, Shi (b0110) 2010; 4 Sun, Wu (b0065) 2011; 21 Park, Ruoff (b0100) 2009; 4 Lo, Zhu, Jiang (b0070) 2011; 7 Stankovich, Dikin, Piner, Kohlhaas, Kleinhammes, Jia (b0155) 2007; 45 Cai, Piner, Stadermann, Park, Shaibat, Ishii (b0105) 2008; 321 Dikin, Stankovich, Zimney, Piner, Dommett, Evmenenko (b0030) 2007; 448 Ma, Li, Wang, Ji, Xia (b0160) 2013; 49 Ferrari, Robertson (b0195) 2000; 61 Li, Wang, Xie, Liang, Hong, Dai (b0015) 2011; 133 Zhang, Sui, Xu, Yue, Luo, Zhan (b0090) 2011; 21 Hou, Zhang, Li, Wang (b0095) 2012; 50 Guo, Kim, Han, Shenoy, Huang, Hurt (b0185) 2011; 5 Zhang, Pint, Lee, Schubert, Jamshidi, Takei (b0085) 2011; 11 Chandra (10.1016/j.carbon.2013.06.003_b0025) 2010; 4 Sun (10.1016/j.carbon.2013.06.003_b0065) 2011; 21 Li (10.1016/j.carbon.2013.06.003_b0015) 2011; 133 Haraguchi (10.1016/j.carbon.2013.06.003_b0170) 2003; 36 Xu (10.1016/j.carbon.2013.06.003_b0110) 2010; 4 Xu (10.1016/j.carbon.2013.06.003_b0125) 2010; 4 Yin (10.1016/j.carbon.2013.06.003_b0020) 2011; 5 Schedin (10.1016/j.carbon.2013.06.003_b0010) 2007; 6 Zhang (10.1016/j.carbon.2013.06.003_b0050) 2005; 438 Park (10.1016/j.carbon.2013.06.003_b0100) 2009; 4 Avouris (10.1016/j.carbon.2013.06.003_b0055) 2007; 2 Guo (10.1016/j.carbon.2013.06.003_b0185) 2011; 5 10.1016/j.carbon.2013.06.003_b0130 Kotov (10.1016/j.carbon.2013.06.003_b0035) 2006; 442 Zu (10.1016/j.carbon.2013.06.003_b0115) 2009; 113 Hou (10.1016/j.carbon.2013.06.003_b0095) 2012; 50 Wang (10.1016/j.carbon.2013.06.003_b0140) 2012; 8 Xiong (10.1016/j.carbon.2013.06.003_b0175) 2008; 49 Lo (10.1016/j.carbon.2013.06.003_b0070) 2011; 7 Stankovich (10.1016/j.carbon.2013.06.003_b0155) 2007; 45 Ma (10.1016/j.carbon.2013.06.003_b0160) 2013; 49 Dikin (10.1016/j.carbon.2013.06.003_b0030) 2007; 448 Zhang (10.1016/j.carbon.2013.06.003_b0090) 2011; 21 Lian (10.1016/j.carbon.2013.06.003_b0145) 2012; 45 Hummers (10.1016/j.carbon.2013.06.003_b0150) 1958; 80 Suk (10.1016/j.carbon.2013.06.003_b0200) 2010; 4 Zhang (10.1016/j.carbon.2013.06.003_b0085) 2011; 11 Bai (10.1016/j.carbon.2013.06.003_b0120) 2010; 46 Haraguchi (10.1016/j.carbon.2013.06.003_b0165) 2002; 35 Novoselov (10.1016/j.carbon.2013.06.003_b0005) 2004; 306 Shen (10.1016/j.carbon.2013.06.003_b0135) 2012; 8 Haraguchi (10.1016/j.carbon.2013.06.003_b0190) 2002; 14 Ren (10.1016/j.carbon.2013.06.003_b0180) 2011; 44 Zhang (10.1016/j.carbon.2013.06.003_b0075) 2011; 7 Cai (10.1016/j.carbon.2013.06.003_b0105) 2008; 321 Zhu (10.1016/j.carbon.2013.06.003_b0080) 2012; 22 Ferrari (10.1016/j.carbon.2013.06.003_b0195) 2000; 61 Gómez-Navarro (10.1016/j.carbon.2013.06.003_b0040) 2008; 8 Stankovich (10.1016/j.carbon.2013.06.003_b0045) 2006; 442 Yang (10.1016/j.carbon.2013.06.003_b0060) 2011; 50 |
References_xml | – volume: 4 start-page: 7358 year: 2010 end-page: 7362 ident: b0110 article-title: Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels publication-title: ACS Nano – volume: 21 start-page: 4095 year: 2011 end-page: 4097 ident: b0065 article-title: A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks publication-title: J Mater Chem – volume: 49 start-page: 389 year: 2013 end-page: 396 ident: b0160 article-title: Temperature-sensitive poly( publication-title: Eur Polym J – volume: 44 start-page: 8516 year: 2011 end-page: 8526 ident: b0180 article-title: Characteristic swelling–deswelling of polymer/clay nanocomposite gels publication-title: Macromolecules – volume: 448 start-page: 457 year: 2007 end-page: 460 ident: b0030 article-title: Preparation and characterization of graphene oxide paper publication-title: Nature – volume: 45 start-page: 1558 year: 2007 end-page: 1565 ident: b0155 article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide publication-title: Carbon – volume: 7 start-page: 5604 year: 2011 end-page: 5609 ident: b0070 article-title: An infrared-light responsive graphene-oxide incorporated poly( publication-title: Soft Matter – volume: 8 start-page: 1831 year: 2012 end-page: 1836 ident: b0135 article-title: Mechanical, thermal and swelling properties of poly(acrylic acid)–graphene oxide composite hydrogels publication-title: Soft Matter – volume: 21 start-page: 6494 year: 2011 end-page: 6497 ident: b0090 article-title: Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources publication-title: J Mater Chem – volume: 35 start-page: 10162 year: 2002 end-page: 10171 ident: b0165 article-title: Effects of clay content on the properties of nanocomposite hydrogels composed of poly( publication-title: Macromolecules – volume: 113 start-page: 13651 year: 2009 end-page: 13657 ident: b0115 article-title: Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel publication-title: J Phys Chem C – volume: 5 start-page: 8019 year: 2011 end-page: 8025 ident: b0185 article-title: Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases publication-title: ACS Nano – volume: 133 start-page: 7296 year: 2011 end-page: 7299 ident: b0015 article-title: MoS publication-title: J Am Chem Soc – volume: 61 start-page: 14095 year: 2000 end-page: 14107 ident: b0195 article-title: Interpretation of Raman spectra of disordered and amorphous carbon publication-title: Phys Rev B – volume: 4 start-page: 3979 year: 2010 end-page: 3986 ident: b0025 article-title: Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal publication-title: ACS Nano – volume: 50 start-page: 7325 year: 2011 end-page: 7328 ident: b0060 article-title: Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films publication-title: Angew Chem Int Ed – volume: 14 start-page: 1120 year: 2002 end-page: 1124 ident: b0190 article-title: Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties publication-title: Adv Mater – volume: 8 start-page: 2045 year: 2008 end-page: 2049 ident: b0040 article-title: Elastic properties of chemically derived single graphene sheets publication-title: Nano Lett – volume: 7 start-page: 7231 year: 2011 end-page: 7239 ident: b0075 article-title: Actuator materials based on graphene oxide/polyacrylamide composite hydrogels prepared by in situ polymerization publication-title: Soft Matter – volume: 80 start-page: 1339 year: 1958 ident: b0150 article-title: Preparation of graphitic oxide publication-title: J Am Chem Soc – volume: 6 start-page: 652 year: 2007 end-page: 655 ident: b0010 article-title: Detection of individual gas molecules adsorbed on graphene publication-title: Nat Mater – volume: 22 start-page: 4017 year: 2012 end-page: 4022 ident: b0080 article-title: Photothermally sensitive poly( publication-title: Adv Funct Mater – volume: 11 start-page: 3239 year: 2011 end-page: 3244 ident: b0085 article-title: Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites publication-title: Nano Lett – volume: 50 start-page: 1959 year: 2012 end-page: 1965 ident: b0095 article-title: Graphene-polymer hydrogels with stimulus-sensitive volume changes publication-title: Carbon – volume: 36 start-page: 5732 year: 2003 end-page: 5741 ident: b0170 article-title: Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly( publication-title: Macromolecules – volume: 321 start-page: 1815 year: 2008 end-page: 1817 ident: b0105 article-title: Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide publication-title: Science – reference: Wang J, Ellsworth MW. Graphene aerogels. In: Obeng Y, DeGendt S, Srinivasan P, Misra D, Iwai H, Karim Z, et al., editors. Graphene and emerging materials for post-Cmos applications; 2009. p. 241–7. – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: b0005 article-title: Electric field effect in atomically thin carbon films publication-title: Science – volume: 5 start-page: 3831 year: 2011 end-page: 3838 ident: b0020 article-title: Assembly of graphene sheets into hierarchical structures for high-performance energy storage publication-title: ACS Nano – volume: 45 start-page: 7220 year: 2012 end-page: 7227 ident: b0145 article-title: Self-reinforcement of PNIPAm–Laponite nanocomposite gels investigated by atom force microscopy nanoindentation publication-title: Macromolecules – volume: 46 start-page: 2376 year: 2010 end-page: 2378 ident: b0120 article-title: A pH-sensitive graphene oxide composite hydrogel publication-title: Chem Commun – volume: 49 start-page: 5064 year: 2008 end-page: 5071 ident: b0175 article-title: Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility publication-title: Polymer – volume: 8 start-page: 774 year: 2012 end-page: 783 ident: b0140 article-title: Large deformation behavior and effective network chain density of swollen poly( publication-title: Soft Matter – volume: 438 start-page: 201 year: 2005 end-page: 204 ident: b0050 article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene publication-title: Nature – volume: 2 start-page: 605 year: 2007 end-page: 615 ident: b0055 article-title: Carbon-based electronics publication-title: Nat Nano – volume: 442 start-page: 254 year: 2006 end-page: 255 ident: b0035 article-title: Materials science. carbon sheet solutions publication-title: Nature – volume: 4 start-page: 6557 year: 2010 end-page: 6564 ident: b0200 article-title: Mechanical properties of mono layer graphene oxide publication-title: ACS Nano – volume: 4 start-page: 217 year: 2009 end-page: 224 ident: b0100 article-title: Chemical methods for the production of graphenes publication-title: Nat Nano – volume: 4 start-page: 4324 year: 2010 end-page: 4330 ident: b0125 article-title: Self-assembled graphene hydrogel via a one-step hydrothermal process publication-title: ACS Nano – volume: 442 start-page: 282 year: 2006 end-page: 286 ident: b0045 article-title: Graphene-based composite materials publication-title: Nature – volume: 50 start-page: 7325 year: 2011 ident: 10.1016/j.carbon.2013.06.003_b0060 article-title: Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films publication-title: Angew Chem Int Ed doi: 10.1002/anie.201100723 – volume: 21 start-page: 4095 issue: 12 year: 2011 ident: 10.1016/j.carbon.2013.06.003_b0065 article-title: A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks publication-title: J Mater Chem doi: 10.1039/c1jm10276a – volume: 11 start-page: 3239 issue: 8 year: 2011 ident: 10.1016/j.carbon.2013.06.003_b0085 article-title: Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites publication-title: Nano Lett doi: 10.1021/nl201503e – volume: 8 start-page: 774 issue: 3 year: 2012 ident: 10.1016/j.carbon.2013.06.003_b0140 article-title: Large deformation behavior and effective network chain density of swollen poly(N-isopropylacrylamide)–Laponite nanocomposite hydrogels publication-title: Soft Matter doi: 10.1039/C1SM06484C – volume: 35 start-page: 10162 issue: 27 year: 2002 ident: 10.1016/j.carbon.2013.06.003_b0165 article-title: Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay publication-title: Macromolecules doi: 10.1021/ma021301r – volume: 4 start-page: 217 issue: 4 year: 2009 ident: 10.1016/j.carbon.2013.06.003_b0100 article-title: Chemical methods for the production of graphenes publication-title: Nat Nano doi: 10.1038/nnano.2009.58 – volume: 8 start-page: 2045 issue: 7 year: 2008 ident: 10.1016/j.carbon.2013.06.003_b0040 article-title: Elastic properties of chemically derived single graphene sheets publication-title: Nano Lett doi: 10.1021/nl801384y – volume: 438 start-page: 201 issue: 7065 year: 2005 ident: 10.1016/j.carbon.2013.06.003_b0050 article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene publication-title: Nature doi: 10.1038/nature04235 – volume: 4 start-page: 7358 issue: 12 year: 2010 ident: 10.1016/j.carbon.2013.06.003_b0110 article-title: Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels publication-title: ACS Nano doi: 10.1021/nn1027104 – volume: 442 start-page: 282 issue: 7100 year: 2006 ident: 10.1016/j.carbon.2013.06.003_b0045 article-title: Graphene-based composite materials publication-title: Nature doi: 10.1038/nature04969 – volume: 50 start-page: 1959 issue: 5 year: 2012 ident: 10.1016/j.carbon.2013.06.003_b0095 article-title: Graphene-polymer hydrogels with stimulus-sensitive volume changes publication-title: Carbon doi: 10.1016/j.carbon.2011.12.049 – volume: 7 start-page: 5604 issue: 12 year: 2011 ident: 10.1016/j.carbon.2013.06.003_b0070 article-title: An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite publication-title: Soft Matter doi: 10.1039/c1sm00011j – volume: 49 start-page: 5064 issue: 23 year: 2008 ident: 10.1016/j.carbon.2013.06.003_b0175 article-title: Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility publication-title: Polymer doi: 10.1016/j.polymer.2008.09.021 – volume: 22 start-page: 4017 issue: 19 year: 2012 ident: 10.1016/j.carbon.2013.06.003_b0080 article-title: Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves publication-title: Adv Funct Mater doi: 10.1002/adfm.201201020 – volume: 442 start-page: 254 issue: 7100 year: 2006 ident: 10.1016/j.carbon.2013.06.003_b0035 article-title: Materials science. carbon sheet solutions publication-title: Nature doi: 10.1038/442254a – volume: 36 start-page: 5732 issue: 15 year: 2003 ident: 10.1016/j.carbon.2013.06.003_b0170 article-title: Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay publication-title: Macromolecules doi: 10.1021/ma034366i – volume: 45 start-page: 7220 issue: 17 year: 2012 ident: 10.1016/j.carbon.2013.06.003_b0145 article-title: Self-reinforcement of PNIPAm–Laponite nanocomposite gels investigated by atom force microscopy nanoindentation publication-title: Macromolecules doi: 10.1021/ma300874n – volume: 61 start-page: 14095 issue: 20 year: 2000 ident: 10.1016/j.carbon.2013.06.003_b0195 article-title: Interpretation of Raman spectra of disordered and amorphous carbon publication-title: Phys Rev B doi: 10.1103/PhysRevB.61.14095 – volume: 448 start-page: 457 issue: 7152 year: 2007 ident: 10.1016/j.carbon.2013.06.003_b0030 article-title: Preparation and characterization of graphene oxide paper publication-title: Nature doi: 10.1038/nature06016 – volume: 21 start-page: 6494 issue: 18 year: 2011 ident: 10.1016/j.carbon.2013.06.003_b0090 article-title: Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources publication-title: J Mater Chem doi: 10.1039/c1jm10239g – volume: 14 start-page: 1120 issue: 16 year: 2002 ident: 10.1016/j.carbon.2013.06.003_b0190 article-title: Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties publication-title: Adv Mater doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9 – volume: 7 start-page: 7231 issue: 16 year: 2011 ident: 10.1016/j.carbon.2013.06.003_b0075 article-title: Actuator materials based on graphene oxide/polyacrylamide composite hydrogels prepared by in situ polymerization publication-title: Soft Matter doi: 10.1039/c1sm05498h – volume: 113 start-page: 13651 issue: 31 year: 2009 ident: 10.1016/j.carbon.2013.06.003_b0115 article-title: Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel publication-title: J Phys Chem C doi: 10.1021/jp9035887 – volume: 46 start-page: 2376 issue: 14 year: 2010 ident: 10.1016/j.carbon.2013.06.003_b0120 article-title: A pH-sensitive graphene oxide composite hydrogel publication-title: Chem Commun doi: 10.1039/c000051e – volume: 4 start-page: 4324 issue: 7 year: 2010 ident: 10.1016/j.carbon.2013.06.003_b0125 article-title: Self-assembled graphene hydrogel via a one-step hydrothermal process publication-title: ACS Nano doi: 10.1021/nn101187z – volume: 8 start-page: 1831 issue: 6 year: 2012 ident: 10.1016/j.carbon.2013.06.003_b0135 article-title: Mechanical, thermal and swelling properties of poly(acrylic acid)–graphene oxide composite hydrogels publication-title: Soft Matter doi: 10.1039/C1SM06970E – volume: 45 start-page: 1558 issue: 7 year: 2007 ident: 10.1016/j.carbon.2013.06.003_b0155 article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide publication-title: Carbon doi: 10.1016/j.carbon.2007.02.034 – volume: 5 start-page: 8019 issue: 10 year: 2011 ident: 10.1016/j.carbon.2013.06.003_b0185 article-title: Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases publication-title: ACS Nano doi: 10.1021/nn2025644 – volume: 6 start-page: 652 issue: 9 year: 2007 ident: 10.1016/j.carbon.2013.06.003_b0010 article-title: Detection of individual gas molecules adsorbed on graphene publication-title: Nat Mater doi: 10.1038/nmat1967 – volume: 4 start-page: 3979 issue: 7 year: 2010 ident: 10.1016/j.carbon.2013.06.003_b0025 article-title: Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal publication-title: ACS Nano doi: 10.1021/nn1008897 – volume: 321 start-page: 1815 issue: 5897 year: 2008 ident: 10.1016/j.carbon.2013.06.003_b0105 article-title: Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide publication-title: Science doi: 10.1126/science.1162369 – volume: 80 start-page: 1339 issue: 6 year: 1958 ident: 10.1016/j.carbon.2013.06.003_b0150 article-title: Preparation of graphitic oxide publication-title: J Am Chem Soc doi: 10.1021/ja01539a017 – volume: 2 start-page: 605 issue: 10 year: 2007 ident: 10.1016/j.carbon.2013.06.003_b0055 article-title: Carbon-based electronics publication-title: Nat Nano doi: 10.1038/nnano.2007.300 – volume: 44 start-page: 8516 issue: 21 year: 2011 ident: 10.1016/j.carbon.2013.06.003_b0180 article-title: Characteristic swelling–deswelling of polymer/clay nanocomposite gels publication-title: Macromolecules doi: 10.1021/ma201272j – volume: 4 start-page: 6557 issue: 11 year: 2010 ident: 10.1016/j.carbon.2013.06.003_b0200 article-title: Mechanical properties of mono layer graphene oxide publication-title: ACS Nano doi: 10.1021/nn101781v – volume: 5 start-page: 3831 issue: 5 year: 2011 ident: 10.1016/j.carbon.2013.06.003_b0020 article-title: Assembly of graphene sheets into hierarchical structures for high-performance energy storage publication-title: ACS Nano doi: 10.1021/nn2001728 – volume: 133 start-page: 7296 issue: 19 year: 2011 ident: 10.1016/j.carbon.2013.06.003_b0015 article-title: MoS2 Nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction publication-title: J Am Chem Soc doi: 10.1021/ja201269b – ident: 10.1016/j.carbon.2013.06.003_b0130 doi: 10.1149/1.3119548 – volume: 49 start-page: 389 issue: 2 year: 2013 ident: 10.1016/j.carbon.2013.06.003_b0160 article-title: Temperature-sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2012.10.034 – volume: 306 start-page: 666 issue: 5696 year: 2004 ident: 10.1016/j.carbon.2013.06.003_b0005 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 |
SSID | ssj0004814 |
Score | 2.4153724 |
Snippet | Graphene oxide (GO) based hydrogels were proposed to be used as biomaterials and stimuli-response materials, but their poor mechanical properties restricted... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 117 |
SubjectTerms | ascorbic acid biocompatible materials Biomedical materials Carbon Chemistry clay Clay (material) Colloidal gels. Colloidal sols Colloidal state and disperse state Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science; rheology Crosslinking Deformation and plasticity (including yield, ductility, and superplasticity) Exact sciences and technology extensibility Fullerenes and related materials; diamonds, graphite General and physical chemistry Graphene hydrocolloids Hydrogels Materials science Mechanical and acoustical properties Mechanical and acoustical properties of condensed matter Mechanical properties Mechanical properties of solids Oxides phase transition Physical properties of thin films, nonelectronic Physics polymerization Specific materials Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) |
Title | Robust and thermo-response graphene–PNIPAm hybrid hydrogels reinforced by hectorite clay |
URI | https://dx.doi.org/10.1016/j.carbon.2013.06.003 https://www.proquest.com/docview/1448710781 https://www.proquest.com/docview/1705436305 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CemgglLZJiJPWbKHXbWTt6rFHYxrslppQEjC9iH3mgSMZ2T74UvIf-g_7SzqzklxCoIGehMQKLTOrmW92Z74h5CP3mdTcOWa9i5mQac5yZVImnZDG28hIg_uQ36bp-Ep8mSWzHTLqamEwrbK1_Y1ND9a6fXLWSvNscXuLNb4IxwGfIGmUTGdYwS4yXOWffv5N8xB5w--Nx_w4uiufCzleRtW6QhbUAQ8snl3rrKfuaX-hliA033S7eGK4gzc6f01etTCSDpuZviE7rnxLXo667m0H5Mf3Sq-XK6pKSxHj3VesbtJhHQ0k1WDjfj_8uphOLob39GaDhVtwsXV1DdOhtQuMqiAeqjf0JmztAzilZq42h-Tq_PPlaMzaPgrMiCxeMRUPnIcfmXPhjVQu4xycvJPCpjKFCAVJ6yKZCxF7CPd4rCMNsEoDMEu10UnOj8huWZXumNDI-CSySZI7cGs68bl1wiuTmNxKC9ChR3gnvsK0JOPY62JedNlkd0Uj9AKFXoSkOt4jbPvWoiHZeGZ81mmmeLRYCvADz7zZf6TI7ediiJvEIIt65EOn2QI0hqcnqnTVegkxEsR2A-RG-seYDBAwT8GGnvz3FE_JHt41CYPvyO6qXrv3AHxWuh9Wdp-8GE6-jqd_AM8OBAE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpekihlD7ptk2qQq9qvJb80DEsCZs0WUJJYOlF6JmkJPbi3T3sJeQ_9B_2l3RGtlNCoIGcDLaExYw08400-oaQrzwU0nDvmQs-ZULmJSu1zZn0QtrgEist7kMeTfLxqTiYZtM1MurvwmBaZWf7W5serXX3ZruT5vbs4gLv-CIcB3yCpFEynz4hTwUsXyxj8O36X56HKFuCbzznx-b9_bmY5GV1Y2qkQR3ySOPZ186675-ez_QcpBbachf3LHd0R3svyYsOR9KddqivyJqvXpONUV--7Q35-aM2y_mC6spRBHlXNWvafFhPI0s1GLk_N7-PJ_vHO1f0fIU3t-DhmvoMhkMbHylVQT7UrOh53NsHdErtpV69Jad7uyejMesKKTArinTBdDr0AVYy5yJYqX3BOXh5L4XLZQ4hCrLWJbIUIg0Q7_HUJAZwlQFklhtrspK_I-tVXfn3hCY2ZInLstKDXzNZKJ0XQdvMlk46wA4DwnvxKduxjGOxi0vVp5P9Uq3QFQpdxaw6PiDsttesZdl4oH3Ra0bdmS0KHMEDPbfuKPL2dykETmJYJAPypdesAo3h8YmufL2cQ5AEwd0QyZH-06YACMxzMKIfHj3Ez2RjfHJ0qA73J98_kmf4pc0e_ETWF83SbwIKWpitOMv_AqvvBY8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+thermo-response+graphene%E2%80%93PNIPAm+hybrid+hydrogels+reinforced+by+hectorite+clay&rft.jtitle=Carbon+%28New+York%29&rft.au=Zhang%2C+Enzhong&rft.au=Wang%2C+Tao&rft.au=Lian%2C+Cuixia&rft.au=Sun%2C+Weixiang&rft.date=2013-10-01&rft.issn=0008-6223&rft.volume=62&rft.spage=117&rft.epage=126&rft_id=info:doi/10.1016%2Fj.carbon.2013.06.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_carbon_2013_06_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |