Spin-reorientation-induced magnetodielectric coupling effects in two layered perovskite magnets
Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C 6 H 5 CH 2 CH 2 NH 3 ] 2 [MCl 4 ] (M = Mn 2+ and Cu 2+ ), via isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin...
Saved in:
Published in | Chemical science (Cambridge) Vol. 9; no. 37; pp. 7413 - 7418 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C
6
H
5
CH
2
CH
2
NH
3
]
2
[MCl
4
] (M = Mn
2+
and Cu
2+
),
via
isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin-flop transitions appeared simultaneously at around ±34 kOe for the canted antiferromagnet (M = Mn
2+
) at below 44.3 K, while a low-field (1 kOe) controlled magnetodielectric effect was observed in the “soft” ferromagnet (M = Cu
2+
) at below 9.5 K. These isothermal magnetodielectric effects are highly reproducible and synchronous with the field-induced magnetization at different temperatures, well confirming the essential role of spin reorientation on inducing magnetodielectric coupling effects. These findings strongly imply that the layered perovskite magnets are new promising organic–inorganic hybrid systems to host magnetodielectric coupling effects. |
---|---|
AbstractList | Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C6H5CH2CH2NH3]2[MCl4] (M = Mn2+ and Cu2+), via isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin-flop transitions appeared simultaneously at around ±34 kOe for the canted antiferromagnet (M = Mn2+) at below 44.3 K, while a low-field (1 kOe) controlled magnetodielectric effect was observed in the “soft” ferromagnet (M = Cu2+) at below 9.5 K. These isothermal magnetodielectric effects are highly reproducible and synchronous with the field-induced magnetization at different temperatures, well confirming the essential role of spin reorientation on inducing magnetodielectric coupling effects. These findings strongly imply that the layered perovskite magnets are new promising organic–inorganic hybrid systems to host magnetodielectric coupling effects. Spin-reorientation-induced magnetodielectric effects were discovered in two layered perovskite magnets, (C 6 H 5 CH 2 CH 2 NH 3 ) 2 [MCl 4 ] (M = Mn 2+ and Cu 2+ ), via highly reproducible isothermal magnetodielectric measurements on single-crystal samples. Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C 6 H 5 CH 2 CH 2 NH 3 ] 2 [MCl 4 ] (M = Mn 2+ and Cu 2+ ), via isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin-flop transitions appeared simultaneously at around ±34 kOe for the canted antiferromagnet (M = Mn 2+ ) at below 44.3 K, while a low-field (1 kOe) controlled magnetodielectric effect was observed in the “soft” ferromagnet (M = Cu 2+ ) at below 9.5 K. These isothermal magnetodielectric effects are highly reproducible and synchronous with the field-induced magnetization at different temperatures, well confirming the essential role of spin reorientation on inducing magnetodielectric coupling effects. These findings strongly imply that the layered perovskite magnets are new promising organic–inorganic hybrid systems to host magnetodielectric coupling effects. Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C6H5CH2CH2NH3]2[MCl4] (M = Mn2+ and Cu2+), via isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin-flop transitions appeared simultaneously at around ±34 kOe for the canted antiferromagnet (M = Mn2+) at below 44.3 K, while a low-field (1 kOe) controlled magnetodielectric effect was observed in the "soft" ferromagnet (M = Cu2+) at below 9.5 K. These isothermal magnetodielectric effects are highly reproducible and synchronous with the field-induced magnetization at different temperatures, well confirming the essential role of spin reorientation on inducing magnetodielectric coupling effects. These findings strongly imply that the layered perovskite magnets are new promising organic-inorganic hybrid systems to host magnetodielectric coupling effects.Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C6H5CH2CH2NH3]2[MCl4] (M = Mn2+ and Cu2+), via isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin-flop transitions appeared simultaneously at around ±34 kOe for the canted antiferromagnet (M = Mn2+) at below 44.3 K, while a low-field (1 kOe) controlled magnetodielectric effect was observed in the "soft" ferromagnet (M = Cu2+) at below 9.5 K. These isothermal magnetodielectric effects are highly reproducible and synchronous with the field-induced magnetization at different temperatures, well confirming the essential role of spin reorientation on inducing magnetodielectric coupling effects. These findings strongly imply that the layered perovskite magnets are new promising organic-inorganic hybrid systems to host magnetodielectric coupling effects. Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C 6 H 5 CH 2 CH 2 NH 3 ] 2 [MCl 4 ] (M = Mn 2+ and Cu 2+ ), via isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin-flop transitions appeared simultaneously at around ±34 kOe for the canted antiferromagnet (M = Mn 2+ ) at below 44.3 K, while a low-field (1 kOe) controlled magnetodielectric effect was observed in the “soft” ferromagnet (M = Cu 2+ ) at below 9.5 K. These isothermal magnetodielectric effects are highly reproducible and synchronous with the field-induced magnetization at different temperatures, well confirming the essential role of spin reorientation on inducing magnetodielectric coupling effects. These findings strongly imply that the layered perovskite magnets are new promising organic–inorganic hybrid systems to host magnetodielectric coupling effects. Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C H CH CH NH ] [MCl ] (M = Mn and Cu ), isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin-flop transitions appeared simultaneously at around ±34 kOe for the canted antiferromagnet (M = Mn ) at below 44.3 K, while a low-field (1 kOe) controlled magnetodielectric effect was observed in the "soft" ferromagnet (M = Cu ) at below 9.5 K. These isothermal magnetodielectric effects are highly reproducible and synchronous with the field-induced magnetization at different temperatures, well confirming the essential role of spin reorientation on inducing magnetodielectric coupling effects. These findings strongly imply that the layered perovskite magnets are new promising organic-inorganic hybrid systems to host magnetodielectric coupling effects. |
Author | Chen, Xiao-Ming Chen, Ming-Kun Huang, Bo Huang, Rui-Kang Zhang, Wei-Xiong Xue, Wei Zeng, Ming-Hua Zhang, Jian-Yu |
AuthorAffiliation | a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China . Email: zhangwx6@mail.sysu.edu.cn b School of Chemistry and Pharmaceutical Sciences , GuangXi Normal University , Guilin 541004 , P. R. China |
AuthorAffiliation_xml | – name: a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China . Email: zhangwx6@mail.sysu.edu.cn – name: b School of Chemistry and Pharmaceutical Sciences , GuangXi Normal University , Guilin 541004 , P. R. China |
Author_xml | – sequence: 1 givenname: Bo surname: Huang fullname: Huang, Bo organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China – sequence: 2 givenname: Jian-Yu orcidid: 0000-0002-5213-7063 surname: Zhang fullname: Zhang, Jian-Yu organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China – sequence: 3 givenname: Rui-Kang surname: Huang fullname: Huang, Rui-Kang organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China – sequence: 4 givenname: Ming-Kun surname: Chen fullname: Chen, Ming-Kun organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China – sequence: 5 givenname: Wei surname: Xue fullname: Xue, Wei organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China – sequence: 6 givenname: Wei-Xiong orcidid: 0000-0003-0797-3465 surname: Zhang fullname: Zhang, Wei-Xiong organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China – sequence: 7 givenname: Ming-Hua orcidid: 0000-0002-7227-7688 surname: Zeng fullname: Zeng, Ming-Hua organization: School of Chemistry and Pharmaceutical Sciences, GuangXi Normal University, Guilin 541004, P. R. China – sequence: 8 givenname: Xiao-Ming surname: Chen fullname: Chen, Xiao-Ming organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30542545$$D View this record in MEDLINE/PubMed |
BookMark | eNptkV9PFDEUxRsCEQRe_ABmEl-IyUj_d-fFRDeKJiQ8gM9Np71di7Pt2M5A-PbW7LIooS9tbn_35J57XqP9mCIg9IbgDwSz7ny5uF5i2hH1eQ8dUcxJKwXr9ndvig_RaSm3uB7GiKDqFTpkWHAquDhC-noMsc2QcoA4mSmk2IboZguuWZtVhCm5AAPYKQfb2DSPQ4irBryvpdKE2Ez3qRnMA-TaMUJOd-VXmGDbXE7QgTdDgdPtfYx-fP1ys_zWXl5dfF9-umwtV3RqO-c7EIrLhcTWCEs7JSkxikjq-4WzPfXYCSmx76niTlFOFtz5nnuvnOosO0YfN7rj3K_B2Womm0GPOaxNftDJBP3_Tww_9SrdaUmZIpRVgbOtQE6_ZyiTXodiYRhMhDQXTYkQdctUyoq-e4bepjnHaq9ShPJOCcYr9fbfiXajPO6-Au83gM2plAx-hxCs_2arn7KtMH4G27CJq7oJw0stfwC7hKdH |
CitedBy_id | crossref_primary_10_1002_ange_202415363 crossref_primary_10_1002_anie_202000290 crossref_primary_10_1002_anie_201910701 crossref_primary_10_1016_j_cclet_2023_108282 crossref_primary_10_1002_adma_202004542 crossref_primary_10_1002_anie_202204700 crossref_primary_10_1002_ejic_202100671 crossref_primary_10_1016_j_jmmm_2021_168598 crossref_primary_10_1039_D0TC00266F crossref_primary_10_1021_acs_cgd_8b01615 crossref_primary_10_1039_D2TC00335J crossref_primary_10_1021_acs_inorgchem_0c02549 crossref_primary_10_1021_acs_inorgchem_5c00147 crossref_primary_10_1016_j_cap_2021_11_003 crossref_primary_10_1039_D2SC05857J crossref_primary_10_1103_PhysRevB_99_024436 crossref_primary_10_1016_j_cclet_2022_108127 crossref_primary_10_1039_D2MA00963C crossref_primary_10_1039_D2QM00696K crossref_primary_10_1002_ange_202007813 crossref_primary_10_1039_D1CC01586A crossref_primary_10_1002_chem_201903678 crossref_primary_10_1021_acs_inorgchem_9b01409 crossref_primary_10_1002_adom_202400936 crossref_primary_10_1021_accountsmr_1c00270 crossref_primary_10_1021_acsmaterialslett_3c01458 crossref_primary_10_1039_D0SC04851H crossref_primary_10_1021_jacs_4c11490 crossref_primary_10_1039_D2TC03031D crossref_primary_10_1039_D0TC04386A crossref_primary_10_3390_magnetochemistry9030080 crossref_primary_10_1021_acs_inorgchem_9b00161 crossref_primary_10_1039_D3QM00727H crossref_primary_10_1002_ange_201910701 crossref_primary_10_1002_ange_202000290 crossref_primary_10_1002_cplu_202200463 crossref_primary_10_1002_anie_202415363 crossref_primary_10_1039_D4MH01762E crossref_primary_10_1002_chem_201904553 crossref_primary_10_1039_D1SC01871J crossref_primary_10_1007_s42114_019_00093_9 crossref_primary_10_1021_acs_inorgchem_3c03732 crossref_primary_10_1002_adma_202303945 crossref_primary_10_1021_acs_chemmater_0c02729 crossref_primary_10_1016_j_ceramint_2023_12_188 crossref_primary_10_1002_anie_202007813 crossref_primary_10_1016_j_jallcom_2023_169943 crossref_primary_10_1088_1361_648X_adb923 crossref_primary_10_1107_S2414314623008982 crossref_primary_10_1002_ange_202204700 crossref_primary_10_1021_acs_inorgchem_9b01785 crossref_primary_10_1002_agt2_294 crossref_primary_10_1063_5_0052975 crossref_primary_10_1002_adfm_202207988 crossref_primary_10_1016_j_cclet_2020_02_005 crossref_primary_10_1021_acs_inorgchem_1c01011 |
Cites_doi | 10.1002/adma.200600071 10.1021/ar50139a003 10.1038/srep06062 10.1103/PhysRevB.81.224434 10.1038/nature02018 10.1103/PhysRevLett.7.310 10.1021/ja3073319 10.1103/PhysRevLett.115.087601 10.1038/nphys1503 10.1038/srep02024 10.1103/PhysRevB.76.024409 10.1021/ja206891q 10.1002/anie.201103265 10.1002/adma.201200734 10.1021/jacs.5b11688 10.1021/ic402535u 10.1103/PhysRevLett.92.257201 10.1002/adma.201606966 10.1021/j100217a033 10.1103/PhysRevLett.91.257208 10.1021/ja904156s 10.1039/C6TC02715F 10.1002/adma.201702512 10.1021/jacs.8b04818 10.1021/cm0521830 10.1103/PhysRevB.67.180401 10.1063/1.4983169 10.1039/C1DT11544H 10.1038/nmat2826 10.1088/1367-2630/15/12/123001 10.1103/PhysRevLett.93.107207 10.1103/PhysRevLett.98.057601 10.1021/ic5030229 10.1038/nmat2189 10.1021/jacs.5b12488 10.1021/ja0665390 10.1103/PhysRevLett.94.137201 10.1103/PhysRevLett.102.057604 10.1021/cm2023696 10.1103/PhysRevB.82.064406 10.1039/dt9780001236 10.1038/nature02572 10.1021/ja210341b 10.1063/1.1657668 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 This journal is © The Royal Society of Chemistry 2018 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 – notice: This journal is © The Royal Society of Chemistry 2018 2018 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/C8SC02917B |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 7418 |
ExternalDocumentID | PMC6237123 30542545 10_1039_C8SC02917B |
Genre | Journal Article |
GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ACRPL ADBBV ADMRA ADNMO AEFDR AENEX AESAV AETIL AFLYV AFPKN AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI AOIJS APEMP ASPBG AUDPV AVWKF AZFZN BCNDV BLAPV BSQNT C6K CAG CITATION COF D0L ECGLT EE0 EF- F5P FEDTE GROUPED_DOAJ H13 HVGLF HYE HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS ROL RPM RPMJG RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c472t-9df9e5746860ca5c297621a7162fb8dcb2f0d5660fb274d724184dfb4ff7d79c3 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 17:53:11 EDT 2025 Fri Jul 11 10:13:51 EDT 2025 Fri Jul 25 03:39:51 EDT 2025 Mon Jul 21 05:22:21 EDT 2025 Tue Jul 01 03:46:22 EDT 2025 Thu Apr 24 22:58:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
License | This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c472t-9df9e5746860ca5c297621a7162fb8dcb2f0d5660fb274d724184dfb4ff7d79c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5213-7063 0000-0003-0797-3465 0000-0002-7227-7688 |
OpenAccessLink | http://dx.doi.org/10.1039/c8sc02917b |
PMID | 30542545 |
PQID | 2112497534 |
PQPubID | 2047492 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6237123 proquest_miscellaneous_2155917266 proquest_journals_2112497534 pubmed_primary_30542545 crossref_primary_10_1039_C8SC02917B crossref_citationtrail_10_1039_C8SC02917B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wang (C8SC02917B-(cit23)/*[position()=1]) 2013; 3 Day (C8SC02917B-(cit35)/*[position()=1]) 1978; 12 Guo (C8SC02917B-(cit27)/*[position()=1]) 2017; 110 Han (C8SC02917B-(cit38)/*[position()=1]) 2014; 53 Gomez-Aguirre (C8SC02917B-(cit26)/*[position()=1]) 2016; 138 Zhao (C8SC02917B-(cit16)/*[position()=1]) 2017; 29 Jain (C8SC02917B-(cit19)/*[position()=1]) 2009; 131 Fu (C8SC02917B-(cit21)/*[position()=1]) 2011; 50 Kimura (C8SC02917B-(cit5)/*[position()=1]) 2003; 426 Park (C8SC02917B-(cit9)/*[position()=1]) 2007; 98 Kimura (C8SC02917B-(cit45)/*[position()=1]) 2005; 94 Subramanian (C8SC02917B-(cit3)/*[position()=1]) 2006; 18 Wang (C8SC02917B-(cit42)/*[position()=1]) 2005; 17 Crowley (C8SC02917B-(cit39)/*[position()=1]) 1982; 86 Adem (C8SC02917B-(cit44)/*[position()=1]) 2010; 82 Ackermann (C8SC02917B-(cit29)/*[position()=1]) 2013; 15 Rado (C8SC02917B-(cit4)/*[position()=1]) 1961; 7 Kundys (C8SC02917B-(cit40)/*[position()=1]) 2010; 81 Huang (C8SC02917B-(cit41)/*[position()=1]) 2016; 4 Tian (C8SC02917B-(cit24)/*[position()=1]) 2014; 4 Cai (C8SC02917B-(cit28)/*[position()=1]) 2012; 134 Ackermann (C8SC02917B-(cit31)/*[position()=1]) 2014; 26 Hur (C8SC02917B-(cit13)/*[position()=1]) 2004; 429 Polyakov (C8SC02917B-(cit33)/*[position()=1]) 2011; 24 Zhao (C8SC02917B-(cit10)/*[position()=1]) 2012; 24 Kagawa (C8SC02917B-(cit17)/*[position()=1]) 2010; 6 Wang (C8SC02917B-(cit8)/*[position()=1]) 2015; 115 Han (C8SC02917B-(cit37)/*[position()=1]) 2015; 54 Park (C8SC02917B-(cit34)/*[position()=1]) 2012; 41 Jeong (C8SC02917B-(cit11)/*[position()=1]) 2012; 134 Larkworthy (C8SC02917B-(cit32)/*[position()=1]) 1978 Kimura (C8SC02917B-(cit6)/*[position()=1]) 2003; 67 Xu (C8SC02917B-(cit20)/*[position()=1]) 2011; 133 Tian (C8SC02917B-(cit25)/*[position()=1]) 2016; 138 Chen (C8SC02917B-(cit22)/*[position()=1]) 2017; 29 Cui (C8SC02917B-(cit18)/*[position()=1]) 2006; 128 Tackett (C8SC02917B-(cit43)/*[position()=1]) 2007; 76 Bibes (C8SC02917B-(cit1)/*[position()=1]) 2008; 7 Lawes (C8SC02917B-(cit7)/*[position()=1]) 2003; 91 Wang (C8SC02917B-(cit30)/*[position()=1]) 2018; 140 de Jongh (C8SC02917B-(cit36)/*[position()=1]) 1969; 40 Hur (C8SC02917B-(cit2)/*[position()=1]) 2004; 93 Goto (C8SC02917B-(cit14)/*[position()=1]) 2004; 92 Kagawa (C8SC02917B-(cit12)/*[position()=1]) 2009; 102 Kitagawa (C8SC02917B-(cit15)/*[position()=1]) 2010; 9 |
References_xml | – volume: 18 start-page: 1737 year: 2006 ident: C8SC02917B-(cit3)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200600071 – volume: 12 start-page: 236 year: 1978 ident: C8SC02917B-(cit35)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar50139a003 – volume: 4 start-page: 6062 year: 2014 ident: C8SC02917B-(cit24)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep06062 – volume: 81 start-page: 224434 year: 2010 ident: C8SC02917B-(cit40)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.224434 – volume: 426 start-page: 55 year: 2003 ident: C8SC02917B-(cit5)/*[position()=1] publication-title: Nature doi: 10.1038/nature02018 – volume: 7 start-page: 310 year: 1961 ident: C8SC02917B-(cit4)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.7.310 – volume: 134 start-page: 18487 year: 2012 ident: C8SC02917B-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3073319 – volume: 115 start-page: 087601 year: 2015 ident: C8SC02917B-(cit8)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.087601 – volume: 6 start-page: 169 year: 2010 ident: C8SC02917B-(cit17)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/nphys1503 – volume: 3 start-page: 2024 year: 2013 ident: C8SC02917B-(cit23)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep02024 – volume: 76 start-page: 024409 year: 2007 ident: C8SC02917B-(cit43)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.76.024409 – volume: 133 start-page: 14948 year: 2011 ident: C8SC02917B-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206891q – volume: 50 start-page: 11947 year: 2011 ident: C8SC02917B-(cit21)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201103265 – volume: 24 start-page: 2469 year: 2012 ident: C8SC02917B-(cit10)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201200734 – volume: 138 start-page: 1122 year: 2016 ident: C8SC02917B-(cit26)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11688 – volume: 53 start-page: 2068 year: 2014 ident: C8SC02917B-(cit38)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic402535u – volume: 92 start-page: 257201 year: 2004 ident: C8SC02917B-(cit14)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.257201 – volume: 29 start-page: 1606966 year: 2017 ident: C8SC02917B-(cit16)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606966 – volume: 86 start-page: 4046 year: 1982 ident: C8SC02917B-(cit39)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100217a033 – volume: 91 start-page: 257208 year: 2003 ident: C8SC02917B-(cit7)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.257208 – volume: 131 start-page: 13625 year: 2009 ident: C8SC02917B-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904156s – volume: 4 start-page: 8704 year: 2016 ident: C8SC02917B-(cit41)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC02715F – volume: 29 start-page: 1702512 year: 2017 ident: C8SC02917B-(cit22)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201702512 – volume: 140 start-page: 7795 year: 2018 ident: C8SC02917B-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04818 – volume: 17 start-page: 6369 year: 2005 ident: C8SC02917B-(cit42)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm0521830 – volume: 67 start-page: 180401 year: 2003 ident: C8SC02917B-(cit6)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.67.180401 – volume: 110 start-page: 192902 year: 2017 ident: C8SC02917B-(cit27)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4983169 – volume: 41 start-page: 1237 year: 2012 ident: C8SC02917B-(cit34)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C1DT11544H – volume: 9 start-page: 797 year: 2010 ident: C8SC02917B-(cit15)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2826 – volume: 15 start-page: 123001 year: 2013 ident: C8SC02917B-(cit29)/*[position()=1] publication-title: New J. Phys. doi: 10.1088/1367-2630/15/12/123001 – volume: 93 start-page: 107207 year: 2004 ident: C8SC02917B-(cit2)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.107207 – volume: 98 start-page: 057601 year: 2007 ident: C8SC02917B-(cit9)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.057601 – volume: 54 start-page: 2866 year: 2015 ident: C8SC02917B-(cit37)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic5030229 – volume: 7 start-page: 425 year: 2008 ident: C8SC02917B-(cit1)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2189 – volume: 138 start-page: 782 year: 2016 ident: C8SC02917B-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12488 – volume: 128 start-page: 15074 year: 2006 ident: C8SC02917B-(cit18)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0665390 – volume: 94 start-page: 137201 year: 2005 ident: C8SC02917B-(cit45)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.137201 – volume: 26 start-page: 506002 year: 2014 ident: C8SC02917B-(cit31)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 102 start-page: 057604 year: 2009 ident: C8SC02917B-(cit12)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.057604 – volume: 24 start-page: 133 year: 2011 ident: C8SC02917B-(cit33)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm2023696 – volume: 82 start-page: 064406 year: 2010 ident: C8SC02917B-(cit44)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.82.064406 – start-page: 1236 year: 1978 ident: C8SC02917B-(cit32)/*[position()=1] publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/dt9780001236 – volume: 429 start-page: 392 year: 2004 ident: C8SC02917B-(cit13)/*[position()=1] publication-title: Nature doi: 10.1038/nature02572 – volume: 134 start-page: 1450 year: 2012 ident: C8SC02917B-(cit11)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja210341b – volume: 40 start-page: 1363 year: 1969 ident: C8SC02917B-(cit36)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1657668 |
SSID | ssj0000331527 |
Score | 2.4328172 |
Snippet | Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C
6
H
5
CH
2
CH
2
NH
3
]
2
[MCl
4
] (M = Mn... Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C H CH CH NH ] [MCl ] (M = Mn and Cu ),... Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C6H5CH2CH2NH3]2[MCl4] (M = Mn2+ and Cu2+),... Spin-reorientation-induced magnetodielectric effects were discovered in two layered perovskite magnets, (C 6 H 5 CH 2 CH 2 NH 3 ) 2 [MCl 4 ] (M = Mn 2+ and Cu... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 7413 |
SubjectTerms | Antiferromagnetism Chemistry Copper Coupling Ferromagnetism Hybrid systems Hydrogen bonds Magnetic properties Magnets Manganese Perovskites Single crystals |
Title | Spin-reorientation-induced magnetodielectric coupling effects in two layered perovskite magnets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30542545 https://www.proquest.com/docview/2112497534 https://www.proquest.com/docview/2155917266 https://pubmed.ncbi.nlm.nih.gov/PMC6237123 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKJsFeEL8JjCkIXtBkltpO4jyyClRtgodtRd0LkeM4I9LmVG0Dgr-ec2Jn6dpJwEtUxY5T5btc7s533yH0VtFEKPiU4kyJDDMehZgbxqF8yDMacyVCaqqRP3-JxhN2NA2ng8G3XtZSvczey98b60r-B1U4B7iaKtl_QLZbFE7Ab8AXjoAwHP8K49NZqfFcVfPSVhBpDC52bbb0r8SFVssqL9s-N6Xcl1U9a2rPXQqHyXD8We1fil-mX6chMK5-LEww11686BuuHbGAqwMyu7-u3qsXThjXNgB9WK3FpI9AFPF5vTb1pC7xsbCf0CbVQNmUfn2Bj2vdj0z01SgJ2BBHIQn6ejbpiVNL9GKVJhg1dKM2D6ghQ5V8IQMCbuWKygckZlcNrqCxQPG0pJQ3uLPd0B20TcCNAMW9ffJ1Mj3vonABpbavb_eXHYctTQ6u77yD7rq1Vg2YNa_kZnJtz1o5e4DuWzfD_9DKzEM0UPoRujdy3f0eo_R22fHXZMd3suNb2fFL7YPs-FZ2_GvZsRcvnqDJp49nozG2zTawZDFZ4iQvEhXGLOJRIEUoCdipZCgMwViR8VxmpAhysP2DIiMxy2Ow_DjLi4wVRZzHiaRP0ZautHqOfGE2XwVVTCQhy7lJZYq52THOiYJVAw-9c08wlZaJ3jREuUybjAiapCN-Omoe_KGH3nRzZy3_ysZZuw6I1L6fi5QMTWN1cMeZh153w_CYzZaY0KqqzRzwqMGGjyIPPWtx627jAPdQvIJoN8Ews6-O6PJ7w9AOPkUMJuGLW9d8iXbMG9PG8nbR1nJeq1dg3S6zvSYqtGcF9Q9f6akX |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin-reorientation-induced+magnetodielectric+coupling+effects+in+two+layered+perovskite+magnets&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Huang%2C+Bo&rft.au=Zhang%2C+Jian-Yu&rft.au=Huang%2C+Rui-Kang&rft.au=Chen%2C+Ming-Kun&rft.date=2018&rft.issn=2041-6520&rft.volume=9&rft.issue=37&rft.spage=7413&rft_id=info:doi/10.1039%2Fc8sc02917b&rft_id=info%3Apmid%2F30542545&rft.externalDocID=30542545 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |