Robust and thermo-response graphene–PNIPAm hybrid hydrogels reinforced by hectorite clay

Graphene oxide (GO) based hydrogels were proposed to be used as biomaterials and stimuli-response materials, but their poor mechanical properties restricted their applications. We enhanced GO–poly(N-isopropylacrylamide) (PNIPAm) hydrogels by hybrid with the hectorite clay through in situ polymerizat...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 62; pp. 117 - 126
Main Authors Zhang, Enzhong, Wang, Tao, Lian, Cuixia, Sun, Weixiang, Liu, Xinxing, Tong, Zhen
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene oxide (GO) based hydrogels were proposed to be used as biomaterials and stimuli-response materials, but their poor mechanical properties restricted their applications. We enhanced GO–poly(N-isopropylacrylamide) (PNIPAm) hydrogels by hybrid with the hectorite clay through in situ polymerization for the first time. This clay was found to stabilize the GO in the aqueous suspension when a reducer was added in a redox initiating pair. These GO–clay–PNIPAm hybrid hydrogels exhibited a high mechanical strength and extensibility with the GO sheets as the cross-linker and with the hectorite clay as both the cross-linker and reinforcing agent. They were thermal-responsive with the volume phase transition at ∼34°C. Reduction of the GO with l-ascorbic acid under environmental friendly conditions resulted in a high conductivity to the graphene–clay–PNIPAm hydrogels. These graphene–clay–PNIPAm hydrogels still had desirable mechanical properties. This finding has provided an easy method to prepare strong and stimuli-response graphene–polymer hydrogels to meet the demand for the newly developed soft matter.
AbstractList Graphene oxide (GO) based hydrogels were proposed to be used as biomaterials and stimuli-response materials, but their poor mechanical properties restricted their applications. We enhanced GO–poly(N-isopropylacrylamide) (PNIPAm) hydrogels by hybrid with the hectorite clay through in situ polymerization for the first time. This clay was found to stabilize the GO in the aqueous suspension when a reducer was added in a redox initiating pair. These GO–clay–PNIPAm hybrid hydrogels exhibited a high mechanical strength and extensibility with the GO sheets as the cross-linker and with the hectorite clay as both the cross-linker and reinforcing agent. They were thermal-responsive with the volume phase transition at ∼34°C. Reduction of the GO with l-ascorbic acid under environmental friendly conditions resulted in a high conductivity to the graphene–clay–PNIPAm hydrogels. These graphene–clay–PNIPAm hydrogels still had desirable mechanical properties. This finding has provided an easy method to prepare strong and stimuli-response graphene–polymer hydrogels to meet the demand for the newly developed soft matter.
Graphene oxide (GO) based hydrogels were proposed to be used as biomaterials and stimuli-response materials, but their poor mechanical properties restricted their applications. We enhanced GO-poly(N-isopropylacrylamide) (PNIPAm) hydrogels by hybrid with the hectorite clay through in situ polymerization for the first time. This clay was found to stabilize the GO in the aqueous suspension when a reducer was added in a redox initiating pair. These GO-clay-PNIPAm hybrid hydrogels exhibited a high mechanical strength and extensibility with the GO sheets as the cross-linker and with the hectorite clay as both the cross-linker and reinforcing agent. They were thermal-responsive with the volume phase transition at similar to 34 degree C. Reduction of the GO with L-ascorbic acid under environmental friendly conditions resulted in a high conductivity to the graphene-clay-PNIPAm hydrogels. These graphene-clay-PNIPAm hydrogels still had desirable mechanical properties. This finding has provided an easy method to prepare strong and stimuli-response graphene-polymer hydrogels to meet the demand for the newly developed soft matter.
Author Liu, Xinxing
Zhang, Enzhong
Wang, Tao
Tong, Zhen
Sun, Weixiang
Lian, Cuixia
Author_xml – sequence: 1
  givenname: Enzhong
  surname: Zhang
  fullname: Zhang, Enzhong
  organization: Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
– sequence: 2
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
– sequence: 3
  givenname: Cuixia
  surname: Lian
  fullname: Lian, Cuixia
  organization: Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
– sequence: 4
  givenname: Weixiang
  surname: Sun
  fullname: Sun, Weixiang
  organization: Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
– sequence: 5
  givenname: Xinxing
  surname: Liu
  fullname: Liu, Xinxing
  organization: Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
– sequence: 6
  givenname: Zhen
  surname: Tong
  fullname: Tong, Zhen
  email: mcztong@scut.edu.cn
  organization: Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27584170$$DView record in Pascal Francis
BookMark eNqFkc2KFDEUhYOMYM_oG7iojeCmypufSqVcCMPgz8Cgg-jGTUhSt6bTVCdtkhZ65zv4hvMkk6HHjQtndbjwncOF75SchBiQkJcUOgpUvtl0ziQbQ8eA8g5kB8CfkBVVA2-5GukJWQGAaiVj_Bk5zXlTT6GoWJEfX6Pd59KYMDVljWkb24R5F0PG5iaZ3RoD3v7-c_358vp826wPNvmpxpTiDS65SejDHJPDqbGHZo2uxOQLNm4xh-fk6WyWjC8e8ox8__D-28Wn9urLx8uL86vWiYGV1jCKM6-PczG70eDAORs5jmKSo-x7UD1IGJUQbFYCOLNgRS8tY1JaZ3vFz8jr4-4uxZ97zEVvfXa4LCZg3GdNB-gFlxz6x1Eh1EBhULSirx5Qk51Z5mSC81nvkt-adNBs6JWoy5V7e-RcijknnLXzxRQfQ0nGL5qCvnekN_roSN870iB1dVTL4p_y3_1Hau-OtaoAf3lMOjuPoVrwqSrQU_T_H7gDGOSuwg
CODEN CRBNAH
CitedBy_id crossref_primary_10_1016_j_colsurfa_2015_09_039
crossref_primary_10_1021_acs_langmuir_8b03660
crossref_primary_10_1002_macp_201600398
crossref_primary_10_1016_j_reactfunctpolym_2014_03_013
crossref_primary_10_1016_j_jconrel_2015_05_172
crossref_primary_10_1002_app_41530
crossref_primary_10_1002_app_44963
crossref_primary_10_1002_marc_201800337
crossref_primary_10_1039_C8SM00232K
crossref_primary_10_1002_mame_201700184
crossref_primary_10_1021_acsami_6b00867
crossref_primary_10_1016_j_apsusc_2016_11_182
crossref_primary_10_1016_j_jcis_2014_07_031
crossref_primary_10_1021_acsapm_9b00221
crossref_primary_10_1002_app_51509
crossref_primary_10_1039_C8NJ05186K
crossref_primary_10_1002_chem_201804947
crossref_primary_10_1016_j_cej_2023_148205
crossref_primary_10_2174_0929867325666180831151055
crossref_primary_10_1021_acsapm_0c00464
crossref_primary_10_1039_C4RA05592F
crossref_primary_10_1016_j_mtchem_2023_101384
crossref_primary_10_1016_j_compositesa_2017_05_019
crossref_primary_10_1039_C4TA02866J
crossref_primary_10_1016_j_molliq_2021_118092
crossref_primary_10_1002_chem_202002244
crossref_primary_10_1021_jp510526j
crossref_primary_10_1016_j_electacta_2020_137243
crossref_primary_10_1002_mame_201600359
crossref_primary_10_1021_acs_macromol_5b02352
crossref_primary_10_1038_srep18419
crossref_primary_10_1021_acsami_5b08609
crossref_primary_10_1016_j_molliq_2019_110949
crossref_primary_10_1039_D0BM01699C
crossref_primary_10_1007_s41204_017_0014_y
crossref_primary_10_1021_acsnano_5b05120
crossref_primary_10_1016_j_clay_2018_01_026
crossref_primary_10_1039_C8NR09728C
crossref_primary_10_1039_C5TA04470G
crossref_primary_10_1021_acsami_7b01710
crossref_primary_10_1088_2053_1591_ac2bd2
crossref_primary_10_1016_j_jcis_2016_11_075
crossref_primary_10_3390_polym13142375
crossref_primary_10_1002_mame_201500141
crossref_primary_10_1016_j_talanta_2021_122368
crossref_primary_10_1016_j_polymer_2019_121637
crossref_primary_10_1007_s13204_020_01358_2
crossref_primary_10_1016_j_matlet_2015_05_091
crossref_primary_10_1039_C6RA04234A
crossref_primary_10_1039_C7TA10898B
crossref_primary_10_1002_app_41557
crossref_primary_10_1021_acsami_5b08248
crossref_primary_10_1039_D3TA02948D
crossref_primary_10_1016_j_progpolymsci_2017_09_001
crossref_primary_10_1038_s41598_017_08907_w
crossref_primary_10_3390_pr11072069
crossref_primary_10_1002_pol_20210762
crossref_primary_10_1016_j_msec_2016_06_065
crossref_primary_10_1016_j_ultsonch_2019_104797
crossref_primary_10_1080_09205063_2020_1775760
crossref_primary_10_1016_j_colsurfa_2015_09_024
crossref_primary_10_1021_acsami_7b00138
crossref_primary_10_1021_acs_biomac_6b00646
crossref_primary_10_1039_C7CC03230G
crossref_primary_10_1021_acs_chemrev_6b00520
crossref_primary_10_1007_s13738_019_01675_6
crossref_primary_10_1177_8756087919884607
crossref_primary_10_1002_adem_201600272
crossref_primary_10_1016_j_compscitech_2017_08_016
crossref_primary_10_1021_acs_macromol_6b00584
crossref_primary_10_1016_j_matlet_2018_11_116
crossref_primary_10_1002_mame_201700660
crossref_primary_10_3390_polym9060237
crossref_primary_10_1039_C8QI01303A
crossref_primary_10_1016_j_compscitech_2023_109947
crossref_primary_10_1039_C6TA07211A
crossref_primary_10_1021_am507100m
crossref_primary_10_1016_j_compscitech_2016_03_029
crossref_primary_10_1039_C8SM00297E
crossref_primary_10_1021_acs_chemmater_7b03953
Cites_doi 10.1002/anie.201100723
10.1039/c1jm10276a
10.1021/nl201503e
10.1039/C1SM06484C
10.1021/ma021301r
10.1038/nnano.2009.58
10.1021/nl801384y
10.1038/nature04235
10.1021/nn1027104
10.1038/nature04969
10.1016/j.carbon.2011.12.049
10.1039/c1sm00011j
10.1016/j.polymer.2008.09.021
10.1002/adfm.201201020
10.1038/442254a
10.1021/ma034366i
10.1021/ma300874n
10.1103/PhysRevB.61.14095
10.1038/nature06016
10.1039/c1jm10239g
10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
10.1039/c1sm05498h
10.1021/jp9035887
10.1039/c000051e
10.1021/nn101187z
10.1039/C1SM06970E
10.1016/j.carbon.2007.02.034
10.1021/nn2025644
10.1038/nmat1967
10.1021/nn1008897
10.1126/science.1162369
10.1021/ja01539a017
10.1038/nnano.2007.300
10.1021/ma201272j
10.1021/nn101781v
10.1021/nn2001728
10.1021/ja201269b
10.1149/1.3119548
10.1016/j.eurpolymj.2012.10.034
10.1126/science.1102896
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
7U5
8FD
JG9
L7M
7S9
L.6
DOI 10.1016/j.carbon.2013.06.003
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3891
EndPage 126
ExternalDocumentID 27584170
10_1016_j_carbon_2013_06_003
S000862231300496X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SR
7U5
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c472t-a21ef301334fc9ae733293e94d6965508506098442f84032b0b456b2266bcb583
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Fri Jul 11 09:28:04 EDT 2025
Mon Jul 21 11:12:00 EDT 2025
Mon Jul 21 09:13:56 EDT 2025
Tue Jul 01 01:14:30 EDT 2025
Thu Apr 24 22:59:19 EDT 2025
Fri Feb 23 02:24:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ascorbic acid
Aqueous suspension
Gels
Mechanical strength
In situ
Conductivity
Soft matter
Polymerization
Mechanical properties
Phase transitions
Clays
Chemical reduction
Biomedical materials
Graphene
Graphene oxide
Hydrogel
Polymers
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-a21ef301334fc9ae733293e94d6965508506098442f84032b0b456b2266bcb583
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1448710781
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1705436305
proquest_miscellaneous_1448710781
pascalfrancis_primary_27584170
crossref_citationtrail_10_1016_j_carbon_2013_06_003
crossref_primary_10_1016_j_carbon_2013_06_003
elsevier_sciencedirect_doi_10_1016_j_carbon_2013_06_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Carbon (New York)
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Shen, Yan, Li, Long, Li, Ye (b0135) 2012; 8
Zu, Han (b0115) 2009; 113
Haraguchi, Takehisa, Fan (b0165) 2002; 35
Lian, Lin, Wang, Sun, Liu, Tong (b0145) 2012; 45
Ren, Zhu, Haraguchi (b0180) 2011; 44
Xiong, Hu, Liu, Tong (b0175) 2008; 49
Yin, Zhang, Kong, Zou, Li, Lu (b0020) 2011; 5
Wang, Liu, Lian, Zheng, Liu, Tong (b0140) 2012; 8
Yang, Qiu, Cheng, Wu, Ma, Li (b0060) 2011; 50
Zhu, Lu, Peng, Chen, Yu (b0080) 2012; 22
Zhang, Tan, Stormer, Kim (b0050) 2005; 438
Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos (b0005) 2004; 306
Chandra, Park, Chun, Lee, Hwang, Kim (b0025) 2010; 4
Haraguchi, Farnworth, Ohbayashi, Takehisa (b0170) 2003; 36
Zhang, Li, Zhang, Chen, Wang, Liu (b0075) 2011; 7
Gómez-Navarro, Burghard, Kern (b0040) 2008; 8
Haraguchi, Takehisa (b0190) 2002; 14
Suk, Piner, An, Ruoff (b0200) 2010; 4
Bai, Li, Wang, Shi (b0120) 2010; 46
Kotov (b0035) 2006; 442
Stankovich, Dikin, Dommett, Kohlhaas, Zimney, Stach (b0045) 2006; 442
Xu, Sheng, Li, Shi (b0125) 2010; 4
Schedin, Geim, Morozov, Hill, Blake, Katsnelson (b0010) 2007; 6
Wang J, Ellsworth MW. Graphene aerogels. In: Obeng Y, DeGendt S, Srinivasan P, Misra D, Iwai H, Karim Z, et al., editors. Graphene and emerging materials for post-Cmos applications; 2009. p. 241–7.
Hummers, Offeman (b0150) 1958; 80
Avouris, Chen, Perebeinos (b0055) 2007; 2
Xu, Wu, Sun, Bai, Shi (b0110) 2010; 4
Sun, Wu (b0065) 2011; 21
Park, Ruoff (b0100) 2009; 4
Lo, Zhu, Jiang (b0070) 2011; 7
Stankovich, Dikin, Piner, Kohlhaas, Kleinhammes, Jia (b0155) 2007; 45
Cai, Piner, Stadermann, Park, Shaibat, Ishii (b0105) 2008; 321
Dikin, Stankovich, Zimney, Piner, Dommett, Evmenenko (b0030) 2007; 448
Ma, Li, Wang, Ji, Xia (b0160) 2013; 49
Ferrari, Robertson (b0195) 2000; 61
Li, Wang, Xie, Liang, Hong, Dai (b0015) 2011; 133
Zhang, Sui, Xu, Yue, Luo, Zhan (b0090) 2011; 21
Hou, Zhang, Li, Wang (b0095) 2012; 50
Guo, Kim, Han, Shenoy, Huang, Hurt (b0185) 2011; 5
Zhang, Pint, Lee, Schubert, Jamshidi, Takei (b0085) 2011; 11
Chandra (10.1016/j.carbon.2013.06.003_b0025) 2010; 4
Sun (10.1016/j.carbon.2013.06.003_b0065) 2011; 21
Li (10.1016/j.carbon.2013.06.003_b0015) 2011; 133
Haraguchi (10.1016/j.carbon.2013.06.003_b0170) 2003; 36
Xu (10.1016/j.carbon.2013.06.003_b0110) 2010; 4
Xu (10.1016/j.carbon.2013.06.003_b0125) 2010; 4
Yin (10.1016/j.carbon.2013.06.003_b0020) 2011; 5
Schedin (10.1016/j.carbon.2013.06.003_b0010) 2007; 6
Zhang (10.1016/j.carbon.2013.06.003_b0050) 2005; 438
Park (10.1016/j.carbon.2013.06.003_b0100) 2009; 4
Avouris (10.1016/j.carbon.2013.06.003_b0055) 2007; 2
Guo (10.1016/j.carbon.2013.06.003_b0185) 2011; 5
10.1016/j.carbon.2013.06.003_b0130
Kotov (10.1016/j.carbon.2013.06.003_b0035) 2006; 442
Zu (10.1016/j.carbon.2013.06.003_b0115) 2009; 113
Hou (10.1016/j.carbon.2013.06.003_b0095) 2012; 50
Wang (10.1016/j.carbon.2013.06.003_b0140) 2012; 8
Xiong (10.1016/j.carbon.2013.06.003_b0175) 2008; 49
Lo (10.1016/j.carbon.2013.06.003_b0070) 2011; 7
Stankovich (10.1016/j.carbon.2013.06.003_b0155) 2007; 45
Ma (10.1016/j.carbon.2013.06.003_b0160) 2013; 49
Dikin (10.1016/j.carbon.2013.06.003_b0030) 2007; 448
Zhang (10.1016/j.carbon.2013.06.003_b0090) 2011; 21
Lian (10.1016/j.carbon.2013.06.003_b0145) 2012; 45
Hummers (10.1016/j.carbon.2013.06.003_b0150) 1958; 80
Suk (10.1016/j.carbon.2013.06.003_b0200) 2010; 4
Zhang (10.1016/j.carbon.2013.06.003_b0085) 2011; 11
Bai (10.1016/j.carbon.2013.06.003_b0120) 2010; 46
Haraguchi (10.1016/j.carbon.2013.06.003_b0165) 2002; 35
Novoselov (10.1016/j.carbon.2013.06.003_b0005) 2004; 306
Shen (10.1016/j.carbon.2013.06.003_b0135) 2012; 8
Haraguchi (10.1016/j.carbon.2013.06.003_b0190) 2002; 14
Ren (10.1016/j.carbon.2013.06.003_b0180) 2011; 44
Zhang (10.1016/j.carbon.2013.06.003_b0075) 2011; 7
Cai (10.1016/j.carbon.2013.06.003_b0105) 2008; 321
Zhu (10.1016/j.carbon.2013.06.003_b0080) 2012; 22
Ferrari (10.1016/j.carbon.2013.06.003_b0195) 2000; 61
Gómez-Navarro (10.1016/j.carbon.2013.06.003_b0040) 2008; 8
Stankovich (10.1016/j.carbon.2013.06.003_b0045) 2006; 442
Yang (10.1016/j.carbon.2013.06.003_b0060) 2011; 50
References_xml – volume: 4
  start-page: 7358
  year: 2010
  end-page: 7362
  ident: b0110
  article-title: Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels
  publication-title: ACS Nano
– volume: 21
  start-page: 4095
  year: 2011
  end-page: 4097
  ident: b0065
  article-title: A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks
  publication-title: J Mater Chem
– volume: 49
  start-page: 389
  year: 2013
  end-page: 396
  ident: b0160
  article-title: Temperature-sensitive poly(
  publication-title: Eur Polym J
– volume: 44
  start-page: 8516
  year: 2011
  end-page: 8526
  ident: b0180
  article-title: Characteristic swelling–deswelling of polymer/clay nanocomposite gels
  publication-title: Macromolecules
– volume: 448
  start-page: 457
  year: 2007
  end-page: 460
  ident: b0030
  article-title: Preparation and characterization of graphene oxide paper
  publication-title: Nature
– volume: 45
  start-page: 1558
  year: 2007
  end-page: 1565
  ident: b0155
  article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
  publication-title: Carbon
– volume: 7
  start-page: 5604
  year: 2011
  end-page: 5609
  ident: b0070
  article-title: An infrared-light responsive graphene-oxide incorporated poly(
  publication-title: Soft Matter
– volume: 8
  start-page: 1831
  year: 2012
  end-page: 1836
  ident: b0135
  article-title: Mechanical, thermal and swelling properties of poly(acrylic acid)–graphene oxide composite hydrogels
  publication-title: Soft Matter
– volume: 21
  start-page: 6494
  year: 2011
  end-page: 6497
  ident: b0090
  article-title: Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources
  publication-title: J Mater Chem
– volume: 35
  start-page: 10162
  year: 2002
  end-page: 10171
  ident: b0165
  article-title: Effects of clay content on the properties of nanocomposite hydrogels composed of poly(
  publication-title: Macromolecules
– volume: 113
  start-page: 13651
  year: 2009
  end-page: 13657
  ident: b0115
  article-title: Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel
  publication-title: J Phys Chem C
– volume: 5
  start-page: 8019
  year: 2011
  end-page: 8025
  ident: b0185
  article-title: Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases
  publication-title: ACS Nano
– volume: 133
  start-page: 7296
  year: 2011
  end-page: 7299
  ident: b0015
  article-title: MoS
  publication-title: J Am Chem Soc
– volume: 61
  start-page: 14095
  year: 2000
  end-page: 14107
  ident: b0195
  article-title: Interpretation of Raman spectra of disordered and amorphous carbon
  publication-title: Phys Rev B
– volume: 4
  start-page: 3979
  year: 2010
  end-page: 3986
  ident: b0025
  article-title: Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal
  publication-title: ACS Nano
– volume: 50
  start-page: 7325
  year: 2011
  end-page: 7328
  ident: b0060
  article-title: Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films
  publication-title: Angew Chem Int Ed
– volume: 14
  start-page: 1120
  year: 2002
  end-page: 1124
  ident: b0190
  article-title: Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties
  publication-title: Adv Mater
– volume: 8
  start-page: 2045
  year: 2008
  end-page: 2049
  ident: b0040
  article-title: Elastic properties of chemically derived single graphene sheets
  publication-title: Nano Lett
– volume: 7
  start-page: 7231
  year: 2011
  end-page: 7239
  ident: b0075
  article-title: Actuator materials based on graphene oxide/polyacrylamide composite hydrogels prepared by in situ polymerization
  publication-title: Soft Matter
– volume: 80
  start-page: 1339
  year: 1958
  ident: b0150
  article-title: Preparation of graphitic oxide
  publication-title: J Am Chem Soc
– volume: 6
  start-page: 652
  year: 2007
  end-page: 655
  ident: b0010
  article-title: Detection of individual gas molecules adsorbed on graphene
  publication-title: Nat Mater
– volume: 22
  start-page: 4017
  year: 2012
  end-page: 4022
  ident: b0080
  article-title: Photothermally sensitive poly(
  publication-title: Adv Funct Mater
– volume: 11
  start-page: 3239
  year: 2011
  end-page: 3244
  ident: b0085
  article-title: Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites
  publication-title: Nano Lett
– volume: 50
  start-page: 1959
  year: 2012
  end-page: 1965
  ident: b0095
  article-title: Graphene-polymer hydrogels with stimulus-sensitive volume changes
  publication-title: Carbon
– volume: 36
  start-page: 5732
  year: 2003
  end-page: 5741
  ident: b0170
  article-title: Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(
  publication-title: Macromolecules
– volume: 321
  start-page: 1815
  year: 2008
  end-page: 1817
  ident: b0105
  article-title: Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide
  publication-title: Science
– reference: Wang J, Ellsworth MW. Graphene aerogels. In: Obeng Y, DeGendt S, Srinivasan P, Misra D, Iwai H, Karim Z, et al., editors. Graphene and emerging materials for post-Cmos applications; 2009. p. 241–7.
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: b0005
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
– volume: 5
  start-page: 3831
  year: 2011
  end-page: 3838
  ident: b0020
  article-title: Assembly of graphene sheets into hierarchical structures for high-performance energy storage
  publication-title: ACS Nano
– volume: 45
  start-page: 7220
  year: 2012
  end-page: 7227
  ident: b0145
  article-title: Self-reinforcement of PNIPAm–Laponite nanocomposite gels investigated by atom force microscopy nanoindentation
  publication-title: Macromolecules
– volume: 46
  start-page: 2376
  year: 2010
  end-page: 2378
  ident: b0120
  article-title: A pH-sensitive graphene oxide composite hydrogel
  publication-title: Chem Commun
– volume: 49
  start-page: 5064
  year: 2008
  end-page: 5071
  ident: b0175
  article-title: Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility
  publication-title: Polymer
– volume: 8
  start-page: 774
  year: 2012
  end-page: 783
  ident: b0140
  article-title: Large deformation behavior and effective network chain density of swollen poly(
  publication-title: Soft Matter
– volume: 438
  start-page: 201
  year: 2005
  end-page: 204
  ident: b0050
  article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene
  publication-title: Nature
– volume: 2
  start-page: 605
  year: 2007
  end-page: 615
  ident: b0055
  article-title: Carbon-based electronics
  publication-title: Nat Nano
– volume: 442
  start-page: 254
  year: 2006
  end-page: 255
  ident: b0035
  article-title: Materials science. carbon sheet solutions
  publication-title: Nature
– volume: 4
  start-page: 6557
  year: 2010
  end-page: 6564
  ident: b0200
  article-title: Mechanical properties of mono layer graphene oxide
  publication-title: ACS Nano
– volume: 4
  start-page: 217
  year: 2009
  end-page: 224
  ident: b0100
  article-title: Chemical methods for the production of graphenes
  publication-title: Nat Nano
– volume: 4
  start-page: 4324
  year: 2010
  end-page: 4330
  ident: b0125
  article-title: Self-assembled graphene hydrogel via a one-step hydrothermal process
  publication-title: ACS Nano
– volume: 442
  start-page: 282
  year: 2006
  end-page: 286
  ident: b0045
  article-title: Graphene-based composite materials
  publication-title: Nature
– volume: 50
  start-page: 7325
  year: 2011
  ident: 10.1016/j.carbon.2013.06.003_b0060
  article-title: Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201100723
– volume: 21
  start-page: 4095
  issue: 12
  year: 2011
  ident: 10.1016/j.carbon.2013.06.003_b0065
  article-title: A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks
  publication-title: J Mater Chem
  doi: 10.1039/c1jm10276a
– volume: 11
  start-page: 3239
  issue: 8
  year: 2011
  ident: 10.1016/j.carbon.2013.06.003_b0085
  article-title: Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites
  publication-title: Nano Lett
  doi: 10.1021/nl201503e
– volume: 8
  start-page: 774
  issue: 3
  year: 2012
  ident: 10.1016/j.carbon.2013.06.003_b0140
  article-title: Large deformation behavior and effective network chain density of swollen poly(N-isopropylacrylamide)–Laponite nanocomposite hydrogels
  publication-title: Soft Matter
  doi: 10.1039/C1SM06484C
– volume: 35
  start-page: 10162
  issue: 27
  year: 2002
  ident: 10.1016/j.carbon.2013.06.003_b0165
  article-title: Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay
  publication-title: Macromolecules
  doi: 10.1021/ma021301r
– volume: 4
  start-page: 217
  issue: 4
  year: 2009
  ident: 10.1016/j.carbon.2013.06.003_b0100
  article-title: Chemical methods for the production of graphenes
  publication-title: Nat Nano
  doi: 10.1038/nnano.2009.58
– volume: 8
  start-page: 2045
  issue: 7
  year: 2008
  ident: 10.1016/j.carbon.2013.06.003_b0040
  article-title: Elastic properties of chemically derived single graphene sheets
  publication-title: Nano Lett
  doi: 10.1021/nl801384y
– volume: 438
  start-page: 201
  issue: 7065
  year: 2005
  ident: 10.1016/j.carbon.2013.06.003_b0050
  article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 4
  start-page: 7358
  issue: 12
  year: 2010
  ident: 10.1016/j.carbon.2013.06.003_b0110
  article-title: Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels
  publication-title: ACS Nano
  doi: 10.1021/nn1027104
– volume: 442
  start-page: 282
  issue: 7100
  year: 2006
  ident: 10.1016/j.carbon.2013.06.003_b0045
  article-title: Graphene-based composite materials
  publication-title: Nature
  doi: 10.1038/nature04969
– volume: 50
  start-page: 1959
  issue: 5
  year: 2012
  ident: 10.1016/j.carbon.2013.06.003_b0095
  article-title: Graphene-polymer hydrogels with stimulus-sensitive volume changes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.12.049
– volume: 7
  start-page: 5604
  issue: 12
  year: 2011
  ident: 10.1016/j.carbon.2013.06.003_b0070
  article-title: An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite
  publication-title: Soft Matter
  doi: 10.1039/c1sm00011j
– volume: 49
  start-page: 5064
  issue: 23
  year: 2008
  ident: 10.1016/j.carbon.2013.06.003_b0175
  article-title: Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility
  publication-title: Polymer
  doi: 10.1016/j.polymer.2008.09.021
– volume: 22
  start-page: 4017
  issue: 19
  year: 2012
  ident: 10.1016/j.carbon.2013.06.003_b0080
  article-title: Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201201020
– volume: 442
  start-page: 254
  issue: 7100
  year: 2006
  ident: 10.1016/j.carbon.2013.06.003_b0035
  article-title: Materials science. carbon sheet solutions
  publication-title: Nature
  doi: 10.1038/442254a
– volume: 36
  start-page: 5732
  issue: 15
  year: 2003
  ident: 10.1016/j.carbon.2013.06.003_b0170
  article-title: Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay
  publication-title: Macromolecules
  doi: 10.1021/ma034366i
– volume: 45
  start-page: 7220
  issue: 17
  year: 2012
  ident: 10.1016/j.carbon.2013.06.003_b0145
  article-title: Self-reinforcement of PNIPAm–Laponite nanocomposite gels investigated by atom force microscopy nanoindentation
  publication-title: Macromolecules
  doi: 10.1021/ma300874n
– volume: 61
  start-page: 14095
  issue: 20
  year: 2000
  ident: 10.1016/j.carbon.2013.06.003_b0195
  article-title: Interpretation of Raman spectra of disordered and amorphous carbon
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.61.14095
– volume: 448
  start-page: 457
  issue: 7152
  year: 2007
  ident: 10.1016/j.carbon.2013.06.003_b0030
  article-title: Preparation and characterization of graphene oxide paper
  publication-title: Nature
  doi: 10.1038/nature06016
– volume: 21
  start-page: 6494
  issue: 18
  year: 2011
  ident: 10.1016/j.carbon.2013.06.003_b0090
  article-title: Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources
  publication-title: J Mater Chem
  doi: 10.1039/c1jm10239g
– volume: 14
  start-page: 1120
  issue: 16
  year: 2002
  ident: 10.1016/j.carbon.2013.06.003_b0190
  article-title: Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties
  publication-title: Adv Mater
  doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
– volume: 7
  start-page: 7231
  issue: 16
  year: 2011
  ident: 10.1016/j.carbon.2013.06.003_b0075
  article-title: Actuator materials based on graphene oxide/polyacrylamide composite hydrogels prepared by in situ polymerization
  publication-title: Soft Matter
  doi: 10.1039/c1sm05498h
– volume: 113
  start-page: 13651
  issue: 31
  year: 2009
  ident: 10.1016/j.carbon.2013.06.003_b0115
  article-title: Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel
  publication-title: J Phys Chem C
  doi: 10.1021/jp9035887
– volume: 46
  start-page: 2376
  issue: 14
  year: 2010
  ident: 10.1016/j.carbon.2013.06.003_b0120
  article-title: A pH-sensitive graphene oxide composite hydrogel
  publication-title: Chem Commun
  doi: 10.1039/c000051e
– volume: 4
  start-page: 4324
  issue: 7
  year: 2010
  ident: 10.1016/j.carbon.2013.06.003_b0125
  article-title: Self-assembled graphene hydrogel via a one-step hydrothermal process
  publication-title: ACS Nano
  doi: 10.1021/nn101187z
– volume: 8
  start-page: 1831
  issue: 6
  year: 2012
  ident: 10.1016/j.carbon.2013.06.003_b0135
  article-title: Mechanical, thermal and swelling properties of poly(acrylic acid)–graphene oxide composite hydrogels
  publication-title: Soft Matter
  doi: 10.1039/C1SM06970E
– volume: 45
  start-page: 1558
  issue: 7
  year: 2007
  ident: 10.1016/j.carbon.2013.06.003_b0155
  article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.02.034
– volume: 5
  start-page: 8019
  issue: 10
  year: 2011
  ident: 10.1016/j.carbon.2013.06.003_b0185
  article-title: Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases
  publication-title: ACS Nano
  doi: 10.1021/nn2025644
– volume: 6
  start-page: 652
  issue: 9
  year: 2007
  ident: 10.1016/j.carbon.2013.06.003_b0010
  article-title: Detection of individual gas molecules adsorbed on graphene
  publication-title: Nat Mater
  doi: 10.1038/nmat1967
– volume: 4
  start-page: 3979
  issue: 7
  year: 2010
  ident: 10.1016/j.carbon.2013.06.003_b0025
  article-title: Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal
  publication-title: ACS Nano
  doi: 10.1021/nn1008897
– volume: 321
  start-page: 1815
  issue: 5897
  year: 2008
  ident: 10.1016/j.carbon.2013.06.003_b0105
  article-title: Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide
  publication-title: Science
  doi: 10.1126/science.1162369
– volume: 80
  start-page: 1339
  issue: 6
  year: 1958
  ident: 10.1016/j.carbon.2013.06.003_b0150
  article-title: Preparation of graphitic oxide
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01539a017
– volume: 2
  start-page: 605
  issue: 10
  year: 2007
  ident: 10.1016/j.carbon.2013.06.003_b0055
  article-title: Carbon-based electronics
  publication-title: Nat Nano
  doi: 10.1038/nnano.2007.300
– volume: 44
  start-page: 8516
  issue: 21
  year: 2011
  ident: 10.1016/j.carbon.2013.06.003_b0180
  article-title: Characteristic swelling–deswelling of polymer/clay nanocomposite gels
  publication-title: Macromolecules
  doi: 10.1021/ma201272j
– volume: 4
  start-page: 6557
  issue: 11
  year: 2010
  ident: 10.1016/j.carbon.2013.06.003_b0200
  article-title: Mechanical properties of mono layer graphene oxide
  publication-title: ACS Nano
  doi: 10.1021/nn101781v
– volume: 5
  start-page: 3831
  issue: 5
  year: 2011
  ident: 10.1016/j.carbon.2013.06.003_b0020
  article-title: Assembly of graphene sheets into hierarchical structures for high-performance energy storage
  publication-title: ACS Nano
  doi: 10.1021/nn2001728
– volume: 133
  start-page: 7296
  issue: 19
  year: 2011
  ident: 10.1016/j.carbon.2013.06.003_b0015
  article-title: MoS2 Nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction
  publication-title: J Am Chem Soc
  doi: 10.1021/ja201269b
– ident: 10.1016/j.carbon.2013.06.003_b0130
  doi: 10.1149/1.3119548
– volume: 49
  start-page: 389
  issue: 2
  year: 2013
  ident: 10.1016/j.carbon.2013.06.003_b0160
  article-title: Temperature-sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior
  publication-title: Eur Polym J
  doi: 10.1016/j.eurpolymj.2012.10.034
– volume: 306
  start-page: 666
  issue: 5696
  year: 2004
  ident: 10.1016/j.carbon.2013.06.003_b0005
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
SSID ssj0004814
Score 2.4153724
Snippet Graphene oxide (GO) based hydrogels were proposed to be used as biomaterials and stimuli-response materials, but their poor mechanical properties restricted...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117
SubjectTerms ascorbic acid
biocompatible materials
Biomedical materials
Carbon
Chemistry
clay
Clay (material)
Colloidal gels. Colloidal sols
Colloidal state and disperse state
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science; rheology
Crosslinking
Deformation and plasticity (including yield, ductility, and superplasticity)
Exact sciences and technology
extensibility
Fullerenes and related materials; diamonds, graphite
General and physical chemistry
Graphene
hydrocolloids
Hydrogels
Materials science
Mechanical and acoustical properties
Mechanical and acoustical properties of condensed matter
Mechanical properties
Mechanical properties of solids
Oxides
phase transition
Physical properties of thin films, nonelectronic
Physics
polymerization
Specific materials
Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)
Title Robust and thermo-response graphene–PNIPAm hybrid hydrogels reinforced by hectorite clay
URI https://dx.doi.org/10.1016/j.carbon.2013.06.003
https://www.proquest.com/docview/1448710781
https://www.proquest.com/docview/1705436305
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CemgglLZJiJPWbKHXbWTt6rFHYxrslppQEjC9iH3mgSMZ2T74UvIf-g_7SzqzklxCoIGehMQKLTOrmW92Z74h5CP3mdTcOWa9i5mQac5yZVImnZDG28hIg_uQ36bp-Ep8mSWzHTLqamEwrbK1_Y1ND9a6fXLWSvNscXuLNb4IxwGfIGmUTGdYwS4yXOWffv5N8xB5w--Nx_w4uiufCzleRtW6QhbUAQ8snl3rrKfuaX-hliA033S7eGK4gzc6f01etTCSDpuZviE7rnxLXo667m0H5Mf3Sq-XK6pKSxHj3VesbtJhHQ0k1WDjfj_8uphOLob39GaDhVtwsXV1DdOhtQuMqiAeqjf0JmztAzilZq42h-Tq_PPlaMzaPgrMiCxeMRUPnIcfmXPhjVQu4xycvJPCpjKFCAVJ6yKZCxF7CPd4rCMNsEoDMEu10UnOj8huWZXumNDI-CSySZI7cGs68bl1wiuTmNxKC9ChR3gnvsK0JOPY62JedNlkd0Uj9AKFXoSkOt4jbPvWoiHZeGZ81mmmeLRYCvADz7zZf6TI7ediiJvEIIt65EOn2QI0hqcnqnTVegkxEsR2A-RG-seYDBAwT8GGnvz3FE_JHt41CYPvyO6qXrv3AHxWuh9Wdp-8GE6-jqd_AM8OBAE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpekihlD7ptk2qQq9qvJb80DEsCZs0WUJJYOlF6JmkJPbi3T3sJeQ_9B_2l3RGtlNCoIGcDLaExYw08400-oaQrzwU0nDvmQs-ZULmJSu1zZn0QtrgEist7kMeTfLxqTiYZtM1MurvwmBaZWf7W5serXX3ZruT5vbs4gLv-CIcB3yCpFEynz4hTwUsXyxj8O36X56HKFuCbzznx-b9_bmY5GV1Y2qkQR3ySOPZ186675-ez_QcpBbachf3LHd0R3svyYsOR9KddqivyJqvXpONUV--7Q35-aM2y_mC6spRBHlXNWvafFhPI0s1GLk_N7-PJ_vHO1f0fIU3t-DhmvoMhkMbHylVQT7UrOh53NsHdErtpV69Jad7uyejMesKKTArinTBdDr0AVYy5yJYqX3BOXh5L4XLZQ4hCrLWJbIUIg0Q7_HUJAZwlQFklhtrspK_I-tVXfn3hCY2ZInLstKDXzNZKJ0XQdvMlk46wA4DwnvxKduxjGOxi0vVp5P9Uq3QFQpdxaw6PiDsttesZdl4oH3Ra0bdmS0KHMEDPbfuKPL2dykETmJYJAPypdesAo3h8YmufL2cQ5AEwd0QyZH-06YACMxzMKIfHj3Ez2RjfHJ0qA73J98_kmf4pc0e_ETWF83SbwIKWpitOMv_AqvvBY8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+thermo-response+graphene%E2%80%93PNIPAm+hybrid+hydrogels+reinforced+by+hectorite+clay&rft.jtitle=Carbon+%28New+York%29&rft.au=Zhang%2C+Enzhong&rft.au=Wang%2C+Tao&rft.au=Lian%2C+Cuixia&rft.au=Sun%2C+Weixiang&rft.date=2013-10-01&rft.issn=0008-6223&rft.volume=62&rft.spage=117&rft.epage=126&rft_id=info:doi/10.1016%2Fj.carbon.2013.06.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_carbon_2013_06_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon