Machine Learning Techniques for Arterial Pressure Waveform Analysis
The Arterial Pressure Waveform (APW) can provide essential information about arterial wall integrity and arterial stiffness. Most of APW analysis frameworks individually process each hemodynamic parameter and do not evaluate inter-dependencies in the overall pulse morphology. The key contribution of...
Saved in:
Published in | Journal of personalized medicine Vol. 3; no. 2; pp. 82 - 101 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
02.05.2013
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2075-4426 2075-4426 |
DOI | 10.3390/jpm3020082 |
Cover
Abstract | The Arterial Pressure Waveform (APW) can provide essential information about arterial wall integrity and arterial stiffness. Most of APW analysis frameworks individually process each hemodynamic parameter and do not evaluate inter-dependencies in the overall pulse morphology. The key contribution of this work is the use of machine learning algorithms to deal with vectorized features extracted from APW. With this purpose, we follow a five-step evaluation methodology: (1) a custom-designed, non-invasive, electromechanical device was used in the data collection from 50 subjects; (2) the acquired position and amplitude of onset, Systolic Peak (SP), Point of Inflection (Pi) and Dicrotic Wave (DW) were used for the computation of some morphological attributes; (3) pre-processing work on the datasets was performed in order to reduce the number of input features and increase the model accuracy by selecting the most relevant ones; (4) classification of the dataset was carried out using four different machine learning algorithms: Random Forest, BayesNet (probabilistic), J48 (decision tree) and RIPPER (rule-based induction); and (5) we evaluate the trained models, using the majority-voting system, comparatively to the respective calculated Augmentation Index (AIx). Classification algorithms have been proved to be efficient, in particular Random Forest has shown good accuracy (96.95%) and high area under the curve (AUC) of a Receiver Operating Characteristic (ROC) curve (0.961). Finally, during validation tests, a correlation between high risk labels, retrieved from the multi-parametric approach, and positive AIx values was verified. This approach gives allowance for designing new hemodynamic morphology vectors and techniques for multiple APW analysis, thus improving the arterial pulse understanding, especially when compared to traditional single-parameter analysis, where the failure in one parameter measurement component, such as Pi, can jeopardize the whole evaluation. |
---|---|
AbstractList | The Arterial Pressure Waveform (APW) can provide essential information about arterial wall integrity and arterial stiffness. Most of APW analysis frameworks individually process each hemodynamic parameter and do not evaluate inter-dependencies in the overall pulse morphology. The key contribution of this work is the use of machine learning algorithms to deal with vectorized features extracted from APW. With this purpose, we follow a five-step evaluation methodology: (1) a custom-designed, non-invasive, electromechanical device was used in the data collection from 50 subjects; (2) the acquired position and amplitude of onset, Systolic Peak (SP), Point of Inflection (Pi) and Dicrotic Wave (DW) were used for the computation of some morphological attributes; (3) pre-processing work on the datasets was performed in order to reduce the number of input features and increase the model accuracy by selecting the most relevant ones; (4) classification of the dataset was carried out using four different machine learning algorithms: Random Forest, BayesNet (probabilistic), J48 (decision tree) and RIPPER (rule-based induction); and (5) we evaluate the trained models, using the majority-voting system, comparatively to the respective calculated Augmentation Index (AIx). Classification algorithms have been proved to be efficient, in particular Random Forest has shown good accuracy (96.95%) and high area under the curve (AUC) of a Receiver Operating Characteristic (ROC) curve (0.961). Finally, during validation tests, a correlation between high risk labels, retrieved from the multi-parametric approach, and positive AIx values was verified. This approach gives allowance for designing new hemodynamic morphology vectors and techniques for multiple APW analysis, thus improving the arterial pulse understanding, especially when compared to traditional single-parameter analysis, where the failure in one parameter measurement component, such as Pi, can jeopardize the whole evaluation. The Arterial Pressure Waveform (APW) can provide essential information about arterial wall integrity and arterial stiffness. Most of APW analysis frameworks individually process each hemodynamic parameter and do not evaluate inter-dependencies in the overall pulse morphology. The key contribution of this work is the use of machine learning algorithms to deal with vectorized features extracted from APW. With this purpose, we follow a five-step evaluation methodology: (1) a custom-designed, non-invasive, electromechanical device was used in the data collection from 50 subjects; (2) the acquired position and amplitude of onset, Systolic Peak (SP), Point of Inflection (Pi) and Dicrotic Wave (DW) were used for the computation of some morphological attributes; (3) pre-processing work on the datasets was performed in order to reduce the number of input features and increase the model accuracy by selecting the most relevant ones; (4) classification of the dataset was carried out using four different machine learning algorithms: Random Forest, BayesNet (probabilistic), J48 (decision tree) and RIPPER (rule-based induction); and (5) we evaluate the trained models, using the majority-voting system, comparatively to the respective calculated Augmentation Index (AIx). Classification algorithms have been proved to be efficient, in particular Random Forest has shown good accuracy (96.95%) and high area under the curve (AUC) of a Receiver Operating Characteristic (ROC) curve (0.961). Finally, during validation tests, a correlation between high risk labels, retrieved from the multi-parametric approach, and positive AIx values was verified. This approach gives allowance for designing new hemodynamic morphology vectors and techniques for multiple APW analysis, thus improving the arterial pulse understanding, especially when compared to traditional single-parameter analysis, where the failure in one parameter measurement component, such as Pi, can jeopardize the whole evaluation.The Arterial Pressure Waveform (APW) can provide essential information about arterial wall integrity and arterial stiffness. Most of APW analysis frameworks individually process each hemodynamic parameter and do not evaluate inter-dependencies in the overall pulse morphology. The key contribution of this work is the use of machine learning algorithms to deal with vectorized features extracted from APW. With this purpose, we follow a five-step evaluation methodology: (1) a custom-designed, non-invasive, electromechanical device was used in the data collection from 50 subjects; (2) the acquired position and amplitude of onset, Systolic Peak (SP), Point of Inflection (Pi) and Dicrotic Wave (DW) were used for the computation of some morphological attributes; (3) pre-processing work on the datasets was performed in order to reduce the number of input features and increase the model accuracy by selecting the most relevant ones; (4) classification of the dataset was carried out using four different machine learning algorithms: Random Forest, BayesNet (probabilistic), J48 (decision tree) and RIPPER (rule-based induction); and (5) we evaluate the trained models, using the majority-voting system, comparatively to the respective calculated Augmentation Index (AIx). Classification algorithms have been proved to be efficient, in particular Random Forest has shown good accuracy (96.95%) and high area under the curve (AUC) of a Receiver Operating Characteristic (ROC) curve (0.961). Finally, during validation tests, a correlation between high risk labels, retrieved from the multi-parametric approach, and positive AIx values was verified. This approach gives allowance for designing new hemodynamic morphology vectors and techniques for multiple APW analysis, thus improving the arterial pulse understanding, especially when compared to traditional single-parameter analysis, where the failure in one parameter measurement component, such as Pi, can jeopardize the whole evaluation. |
Author | Almeida, Vânia Pereira, Tânia Cardoso, João Pereira, H. Pego, Mariano Santos, Pedro Correia, Carlos Vieira, João |
AuthorAffiliation | 3 Cardiology Department, Coimbra Hospital and University Centre (CHUC), Coimbra 3000-075, Portugal 2 ISA-Intelligent Sensing Anywhere, Coimbra 3030-320, Portugal 1 Instrumentation Center, Physics Department, University of Coimbra, Rua Larga, Coimbra 3004-516, Portugal |
AuthorAffiliation_xml | – name: 3 Cardiology Department, Coimbra Hospital and University Centre (CHUC), Coimbra 3000-075, Portugal – name: 2 ISA-Intelligent Sensing Anywhere, Coimbra 3030-320, Portugal – name: 1 Instrumentation Center, Physics Department, University of Coimbra, Rua Larga, Coimbra 3004-516, Portugal |
Author_xml | – sequence: 1 givenname: Vânia surname: Almeida fullname: Almeida, Vânia – sequence: 2 givenname: João surname: Vieira fullname: Vieira, João – sequence: 3 givenname: Pedro surname: Santos fullname: Santos, Pedro – sequence: 4 givenname: Tânia orcidid: 0000-0003-1681-2436 surname: Pereira fullname: Pereira, Tânia – sequence: 5 givenname: H. surname: Pereira fullname: Pereira, H. – sequence: 6 givenname: Carlos surname: Correia fullname: Correia, Carlos – sequence: 7 givenname: Mariano surname: Pego fullname: Pego, Mariano – sequence: 8 givenname: João surname: Cardoso fullname: Cardoso, João |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25562520$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1LHEEQhhtR1KiX_IAwkIsE1lR_1HxchGUxUdiQHJQcm57eGreXme61e0bw3zuDH1FJX6qhnnrrrapPbNcHT4x95nAmZQXfN9tOggAoxQ47FFDgTCmR7775H7CTlDYwvhKFyGGfHQjEXKCAQ7b4ZezaecqWZKJ3_ja7Jrv27m6glDUhZvPYU3Smzf5ESmmIlP019zRmumzuTfuQXDpme41pE508xyN28-PienE5W_7-ebWYL2dWFaKfVRXKghuCGosSa8ktB6i4rPJclbxoat6A5bKuGrI54EoVWBGqxkKzQgWFPGLnT7rboe5oZcn30bR6G11n4oMOxun3Ge_W-jbcayVwbDMJnD4LxDAN2OvOJUttazyFIWmeK6kASzGhXz-gmzDEceCRQoGVkhLFSH156-jVyst-RwCeABtDSpEabV1vehcmg67VHPR0Rf3vimPJtw8lL6r_gR8BtmGbfg |
CitedBy_id | crossref_primary_10_3390_s22228607 crossref_primary_10_3390_s23073690 crossref_primary_10_1038_s41598_021_87903_7 crossref_primary_10_1088_1361_6579_ab6360 crossref_primary_10_3390_ijgi11120606 crossref_primary_10_1016_j_cmpb_2014_06_010 crossref_primary_10_1155_2014_376378 crossref_primary_10_1109_ACCESS_2018_2875548 crossref_primary_10_3390_ijerph191912339 |
Cites_doi | 10.1088/0967-3334/31/5/007 10.1038/ncpcardio0307 10.1109/TBME.2008.2008636 10.1016/j.jacc.2005.07.037 10.1093/eurheartj/ehl254 10.1007/978-3-540-88623-5_41 10.4236/jsea.2009.23022 10.1161/01.CIR.0000069826.36125.B4 10.1161/01.CIR.62.1.105 10.1016/j.artmed.2010.09.005 10.1016/j.sna.2011.04.048 10.1023/A:1010933404324 10.1097/00001573-200209000-00016 10.1016/j.artmed.2011.08.007 10.1016/j.jacc.2010.12.017 10.1109/ARTCom.2009.12 10.1186/1475-925X-9-61 10.1088/0967-3334/24/3/306 10.1088/0967-3334/30/9/009 10.1097/HJH.0b013e32833057e8 10.1088/0967-3334/31/1/R01 10.1109/TITB.2007.907985 10.1088/0967-3334/32/8/008 10.1093/eurheartj/ehs092 10.1016/S0031-3203(99)00223-X 10.1016/j.artmed.2008.04.007 10.1007/s10916-011-9710-5 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2013 2013 by the authors; licensee MDPI, Basel, Switzerland. 2013 |
Copyright_xml | – notice: Copyright MDPI AG 2013 – notice: 2013 by the authors; licensee MDPI, Basel, Switzerland. 2013 |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/jpm3020082 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database (Proquest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2075-4426 |
EndPage | 101 |
ExternalDocumentID | PMC4251397 3308047401 25562520 10_3390_jpm3020082 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ADBBV ADRAZ AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EMOBN GX1 HCIFZ HYE IPNFZ KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RIG RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c472t-995371ae0b5785b31c1009139664817fb1f0c13b9fec605d4759e54fc0fd54073 |
IEDL.DBID | M48 |
ISSN | 2075-4426 |
IngestDate | Thu Aug 21 18:00:48 EDT 2025 Thu Sep 04 21:11:15 EDT 2025 Fri Jul 25 12:01:18 EDT 2025 Thu Apr 03 06:55:14 EDT 2025 Thu Apr 24 23:12:07 EDT 2025 Tue Jul 01 03:05:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-995371ae0b5785b31c1009139664817fb1f0c13b9fec605d4759e54fc0fd54073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1681-2436 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/jpm3020082 |
PMID | 25562520 |
PQID | 1525943352 |
PQPubID | 2032376 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4251397 proquest_miscellaneous_1643405827 proquest_journals_1525943352 pubmed_primary_25562520 crossref_citationtrail_10_3390_jpm3020082 crossref_primary_10_3390_jpm3020082 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130502 |
PublicationDateYYYYMMDD | 2013-05-02 |
PublicationDate_xml | – month: 5 year: 2013 text: 20130502 day: 2 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of personalized medicine |
PublicationTitleAlternate | J Pers Med |
PublicationYear | 2013 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Hu (ref_14) 2009; 56 ref_36 ref_35 ref_33 Ting (ref_24) 2009; 2 Dranca (ref_32) 2009; 30 Cavalcante (ref_1) 2011; 57 ref_30 McEniery (ref_39) 2005; 46 Blacher (ref_4) 2005; 2 Tsipouras (ref_20) 2008; 12 ref_19 ref_18 Nichols (ref_16) 2002; 17 Murgo (ref_28) 1980; 62 Almeida (ref_12) 2011; 169 Avolio (ref_6) 2010; 31 Laurent (ref_2) 2006; 27 Jovic (ref_21) 2011; 51 Perk (ref_37) 2012; 33 Clemente (ref_10) 2010; 31 Jatoi (ref_17) 2009; 27 ref_29 Scalzo (ref_15) 2012; 54 Kuncheva (ref_25) 2001; 34 Asl (ref_23) 2008; 44 ref_27 ref_9 Ruta (ref_26) 2000; 7 ref_8 McLaughlin (ref_11) 2003; 24 ref_5 Safar (ref_3) 2003; 107 Lee (ref_22) 2011; 32 ref_7 Scalzo (ref_13) 2010; 9 Breiman (ref_34) 2001; 45 Yoo (ref_38) 2011; 36 Kumari (ref_31) 2011; 2 21453829 - J Am Coll Cardiol. 2011 Apr 5;57(14):1511-22 16256881 - J Am Coll Cardiol. 2005 Nov 1;46(9):1753-60 12796414 - Circulation. 2003 Jun 10;107(22):2864-9 22555213 - Eur Heart J. 2012 Jul;33(13):1635-701 7379273 - Circulation. 1980 Jul;62(1):105-16 16265585 - Nat Clin Pract Cardiovasc Med. 2005 Sep;2(9):450-5 21693795 - Physiol Meas. 2011 Aug;32(8):1117-32 21968205 - Artif Intell Med. 2012 Feb;54(2):115-23 19272879 - IEEE Trans Biomed Eng. 2009 Mar;56(3):696-705 19696464 - Physiol Meas. 2009 Sep;30(9):983-98 19834344 - J Hypertens. 2009 Nov;27(11):2186-91 12357133 - Curr Opin Cardiol. 2002 Sep;17(5):543-51 14509307 - Physiol Meas. 2003 Aug;24(3):693-702 21537851 - J Med Syst. 2012 Aug;36(4):2431-48 20959014 - Biomed Eng Online. 2010 Oct 19;9:61 18585905 - Artif Intell Med. 2008 Sep;44(1):51-64 20980134 - Artif Intell Med. 2011 Mar;51(3):175-86 18632325 - IEEE Trans Inf Technol Biomed. 2008 Jul;12(4):447-58 20395651 - Physiol Meas. 2010 May;31(5):697-714 17000623 - Eur Heart J. 2006 Nov;27(21):2588-605 19940350 - Physiol Meas. 2010 Jan;31(1):R1-47 |
References_xml | – ident: ref_7 – volume: 31 start-page: 697 year: 2010 ident: ref_10 article-title: A piezo-film-based measurement system for global haemodynamic assessment publication-title: Physiol. Meas. doi: 10.1088/0967-3334/31/5/007 – volume: 2 start-page: 450 year: 2005 ident: ref_4 article-title: Large artery stiffness, hypertension and cardiovascular risk in older patients publication-title: Nat. Clin. Pract. Cardiovasc. Med. doi: 10.1038/ncpcardio0307 – ident: ref_9 – ident: ref_30 – ident: ref_5 – volume: 56 start-page: 696 year: 2009 ident: ref_14 article-title: Morphological clustering and analysis of continuous intracranial pressure publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2008636 – volume: 46 start-page: 1753 year: 2005 ident: ref_39 article-title: Normal vascular aging: Differential effects on wave reflection and aortic pulse wave velocity: The Anglo-Cardiff Collaborative Trial (ACCT) publication-title: J.Am. Coll. Cardiol. doi: 10.1016/j.jacc.2005.07.037 – volume: 27 start-page: 2588 year: 2006 ident: ref_2 article-title: Expert consensus document on arterial stiffness methodological issues and clinical applications publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehl254 – ident: ref_36 doi: 10.1007/978-3-540-88623-5_41 – volume: 2 start-page: 150 year: 2009 ident: ref_24 article-title: Data mining in biomedicine: Current applications and further directions for research publication-title: J. Softw. Eng. Appl. doi: 10.4236/jsea.2009.23022 – volume: 107 start-page: 2864 year: 2003 ident: ref_3 article-title: Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases publication-title: Circulation doi: 10.1161/01.CIR.0000069826.36125.B4 – ident: ref_18 – volume: 62 start-page: 105 year: 1980 ident: ref_28 article-title: Aortic input impedance in normal man: Relationship to pressure wave forms, Circulation publication-title: Circulation doi: 10.1161/01.CIR.62.1.105 – volume: 51 start-page: 175 year: 2011 ident: ref_21 article-title: Electrocardiogram analysis using a combination of statistical, geometric, and nonlinear heart rate variability features publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2010.09.005 – volume: 169 start-page: 217 year: 2011 ident: ref_12 article-title: Piezoelectric probe for pressure waveform estimation in flexible tubes and its applications to the cardiovascular system publication-title: Sens. Actuators A. doi: 10.1016/j.sna.2011.04.048 – volume: 45 start-page: 5 year: 2001 ident: ref_34 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 7 start-page: 1 year: 2000 ident: ref_26 article-title: An overview of classifier fusion methods publication-title: Comput. Inf. Syst. – volume: 17 start-page: 543 year: 2002 ident: ref_16 article-title: Augmentation index as a measure of peripheral vascular disease state publication-title: Curr. Opin. Cardiol. doi: 10.1097/00001573-200209000-00016 – volume: 54 start-page: 115 year: 2012 ident: ref_15 article-title: Bayesian tracking of intracranial pressure signal morphology publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2011.08.007 – volume: 57 start-page: 1511 year: 2011 ident: ref_1 article-title: Aortic stiffness: Current understanding and future directions publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2010.12.017 – ident: ref_35 doi: 10.1109/ARTCom.2009.12 – ident: ref_8 – ident: ref_29 – ident: ref_33 – volume: 9 start-page: e61 year: 2010 ident: ref_13 article-title: Robust peak recognition in intracranial pressure signals publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-9-61 – ident: ref_27 – volume: 24 start-page: 693 year: 2003 ident: ref_11 article-title: Piezoelectric sensor determination of arterial pulse wave velocity publication-title: Physiol. Meas. doi: 10.1088/0967-3334/24/3/306 – volume: 30 start-page: 983 year: 2009 ident: ref_32 article-title: Real-time detection of transient cardiac ischemic episodes from ECG signals publication-title: Physiol. Meas. doi: 10.1088/0967-3334/30/9/009 – volume: 27 start-page: 2186 year: 2009 ident: ref_17 article-title: Assessment of arterial stiffness in hypertension: Comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques publication-title: J. Hypertens doi: 10.1097/HJH.0b013e32833057e8 – volume: 31 start-page: R1 year: 2010 ident: ref_6 article-title: Arterial blood pressure measurement and pulse wave analysis—Their role in enhancing cardiovascular assessment publication-title: Physiol. Meas. doi: 10.1088/0967-3334/31/1/R01 – volume: 12 start-page: 447 year: 2008 ident: ref_20 article-title: Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2007.907985 – volume: 32 start-page: 1117 year: 2011 ident: ref_22 article-title: Multivariate classification of systemic vascular resistance using photoplethysmography publication-title: Physiol. Meas. doi: 10.1088/0967-3334/32/8/008 – volume: 33 start-page: 1635 year: 2012 ident: ref_37 article-title: European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR) publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehs092 – ident: ref_19 – volume: 34 start-page: 299 year: 2001 ident: ref_25 article-title: Decision templates for multiple classifier fusion: An experimental comparison publication-title: Pattern Recognit. Lett. doi: 10.1016/S0031-3203(99)00223-X – volume: 44 start-page: 51 year: 2008 ident: ref_23 article-title: Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2008.04.007 – volume: 2 start-page: 303 year: 2011 ident: ref_31 article-title: Comparative study of data mining classification methods in cardiovascular disease prediction publication-title: Int. J. Comput. Sci. Telecommun. – volume: 36 start-page: 2431 year: 2011 ident: ref_38 article-title: Data mining in healthcare and biomedicine: A survey of the literature publication-title: J. Med. Syst. doi: 10.1007/s10916-011-9710-5 – reference: 22555213 - Eur Heart J. 2012 Jul;33(13):1635-701 – reference: 21693795 - Physiol Meas. 2011 Aug;32(8):1117-32 – reference: 14509307 - Physiol Meas. 2003 Aug;24(3):693-702 – reference: 12357133 - Curr Opin Cardiol. 2002 Sep;17(5):543-51 – reference: 16265585 - Nat Clin Pract Cardiovasc Med. 2005 Sep;2(9):450-5 – reference: 20959014 - Biomed Eng Online. 2010 Oct 19;9:61 – reference: 18632325 - IEEE Trans Inf Technol Biomed. 2008 Jul;12(4):447-58 – reference: 21453829 - J Am Coll Cardiol. 2011 Apr 5;57(14):1511-22 – reference: 17000623 - Eur Heart J. 2006 Nov;27(21):2588-605 – reference: 19940350 - Physiol Meas. 2010 Jan;31(1):R1-47 – reference: 21537851 - J Med Syst. 2012 Aug;36(4):2431-48 – reference: 19696464 - Physiol Meas. 2009 Sep;30(9):983-98 – reference: 7379273 - Circulation. 1980 Jul;62(1):105-16 – reference: 16256881 - J Am Coll Cardiol. 2005 Nov 1;46(9):1753-60 – reference: 20395651 - Physiol Meas. 2010 May;31(5):697-714 – reference: 19272879 - IEEE Trans Biomed Eng. 2009 Mar;56(3):696-705 – reference: 21968205 - Artif Intell Med. 2012 Feb;54(2):115-23 – reference: 20980134 - Artif Intell Med. 2011 Mar;51(3):175-86 – reference: 12796414 - Circulation. 2003 Jun 10;107(22):2864-9 – reference: 18585905 - Artif Intell Med. 2008 Sep;44(1):51-64 – reference: 19834344 - J Hypertens. 2009 Nov;27(11):2186-91 |
SSID | ssj0000852260 |
Score | 1.9521949 |
Snippet | The Arterial Pressure Waveform (APW) can provide essential information about arterial wall integrity and arterial stiffness. Most of APW analysis frameworks... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 82 |
SubjectTerms | Precision medicine |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgkxAXxJvCQEVw4VCRtunanhBMQwhpE0JMcKuSNOUh6MYe_H7sNi0MEOe4amW7zuc4_gxwLN1QEAx3lOTC4bhnOULI2MHsItWRiNKsTc3JvX77asCvH4IHc-A2Mdcqq5hYBOp0qOiM_JTm9MScOoTORu8OTY2i6qoZobEITQzBEfp586Lbv7mtT1kQUCC-YCUvqY_5_enL6M1nVPT35neiX_Dy5y3Jb9vO5SqsGLxon5cGXoMFna_DUs9UxDeg0ytuQ2rbEKU-2ncVK-vERkBKTxZOZpeNgGNt34sPTVDVrghJNmFw2b3rXDlmMIKjeOhNnTgO_NAVmkmiqpG-q1xW8Hu22zxyw0y6GVOuL-NMK0xXUuL00wHPFMtSItzzt6CRD3O9A7bPIq0Rs0aSKR5kTLiKR0xKL4ulh8ay4KRSUqIMazgNr3hNMHsghSZfCrXgqJYdlVwZf0q1Kl0n5n-ZJF_WteCwXkZPp_KFyPVwhjIInhBeRl5owXZpmvo1RKTmBR6zIJwzWi1ALNrzK_nzU8GmjUGLUPDu_5-1B8teMQiD-tlb0JiOZ3of4chUHhif-wSxZuFd priority: 102 providerName: ProQuest |
Title | Machine Learning Techniques for Arterial Pressure Waveform Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25562520 https://www.proquest.com/docview/1525943352 https://www.proquest.com/docview/1643405827 https://pubmed.ncbi.nlm.nih.gov/PMC4251397 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60BfEivl0fZUUvHlaT3ezrIKJiFaEiYrG3JUmzatFVayv6753ZR7UqnjNhl5kk830k8w3AtuKhJBjuaCWkIzBnOVKq2EF20TWRjLppQMXJrYvgrC3OO35nAqr-naUDX_-kdtRPqt1_2H1_-TjADb9PjBMp-17v-dFjdI-PR3EdM1JAJKxVwvxe8RYLUQYr1El_TBnPR79A5s-3kt-ST3MWZkrUaB8WYZ6DCZPNw1SrvBdfgONW_ibS2KVc6q19XWmzvtoIS2lmvtTsohywb-wb-WYIsNqVLMkitJsn18dnTtkewdEidAdOHPteyKVhigRrlMc1Z7nKZxCIiIep4inT3FNxajSSli4p-xlfpJqlXZLd85aglj1lZgVsj0XGIHKNFNPCT5nkWkRMKTeNlYshs2CnclKiS-1wamHxkCCHIIcmXw61YGtk-1woZvxptV75OqmCnlAvplhQFZgFm6NhXO90iSEz8zREG4RQCDIjN7RguQjN6DMkp-b6LrMgHAvayIC0tMdHsvu7XFMbjy7Cwqv__9YaTLt5Owyqal-H2qA_NBsISgaqAfWjk4vLqwZMnnZ4I19_n_Nk5I8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRaJcUIG2BCh1VXroIcJxnE1yqFB5aXnsClWLyi21HYeHILuwS6v-qf5GZvKi2yJunD15aPzZ_mzPfAOwrr1QEQ13jZbKlbhmuUrp2MXdRWojFaVZm5KTu71250QenAanU_CnzoWhsMp6Tiwm6nRg6Ix8g-r0xJIyhDaHNy5VjaLb1bqERgmLQ_v7F27ZRl_2d7B_Pwmxt9vf7rhVVQHXyFCM3TgO_NBTlmvSedG-ZzxeiGO22zLywkx7GTeer-PMGuT6KQni2UBmhmcpqdX5-N4XMC0po7UF01u7veNvzakOEhjkM7zUQfX9mG9cDq99TkEGYnLl-4_O_huV-dcyt_cK5ip-yr6WgJqHKZsvwEy3uoFfhO1uEX1pWSXMesb6tQrsiCEBpicLULMy8fDWsu_qpyVqzGoBlNdw8iwuewOtfJDbJWA-j6xFjhxpbmSQceUZGXGtRRZrgeBw4HPtpMRUKuVULOMqwd0KOTR5cKgDHxvbYanN8ajVau3rpBqfo-QBTQ58aJpxZNF1icrt4A5tkKwhnY1E6MDbsmuaz5BwmwgEdyCc6LTGgFS7J1vyi_NCvRsnSWLdy0__1nt42el3j5Kj_d7hCsyKoggH5dKvQmt8e2ffIRUa67UKfwx-PDfk7wHpAhxN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFD7BJSG-EC-Io6g1wIMPk-10OjszD8YosAFhN8RA4G1oO61AdHbdXTT-NX-d58wNFoxvPPfMJadf26_tOd8B2NBBrIiG-0ZL5Utcs3yldOrj7iK3iUpy16Pk5MGwt3ssP59Gpwvwp8mFobDKZk4sJ-p8ZOiMvEt1elJJGUJdV4dFHG73P4x_-FRBim5am3IaFUT27e9fuH2bvt_bxr7eFKK_c7S169cVBnwjYzHz0zQK40BZrknzRYeBCXgplNnrySSInQ4cN0GoU2cN8v6cxPFsJJ3hLifluhDf-wAWY1wVZQcWP-0MD7-0JzxIZpDb8EoTNQxT3r0cfw85BRyI-VXwDrW9HaF5Y8nrP4LlmquyjxW4HsOCLZ7A0qC-jX8KW4MyEtOyWqT1KztqFGGnDMkwPVkCnFVJiBPLTtRPSzSZNWIoK3B8Ly57Bp1iVNjnwEKeWIt8OdHcyMhxFRiZcK2FS7VAoHjwrnFSZmrFciqc8S3DnQs5NLt2qAfrre240un4p9Va4-usHqvT7BpZHrxtm3GU0dWJKuzoCm2QuCG1TUTswWrVNe1nSMRNRIJ7EM91WmtACt7zLcXFeankjRMmMfAX__-tN7CEUM8O9ob7L-GhKOtxUFr9GnRmkyv7ClnRTL-u4cfg7L4R_xfcCSB5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Techniques+for+Arterial+Pressure+Waveform+Analysis&rft.jtitle=Journal+of+personalized+medicine&rft.au=Almeida%2C+V%C3%A2nia+G&rft.au=Vieira%2C+Jo%C3%A3o&rft.au=Santos%2C+Pedro&rft.au=Pereira%2C+T%C3%A2nia&rft.date=2013-05-02&rft.pub=MDPI+AG&rft.eissn=2075-4426&rft.volume=3&rft.issue=2&rft.spage=82&rft_id=info:doi/10.3390%2Fjpm3020082&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3308047401 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4426&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4426&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4426&client=summon |