Modeling organic fouling of reverse osmosis membrane: From adsorption to fouling layer formation
A combined model is developed for flux decline of reverse osmosis (RO) membranes, which accounts for initial fouling due to adsorption and subsequent fouling due to the growth of a fouling layer. The predicted data are in excellent agreement with the experimental ones obtained over crossflow filtrat...
Saved in:
Published in | Desalination Vol. 386; pp. 25 - 31 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A combined model is developed for flux decline of reverse osmosis (RO) membranes, which accounts for initial fouling due to adsorption and subsequent fouling due to the growth of a fouling layer. The predicted data are in excellent agreement with the experimental ones obtained over crossflow filtration of organic wastewaters using aromatic polyamide RO membranes over the entire course of the filtration. The model also provides a smooth transition from the adsorption regime to the fouling layer filtration regime. Based on the flux profiles and the analysis of the membrane surface, a two-step fouling mechanism is proposed to describe the evolution of fouling during continuous crossflow operation of RO membranes.
The development of membrane fouling. [Display omitted]
•Adsorption/fouling-layer model analyzes the flux decline during RO filtration.•The model provided a qualitative appreciation of the flux decline.•The factors of filtration time and membrane flux are considered in the fouling model.•The main interfacial interaction in each fouling step was discussed. |
---|---|
AbstractList | A combined model is developed for flux decline of reverse osmosis (RO) membranes, which accounts for initial fouling due to adsorption and subsequent fouling due to the growth of a fouling layer. The predicted data are in excellent agreement with the experimental ones obtained over crossflow filtration of organic wastewaters using aromatic polyamide RO membranes over the entire course of the filtration. The model also provides a smooth transition from the adsorption regime to the fouling layer filtration regime. Based on the flux profiles and the analysis of the membrane surface, a two-step fouling mechanism is proposed to describe the evolution of fouling during continuous crossflow operation of RO membranes. A combined model is developed for flux decline of reverse osmosis (RO) membranes, which accounts for initial fouling due to adsorption and subsequent fouling due to the growth of a fouling layer. The predicted data are in excellent agreement with the experimental ones obtained over crossflow filtration of organic wastewaters using aromatic polyamide RO membranes over the entire course of the filtration. The model also provides a smooth transition from the adsorption regime to the fouling layer filtration regime. Based on the flux profiles and the analysis of the membrane surface, a two-step fouling mechanism is proposed to describe the evolution of fouling during continuous crossflow operation of RO membranes. The development of membrane fouling. [Display omitted] •Adsorption/fouling-layer model analyzes the flux decline during RO filtration.•The model provided a qualitative appreciation of the flux decline.•The factors of filtration time and membrane flux are considered in the fouling model.•The main interfacial interaction in each fouling step was discussed. |
Author | Mei, Yingxin Li, Haigang Xia, Huanjin |
Author_xml | – sequence: 1 givenname: Haigang surname: Li fullname: Li, Haigang email: lihigang@163.com – sequence: 2 givenname: Huanjin surname: Xia fullname: Xia, Huanjin – sequence: 3 givenname: Yingxin surname: Mei fullname: Mei, Yingxin |
BookMark | eNqFkTFPwzAQhS1UJNrCL2DJyJJgx47jIDGgigJSEQvMxnHOlaskLnZaqf8et0UMDHQ6Pd37Tnf3JmjUux4QuiY4I5jw21XWQFBtlkeR4TzDtDxDYyJKmjLG2QiNMSYkrQhnF2gSwirKvKJ0jD5fXQOt7ZeJ80vVW50Ytzlqk3jYgg-QuNC5YEPSQVd71cNdMveuS1QTnF8P1vXJ4H65Vu3AR-U7tW9donOj2gBXP3WKPuaP77PndPH29DJ7WKSalfmQVnVhOK614Uwbo0paNFQJXgMxVUEM57quGQVGiGGi0mVdGV0oIzgDoZko6BTdHOeuvfvaQBhkZ4OGto37uk2QRGCBOcWMnraWosjzkggRrdXRqr0LwYOR2g6HuwavbCsJlvsA5EoeApD7ACTOZQwgsvQPu_a2U353gro_UhCftbXgZdAWeg2N9aAH2Tj7L_8NN2akfA |
CitedBy_id | crossref_primary_10_1016_j_desal_2024_117353 crossref_primary_10_1016_j_seppur_2025_132370 crossref_primary_10_1016_j_desal_2018_03_032 crossref_primary_10_1016_j_chemosphere_2021_133217 crossref_primary_10_1039_D0EW01098G crossref_primary_10_1080_21622515_2016_1278277 crossref_primary_10_3390_membranes14100221 crossref_primary_10_1016_j_desal_2017_12_037 crossref_primary_10_1016_j_memsci_2022_120286 crossref_primary_10_1007_s10311_018_0717_8 crossref_primary_10_2166_wst_2023_425 crossref_primary_10_1007_s10800_022_01816_5 crossref_primary_10_3390_ma13112501 crossref_primary_10_1016_j_jenvman_2021_113922 crossref_primary_10_1016_j_jece_2021_105421 crossref_primary_10_5004_dwt_2019_23319 crossref_primary_10_1016_j_seppur_2022_120725 crossref_primary_10_3390_w13081092 crossref_primary_10_1016_j_desal_2023_116756 crossref_primary_10_1016_j_ces_2018_07_054 crossref_primary_10_1016_j_fcr_2020_107960 crossref_primary_10_1016_j_memsci_2019_117746 crossref_primary_10_1016_j_chemosphere_2022_134056 crossref_primary_10_1016_j_watres_2024_121194 crossref_primary_10_3390_membranes11050314 crossref_primary_10_1080_15226514_2023_2256412 crossref_primary_10_1007_s11814_016_0120_8 crossref_primary_10_5004_dwt_2017_20576 crossref_primary_10_1016_j_desal_2017_05_013 crossref_primary_10_1016_j_still_2023_105785 crossref_primary_10_1038_s41545_024_00359_w crossref_primary_10_1016_j_cej_2024_150283 crossref_primary_10_1021_acs_iecr_2c02718 crossref_primary_10_1016_j_envint_2020_105744 crossref_primary_10_1016_j_heliyon_2023_e14908 crossref_primary_10_1038_s41598_019_53512_8 crossref_primary_10_3390_w12051505 crossref_primary_10_1016_j_desal_2022_116167 crossref_primary_10_1016_j_hazadv_2025_100684 crossref_primary_10_1051_matecconf_201710607011 crossref_primary_10_1016_j_desal_2025_118724 crossref_primary_10_1016_j_cej_2018_07_077 crossref_primary_10_1016_j_memsci_2017_04_039 crossref_primary_10_1007_s11270_025_07834_1 |
Cites_doi | 10.1021/es200570t 10.1016/j.ces.2003.05.008 10.1006/jcis.2000.7231 10.1021/ie402056r 10.1016/S0011-9164(00)90012-2 10.1016/j.memsci.2007.10.009 10.1016/j.memsci.2012.02.026 10.1016/j.jhazmat.2011.05.044 10.1016/S0376-7388(01)00622-6 10.1016/j.desal.2008.11.051 10.1016/j.memsci.2010.01.035 10.1016/S0376-7388(01)00376-3 10.1021/es970400v 10.1002/ceat.201400379 10.1016/S0376-7388(02)00554-9 10.1016/0376-7388(94)00295-A 10.1021/jp0534333 10.1016/S0011-9164(02)00399-5 10.1016/j.desal.2012.09.023 10.1021/jp011819h 10.1016/S1383-5866(01)00199-X 10.1016/j.memsci.2013.01.018 10.1016/j.seppur.2009.04.006 10.1016/j.desal.2011.11.008 10.1021/es051825h 10.1016/j.desal.2005.04.090 10.1016/j.memsci.2009.11.023 10.1002/cjce.5450780310 10.1002/aic.690470612 10.1021/la701524x 10.1002/aic.12667 10.1016/j.seppur.2010.12.003 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K SOI 8FD FR3 KR7 |
DOI | 10.1016/j.desal.2016.02.037 |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Aqualine Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4464 |
EndPage | 31 |
ExternalDocumentID | 10_1016_j_desal_2016_02_037 S0011916416300947 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SST SSZ T5K ~02 ~G- 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH WUQ ZY4 ~KM 7QH 7ST 7UA C1K SOI 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c472t-9b5f60bcf64cffa735d3a86be1f951f66cbb43e411f489c7b9fc5af864e8c4853 |
IEDL.DBID | .~1 |
ISSN | 0011-9164 |
IngestDate | Tue Aug 05 11:21:34 EDT 2025 Fri Jul 11 07:53:31 EDT 2025 Tue Jul 01 04:13:40 EDT 2025 Thu Apr 24 22:54:50 EDT 2025 Fri Feb 23 02:28:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fouling layer Combined model Adsorption RO membrane Fouling mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-9b5f60bcf64cffa735d3a86be1f951f66cbb43e411f489c7b9fc5af864e8c4853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1785227188 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1808063043 proquest_miscellaneous_1785227188 crossref_citationtrail_10_1016_j_desal_2016_02_037 crossref_primary_10_1016_j_desal_2016_02_037 elsevier_sciencedirect_doi_10_1016_j_desal_2016_02_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160501 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 20160501 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Desalination |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bacchin, Meireles, Aimar (bb0120) 2002; 145 Ho, Zydney (bb0140) 2000; 232 Sotto, Arsuaga, Van der Bruggen (bb0025) 2013; 309 Arsuaga, López-Muñoz, Sotto (bb0030) 2010; 250 Belohlav, Zamostny (bb0125) 2000; 78 Płatkowska-Siwiec, Wiszniowski, Bodzek (bb0050) 2012; 286 Lee, Elimelech (bb0145) 2006; 40 Van der Bruggen, Braeken, Vandecasteele (bb0005) 2002; 29 Zhao, Song, Ong (bb0065) 2010; 349 Sutzkover, Hasson, Semiat (bb0135) 2000; 131 Beier, Enevoldsen, Kontogeorgis, Hansen, Jonsson (bb0035) 2007; 23 Nguyen, Yoshikawa, Karasu, Ookawara (bb0095) 2012; 403 Yuan, Kocic, Zydney (bb0085) 2002; 198 Li, Yu, Luo (bb0150) 2015; 38 Sioutopoulos, Goudoulas, Kastrinakis, Nychas, Karabelas (bb0070) 2013; 434 Srisukphun, Chiemchaisri, Urase, Yamamoto (bb0015) 2009; 68 Kim, Sankararao, Lee, Yoo (bb0100) 2013; 52 Grabowski (bb0155) 2001; 105 Lee, Ahn, Hong, Kim, Lee, Baek, Yoon (bb0160) 2010; 351 Braeken, Van der Bruggen, Vandecasteele (bb0010) 2006; 110 Li, Lin, Luo, Yu, Hou (bb0020) 2011; 192 Bowen, Calvo, Hernandez (bb0075) 1995; 101 Contreras, Steiner, Miao, Kasher, Li (bb0040) 2011; 45 Li, Lin, Yu, Luo, Hou (bb0055) 2011; 77 Zhu, Elimelech (bb0130) 1997; 31 Tu, Ravindran, Den, Pirbazari (bb0105) 2001; 47 Lee, Ang, Elimelech (bb0060) 2006; 187 Vrijenhoek, Hong, Elimelech (bb0115) 2001; 188 Tay, Liu, Sun (bb0045) 2003; 217 Bagga, Chellam, Clifford (bb0080) 2008; 309 Srebnik (bb0110) 2003; 58 Sarkar, De (bb0090) 2012; 58 Contreras (10.1016/j.desal.2016.02.037_bb0040) 2011; 45 Nguyen (10.1016/j.desal.2016.02.037_bb0095) 2012; 403 Belohlav (10.1016/j.desal.2016.02.037_bb0125) 2000; 78 Bowen (10.1016/j.desal.2016.02.037_bb0075) 1995; 101 Sioutopoulos (10.1016/j.desal.2016.02.037_bb0070) 2013; 434 Srisukphun (10.1016/j.desal.2016.02.037_bb0015) 2009; 68 Sutzkover (10.1016/j.desal.2016.02.037_bb0135) 2000; 131 Grabowski (10.1016/j.desal.2016.02.037_bb0155) 2001; 105 Van der Bruggen (10.1016/j.desal.2016.02.037_bb0005) 2002; 29 Płatkowska-Siwiec (10.1016/j.desal.2016.02.037_bb0050) 2012; 286 Ho (10.1016/j.desal.2016.02.037_bb0140) 2000; 232 Braeken (10.1016/j.desal.2016.02.037_bb0010) 2006; 110 Lee (10.1016/j.desal.2016.02.037_bb0160) 2010; 351 Sarkar (10.1016/j.desal.2016.02.037_bb0090) 2012; 58 Lee (10.1016/j.desal.2016.02.037_bb0060) 2006; 187 Tu (10.1016/j.desal.2016.02.037_bb0105) 2001; 47 Yuan (10.1016/j.desal.2016.02.037_bb0085) 2002; 198 Kim (10.1016/j.desal.2016.02.037_bb0100) 2013; 52 Lee (10.1016/j.desal.2016.02.037_bb0145) 2006; 40 Beier (10.1016/j.desal.2016.02.037_bb0035) 2007; 23 Li (10.1016/j.desal.2016.02.037_bb0150) 2015; 38 Zhu (10.1016/j.desal.2016.02.037_bb0130) 1997; 31 Li (10.1016/j.desal.2016.02.037_bb0055) 2011; 77 Srebnik (10.1016/j.desal.2016.02.037_bb0110) 2003; 58 Bagga (10.1016/j.desal.2016.02.037_bb0080) 2008; 309 Sotto (10.1016/j.desal.2016.02.037_bb0025) 2013; 309 Tay (10.1016/j.desal.2016.02.037_bb0045) 2003; 217 Bacchin (10.1016/j.desal.2016.02.037_bb0120) 2002; 145 Arsuaga (10.1016/j.desal.2016.02.037_bb0030) 2010; 250 Li (10.1016/j.desal.2016.02.037_bb0020) 2011; 192 Zhao (10.1016/j.desal.2016.02.037_bb0065) 2010; 349 Vrijenhoek (10.1016/j.desal.2016.02.037_bb0115) 2001; 188 |
References_xml | – volume: 101 start-page: 153 year: 1995 end-page: 165 ident: bb0075 article-title: Steps of membrane blocking in flux decline during protein microfiltration publication-title: J. Membr. Sci. – volume: 68 start-page: 37 year: 2009 end-page: 49 ident: bb0015 article-title: Experimentation and modeling of foulant interaction and reverse osmosis membrane fouling during textile wastewater reclamation publication-title: Sep. Purif. Technol. – volume: 58 start-page: 1435 year: 2012 end-page: 1446 ident: bb0090 article-title: A combined complete pore blocking and cake filtration model for steady-state electric field-assisted ultrafiltration publication-title: AICHE J. – volume: 250 start-page: 829 year: 2010 end-page: 832 ident: bb0030 article-title: Correlation between retention and adsorption of phenolic compounds in nanofiltration membranes publication-title: Desalination – volume: 217 start-page: 17 year: 2003 end-page: 28 ident: bb0045 article-title: Quantification of membrane fouling using thermogravimetric method publication-title: J. Membr. Sci. – volume: 105 start-page: 10739 year: 2001 end-page: 10746 ident: bb0155 article-title: Ab initio calculations on conventional and unconventional hydrogen bonds study of the hydrogen bond strength publication-title: J. Phys. Chem. A – volume: 145 start-page: 139 year: 2002 end-page: 146 ident: bb0120 article-title: Modelling of filtration: from the polarised layer to deposit formation and compaction publication-title: Desalination – volume: 351 start-page: 112 year: 2010 end-page: 122 ident: bb0160 article-title: Evaluation of surface properties of reverse osmosis membranes on the initial biofouling stages under no filtration condition publication-title: J. Membr. Sci. – volume: 131 start-page: 117 year: 2000 end-page: 127 ident: bb0135 article-title: Simple technique for measuring the concentration polarization level in a reverse osmosis system publication-title: Desalination – volume: 38 start-page: 131 year: 2015 end-page: 138 ident: bb0150 article-title: Correlation between organic fouling of reverse-osmosis membranes and various interfacial interactions publication-title: Chem. Eng. Technol. – volume: 78 start-page: 513 year: 2000 end-page: 521 ident: bb0125 article-title: A rate-controlling step in langmuir–hinshelwood kinetic models publication-title: Can. J. Chem. Eng. – volume: 309 start-page: 82 year: 2008 end-page: 93 ident: bb0080 article-title: Evaluation of iron chemical coagulation and electrocoagulation pretreatment for surface water microfiltration publication-title: J. Membr. Sci. – volume: 349 start-page: 65 year: 2010 end-page: 74 ident: bb0065 article-title: Fouling behavior and foulant characteristics of reverse osmosis membranes for treated secondary effluent reclamation publication-title: J. Membr. Sci. – volume: 188 start-page: 115 year: 2001 end-page: 128 ident: bb0115 article-title: Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes publication-title: J. Membr. Sci. – volume: 40 start-page: 980 year: 2006 end-page: 987 ident: bb0145 article-title: Relating organic fouling of reverse osmosis membranes to intermolecular adhesion forces publication-title: Environ. Sci. Technol. – volume: 31 start-page: 3654 year: 1997 end-page: 3662 ident: bb0130 article-title: Colloidal fouling of reverse osmosis membranes: measurements and fouling mechanisms publication-title: Environ. Sci. Technol. – volume: 77 start-page: 171 year: 2011 end-page: 178 ident: bb0055 article-title: FTIR study of fatty acid fouling of reverse osmosis membranes: effects of pH, ionic strength, calcium, magnesium and temperature publication-title: Sep. Purif. Technol. – volume: 47 start-page: 1346 year: 2001 end-page: 1362 ident: bb0105 article-title: Predictive membrane transport model for nanofiltration processes in water treatment publication-title: AICHE J. – volume: 434 start-page: 74 year: 2013 end-page: 84 ident: bb0070 article-title: Rheological and permeability characteristics of alginate fouling layers developing on reverse osmosis membranes during desalination publication-title: J. Membr. Sci. – volume: 23 start-page: 9341 year: 2007 end-page: 9351 ident: bb0035 article-title: Adsorption of amylase enzyme on ultrafiltration membranes publication-title: Langmuir – volume: 45 start-page: 6309 year: 2011 end-page: 6315 ident: bb0040 article-title: Studying the role of common membrane surface functionalities on adsorption and cleaning of organic foulants using QCM-D publication-title: Environ. Sci. Technol. – volume: 198 start-page: 51 year: 2002 end-page: 62 ident: bb0085 article-title: Analysis of humic acid fouling during microfiltration using a pore blockage–cake filtration model publication-title: J. Membr. Sci. – volume: 110 start-page: 2957 year: 2006 end-page: 2962 ident: bb0010 article-title: Flux decline in nanofiltration due to adsorption of dissolved organic compounds: model prediction of time dependency publication-title: J. Phys. Chem. B – volume: 403 start-page: 84 year: 2012 end-page: 93 ident: bb0095 article-title: A simple combination model for filtrate flux in cross-flow ultrafiltration of protein suspension publication-title: J. Membr. Sci. – volume: 187 start-page: 313 year: 2006 end-page: 321 ident: bb0060 article-title: Fouling of reverse osmosis membranes by hydrophilic organic matter: implications for water reuse publication-title: Desalination – volume: 232 start-page: 389 year: 2000 end-page: 399 ident: bb0140 article-title: A combined pore blockage and cake filtration model for protein fouling during microfiltration publication-title: J. Colloid Interface Sci. – volume: 309 start-page: 64 year: 2013 end-page: 73 ident: bb0025 article-title: Sorption of phenolic compounds on NF/RO membrane surfaces: influence on membrane performance publication-title: Desalination – volume: 52 start-page: 17198 year: 2013 end-page: 17205 ident: bb0100 article-title: Prediction and identification of membrane fouling mechanism in a membrane bioreactor using a combined mechanistic model publication-title: Ind. Eng. Chem. Res. – volume: 58 start-page: 5291 year: 2003 end-page: 5298 ident: bb0110 article-title: Polymer adsorption on multicomponent surfaces with relevance to membrane fouling publication-title: Chem. Eng. Sci. – volume: 286 start-page: 87 year: 2012 end-page: 93 ident: bb0050 article-title: DRIFT characterization of foulants and the derived effect on the contact angles of ultrafiltration membranes publication-title: Desalination – volume: 29 start-page: 23 year: 2002 end-page: 31 ident: bb0005 article-title: Flux decline in nanofiltration due to adsorption of organic compounds publication-title: Sep. Purif. Technol. – volume: 192 start-page: 490 year: 2011 end-page: 499 ident: bb0020 article-title: Relating organic fouling of reverse osmosis membranes to adsorption during the reclamation of secondary effluents containing methylene blue and rhodamine B publication-title: J. Hazard. Mater. – volume: 45 start-page: 6309 year: 2011 ident: 10.1016/j.desal.2016.02.037_bb0040 article-title: Studying the role of common membrane surface functionalities on adsorption and cleaning of organic foulants using QCM-D publication-title: Environ. Sci. Technol. doi: 10.1021/es200570t – volume: 58 start-page: 5291 year: 2003 ident: 10.1016/j.desal.2016.02.037_bb0110 article-title: Polymer adsorption on multicomponent surfaces with relevance to membrane fouling publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2003.05.008 – volume: 232 start-page: 389 year: 2000 ident: 10.1016/j.desal.2016.02.037_bb0140 article-title: A combined pore blockage and cake filtration model for protein fouling during microfiltration publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2000.7231 – volume: 52 start-page: 17198 year: 2013 ident: 10.1016/j.desal.2016.02.037_bb0100 article-title: Prediction and identification of membrane fouling mechanism in a membrane bioreactor using a combined mechanistic model publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie402056r – volume: 131 start-page: 117 year: 2000 ident: 10.1016/j.desal.2016.02.037_bb0135 article-title: Simple technique for measuring the concentration polarization level in a reverse osmosis system publication-title: Desalination doi: 10.1016/S0011-9164(00)90012-2 – volume: 309 start-page: 82 year: 2008 ident: 10.1016/j.desal.2016.02.037_bb0080 article-title: Evaluation of iron chemical coagulation and electrocoagulation pretreatment for surface water microfiltration publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.10.009 – volume: 403 start-page: 84 year: 2012 ident: 10.1016/j.desal.2016.02.037_bb0095 article-title: A simple combination model for filtrate flux in cross-flow ultrafiltration of protein suspension publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.02.026 – volume: 192 start-page: 490 year: 2011 ident: 10.1016/j.desal.2016.02.037_bb0020 article-title: Relating organic fouling of reverse osmosis membranes to adsorption during the reclamation of secondary effluents containing methylene blue and rhodamine B publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.05.044 – volume: 198 start-page: 51 year: 2002 ident: 10.1016/j.desal.2016.02.037_bb0085 article-title: Analysis of humic acid fouling during microfiltration using a pore blockage–cake filtration model publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(01)00622-6 – volume: 250 start-page: 829 year: 2010 ident: 10.1016/j.desal.2016.02.037_bb0030 article-title: Correlation between retention and adsorption of phenolic compounds in nanofiltration membranes publication-title: Desalination doi: 10.1016/j.desal.2008.11.051 – volume: 351 start-page: 112 year: 2010 ident: 10.1016/j.desal.2016.02.037_bb0160 article-title: Evaluation of surface properties of reverse osmosis membranes on the initial biofouling stages under no filtration condition publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.01.035 – volume: 188 start-page: 115 year: 2001 ident: 10.1016/j.desal.2016.02.037_bb0115 article-title: Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(01)00376-3 – volume: 31 start-page: 3654 year: 1997 ident: 10.1016/j.desal.2016.02.037_bb0130 article-title: Colloidal fouling of reverse osmosis membranes: measurements and fouling mechanisms publication-title: Environ. Sci. Technol. doi: 10.1021/es970400v – volume: 38 start-page: 131 year: 2015 ident: 10.1016/j.desal.2016.02.037_bb0150 article-title: Correlation between organic fouling of reverse-osmosis membranes and various interfacial interactions publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201400379 – volume: 217 start-page: 17 year: 2003 ident: 10.1016/j.desal.2016.02.037_bb0045 article-title: Quantification of membrane fouling using thermogravimetric method publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(02)00554-9 – volume: 101 start-page: 153 year: 1995 ident: 10.1016/j.desal.2016.02.037_bb0075 article-title: Steps of membrane blocking in flux decline during protein microfiltration publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(94)00295-A – volume: 110 start-page: 2957 year: 2006 ident: 10.1016/j.desal.2016.02.037_bb0010 article-title: Flux decline in nanofiltration due to adsorption of dissolved organic compounds: model prediction of time dependency publication-title: J. Phys. Chem. B doi: 10.1021/jp0534333 – volume: 145 start-page: 139 year: 2002 ident: 10.1016/j.desal.2016.02.037_bb0120 article-title: Modelling of filtration: from the polarised layer to deposit formation and compaction publication-title: Desalination doi: 10.1016/S0011-9164(02)00399-5 – volume: 309 start-page: 64 year: 2013 ident: 10.1016/j.desal.2016.02.037_bb0025 article-title: Sorption of phenolic compounds on NF/RO membrane surfaces: influence on membrane performance publication-title: Desalination doi: 10.1016/j.desal.2012.09.023 – volume: 105 start-page: 10739 year: 2001 ident: 10.1016/j.desal.2016.02.037_bb0155 article-title: Ab initio calculations on conventional and unconventional hydrogen bonds study of the hydrogen bond strength publication-title: J. Phys. Chem. A doi: 10.1021/jp011819h – volume: 29 start-page: 23 year: 2002 ident: 10.1016/j.desal.2016.02.037_bb0005 article-title: Flux decline in nanofiltration due to adsorption of organic compounds publication-title: Sep. Purif. Technol. doi: 10.1016/S1383-5866(01)00199-X – volume: 434 start-page: 74 year: 2013 ident: 10.1016/j.desal.2016.02.037_bb0070 article-title: Rheological and permeability characteristics of alginate fouling layers developing on reverse osmosis membranes during desalination publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.01.018 – volume: 68 start-page: 37 year: 2009 ident: 10.1016/j.desal.2016.02.037_bb0015 article-title: Experimentation and modeling of foulant interaction and reverse osmosis membrane fouling during textile wastewater reclamation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2009.04.006 – volume: 286 start-page: 87 year: 2012 ident: 10.1016/j.desal.2016.02.037_bb0050 article-title: DRIFT characterization of foulants and the derived effect on the contact angles of ultrafiltration membranes publication-title: Desalination doi: 10.1016/j.desal.2011.11.008 – volume: 40 start-page: 980 year: 2006 ident: 10.1016/j.desal.2016.02.037_bb0145 article-title: Relating organic fouling of reverse osmosis membranes to intermolecular adhesion forces publication-title: Environ. Sci. Technol. doi: 10.1021/es051825h – volume: 187 start-page: 313 year: 2006 ident: 10.1016/j.desal.2016.02.037_bb0060 article-title: Fouling of reverse osmosis membranes by hydrophilic organic matter: implications for water reuse publication-title: Desalination doi: 10.1016/j.desal.2005.04.090 – volume: 349 start-page: 65 year: 2010 ident: 10.1016/j.desal.2016.02.037_bb0065 article-title: Fouling behavior and foulant characteristics of reverse osmosis membranes for treated secondary effluent reclamation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.11.023 – volume: 78 start-page: 513 year: 2000 ident: 10.1016/j.desal.2016.02.037_bb0125 article-title: A rate-controlling step in langmuir–hinshelwood kinetic models publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.5450780310 – volume: 47 start-page: 1346 year: 2001 ident: 10.1016/j.desal.2016.02.037_bb0105 article-title: Predictive membrane transport model for nanofiltration processes in water treatment publication-title: AICHE J. doi: 10.1002/aic.690470612 – volume: 23 start-page: 9341 year: 2007 ident: 10.1016/j.desal.2016.02.037_bb0035 article-title: Adsorption of amylase enzyme on ultrafiltration membranes publication-title: Langmuir doi: 10.1021/la701524x – volume: 58 start-page: 1435 year: 2012 ident: 10.1016/j.desal.2016.02.037_bb0090 article-title: A combined complete pore blocking and cake filtration model for steady-state electric field-assisted ultrafiltration publication-title: AICHE J. doi: 10.1002/aic.12667 – volume: 77 start-page: 171 year: 2011 ident: 10.1016/j.desal.2016.02.037_bb0055 article-title: FTIR study of fatty acid fouling of reverse osmosis membranes: effects of pH, ionic strength, calcium, magnesium and temperature publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2010.12.003 |
SSID | ssj0012933 |
Score | 2.3841252 |
Snippet | A combined model is developed for flux decline of reverse osmosis (RO) membranes, which accounts for initial fouling due to adsorption and subsequent fouling... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25 |
SubjectTerms | Adsorption Combined model Filtration Flux Fouling Fouling layer Fouling mechanism Mathematical models Membranes Reverse osmosis RO membrane Surface chemistry |
Title | Modeling organic fouling of reverse osmosis membrane: From adsorption to fouling layer formation |
URI | https://dx.doi.org/10.1016/j.desal.2016.02.037 https://www.proquest.com/docview/1785227188 https://www.proquest.com/docview/1808063043 |
Volume | 386 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL3oQP3F-jAgerVvbNE29jeGYijs52C0maQKTrR1td_VvN69fqMgOQi8pCYSX1_d-6Xvv9xC6FdLC5MDeVFkcKoeEUjpSaeYITeNIBb4UAv53vE7pZEae58G8g0ZNLQykVda2v7LppbWu3_RrafbXiwXU-AI5GQVEAflxUFFOSAhafv_ZpnmAO6uizK7rwOyGeajM8Yp1LiD-4NKSuBOaof_tnX7Z6dL5jA_RQY0a8bDa2BHq6OQY7X_jEjxB79DVDGrLcdWoSWEDzc5hbDDwNGW5xmm-SvNFjld6ZW_JiX7A4yxdYRHnaVbaDlyk7bqlsHAct9WNp2g2fnwbTZy6fYKjSOgVTiQDQwdSGUqUMSL0g9gXjErtGgurDKVKSuJr4rqGsEiFMjIqEIZRopki1o2foZ0kTfQ5wsrTEWWCSvBmLIwiEhH7KOLKgbYAo4u8Rmxc1dzi0OJiyZsksg9eypqDrPnA41bWXXTXLlpX1Brbp9PmPPgPDeHW-G9feNOcHrffDgRErIDTTc7dkFn4ab0z2zIHiDethhH_4r8buER7MKrSJK_QTpFt9LWFMoXslbraQ7vDp5fJ9AuaUvT6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgOwAHxFOMZ5A4Um1t0zTlNk1MG4-dhsQtJGkiDbEVrdv_J-5jAoR2QOqlTSxFTmp_SezPADdSOZgcuZ0qT2Pt0VgpT2nDPWlYmugoVFLiecfziA1e6MNr9LoBvToXBsMqK9tf2vTCWldf2pU225-TCeb4IjkZQ0SB8XHxJjSRnSpqQLM7fByMVpcJQVVRHk8DUaAmHyrCvFKTS7yC8FnB3Yn10P92UL9MdeF_-nuwWwFH0i3Htg8bZnYAO9_oBA_hDQubYXo5KWs1aWKx3jm-W4JUTfPckCyfZvkkJ1MzdRvlmbkj_Xk2JTLNs3lhPsgiW8l9SIfIySrB8Qhe-vfj3sCrKih4msbBwktUZFlHacuotlbGYZSGkjNlfOuQlWVMK0VDQ33fUp7oWCVWR9JyRg3X1HnyY2jMspk5AaIDkzAumUKHxuMkoQl1j6a-6hiHMVoQ1GoTuqIXxyoXH6KOI3sXha4F6lp0AuF03YLbldBnya6xvjur50P8WCTC2f_1gtf17An3--CdiFNwtsyFH3OHQJ2D5mv6IPemW2Q0PP3vAK5gazB-fhJPw9HjGWxjSxk1eQ6NxXxpLhyyWajLauV-Af1J96s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+organic+fouling+of+reverse+osmosis+membrane%3A+From+adsorption+to+fouling+layer+formation&rft.jtitle=Desalination&rft.au=Li%2C+Haigang&rft.au=Xia%2C+Huanjin&rft.au=Mei%2C+Yingxin&rft.date=2016-05-01&rft.issn=0011-9164&rft.volume=386&rft.spage=25&rft.epage=31&rft_id=info:doi/10.1016%2Fj.desal.2016.02.037&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-9164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-9164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-9164&client=summon |