Spin-reorientation-induced magnetodielectric coupling effects in two layered perovskite magnets

Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C 6 H 5 CH 2 CH 2 NH 3 ] 2 [MCl 4 ] (M = Mn 2+ and Cu 2+ ), via isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 9; no. 37; pp. 7413 - 7418
Main Authors Huang, Bo, Zhang, Jian-Yu, Huang, Rui-Kang, Chen, Ming-Kun, Xue, Wei, Zhang, Wei-Xiong, Zeng, Ming-Hua, Chen, Xiao-Ming
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C 6 H 5 CH 2 CH 2 NH 3 ] 2 [MCl 4 ] (M = Mn 2+ and Cu 2+ ), via isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin-flop transitions appeared simultaneously at around ±34 kOe for the canted antiferromagnet (M = Mn 2+ ) at below 44.3 K, while a low-field (1 kOe) controlled magnetodielectric effect was observed in the “soft” ferromagnet (M = Cu 2+ ) at below 9.5 K. These isothermal magnetodielectric effects are highly reproducible and synchronous with the field-induced magnetization at different temperatures, well confirming the essential role of spin reorientation on inducing magnetodielectric coupling effects. These findings strongly imply that the layered perovskite magnets are new promising organic–inorganic hybrid systems to host magnetodielectric coupling effects.
AbstractList Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C6H5CH2CH2NH3]2[MCl4] (M = Mn2+ and Cu2+), via isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin-flop transitions appeared simultaneously at around ±34 kOe for the canted antiferromagnet (M = Mn2+) at below 44.3 K, while a low-field (1 kOe) controlled magnetodielectric effect was observed in the “soft” ferromagnet (M = Cu2+) at below 9.5 K. These isothermal magnetodielectric effects are highly reproducible and synchronous with the field-induced magnetization at different temperatures, well confirming the essential role of spin reorientation on inducing magnetodielectric coupling effects. These findings strongly imply that the layered perovskite magnets are new promising organic–inorganic hybrid systems to host magnetodielectric coupling effects.
Spin-reorientation-induced magnetodielectric effects were discovered in two layered perovskite magnets, (C 6 H 5 CH 2 CH 2 NH 3 ) 2 [MCl 4 ] (M = Mn 2+ and Cu 2+ ), via highly reproducible isothermal magnetodielectric measurements on single-crystal samples. Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C 6 H 5 CH 2 CH 2 NH 3 ] 2 [MCl 4 ] (M = Mn 2+ and Cu 2+ ), via isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin-flop transitions appeared simultaneously at around ±34 kOe for the canted antiferromagnet (M = Mn 2+ ) at below 44.3 K, while a low-field (1 kOe) controlled magnetodielectric effect was observed in the “soft” ferromagnet (M = Cu 2+ ) at below 9.5 K. These isothermal magnetodielectric effects are highly reproducible and synchronous with the field-induced magnetization at different temperatures, well confirming the essential role of spin reorientation on inducing magnetodielectric coupling effects. These findings strongly imply that the layered perovskite magnets are new promising organic–inorganic hybrid systems to host magnetodielectric coupling effects.
Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C6H5CH2CH2NH3]2[MCl4] (M = Mn2+ and Cu2+), via isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin-flop transitions appeared simultaneously at around ±34 kOe for the canted antiferromagnet (M = Mn2+) at below 44.3 K, while a low-field (1 kOe) controlled magnetodielectric effect was observed in the "soft" ferromagnet (M = Cu2+) at below 9.5 K. These isothermal magnetodielectric effects are highly reproducible and synchronous with the field-induced magnetization at different temperatures, well confirming the essential role of spin reorientation on inducing magnetodielectric coupling effects. These findings strongly imply that the layered perovskite magnets are new promising organic-inorganic hybrid systems to host magnetodielectric coupling effects.Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C6H5CH2CH2NH3]2[MCl4] (M = Mn2+ and Cu2+), via isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin-flop transitions appeared simultaneously at around ±34 kOe for the canted antiferromagnet (M = Mn2+) at below 44.3 K, while a low-field (1 kOe) controlled magnetodielectric effect was observed in the "soft" ferromagnet (M = Cu2+) at below 9.5 K. These isothermal magnetodielectric effects are highly reproducible and synchronous with the field-induced magnetization at different temperatures, well confirming the essential role of spin reorientation on inducing magnetodielectric coupling effects. These findings strongly imply that the layered perovskite magnets are new promising organic-inorganic hybrid systems to host magnetodielectric coupling effects.
Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C 6 H 5 CH 2 CH 2 NH 3 ] 2 [MCl 4 ] (M = Mn 2+ and Cu 2+ ), via isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin-flop transitions appeared simultaneously at around ±34 kOe for the canted antiferromagnet (M = Mn 2+ ) at below 44.3 K, while a low-field (1 kOe) controlled magnetodielectric effect was observed in the “soft” ferromagnet (M = Cu 2+ ) at below 9.5 K. These isothermal magnetodielectric effects are highly reproducible and synchronous with the field-induced magnetization at different temperatures, well confirming the essential role of spin reorientation on inducing magnetodielectric coupling effects. These findings strongly imply that the layered perovskite magnets are new promising organic–inorganic hybrid systems to host magnetodielectric coupling effects.
Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C H CH CH NH ] [MCl ] (M = Mn and Cu ), isothermal magnetodielectric measurements on single-crystal samples. Specifically, peak-like dielectric anomalies and spin-flop transitions appeared simultaneously at around ±34 kOe for the canted antiferromagnet (M = Mn ) at below 44.3 K, while a low-field (1 kOe) controlled magnetodielectric effect was observed in the "soft" ferromagnet (M = Cu ) at below 9.5 K. These isothermal magnetodielectric effects are highly reproducible and synchronous with the field-induced magnetization at different temperatures, well confirming the essential role of spin reorientation on inducing magnetodielectric coupling effects. These findings strongly imply that the layered perovskite magnets are new promising organic-inorganic hybrid systems to host magnetodielectric coupling effects.
Author Chen, Xiao-Ming
Chen, Ming-Kun
Huang, Bo
Huang, Rui-Kang
Zhang, Wei-Xiong
Xue, Wei
Zeng, Ming-Hua
Zhang, Jian-Yu
AuthorAffiliation a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China . Email: zhangwx6@mail.sysu.edu.cn
b School of Chemistry and Pharmaceutical Sciences , GuangXi Normal University , Guilin 541004 , P. R. China
AuthorAffiliation_xml – name: a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China . Email: zhangwx6@mail.sysu.edu.cn
– name: b School of Chemistry and Pharmaceutical Sciences , GuangXi Normal University , Guilin 541004 , P. R. China
Author_xml – sequence: 1
  givenname: Bo
  surname: Huang
  fullname: Huang, Bo
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China
– sequence: 2
  givenname: Jian-Yu
  orcidid: 0000-0002-5213-7063
  surname: Zhang
  fullname: Zhang, Jian-Yu
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China
– sequence: 3
  givenname: Rui-Kang
  surname: Huang
  fullname: Huang, Rui-Kang
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China
– sequence: 4
  givenname: Ming-Kun
  surname: Chen
  fullname: Chen, Ming-Kun
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China
– sequence: 5
  givenname: Wei
  surname: Xue
  fullname: Xue, Wei
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China
– sequence: 6
  givenname: Wei-Xiong
  orcidid: 0000-0003-0797-3465
  surname: Zhang
  fullname: Zhang, Wei-Xiong
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China
– sequence: 7
  givenname: Ming-Hua
  orcidid: 0000-0002-7227-7688
  surname: Zeng
  fullname: Zeng, Ming-Hua
  organization: School of Chemistry and Pharmaceutical Sciences, GuangXi Normal University, Guilin 541004, P. R. China
– sequence: 8
  givenname: Xiao-Ming
  surname: Chen
  fullname: Chen, Xiao-Ming
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30542545$$D View this record in MEDLINE/PubMed
BookMark eNptkV9PFDEUxRsCEQRe_ABmEl-IyUj_d-fFRDeKJiQ8gM9Np71di7Pt2M5A-PbW7LIooS9tbn_35J57XqP9mCIg9IbgDwSz7ny5uF5i2hH1eQ8dUcxJKwXr9ndvig_RaSm3uB7GiKDqFTpkWHAquDhC-noMsc2QcoA4mSmk2IboZguuWZtVhCm5AAPYKQfb2DSPQ4irBryvpdKE2Ez3qRnMA-TaMUJOd-VXmGDbXE7QgTdDgdPtfYx-fP1ys_zWXl5dfF9-umwtV3RqO-c7EIrLhcTWCEs7JSkxikjq-4WzPfXYCSmx76niTlFOFtz5nnuvnOosO0YfN7rj3K_B2Womm0GPOaxNftDJBP3_Tww_9SrdaUmZIpRVgbOtQE6_ZyiTXodiYRhMhDQXTYkQdctUyoq-e4bepjnHaq9ShPJOCcYr9fbfiXajPO6-Au83gM2plAx-hxCs_2arn7KtMH4G27CJq7oJw0stfwC7hKdH
CitedBy_id crossref_primary_10_1002_ange_202415363
crossref_primary_10_1002_anie_202000290
crossref_primary_10_1002_anie_201910701
crossref_primary_10_1016_j_cclet_2023_108282
crossref_primary_10_1002_adma_202004542
crossref_primary_10_1002_anie_202204700
crossref_primary_10_1002_ejic_202100671
crossref_primary_10_1016_j_jmmm_2021_168598
crossref_primary_10_1039_D0TC00266F
crossref_primary_10_1021_acs_cgd_8b01615
crossref_primary_10_1039_D2TC00335J
crossref_primary_10_1021_acs_inorgchem_0c02549
crossref_primary_10_1021_acs_inorgchem_5c00147
crossref_primary_10_1016_j_cap_2021_11_003
crossref_primary_10_1039_D2SC05857J
crossref_primary_10_1103_PhysRevB_99_024436
crossref_primary_10_1016_j_cclet_2022_108127
crossref_primary_10_1039_D2MA00963C
crossref_primary_10_1039_D2QM00696K
crossref_primary_10_1002_ange_202007813
crossref_primary_10_1039_D1CC01586A
crossref_primary_10_1002_chem_201903678
crossref_primary_10_1021_acs_inorgchem_9b01409
crossref_primary_10_1002_adom_202400936
crossref_primary_10_1021_accountsmr_1c00270
crossref_primary_10_1021_acsmaterialslett_3c01458
crossref_primary_10_1039_D0SC04851H
crossref_primary_10_1021_jacs_4c11490
crossref_primary_10_1039_D2TC03031D
crossref_primary_10_1039_D0TC04386A
crossref_primary_10_3390_magnetochemistry9030080
crossref_primary_10_1021_acs_inorgchem_9b00161
crossref_primary_10_1039_D3QM00727H
crossref_primary_10_1002_ange_201910701
crossref_primary_10_1002_ange_202000290
crossref_primary_10_1002_cplu_202200463
crossref_primary_10_1002_anie_202415363
crossref_primary_10_1039_D4MH01762E
crossref_primary_10_1002_chem_201904553
crossref_primary_10_1039_D1SC01871J
crossref_primary_10_1007_s42114_019_00093_9
crossref_primary_10_1021_acs_inorgchem_3c03732
crossref_primary_10_1002_adma_202303945
crossref_primary_10_1021_acs_chemmater_0c02729
crossref_primary_10_1016_j_ceramint_2023_12_188
crossref_primary_10_1002_anie_202007813
crossref_primary_10_1016_j_jallcom_2023_169943
crossref_primary_10_1088_1361_648X_adb923
crossref_primary_10_1107_S2414314623008982
crossref_primary_10_1002_ange_202204700
crossref_primary_10_1021_acs_inorgchem_9b01785
crossref_primary_10_1002_agt2_294
crossref_primary_10_1063_5_0052975
crossref_primary_10_1002_adfm_202207988
crossref_primary_10_1016_j_cclet_2020_02_005
crossref_primary_10_1021_acs_inorgchem_1c01011
Cites_doi 10.1002/adma.200600071
10.1021/ar50139a003
10.1038/srep06062
10.1103/PhysRevB.81.224434
10.1038/nature02018
10.1103/PhysRevLett.7.310
10.1021/ja3073319
10.1103/PhysRevLett.115.087601
10.1038/nphys1503
10.1038/srep02024
10.1103/PhysRevB.76.024409
10.1021/ja206891q
10.1002/anie.201103265
10.1002/adma.201200734
10.1021/jacs.5b11688
10.1021/ic402535u
10.1103/PhysRevLett.92.257201
10.1002/adma.201606966
10.1021/j100217a033
10.1103/PhysRevLett.91.257208
10.1021/ja904156s
10.1039/C6TC02715F
10.1002/adma.201702512
10.1021/jacs.8b04818
10.1021/cm0521830
10.1103/PhysRevB.67.180401
10.1063/1.4983169
10.1039/C1DT11544H
10.1038/nmat2826
10.1088/1367-2630/15/12/123001
10.1103/PhysRevLett.93.107207
10.1103/PhysRevLett.98.057601
10.1021/ic5030229
10.1038/nmat2189
10.1021/jacs.5b12488
10.1021/ja0665390
10.1103/PhysRevLett.94.137201
10.1103/PhysRevLett.102.057604
10.1021/cm2023696
10.1103/PhysRevB.82.064406
10.1039/dt9780001236
10.1038/nature02572
10.1021/ja210341b
10.1063/1.1657668
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
This journal is © The Royal Society of Chemistry 2018 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
– notice: This journal is © The Royal Society of Chemistry 2018 2018
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/C8SC02917B
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 7418
ExternalDocumentID PMC6237123
30542545
10_1039_C8SC02917B
Genre Journal Article
GroupedDBID 0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ACIWK
ACRPL
ADBBV
ADMRA
ADNMO
AEFDR
AENEX
AESAV
AETIL
AFLYV
AFPKN
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
AOIJS
APEMP
ASPBG
AUDPV
AVWKF
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CAG
CITATION
COF
D0L
ECGLT
EE0
EF-
F5P
FEDTE
GROUPED_DOAJ
H13
HVGLF
HYE
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
ROL
RPM
RPMJG
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c472t-9df9e5746860ca5c297621a7162fb8dcb2f0d5660fb274d724184dfb4ff7d79c3
ISSN 2041-6520
IngestDate Thu Aug 21 17:53:11 EDT 2025
Fri Jul 11 10:13:51 EDT 2025
Fri Jul 25 03:39:51 EDT 2025
Mon Jul 21 05:22:21 EDT 2025
Tue Jul 01 03:46:22 EDT 2025
Thu Apr 24 22:58:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
License This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c472t-9df9e5746860ca5c297621a7162fb8dcb2f0d5660fb274d724184dfb4ff7d79c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5213-7063
0000-0003-0797-3465
0000-0002-7227-7688
OpenAccessLink http://dx.doi.org/10.1039/c8sc02917b
PMID 30542545
PQID 2112497534
PQPubID 2047492
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6237123
proquest_miscellaneous_2155917266
proquest_journals_2112497534
pubmed_primary_30542545
crossref_primary_10_1039_C8SC02917B
crossref_citationtrail_10_1039_C8SC02917B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (C8SC02917B-(cit23)/*[position()=1]) 2013; 3
Day (C8SC02917B-(cit35)/*[position()=1]) 1978; 12
Guo (C8SC02917B-(cit27)/*[position()=1]) 2017; 110
Han (C8SC02917B-(cit38)/*[position()=1]) 2014; 53
Gomez-Aguirre (C8SC02917B-(cit26)/*[position()=1]) 2016; 138
Zhao (C8SC02917B-(cit16)/*[position()=1]) 2017; 29
Jain (C8SC02917B-(cit19)/*[position()=1]) 2009; 131
Fu (C8SC02917B-(cit21)/*[position()=1]) 2011; 50
Kimura (C8SC02917B-(cit5)/*[position()=1]) 2003; 426
Park (C8SC02917B-(cit9)/*[position()=1]) 2007; 98
Kimura (C8SC02917B-(cit45)/*[position()=1]) 2005; 94
Subramanian (C8SC02917B-(cit3)/*[position()=1]) 2006; 18
Wang (C8SC02917B-(cit42)/*[position()=1]) 2005; 17
Crowley (C8SC02917B-(cit39)/*[position()=1]) 1982; 86
Adem (C8SC02917B-(cit44)/*[position()=1]) 2010; 82
Ackermann (C8SC02917B-(cit29)/*[position()=1]) 2013; 15
Rado (C8SC02917B-(cit4)/*[position()=1]) 1961; 7
Kundys (C8SC02917B-(cit40)/*[position()=1]) 2010; 81
Huang (C8SC02917B-(cit41)/*[position()=1]) 2016; 4
Tian (C8SC02917B-(cit24)/*[position()=1]) 2014; 4
Cai (C8SC02917B-(cit28)/*[position()=1]) 2012; 134
Ackermann (C8SC02917B-(cit31)/*[position()=1]) 2014; 26
Hur (C8SC02917B-(cit13)/*[position()=1]) 2004; 429
Polyakov (C8SC02917B-(cit33)/*[position()=1]) 2011; 24
Zhao (C8SC02917B-(cit10)/*[position()=1]) 2012; 24
Kagawa (C8SC02917B-(cit17)/*[position()=1]) 2010; 6
Wang (C8SC02917B-(cit8)/*[position()=1]) 2015; 115
Han (C8SC02917B-(cit37)/*[position()=1]) 2015; 54
Park (C8SC02917B-(cit34)/*[position()=1]) 2012; 41
Jeong (C8SC02917B-(cit11)/*[position()=1]) 2012; 134
Larkworthy (C8SC02917B-(cit32)/*[position()=1]) 1978
Kimura (C8SC02917B-(cit6)/*[position()=1]) 2003; 67
Xu (C8SC02917B-(cit20)/*[position()=1]) 2011; 133
Tian (C8SC02917B-(cit25)/*[position()=1]) 2016; 138
Chen (C8SC02917B-(cit22)/*[position()=1]) 2017; 29
Cui (C8SC02917B-(cit18)/*[position()=1]) 2006; 128
Tackett (C8SC02917B-(cit43)/*[position()=1]) 2007; 76
Bibes (C8SC02917B-(cit1)/*[position()=1]) 2008; 7
Lawes (C8SC02917B-(cit7)/*[position()=1]) 2003; 91
Wang (C8SC02917B-(cit30)/*[position()=1]) 2018; 140
de Jongh (C8SC02917B-(cit36)/*[position()=1]) 1969; 40
Hur (C8SC02917B-(cit2)/*[position()=1]) 2004; 93
Goto (C8SC02917B-(cit14)/*[position()=1]) 2004; 92
Kagawa (C8SC02917B-(cit12)/*[position()=1]) 2009; 102
Kitagawa (C8SC02917B-(cit15)/*[position()=1]) 2010; 9
References_xml – volume: 18
  start-page: 1737
  year: 2006
  ident: C8SC02917B-(cit3)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600071
– volume: 12
  start-page: 236
  year: 1978
  ident: C8SC02917B-(cit35)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar50139a003
– volume: 4
  start-page: 6062
  year: 2014
  ident: C8SC02917B-(cit24)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep06062
– volume: 81
  start-page: 224434
  year: 2010
  ident: C8SC02917B-(cit40)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.224434
– volume: 426
  start-page: 55
  year: 2003
  ident: C8SC02917B-(cit5)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature02018
– volume: 7
  start-page: 310
  year: 1961
  ident: C8SC02917B-(cit4)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.7.310
– volume: 134
  start-page: 18487
  year: 2012
  ident: C8SC02917B-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3073319
– volume: 115
  start-page: 087601
  year: 2015
  ident: C8SC02917B-(cit8)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.087601
– volume: 6
  start-page: 169
  year: 2010
  ident: C8SC02917B-(cit17)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1503
– volume: 3
  start-page: 2024
  year: 2013
  ident: C8SC02917B-(cit23)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep02024
– volume: 76
  start-page: 024409
  year: 2007
  ident: C8SC02917B-(cit43)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.76.024409
– volume: 133
  start-page: 14948
  year: 2011
  ident: C8SC02917B-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206891q
– volume: 50
  start-page: 11947
  year: 2011
  ident: C8SC02917B-(cit21)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201103265
– volume: 24
  start-page: 2469
  year: 2012
  ident: C8SC02917B-(cit10)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200734
– volume: 138
  start-page: 1122
  year: 2016
  ident: C8SC02917B-(cit26)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11688
– volume: 53
  start-page: 2068
  year: 2014
  ident: C8SC02917B-(cit38)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic402535u
– volume: 92
  start-page: 257201
  year: 2004
  ident: C8SC02917B-(cit14)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.257201
– volume: 29
  start-page: 1606966
  year: 2017
  ident: C8SC02917B-(cit16)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606966
– volume: 86
  start-page: 4046
  year: 1982
  ident: C8SC02917B-(cit39)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100217a033
– volume: 91
  start-page: 257208
  year: 2003
  ident: C8SC02917B-(cit7)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.257208
– volume: 131
  start-page: 13625
  year: 2009
  ident: C8SC02917B-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904156s
– volume: 4
  start-page: 8704
  year: 2016
  ident: C8SC02917B-(cit41)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC02715F
– volume: 29
  start-page: 1702512
  year: 2017
  ident: C8SC02917B-(cit22)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702512
– volume: 140
  start-page: 7795
  year: 2018
  ident: C8SC02917B-(cit30)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04818
– volume: 17
  start-page: 6369
  year: 2005
  ident: C8SC02917B-(cit42)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm0521830
– volume: 67
  start-page: 180401
  year: 2003
  ident: C8SC02917B-(cit6)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.67.180401
– volume: 110
  start-page: 192902
  year: 2017
  ident: C8SC02917B-(cit27)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4983169
– volume: 41
  start-page: 1237
  year: 2012
  ident: C8SC02917B-(cit34)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C1DT11544H
– volume: 9
  start-page: 797
  year: 2010
  ident: C8SC02917B-(cit15)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2826
– volume: 15
  start-page: 123001
  year: 2013
  ident: C8SC02917B-(cit29)/*[position()=1]
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/12/123001
– volume: 93
  start-page: 107207
  year: 2004
  ident: C8SC02917B-(cit2)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.107207
– volume: 98
  start-page: 057601
  year: 2007
  ident: C8SC02917B-(cit9)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.057601
– volume: 54
  start-page: 2866
  year: 2015
  ident: C8SC02917B-(cit37)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic5030229
– volume: 7
  start-page: 425
  year: 2008
  ident: C8SC02917B-(cit1)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2189
– volume: 138
  start-page: 782
  year: 2016
  ident: C8SC02917B-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12488
– volume: 128
  start-page: 15074
  year: 2006
  ident: C8SC02917B-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0665390
– volume: 94
  start-page: 137201
  year: 2005
  ident: C8SC02917B-(cit45)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.137201
– volume: 26
  start-page: 506002
  year: 2014
  ident: C8SC02917B-(cit31)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 102
  start-page: 057604
  year: 2009
  ident: C8SC02917B-(cit12)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.057604
– volume: 24
  start-page: 133
  year: 2011
  ident: C8SC02917B-(cit33)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm2023696
– volume: 82
  start-page: 064406
  year: 2010
  ident: C8SC02917B-(cit44)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.82.064406
– start-page: 1236
  year: 1978
  ident: C8SC02917B-(cit32)/*[position()=1]
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/dt9780001236
– volume: 429
  start-page: 392
  year: 2004
  ident: C8SC02917B-(cit13)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature02572
– volume: 134
  start-page: 1450
  year: 2012
  ident: C8SC02917B-(cit11)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja210341b
– volume: 40
  start-page: 1363
  year: 1969
  ident: C8SC02917B-(cit36)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1657668
SSID ssj0000331527
Score 2.4328172
Snippet Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C 6 H 5 CH 2 CH 2 NH 3 ] 2 [MCl 4 ] (M = Mn...
Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C H CH CH NH ] [MCl ] (M = Mn and Cu ),...
Spin-reorientation-induced magnetodielectric coupling effects were discovered in two layered perovskite magnets, [C6H5CH2CH2NH3]2[MCl4] (M = Mn2+ and Cu2+),...
Spin-reorientation-induced magnetodielectric effects were discovered in two layered perovskite magnets, (C 6 H 5 CH 2 CH 2 NH 3 ) 2 [MCl 4 ] (M = Mn 2+ and Cu...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 7413
SubjectTerms Antiferromagnetism
Chemistry
Copper
Coupling
Ferromagnetism
Hybrid systems
Hydrogen bonds
Magnetic properties
Magnets
Manganese
Perovskites
Single crystals
Title Spin-reorientation-induced magnetodielectric coupling effects in two layered perovskite magnets
URI https://www.ncbi.nlm.nih.gov/pubmed/30542545
https://www.proquest.com/docview/2112497534
https://www.proquest.com/docview/2155917266
https://pubmed.ncbi.nlm.nih.gov/PMC6237123
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKJsFeEL8JjCkIXtBkltpO4jyyClRtgodtRd0LkeM4I9LmVG0Dgr-ec2Jn6dpJwEtUxY5T5btc7s533yH0VtFEKPiU4kyJDDMehZgbxqF8yDMacyVCaqqRP3-JxhN2NA2ng8G3XtZSvczey98b60r-B1U4B7iaKtl_QLZbFE7Ab8AXjoAwHP8K49NZqfFcVfPSVhBpDC52bbb0r8SFVssqL9s-N6Xcl1U9a2rPXQqHyXD8We1fil-mX6chMK5-LEww11686BuuHbGAqwMyu7-u3qsXThjXNgB9WK3FpI9AFPF5vTb1pC7xsbCf0CbVQNmUfn2Bj2vdj0z01SgJ2BBHIQn6ejbpiVNL9GKVJhg1dKM2D6ghQ5V8IQMCbuWKygckZlcNrqCxQPG0pJQ3uLPd0B20TcCNAMW9ffJ1Mj3vonABpbavb_eXHYctTQ6u77yD7rq1Vg2YNa_kZnJtz1o5e4DuWzfD_9DKzEM0UPoRujdy3f0eo_R22fHXZMd3suNb2fFL7YPs-FZ2_GvZsRcvnqDJp49nozG2zTawZDFZ4iQvEhXGLOJRIEUoCdipZCgMwViR8VxmpAhysP2DIiMxy2Ow_DjLi4wVRZzHiaRP0ZautHqOfGE2XwVVTCQhy7lJZYq52THOiYJVAw-9c08wlZaJ3jREuUybjAiapCN-Omoe_KGH3nRzZy3_ysZZuw6I1L6fi5QMTWN1cMeZh153w_CYzZaY0KqqzRzwqMGGjyIPPWtx627jAPdQvIJoN8Ews6-O6PJ7w9AOPkUMJuGLW9d8iXbMG9PG8nbR1nJeq1dg3S6zvSYqtGcF9Q9f6akX
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin-reorientation-induced+magnetodielectric+coupling+effects+in+two+layered+perovskite+magnets&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Huang%2C+Bo&rft.au=Zhang%2C+Jian-Yu&rft.au=Huang%2C+Rui-Kang&rft.au=Chen%2C+Ming-Kun&rft.date=2018&rft.issn=2041-6520&rft.volume=9&rft.issue=37&rft.spage=7413&rft_id=info:doi/10.1039%2Fc8sc02917b&rft_id=info%3Apmid%2F30542545&rft.externalDocID=30542545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon