Machine Learning Techniques for Arterial Pressure Waveform Analysis

The Arterial Pressure Waveform (APW) can provide essential information about arterial wall integrity and arterial stiffness. Most of APW analysis frameworks individually process each hemodynamic parameter and do not evaluate inter-dependencies in the overall pulse morphology. The key contribution of...

Full description

Saved in:
Bibliographic Details
Published inJournal of personalized medicine Vol. 3; no. 2; pp. 82 - 101
Main Authors Almeida, Vânia, Vieira, João, Santos, Pedro, Pereira, Tânia, Pereira, H., Correia, Carlos, Pego, Mariano, Cardoso, João
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 02.05.2013
MDPI
Subjects
Online AccessGet full text
ISSN2075-4426
2075-4426
DOI10.3390/jpm3020082

Cover

Abstract The Arterial Pressure Waveform (APW) can provide essential information about arterial wall integrity and arterial stiffness. Most of APW analysis frameworks individually process each hemodynamic parameter and do not evaluate inter-dependencies in the overall pulse morphology. The key contribution of this work is the use of machine learning algorithms to deal with vectorized features extracted from APW. With this purpose, we follow a five-step evaluation methodology: (1) a custom-designed, non-invasive, electromechanical device was used in the data collection from 50 subjects; (2) the acquired position and amplitude of onset, Systolic Peak (SP), Point of Inflection (Pi) and Dicrotic Wave (DW) were used for the computation of some morphological attributes; (3) pre-processing work on the datasets was performed in order to reduce the number of input features and increase the model accuracy by selecting the most relevant ones; (4) classification of the dataset was carried out using four different machine learning algorithms: Random Forest, BayesNet (probabilistic), J48 (decision tree) and RIPPER (rule-based induction); and (5) we evaluate the trained models, using the majority-voting system, comparatively to the respective calculated Augmentation Index (AIx). Classification algorithms have been proved to be efficient, in particular Random Forest has shown good accuracy (96.95%) and high area under the curve (AUC) of a Receiver Operating Characteristic (ROC) curve (0.961). Finally, during validation tests, a correlation between high risk labels, retrieved from the multi-parametric approach, and positive AIx values was verified. This approach gives allowance for designing new hemodynamic morphology vectors and techniques for multiple APW analysis, thus improving the arterial pulse understanding, especially when compared to traditional single-parameter analysis, where the failure in one parameter measurement component, such as Pi, can jeopardize the whole evaluation.
AbstractList The Arterial Pressure Waveform (APW) can provide essential information about arterial wall integrity and arterial stiffness. Most of APW analysis frameworks individually process each hemodynamic parameter and do not evaluate inter-dependencies in the overall pulse morphology. The key contribution of this work is the use of machine learning algorithms to deal with vectorized features extracted from APW. With this purpose, we follow a five-step evaluation methodology: (1) a custom-designed, non-invasive, electromechanical device was used in the data collection from 50 subjects; (2) the acquired position and amplitude of onset, Systolic Peak (SP), Point of Inflection (Pi) and Dicrotic Wave (DW) were used for the computation of some morphological attributes; (3) pre-processing work on the datasets was performed in order to reduce the number of input features and increase the model accuracy by selecting the most relevant ones; (4) classification of the dataset was carried out using four different machine learning algorithms: Random Forest, BayesNet (probabilistic), J48 (decision tree) and RIPPER (rule-based induction); and (5) we evaluate the trained models, using the majority-voting system, comparatively to the respective calculated Augmentation Index (AIx). Classification algorithms have been proved to be efficient, in particular Random Forest has shown good accuracy (96.95%) and high area under the curve (AUC) of a Receiver Operating Characteristic (ROC) curve (0.961). Finally, during validation tests, a correlation between high risk labels, retrieved from the multi-parametric approach, and positive AIx values was verified. This approach gives allowance for designing new hemodynamic morphology vectors and techniques for multiple APW analysis, thus improving the arterial pulse understanding, especially when compared to traditional single-parameter analysis, where the failure in one parameter measurement component, such as Pi, can jeopardize the whole evaluation.
The Arterial Pressure Waveform (APW) can provide essential information about arterial wall integrity and arterial stiffness. Most of APW analysis frameworks individually process each hemodynamic parameter and do not evaluate inter-dependencies in the overall pulse morphology. The key contribution of this work is the use of machine learning algorithms to deal with vectorized features extracted from APW. With this purpose, we follow a five-step evaluation methodology: (1) a custom-designed, non-invasive, electromechanical device was used in the data collection from 50 subjects; (2) the acquired position and amplitude of onset, Systolic Peak (SP), Point of Inflection (Pi) and Dicrotic Wave (DW) were used for the computation of some morphological attributes; (3) pre-processing work on the datasets was performed in order to reduce the number of input features and increase the model accuracy by selecting the most relevant ones; (4) classification of the dataset was carried out using four different machine learning algorithms: Random Forest, BayesNet (probabilistic), J48 (decision tree) and RIPPER (rule-based induction); and (5) we evaluate the trained models, using the majority-voting system, comparatively to the respective calculated Augmentation Index (AIx). Classification algorithms have been proved to be efficient, in particular Random Forest has shown good accuracy (96.95%) and high area under the curve (AUC) of a Receiver Operating Characteristic (ROC) curve (0.961). Finally, during validation tests, a correlation between high risk labels, retrieved from the multi-parametric approach, and positive AIx values was verified. This approach gives allowance for designing new hemodynamic morphology vectors and techniques for multiple APW analysis, thus improving the arterial pulse understanding, especially when compared to traditional single-parameter analysis, where the failure in one parameter measurement component, such as Pi, can jeopardize the whole evaluation.The Arterial Pressure Waveform (APW) can provide essential information about arterial wall integrity and arterial stiffness. Most of APW analysis frameworks individually process each hemodynamic parameter and do not evaluate inter-dependencies in the overall pulse morphology. The key contribution of this work is the use of machine learning algorithms to deal with vectorized features extracted from APW. With this purpose, we follow a five-step evaluation methodology: (1) a custom-designed, non-invasive, electromechanical device was used in the data collection from 50 subjects; (2) the acquired position and amplitude of onset, Systolic Peak (SP), Point of Inflection (Pi) and Dicrotic Wave (DW) were used for the computation of some morphological attributes; (3) pre-processing work on the datasets was performed in order to reduce the number of input features and increase the model accuracy by selecting the most relevant ones; (4) classification of the dataset was carried out using four different machine learning algorithms: Random Forest, BayesNet (probabilistic), J48 (decision tree) and RIPPER (rule-based induction); and (5) we evaluate the trained models, using the majority-voting system, comparatively to the respective calculated Augmentation Index (AIx). Classification algorithms have been proved to be efficient, in particular Random Forest has shown good accuracy (96.95%) and high area under the curve (AUC) of a Receiver Operating Characteristic (ROC) curve (0.961). Finally, during validation tests, a correlation between high risk labels, retrieved from the multi-parametric approach, and positive AIx values was verified. This approach gives allowance for designing new hemodynamic morphology vectors and techniques for multiple APW analysis, thus improving the arterial pulse understanding, especially when compared to traditional single-parameter analysis, where the failure in one parameter measurement component, such as Pi, can jeopardize the whole evaluation.
Author Almeida, Vânia
Pereira, Tânia
Cardoso, João
Pereira, H.
Pego, Mariano
Santos, Pedro
Correia, Carlos
Vieira, João
AuthorAffiliation 3 Cardiology Department, Coimbra Hospital and University Centre (CHUC), Coimbra 3000-075, Portugal
2 ISA-Intelligent Sensing Anywhere, Coimbra 3030-320, Portugal
1 Instrumentation Center, Physics Department, University of Coimbra, Rua Larga, Coimbra 3004-516, Portugal
AuthorAffiliation_xml – name: 3 Cardiology Department, Coimbra Hospital and University Centre (CHUC), Coimbra 3000-075, Portugal
– name: 2 ISA-Intelligent Sensing Anywhere, Coimbra 3030-320, Portugal
– name: 1 Instrumentation Center, Physics Department, University of Coimbra, Rua Larga, Coimbra 3004-516, Portugal
Author_xml – sequence: 1
  givenname: Vânia
  surname: Almeida
  fullname: Almeida, Vânia
– sequence: 2
  givenname: João
  surname: Vieira
  fullname: Vieira, João
– sequence: 3
  givenname: Pedro
  surname: Santos
  fullname: Santos, Pedro
– sequence: 4
  givenname: Tânia
  orcidid: 0000-0003-1681-2436
  surname: Pereira
  fullname: Pereira, Tânia
– sequence: 5
  givenname: H.
  surname: Pereira
  fullname: Pereira, H.
– sequence: 6
  givenname: Carlos
  surname: Correia
  fullname: Correia, Carlos
– sequence: 7
  givenname: Mariano
  surname: Pego
  fullname: Pego, Mariano
– sequence: 8
  givenname: João
  surname: Cardoso
  fullname: Cardoso, João
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25562520$$D View this record in MEDLINE/PubMed
BookMark eNptkU1LHEEQhhtR1KiX_IAwkIsE1lR_1HxchGUxUdiQHJQcm57eGreXme61e0bw3zuDH1FJX6qhnnrrrapPbNcHT4x95nAmZQXfN9tOggAoxQ47FFDgTCmR7775H7CTlDYwvhKFyGGfHQjEXKCAQ7b4ZezaecqWZKJ3_ja7Jrv27m6glDUhZvPYU3Smzf5ESmmIlP019zRmumzuTfuQXDpme41pE508xyN28-PienE5W_7-ebWYL2dWFaKfVRXKghuCGosSa8ktB6i4rPJclbxoat6A5bKuGrI54EoVWBGqxkKzQgWFPGLnT7rboe5oZcn30bR6G11n4oMOxun3Ge_W-jbcayVwbDMJnD4LxDAN2OvOJUttazyFIWmeK6kASzGhXz-gmzDEceCRQoGVkhLFSH156-jVyst-RwCeABtDSpEabV1vehcmg67VHPR0Rf3vimPJtw8lL6r_gR8BtmGbfg
CitedBy_id crossref_primary_10_3390_s22228607
crossref_primary_10_3390_s23073690
crossref_primary_10_1038_s41598_021_87903_7
crossref_primary_10_1088_1361_6579_ab6360
crossref_primary_10_3390_ijgi11120606
crossref_primary_10_1016_j_cmpb_2014_06_010
crossref_primary_10_1155_2014_376378
crossref_primary_10_1109_ACCESS_2018_2875548
crossref_primary_10_3390_ijerph191912339
Cites_doi 10.1088/0967-3334/31/5/007
10.1038/ncpcardio0307
10.1109/TBME.2008.2008636
10.1016/j.jacc.2005.07.037
10.1093/eurheartj/ehl254
10.1007/978-3-540-88623-5_41
10.4236/jsea.2009.23022
10.1161/01.CIR.0000069826.36125.B4
10.1161/01.CIR.62.1.105
10.1016/j.artmed.2010.09.005
10.1016/j.sna.2011.04.048
10.1023/A:1010933404324
10.1097/00001573-200209000-00016
10.1016/j.artmed.2011.08.007
10.1016/j.jacc.2010.12.017
10.1109/ARTCom.2009.12
10.1186/1475-925X-9-61
10.1088/0967-3334/24/3/306
10.1088/0967-3334/30/9/009
10.1097/HJH.0b013e32833057e8
10.1088/0967-3334/31/1/R01
10.1109/TITB.2007.907985
10.1088/0967-3334/32/8/008
10.1093/eurheartj/ehs092
10.1016/S0031-3203(99)00223-X
10.1016/j.artmed.2008.04.007
10.1007/s10916-011-9710-5
ContentType Journal Article
Copyright Copyright MDPI AG 2013
2013 by the authors; licensee MDPI, Basel, Switzerland. 2013
Copyright_xml – notice: Copyright MDPI AG 2013
– notice: 2013 by the authors; licensee MDPI, Basel, Switzerland. 2013
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/jpm3020082
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database (Proquest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4426
EndPage 101
ExternalDocumentID PMC4251397
3308047401
25562520
10_3390_jpm3020082
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADRAZ
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EMOBN
GX1
HCIFZ
HYE
IPNFZ
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RIG
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c472t-995371ae0b5785b31c1009139664817fb1f0c13b9fec605d4759e54fc0fd54073
IEDL.DBID M48
ISSN 2075-4426
IngestDate Thu Aug 21 18:00:48 EDT 2025
Thu Sep 04 21:11:15 EDT 2025
Fri Jul 25 12:01:18 EDT 2025
Thu Apr 03 06:55:14 EDT 2025
Thu Apr 24 23:12:07 EDT 2025
Tue Jul 01 03:05:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/3.0
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-995371ae0b5785b31c1009139664817fb1f0c13b9fec605d4759e54fc0fd54073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1681-2436
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/jpm3020082
PMID 25562520
PQID 1525943352
PQPubID 2032376
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4251397
proquest_miscellaneous_1643405827
proquest_journals_1525943352
pubmed_primary_25562520
crossref_citationtrail_10_3390_jpm3020082
crossref_primary_10_3390_jpm3020082
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130502
PublicationDateYYYYMMDD 2013-05-02
PublicationDate_xml – month: 5
  year: 2013
  text: 20130502
  day: 2
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of personalized medicine
PublicationTitleAlternate J Pers Med
PublicationYear 2013
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hu (ref_14) 2009; 56
ref_36
ref_35
ref_33
Ting (ref_24) 2009; 2
Dranca (ref_32) 2009; 30
Cavalcante (ref_1) 2011; 57
ref_30
McEniery (ref_39) 2005; 46
Blacher (ref_4) 2005; 2
Tsipouras (ref_20) 2008; 12
ref_19
ref_18
Nichols (ref_16) 2002; 17
Murgo (ref_28) 1980; 62
Almeida (ref_12) 2011; 169
Avolio (ref_6) 2010; 31
Laurent (ref_2) 2006; 27
Jovic (ref_21) 2011; 51
Perk (ref_37) 2012; 33
Clemente (ref_10) 2010; 31
Jatoi (ref_17) 2009; 27
ref_29
Scalzo (ref_15) 2012; 54
Kuncheva (ref_25) 2001; 34
Asl (ref_23) 2008; 44
ref_27
ref_9
Ruta (ref_26) 2000; 7
ref_8
McLaughlin (ref_11) 2003; 24
ref_5
Safar (ref_3) 2003; 107
Lee (ref_22) 2011; 32
ref_7
Scalzo (ref_13) 2010; 9
Breiman (ref_34) 2001; 45
Yoo (ref_38) 2011; 36
Kumari (ref_31) 2011; 2
21453829 - J Am Coll Cardiol. 2011 Apr 5;57(14):1511-22
16256881 - J Am Coll Cardiol. 2005 Nov 1;46(9):1753-60
12796414 - Circulation. 2003 Jun 10;107(22):2864-9
22555213 - Eur Heart J. 2012 Jul;33(13):1635-701
7379273 - Circulation. 1980 Jul;62(1):105-16
16265585 - Nat Clin Pract Cardiovasc Med. 2005 Sep;2(9):450-5
21693795 - Physiol Meas. 2011 Aug;32(8):1117-32
21968205 - Artif Intell Med. 2012 Feb;54(2):115-23
19272879 - IEEE Trans Biomed Eng. 2009 Mar;56(3):696-705
19696464 - Physiol Meas. 2009 Sep;30(9):983-98
19834344 - J Hypertens. 2009 Nov;27(11):2186-91
12357133 - Curr Opin Cardiol. 2002 Sep;17(5):543-51
14509307 - Physiol Meas. 2003 Aug;24(3):693-702
21537851 - J Med Syst. 2012 Aug;36(4):2431-48
20959014 - Biomed Eng Online. 2010 Oct 19;9:61
18585905 - Artif Intell Med. 2008 Sep;44(1):51-64
20980134 - Artif Intell Med. 2011 Mar;51(3):175-86
18632325 - IEEE Trans Inf Technol Biomed. 2008 Jul;12(4):447-58
20395651 - Physiol Meas. 2010 May;31(5):697-714
17000623 - Eur Heart J. 2006 Nov;27(21):2588-605
19940350 - Physiol Meas. 2010 Jan;31(1):R1-47
References_xml – ident: ref_7
– volume: 31
  start-page: 697
  year: 2010
  ident: ref_10
  article-title: A piezo-film-based measurement system for global haemodynamic assessment
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/31/5/007
– volume: 2
  start-page: 450
  year: 2005
  ident: ref_4
  article-title: Large artery stiffness, hypertension and cardiovascular risk in older patients
  publication-title: Nat. Clin. Pract. Cardiovasc. Med.
  doi: 10.1038/ncpcardio0307
– ident: ref_9
– ident: ref_30
– ident: ref_5
– volume: 56
  start-page: 696
  year: 2009
  ident: ref_14
  article-title: Morphological clustering and analysis of continuous intracranial pressure
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2008636
– volume: 46
  start-page: 1753
  year: 2005
  ident: ref_39
  article-title: Normal vascular aging: Differential effects on wave reflection and aortic pulse wave velocity: The Anglo-Cardiff Collaborative Trial (ACCT)
  publication-title: J.Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2005.07.037
– volume: 27
  start-page: 2588
  year: 2006
  ident: ref_2
  article-title: Expert consensus document on arterial stiffness methodological issues and clinical applications
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehl254
– ident: ref_36
  doi: 10.1007/978-3-540-88623-5_41
– volume: 2
  start-page: 150
  year: 2009
  ident: ref_24
  article-title: Data mining in biomedicine: Current applications and further directions for research
  publication-title: J. Softw. Eng. Appl.
  doi: 10.4236/jsea.2009.23022
– volume: 107
  start-page: 2864
  year: 2003
  ident: ref_3
  article-title: Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000069826.36125.B4
– ident: ref_18
– volume: 62
  start-page: 105
  year: 1980
  ident: ref_28
  article-title: Aortic input impedance in normal man: Relationship to pressure wave forms, Circulation
  publication-title: Circulation
  doi: 10.1161/01.CIR.62.1.105
– volume: 51
  start-page: 175
  year: 2011
  ident: ref_21
  article-title: Electrocardiogram analysis using a combination of statistical, geometric, and nonlinear heart rate variability features
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2010.09.005
– volume: 169
  start-page: 217
  year: 2011
  ident: ref_12
  article-title: Piezoelectric probe for pressure waveform estimation in flexible tubes and its applications to the cardiovascular system
  publication-title: Sens. Actuators A.
  doi: 10.1016/j.sna.2011.04.048
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_34
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 7
  start-page: 1
  year: 2000
  ident: ref_26
  article-title: An overview of classifier fusion methods
  publication-title: Comput. Inf. Syst.
– volume: 17
  start-page: 543
  year: 2002
  ident: ref_16
  article-title: Augmentation index as a measure of peripheral vascular disease state
  publication-title: Curr. Opin. Cardiol.
  doi: 10.1097/00001573-200209000-00016
– volume: 54
  start-page: 115
  year: 2012
  ident: ref_15
  article-title: Bayesian tracking of intracranial pressure signal morphology
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2011.08.007
– volume: 57
  start-page: 1511
  year: 2011
  ident: ref_1
  article-title: Aortic stiffness: Current understanding and future directions
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2010.12.017
– ident: ref_35
  doi: 10.1109/ARTCom.2009.12
– ident: ref_8
– ident: ref_29
– ident: ref_33
– volume: 9
  start-page: e61
  year: 2010
  ident: ref_13
  article-title: Robust peak recognition in intracranial pressure signals
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-9-61
– ident: ref_27
– volume: 24
  start-page: 693
  year: 2003
  ident: ref_11
  article-title: Piezoelectric sensor determination of arterial pulse wave velocity
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/24/3/306
– volume: 30
  start-page: 983
  year: 2009
  ident: ref_32
  article-title: Real-time detection of transient cardiac ischemic episodes from ECG signals
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/30/9/009
– volume: 27
  start-page: 2186
  year: 2009
  ident: ref_17
  article-title: Assessment of arterial stiffness in hypertension: Comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques
  publication-title: J. Hypertens
  doi: 10.1097/HJH.0b013e32833057e8
– volume: 31
  start-page: R1
  year: 2010
  ident: ref_6
  article-title: Arterial blood pressure measurement and pulse wave analysis—Their role in enhancing cardiovascular assessment
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/31/1/R01
– volume: 12
  start-page: 447
  year: 2008
  ident: ref_20
  article-title: Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2007.907985
– volume: 32
  start-page: 1117
  year: 2011
  ident: ref_22
  article-title: Multivariate classification of systemic vascular resistance using photoplethysmography
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/32/8/008
– volume: 33
  start-page: 1635
  year: 2012
  ident: ref_37
  article-title: European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR)
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehs092
– ident: ref_19
– volume: 34
  start-page: 299
  year: 2001
  ident: ref_25
  article-title: Decision templates for multiple classifier fusion: An experimental comparison
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0031-3203(99)00223-X
– volume: 44
  start-page: 51
  year: 2008
  ident: ref_23
  article-title: Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2008.04.007
– volume: 2
  start-page: 303
  year: 2011
  ident: ref_31
  article-title: Comparative study of data mining classification methods in cardiovascular disease prediction
  publication-title: Int. J. Comput. Sci. Telecommun.
– volume: 36
  start-page: 2431
  year: 2011
  ident: ref_38
  article-title: Data mining in healthcare and biomedicine: A survey of the literature
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-011-9710-5
– reference: 22555213 - Eur Heart J. 2012 Jul;33(13):1635-701
– reference: 21693795 - Physiol Meas. 2011 Aug;32(8):1117-32
– reference: 14509307 - Physiol Meas. 2003 Aug;24(3):693-702
– reference: 12357133 - Curr Opin Cardiol. 2002 Sep;17(5):543-51
– reference: 16265585 - Nat Clin Pract Cardiovasc Med. 2005 Sep;2(9):450-5
– reference: 20959014 - Biomed Eng Online. 2010 Oct 19;9:61
– reference: 18632325 - IEEE Trans Inf Technol Biomed. 2008 Jul;12(4):447-58
– reference: 21453829 - J Am Coll Cardiol. 2011 Apr 5;57(14):1511-22
– reference: 17000623 - Eur Heart J. 2006 Nov;27(21):2588-605
– reference: 19940350 - Physiol Meas. 2010 Jan;31(1):R1-47
– reference: 21537851 - J Med Syst. 2012 Aug;36(4):2431-48
– reference: 19696464 - Physiol Meas. 2009 Sep;30(9):983-98
– reference: 7379273 - Circulation. 1980 Jul;62(1):105-16
– reference: 16256881 - J Am Coll Cardiol. 2005 Nov 1;46(9):1753-60
– reference: 20395651 - Physiol Meas. 2010 May;31(5):697-714
– reference: 19272879 - IEEE Trans Biomed Eng. 2009 Mar;56(3):696-705
– reference: 21968205 - Artif Intell Med. 2012 Feb;54(2):115-23
– reference: 20980134 - Artif Intell Med. 2011 Mar;51(3):175-86
– reference: 12796414 - Circulation. 2003 Jun 10;107(22):2864-9
– reference: 18585905 - Artif Intell Med. 2008 Sep;44(1):51-64
– reference: 19834344 - J Hypertens. 2009 Nov;27(11):2186-91
SSID ssj0000852260
Score 1.9521949
Snippet The Arterial Pressure Waveform (APW) can provide essential information about arterial wall integrity and arterial stiffness. Most of APW analysis frameworks...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 82
SubjectTerms Precision medicine
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgkxAXxJvCQEVw4VCRtunanhBMQwhpE0JMcKuSNOUh6MYe_H7sNi0MEOe4amW7zuc4_gxwLN1QEAx3lOTC4bhnOULI2MHsItWRiNKsTc3JvX77asCvH4IHc-A2Mdcqq5hYBOp0qOiM_JTm9MScOoTORu8OTY2i6qoZobEITQzBEfp586Lbv7mtT1kQUCC-YCUvqY_5_enL6M1nVPT35neiX_Dy5y3Jb9vO5SqsGLxon5cGXoMFna_DUs9UxDeg0ytuQ2rbEKU-2ncVK-vERkBKTxZOZpeNgGNt34sPTVDVrghJNmFw2b3rXDlmMIKjeOhNnTgO_NAVmkmiqpG-q1xW8Hu22zxyw0y6GVOuL-NMK0xXUuL00wHPFMtSItzzt6CRD3O9A7bPIq0Rs0aSKR5kTLiKR0xKL4ulh8ay4KRSUqIMazgNr3hNMHsghSZfCrXgqJYdlVwZf0q1Kl0n5n-ZJF_WteCwXkZPp_KFyPVwhjIInhBeRl5owXZpmvo1RKTmBR6zIJwzWi1ALNrzK_nzU8GmjUGLUPDu_5-1B8teMQiD-tlb0JiOZ3of4chUHhif-wSxZuFd
  priority: 102
  providerName: ProQuest
Title Machine Learning Techniques for Arterial Pressure Waveform Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/25562520
https://www.proquest.com/docview/1525943352
https://www.proquest.com/docview/1643405827
https://pubmed.ncbi.nlm.nih.gov/PMC4251397
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60BfEivl0fZUUvHlaT3ezrIKJiFaEiYrG3JUmzatFVayv6753ZR7UqnjNhl5kk830k8w3AtuKhJBjuaCWkIzBnOVKq2EF20TWRjLppQMXJrYvgrC3OO35nAqr-naUDX_-kdtRPqt1_2H1_-TjADb9PjBMp-17v-dFjdI-PR3EdM1JAJKxVwvxe8RYLUQYr1El_TBnPR79A5s-3kt-ST3MWZkrUaB8WYZ6DCZPNw1SrvBdfgONW_ibS2KVc6q19XWmzvtoIS2lmvtTsohywb-wb-WYIsNqVLMkitJsn18dnTtkewdEidAdOHPteyKVhigRrlMc1Z7nKZxCIiIep4inT3FNxajSSli4p-xlfpJqlXZLd85aglj1lZgVsj0XGIHKNFNPCT5nkWkRMKTeNlYshs2CnclKiS-1wamHxkCCHIIcmXw61YGtk-1woZvxptV75OqmCnlAvplhQFZgFm6NhXO90iSEz8zREG4RQCDIjN7RguQjN6DMkp-b6LrMgHAvayIC0tMdHsvu7XFMbjy7Cwqv__9YaTLt5Owyqal-H2qA_NBsISgaqAfWjk4vLqwZMnnZ4I19_n_Nk5I8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRaJcUIG2BCh1VXroIcJxnE1yqFB5aXnsClWLyi21HYeHILuwS6v-qf5GZvKi2yJunD15aPzZ_mzPfAOwrr1QEQ13jZbKlbhmuUrp2MXdRWojFaVZm5KTu71250QenAanU_CnzoWhsMp6Tiwm6nRg6Ix8g-r0xJIyhDaHNy5VjaLb1bqERgmLQ_v7F27ZRl_2d7B_Pwmxt9vf7rhVVQHXyFCM3TgO_NBTlmvSedG-ZzxeiGO22zLywkx7GTeer-PMGuT6KQni2UBmhmcpqdX5-N4XMC0po7UF01u7veNvzakOEhjkM7zUQfX9mG9cDq99TkEGYnLl-4_O_huV-dcyt_cK5ip-yr6WgJqHKZsvwEy3uoFfhO1uEX1pWSXMesb6tQrsiCEBpicLULMy8fDWsu_qpyVqzGoBlNdw8iwuewOtfJDbJWA-j6xFjhxpbmSQceUZGXGtRRZrgeBw4HPtpMRUKuVULOMqwd0KOTR5cKgDHxvbYanN8ajVau3rpBqfo-QBTQ58aJpxZNF1icrt4A5tkKwhnY1E6MDbsmuaz5BwmwgEdyCc6LTGgFS7J1vyi_NCvRsnSWLdy0__1nt42el3j5Kj_d7hCsyKoggH5dKvQmt8e2ffIRUa67UKfwx-PDfk7wHpAhxN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFD7BJSG-EC-Io6g1wIMPk-10OjszD8YosAFhN8RA4G1oO61AdHbdXTT-NX-d58wNFoxvPPfMJadf26_tOd8B2NBBrIiG-0ZL5Utcs3yldOrj7iK3iUpy16Pk5MGwt3ssP59Gpwvwp8mFobDKZk4sJ-p8ZOiMvEt1elJJGUJdV4dFHG73P4x_-FRBim5am3IaFUT27e9fuH2bvt_bxr7eFKK_c7S169cVBnwjYzHz0zQK40BZrknzRYeBCXgplNnrySSInQ4cN0GoU2cN8v6cxPFsJJ3hLifluhDf-wAWY1wVZQcWP-0MD7-0JzxIZpDb8EoTNQxT3r0cfw85BRyI-VXwDrW9HaF5Y8nrP4LlmquyjxW4HsOCLZ7A0qC-jX8KW4MyEtOyWqT1KztqFGGnDMkwPVkCnFVJiBPLTtRPSzSZNWIoK3B8Ly57Bp1iVNjnwEKeWIt8OdHcyMhxFRiZcK2FS7VAoHjwrnFSZmrFciqc8S3DnQs5NLt2qAfrre240un4p9Va4-usHqvT7BpZHrxtm3GU0dWJKuzoCm2QuCG1TUTswWrVNe1nSMRNRIJ7EM91WmtACt7zLcXFeankjRMmMfAX__-tN7CEUM8O9ob7L-GhKOtxUFr9GnRmkyv7ClnRTL-u4cfg7L4R_xfcCSB5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Techniques+for+Arterial+Pressure+Waveform+Analysis&rft.jtitle=Journal+of+personalized+medicine&rft.au=Almeida%2C+V%C3%A2nia+G&rft.au=Vieira%2C+Jo%C3%A3o&rft.au=Santos%2C+Pedro&rft.au=Pereira%2C+T%C3%A2nia&rft.date=2013-05-02&rft.pub=MDPI+AG&rft.eissn=2075-4426&rft.volume=3&rft.issue=2&rft.spage=82&rft_id=info:doi/10.3390%2Fjpm3020082&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3308047401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4426&client=summon