Additive Manufacturing of AlSi10Mg and Ti6Al4V Lightweight Alloys via Laser Powder Bed Fusion: A Review of Heat Treatments Effects
Laser powder bed fusion (L-PBF) is an additive manufacturing technology that is gaining increasing interest in aerospace, automotive and biomedical applications due to the possibility of processing lightweight alloys such as AlSi10Mg and Ti6Al4V. Both these alloys have microstructures and mechanical...
Saved in:
Published in | Materials Vol. 15; no. 6; p. 2047 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
10.03.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Laser powder bed fusion (L-PBF) is an additive manufacturing technology that is gaining increasing interest in aerospace, automotive and biomedical applications due to the possibility of processing lightweight alloys such as AlSi10Mg and Ti6Al4V. Both these alloys have microstructures and mechanical properties that are strictly related to the type of heat treatment applied after the L-PBF process. The present review aimed to summarize the state of the art in terms of the microstructural morphology and consequent mechanical performance of these materials after different heat treatments. While optimization of the post-process heat treatment is key to obtaining excellent mechanical properties, the first requirement is to manufacture high quality and fully dense samples. Therefore, effects induced by the L-PBF process parameters and build platform temperatures were also summarized. In addition, effects induced by stress relief, annealing, solution, artificial and direct aging, hot isostatic pressing, and mixed heat treatments were reviewed for AlSi10Mg and Ti6AlV samples, highlighting variations in microstructure and corrosion resistance and consequent fracture mechanisms. |
---|---|
AbstractList | Laser powder bed fusion (L-PBF) is an additive manufacturing technology that is gaining increasing interest in aerospace, automotive and biomedical applications due to the possibility of processing lightweight alloys such as AlSi10Mg and Ti6Al4V. Both these alloys have microstructures and mechanical properties that are strictly related to the type of heat treatment applied after the L-PBF process. The present review aimed to summarize the state of the art in terms of the microstructural morphology and consequent mechanical performance of these materials after different heat treatments. While optimization of the post-process heat treatment is key to obtaining excellent mechanical properties, the first requirement is to manufacture high quality and fully dense samples. Therefore, effects induced by the L-PBF process parameters and build platform temperatures were also summarized. In addition, effects induced by stress relief, annealing, solution, artificial and direct aging, hot isostatic pressing, and mixed heat treatments were reviewed for AlSi10Mg and Ti6AlV samples, highlighting variations in microstructure and corrosion resistance and consequent fracture mechanisms. Laser powder bed fusion (L-PBF) is an additive manufacturing technology that is gaining increasing interest in aerospace, automotive and biomedical applications due to the possibility of processing lightweight alloys such as AlSi10Mg and Ti6Al4V. Both these alloys have microstructures and mechanical properties that are strictly related to the type of heat treatment applied after the L-PBF process. The present review aimed to summarize the state of the art in terms of the microstructural morphology and consequent mechanical performance of these materials after different heat treatments. While optimization of the post-process heat treatment is key to obtaining excellent mechanical properties, the first requirement is to manufacture high quality and fully dense samples. Therefore, effects induced by the L-PBF process parameters and build platform temperatures were also summarized. In addition, effects induced by stress relief, annealing, solution, artificial and direct aging, hot isostatic pressing, and mixed heat treatments were reviewed for AlSi10Mg and Ti6AlV samples, highlighting variations in microstructure and corrosion resistance and consequent fracture mechanisms.Laser powder bed fusion (L-PBF) is an additive manufacturing technology that is gaining increasing interest in aerospace, automotive and biomedical applications due to the possibility of processing lightweight alloys such as AlSi10Mg and Ti6Al4V. Both these alloys have microstructures and mechanical properties that are strictly related to the type of heat treatment applied after the L-PBF process. The present review aimed to summarize the state of the art in terms of the microstructural morphology and consequent mechanical performance of these materials after different heat treatments. While optimization of the post-process heat treatment is key to obtaining excellent mechanical properties, the first requirement is to manufacture high quality and fully dense samples. Therefore, effects induced by the L-PBF process parameters and build platform temperatures were also summarized. In addition, effects induced by stress relief, annealing, solution, artificial and direct aging, hot isostatic pressing, and mixed heat treatments were reviewed for AlSi10Mg and Ti6AlV samples, highlighting variations in microstructure and corrosion resistance and consequent fracture mechanisms. |
Author | Ghio, Emanuele Cerri, Emanuela |
AuthorAffiliation | Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy; emanuela.cerri@unipr.it |
AuthorAffiliation_xml | – name: Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy; emanuela.cerri@unipr.it |
Author_xml | – sequence: 1 givenname: Emanuele orcidid: 0000-0002-9377-3365 surname: Ghio fullname: Ghio, Emanuele organization: Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy – sequence: 2 givenname: Emanuela orcidid: 0000-0003-3767-5928 surname: Cerri fullname: Cerri, Emanuela organization: Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35329496$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktvEzEQgFeoiD7ohR-ALHFBSAG_1rvmUClULa2UCgSBqzVrz6aONuti7ybqtb8ch5TS4sOMH58-jUdzWOz1oceieMXoeyE0_bACVlLFqayeFQdMazVhWsq9R_v94jilJc1LCFZz_aLYF6XgWmp1UNxNnfODXyO5gn5swQ5j9P2ChJZMu--e0asFgd6RuVfTTv4kM7-4Hja4jRnowm0iaw9kBgkj-Ro2LqdP6Mj5mHzoP5Ip-YZrj5ut8AJhIPOY4wr7IZGztkU7pJfF8xa6hMf3-aj4cX42P72YzL58vjydziZWVnyYKKzBtbUqnayaijfgdF2W3GnKStmCAuToastQ1VjShkPDaw2IQtJKORDiqLjceV2ApbmJfgXx1gTw5s9FiAsDcfC2Q2M1BQQrKlkJ2TKbuyZpPgpdN4iOZtfJznUzNit0Nv8nQvdE-vSl99dmEdam1qVgXGfB23tBDL9GTINZ-WSx66DHMCbDlZSUMUV5Rt_8hy7DGPvcqi3Fy0rTeku921E2hpQitg_FMGq2k2L-TUqGXz8u_wH9OxfiN08aufw |
CitedBy_id | crossref_primary_10_1016_j_msea_2023_145315 crossref_primary_10_1016_j_msea_2022_143635 crossref_primary_10_1016_j_jmrt_2024_03_110 crossref_primary_10_1016_j_matdes_2023_111757 crossref_primary_10_1016_j_scriptamat_2023_115720 crossref_primary_10_1111_ffe_14320 crossref_primary_10_1007_s11837_023_06304_5 crossref_primary_10_1016_j_jmrt_2024_04_147 crossref_primary_10_1016_j_heliyon_2023_e23186 crossref_primary_10_3390_app12115359 crossref_primary_10_3390_ma17030570 crossref_primary_10_1016_j_addma_2024_104157 crossref_primary_10_1016_j_ijfatigue_2024_108362 crossref_primary_10_1002_mawe_202200304 crossref_primary_10_3390_ma16247639 crossref_primary_10_3390_met13040716 crossref_primary_10_1557_s43579_024_00515_w crossref_primary_10_1016_j_msea_2023_145402 crossref_primary_10_1016_j_electacta_2023_143354 crossref_primary_10_1016_j_jallcom_2022_168099 crossref_primary_10_3390_met13061130 crossref_primary_10_3390_ma15176126 crossref_primary_10_1016_j_jmrt_2024_04_130 crossref_primary_10_2139_ssrn_4657776 crossref_primary_10_4028_p_eX3nPy crossref_primary_10_3390_ma17133287 crossref_primary_10_3390_powders3020010 |
Cites_doi | 10.1016/j.jmatprotec.2003.11.051 10.1007/s40964-017-0030-2 10.1016/j.ijfatigue.2012.11.011 10.1016/S1044-5803(02)00286-3 10.1016/j.matdes.2020.108846 10.1016/j.corsci.2018.11.038 10.1016/j.jmatprotec.2021.117366 10.1016/j.ijfatigue.2018.10.015 10.1007/s11663-017-1045-2 10.3390/ma12010164 10.1016/j.jallcom.2018.12.220 10.1016/j.matdes.2016.06.117 10.1016/j.actamat.2019.01.039 10.3390/ma13214804 10.1016/j.jallcom.2015.01.256 10.4028/www.scientific.net/MSF.475-479.607 10.1007/s11661-015-2980-7 10.1016/j.jmst.2019.04.008 10.1016/j.matdes.2019.108062 10.1007/s11661-999-0301-8 10.1016/j.msea.2019.138713 10.1063/1.1725697 10.1201/9781420037678 10.1016/j.msea.2021.142241 10.3390/met8070524 10.1016/j.phpro.2011.03.035 10.1016/j.jmbbm.2021.104495 10.3390/ma11010146 10.1016/j.ijfatigue.2018.08.029 10.3390/ma12060930 10.1007/s11043-008-9060-y 10.1016/j.electacta.2018.04.189 10.3390/met11111856 10.1016/B978-0-12-824090-8.00024-X 10.1016/j.matchar.2021.111113 10.1016/j.matchar.2017.01.014 10.1016/j.matdes.2014.07.006 10.3390/ma12142331 10.1007/s00170-021-07847-0 10.1016/j.jmrt.2021.04.062 10.3390/met9090976 10.1016/j.jmatprotec.2012.05.012 10.20944/preprints201805.0373.v1 10.1149/2.002201eel 10.1016/j.actamat.2014.12.054 10.1016/j.actamat.2020.02.056 10.1002/sia.5981 10.1016/j.mprp.2016.12.062 10.3390/ma13183969 10.4028/www.scientific.net/KEM.687.199 10.1016/j.jmatprotec.2006.11.215 10.1016/j.msea.2018.10.026 10.1016/j.matpr.2020.10.095 10.1016/j.jallcom.2019.04.017 10.3390/coatings9070418 10.1016/j.msea.2014.01.041 10.1007/s11661-006-0142-7 10.1007/s11837-017-2581-6 10.1108/RPJ-09-2021-0253 10.1016/j.actamat.2020.10.001 10.1016/j.jmatprotec.2015.02.013 10.3390/ma10030268 10.1007/s11661-011-0731-y 10.1016/j.jmbbm.2015.09.020 10.1016/j.jmatprotec.2014.06.005 10.1038/s41598-020-63281-4 10.1016/j.actamat.2021.116811 10.3390/met11020179 10.1007/s00170-017-0410-2 10.1179/1743290114Y.0000000092 10.1016/j.matdes.2015.11.069 10.1016/j.msea.2017.04.068 10.1016/j.prostr.2019.07.056 10.3390/ma12020321 10.1016/j.msea.2019.01.078 10.1016/j.jmatprotec.2016.10.015 10.3390/met9111216 10.3390/ma12081272 10.1016/j.matdes.2008.10.024 10.1108/RPJ-02-2016-0022 10.1016/j.msea.2020.139922 10.1007/s11182-006-0123-8 10.1016/j.matdes.2015.10.092 10.1016/j.jmatprotec.2006.03.155 10.1007/s11837-017-2599-9 10.1007/s40684-017-0037-7 10.1016/j.jmbbm.2020.103775 10.1016/j.actamat.2018.05.044 10.1016/j.jmatprotec.2015.01.025 10.1016/j.pnsc.2021.08.003 10.1016/j.msea.2014.07.086 10.1016/S1359-6454(98)00059-7 10.1007/s11661-003-0103-3 10.1007/s40964-019-00086-6 10.1016/j.matdes.2018.02.055 10.1016/j.phpro.2012.10.056 10.1016/j.ijplas.2018.01.011 10.1016/S1359-6454(03)00363-X 10.1016/j.matchar.2018.01.028 10.1557/jmr.2014.157 10.1016/0022-3697(61)90054-3 10.3390/app10030764 10.1016/j.jallcom.2021.163155 10.3390/ma13122813 10.1016/j.scriptamat.2018.01.015 10.1007/s11665-021-05753-w 10.1016/j.msea.2017.04.033 10.1038/nature23894 10.1016/j.actamat.2021.116869 10.1007/s13632-012-0055-3 10.1016/j.ijplas.2019.12.003 10.1108/RPJ-07-2019-0180 10.3390/met11081205 10.1108/RPJ-02-2020-0036 10.1016/j.msea.2016.03.088 10.1016/j.actamat.2019.06.013 10.1016/j.actamat.2021.117131 10.1007/s00170-019-03789-w 10.1016/j.matdes.2017.11.045 10.1016/j.jallcom.2019.152615 10.1007/s11661-021-06455-7 10.1016/j.msea.2017.09.017 10.1016/j.corsci.2019.03.010 10.1016/j.pmatsci.2015.03.002 10.1016/j.matdes.2020.108762 10.1016/j.jallcom.2012.07.022 10.1016/j.cie.2019.106194 10.1016/j.msea.2020.139001 10.1007/BF02642403 10.3390/met10081006 10.1016/j.jallcom.2020.157669 10.1016/j.jmapro.2020.11.033 10.1016/j.actamat.2015.11.011 10.1016/j.mechmat.2020.103499 10.3390/met11020255 10.1016/j.ijfatigue.2018.09.029 10.3390/ma12010073 10.1016/j.matchar.2020.110225 10.1016/j.jallcom.2018.02.111 10.1088/1757-899X/266/1/012009 10.1016/j.jallcom.2016.12.019 10.1016/j.jmbbm.2019.04.024 10.1016/j.jmatprotec.2018.04.013 10.1016/j.jallcom.2010.04.214 10.1007/s11706-015-0315-7 10.1007/s00170-019-04851-3 10.1016/j.msea.2019.138210 10.3390/cryst11070796 10.1016/j.matdes.2021.109550 10.1007/s40194-018-0592-8 10.1007/s10033-017-0121-5 10.1007/978-3-319-55128-9 10.1016/j.jallcom.2020.154822 10.1016/j.jmbbm.2020.103673 10.1016/j.actamat.2010.02.004 10.3390/met9121337 10.3390/met11101628 10.1016/j.msea.2019.01.024 10.3390/ma13102248 10.1016/j.msea.2021.141486 10.1016/j.jmbbm.2020.104123 10.1016/S1003-6326(11)61092-3 10.1016/j.scriptamat.2009.06.025 10.1016/j.msea.2018.10.083 10.1038/s41598-021-85047-2 10.1016/j.msea.2017.08.029 10.1016/j.msec.2016.07.045 10.1557/mrs.2016.215 10.1016/j.jallcom.2020.156300 10.1021/acsbiomaterials.7b00336 10.3390/ma14092278 10.1016/j.jmbbm.2021.104974 10.1016/j.jmatprotec.2010.05.010 10.1016/j.jmst.2020.01.037 10.1007/s11669-014-0343-5 10.1149/2.0461702jes 10.1016/j.matchar.2013.07.012 10.3390/designs3020021 10.3390/ma9120975 10.1016/j.msea.2015.08.043 10.3390/jmmp3010016 10.1016/j.matchar.2011.04.019 10.1016/j.matchar.2018.09.042 10.1016/j.msea.2018.08.084 10.1016/j.pmatsci.2017.10.001 10.1016/j.msea.2020.140367 10.1016/B978-0-08-096532-1.00202-8 10.3390/app9030583 10.1016/j.jmatprotec.2019.116555 10.1016/j.jallcom.2010.12.014 10.1016/j.jmbbm.2008.05.004 10.1038/s41467-019-13874-z 10.1007/s11665-021-05577-8 10.1016/j.msea.2016.07.027 10.3390/met10030341 10.1007/BF00576523 10.1002/adem.202100611 10.1016/j.msea.2020.140109 10.1007/s42452-019-0270-5 10.3390/ma13112487 10.3390/jmmp3010021 10.3390/met11111671 10.1016/j.jallcom.2018.03.062 10.1016/j.jmatprotec.2015.05.008 10.31399/asm.tb.ttg2.9781627082693 10.1016/j.matdes.2021.109907 10.1007/s00170-013-5106-7 10.1016/j.actamat.2018.09.064 10.1016/j.matchar.2018.04.022 10.1108/13552549510078113 10.3390/technologies8030048 10.1016/j.rinp.2018.11.031 10.1016/j.jmatprotec.2010.08.007 10.3390/met8110954 10.1016/j.optlastec.2019.106017 10.1007/s00146-018-0809-9 10.1051/matecconf/202032112014 10.1016/j.msea.2020.139932 10.1016/j.mfglet.2021.02.003 10.3390/met10081058 10.1007/s11367-008-0058-0 10.1016/j.matdes.2016.09.086 10.1016/S0921-5093(97)00778-8 10.1016/j.optlastec.2018.08.050 10.1016/j.commatsci.2018.04.027 10.1016/j.jmbbm.2015.11.019 10.3390/ma14174901 10.3390/met6070148 10.1016/j.phpro.2012.10.059 10.1108/RPJ-01-2021-0009 10.1007/s11661-014-2218-0 10.1016/j.matdes.2013.07.067 10.3390/ma11071051 10.1007/s00339-020-03826-6 10.1016/j.electacta.2016.04.157 10.1080/09603409.2016.1184423 10.1007/s00339-016-0428-6 10.1016/j.msea.2011.10.040 10.3389/fmats.2015.00072 10.1016/j.matchar.2020.110769 10.1361/154770306X109809 10.1080/09506608.2015.1116649 10.1016/S0921-5093(99)00173-2 10.1016/j.msea.2021.141237 10.1016/j.msea.2017.01.019 10.1016/j.scriptamat.2017.07.025 10.1007/BF02652870 10.1007/s11661-003-0088-y 10.1007/s11669-015-0436-9 10.1155/2011/924032 10.1016/j.matdes.2018.05.026 10.1016/j.matdes.2020.108708 10.1016/j.msea.2020.139445 10.1016/j.msea.2019.138456 10.1016/j.matchar.2020.110238 10.1007/s00170-012-4403-x 10.1016/S1359-6454(99)00378-X 10.1149/2.0101814jes 10.1016/S0007-8506(07)60677-5 10.3390/ma13051226 10.1016/j.ijfatigue.2018.07.020 10.1016/j.scriptamat.2021.114261 10.1016/j.actamat.2014.11.028 10.1016/j.matlet.2017.05.032 10.1007/978-3-642-40246-3_45 10.1201/9781315119106-15 10.1016/j.matlet.2019.126690 10.3390/met10030368 10.3390/technologies7010005 10.3390/app7090883 10.3390/met11040534 10.1016/j.matdes.2015.07.147 10.1016/j.optlastec.2018.08.042 10.1016/j.scriptamat.2017.11.021 10.1007/BF02744623 10.3390/met8050301 10.1016/j.actamat.2014.05.037 10.4028/www.scientific.net/AMR.816-817.134 10.1038/s41467-019-10009-2 10.1007/978-3-030-05861-6_36 10.1016/j.jmst.2019.08.049 10.1016/j.jallcom.2021.162618 10.1016/j.corsci.2015.10.041 10.1149/2.1481707jes 10.1016/j.jmatprotec.2017.09.022 10.1016/j.matdes.2020.108481 10.1002/adem.201901436 10.1016/j.matchar.2017.06.029 10.1002/adem.200500030 10.1016/j.actamat.2017.04.071 10.1108/RPJ-06-2021-0130 10.1080/21663831.2018.1525773 10.1007/s11663-021-02179-6 10.1016/j.jmatprotec.2015.12.033 10.3390/met10060705 10.1016/j.jallcom.2016.02.183 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | NPM AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/ma15062047 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | oai_doaj_org_article_c90aeac374734f1c82940c37398beed0 10_3390_ma15062047 35329496 |
Genre | Journal Article Review |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH ABDBF ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CZ9 D1I E3Z EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E NPM OK1 P2P PDBOC PGMZT PIMPY PROAC RIG RPM TR2 TUS AAYXX CITATION 7SR 8FD ABUWG AZQEC DWQXO JG9 PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c472t-6e8adf865d47b72bad98552d90154fa6ae2ed8c1e68e50b2ab289aee34076da33 |
IEDL.DBID | RPM |
ISSN | 1996-1944 |
IngestDate | Tue Oct 22 15:08:08 EDT 2024 Tue Sep 17 21:22:30 EDT 2024 Sat Oct 26 04:43:50 EDT 2024 Thu Oct 10 18:43:47 EDT 2024 Thu Sep 26 20:58:33 EDT 2024 Sat Nov 02 11:58:36 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | microstructural characterization additive manufacturing AlSi10Mg fracture mechanism corrosion resistance laser powder bed fusion Ti6Al4V mechanical properties heat treatments |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-6e8adf865d47b72bad98552d90154fa6ae2ed8c1e68e50b2ab289aee34076da33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3767-5928 0000-0002-9377-3365 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953129/ |
PMID | 35329496 |
PQID | 2642579082 |
PQPubID | 2032366 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c90aeac374734f1c82940c37398beed0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8953129 proquest_miscellaneous_2644011602 proquest_journals_2642579082 crossref_primary_10_3390_ma15062047 pubmed_primary_35329496 |
PublicationCentury | 2000 |
PublicationDate | 20220310 |
PublicationDateYYYYMMDD | 2022-03-10 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220310 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_257 ref_138 Vanmuster (ref_3) 2022; 126 ref_90 Yang (ref_13) 2018; 154 Wycisk (ref_57) 2013; 816–817 Cabrini (ref_193) 2016; 231 Katantseva (ref_261) 2018; 146 ref_252 ref_97 Thijs (ref_247) 2010; 58 ref_253 ref_96 ref_135 ref_95 Cerri (ref_14) 2021; 30 Qian (ref_329) 2016; 41 Lu (ref_282) 2016; 104 Etesami (ref_285) 2021; 895 Swarnakar (ref_308) 2011; 509 Xu (ref_71) 2020; 148 Bernaczek (ref_22) 2016; 687 ref_126 ref_125 ref_128 ref_249 Zhao (ref_338) 2017; 70 Chafino (ref_279) 2019; 96 Majeed (ref_52) 2020; 139 Masuo (ref_106) 2018; 117 Yu (ref_130) 2019; 182 Baek (ref_157) 2021; 819 Leon (ref_200) 2017; 131 Delahaye (ref_142) 2019; 175 Muhammad (ref_276) 2019; 103 ref_241 ref_243 ref_121 ref_124 ref_245 Sun (ref_295) 2021; 23 Xiong (ref_66) 2020; 104 Bharath (ref_178) 2021; 45 Chandra (ref_25) 2010; 638–642 Weingarten (ref_75) 2015; 221 Duda (ref_34) 2018; 33 Ryen (ref_184) 2006; 37 Sharma (ref_317) 2000; 48 Mtyjia (ref_140) 1968; 96 Bayat (ref_73) 2019; 30 Ahlatci (ref_210) 2010; 503 Callegari (ref_291) 2020; 321 Wycisk (ref_301) 2015; 2 Emminghaus (ref_76) 2022; 118 Chen (ref_164) 2021; 31 ref_152 Roy (ref_316) 2017; 134 ref_74 Bertam (ref_4) 2009; 14 Mistry (ref_21) 2016; 57 Yan (ref_149) 2020; 41 ref_277 Babuska (ref_39) 2021; 28 Fathi (ref_198) 2018; 259 ref_160 ref_280 Park (ref_158) 2021; 176 Dai (ref_340) 2016; 102 Hu (ref_61) 2020; 192 ref_269 Murr (ref_20) 2009; 2 Huang (ref_116) 2009; 30 Mumtaz (ref_327) 2018; 160 Tunes (ref_260) 2022; 897 Yang (ref_236) 2021; 61 Bartlett (ref_162) 2018; 22 Pantawane (ref_99) 2020; 10 Bontha (ref_240) 2006; 178 ref_146 ref_267 ref_266 Todaro (ref_328) 2020; 11 Cao (ref_314) 2019; 35 Hergoz (ref_302) 2020; 36 Lin (ref_273) 2020; 22 Wang (ref_321) 2017; 706 Rubben (ref_206) 2019; 147 Samaee (ref_139) 2021; 11 ref_213 Fu (ref_239) 2005; 475–479 Wang (ref_16) 2014; 53 Martin (ref_84) 2019; 10 Shao (ref_31) 2013; 2 Shiomi (ref_77) 2004; 53 Schuster (ref_293) 2006; 27 ref_330 ref_212 ref_333 ref_211 Coeck (ref_70) 2019; 25 Tsai (ref_310) 2020; 816 Cain (ref_323) 2015; 5 Seshacharyulu (ref_24) 2020; 279 Tonelli (ref_156) 2021; 52 King (ref_83) 2014; 214 Douillard (ref_87) 2020; 201 Edwards (ref_58) 2014; 598 ref_203 Pazhanivel (ref_342) 2020; 125 Lui (ref_215) 2017; 69 ref_326 Vilardell (ref_298) 2019; 109 Xiao (ref_63) 2020; 193 Wu (ref_233) 2016; 672 Stefansonn (ref_315) 2003; 34 Cox (ref_278) 2017; 3 Sabban (ref_305) 2019; 162 ref_201 Chen (ref_207) 2018; 747 Bagherifard (ref_180) 2018; 145 Plessis (ref_105) 2021; 2 Zhao (ref_179) 2019; 764 Antonysamy (ref_232) 2019; 84 Huang (ref_102) 2017; 48 Iturrioz (ref_174) 2018; 62 Welsch (ref_248) 1982; 13 Benzing (ref_299) 2019; 257 Dolon (ref_151) 2003; 34 Yu (ref_256) 2012; 39 Zhao (ref_306) 2018; 146 Chen (ref_336) 2021; 208 Wei (ref_172) 2021; 171 Dai (ref_339) 2017; 164 Caram (ref_229) 2016; 54 Merino (ref_165) 2021; 13 Ronnenberg (ref_322) 2020; 189 Williams (ref_250) 1972; 3 ref_114 ref_238 Starink (ref_188) 2003; 51 Laursen (ref_104) 2020; 795 Yilmaz (ref_107) 2020; 26 ref_119 Bartsch (ref_270) 2021; 814 ref_111 Slater (ref_309) 1964; 41 ref_231 Dear (ref_251) 2021; 212 Paul (ref_137) 2021; 211 Zhang (ref_183) 2020; 794 Wang (ref_234) 2015; 632 Vrancken (ref_32) 2012; 541 Ben (ref_177) 2020; 798 Gupta (ref_209) 2012; 1 Sibisi (ref_23) 2020; 107 Pal (ref_62) 2020; 33 (ref_292) 1998; 243 Caceres (ref_15) 1999; 30 Yu (ref_79) 2019; 792 Hadadzadeh (ref_136) 2018; 23 Yang (ref_244) 2016; 108 Padovano (ref_143) 2020; 831 Bandyopadhyay (ref_45) 2016; Volume 4 ref_224 Ngnekon (ref_181) 2019; 119 Kaschel (ref_227) 2020; 188 Liu (ref_274) 2016; 673 ref_108 Bai (ref_153) 2018; 140 ref_228 Masmoudi (ref_113) 2015; 225 Ali (ref_226) 2017; 695 ref_101 ref_222 Bremer (ref_129) 2012; 9 Huang (ref_258) 2020; 108 Zhang (ref_132) 2019; 746 Huang (ref_265) 2015; 9 Agarwala (ref_89) 1995; 1 Liu (ref_214) 2022; 299 Edwards (ref_150) 1998; 46 Karimi (ref_246) 2021; 68 Xu (ref_221) 2015; 85 Meyer (ref_272) 2008; 12 Dutta (ref_41) 2017; 72 Zheng (ref_331) 2018; 104 Fiegl (ref_127) 2019; 111 (ref_169) 2018; 137 Chong (ref_304) 2021; 71 Oliviera (ref_88) 2020; 193 Zhang (ref_335) 2022; 831 Gallaraga (ref_30) 2017; 685 ref_18 Li (ref_72) 2015; 647 ref_17 Strano (ref_86) 2013; 66 Martin (ref_1) 2017; 549 Sames (ref_44) 2016; 61 DebRoy (ref_237) 2018; 92 Yang (ref_122) 2010; 210 Kent (ref_275) 2012; 531 Zeng (ref_208) 2011; 21 Li (ref_287) 2021; 799 Potenza (ref_217) 2020; 163 Cao (ref_288) 2017; 69 Aboulkhair (ref_51) 2014; 1–4 (ref_286) 2017; 266 Li (ref_171) 2016; 663 Roth (ref_190) 2021; 43 Liu (ref_91) 2020; 13 ref_29 Ji (ref_170) 2020; 46 ref_27 Zhu (ref_255) 2011; 62 Eshawish (ref_268) 2021; 30 Wang (ref_85) 2020; 26 Zhang (ref_264) 2017; 202 Hirata (ref_168) 2020; 772 Brown (ref_225) 2021; 52 Darvish (ref_98) 2016; 112 Bagot (ref_294) 2018; 148 Grabovetskaya (ref_254) 2006; 49 Longhitano (ref_271) 2018; 252 ref_318 Girelli (ref_53) 2019; 739 Rafieazad (ref_196) 2019; 28 Mertens (ref_319) 2014; 57 Gallaraga (ref_311) 2016; 10 Maconachie (ref_80) 2020; 788 Liu (ref_313) 2022; 207 Pauzon (ref_115) 2020; 279 Vastola (ref_118) 2018; 22 Shaikh (ref_28) 2019; 14 Carroll (ref_320) 2015; 87 Rafi (ref_297) 2013; 69 Davis (ref_242) 2021; 215 Malinov (ref_284) 2002; 48 Kruth (ref_112) 2014; 149 ref_307 Kohn (ref_332) 1991; 26 Dilip (ref_220) 2017; 2 Jucther (ref_82) 2014; 76 Kleiner (ref_159) 2020; 75 Lee (ref_43) 2017; 4 Kasperovich (ref_303) 2015; 220 Xiong (ref_145) 2019; 740–741 Hartlieb (ref_8) 2013; 57 Khorasani (ref_36) 2022; 28 Revilla (ref_197) 2017; 164 Li (ref_141) 2014; 63 Gong (ref_103) 2015; 86 ref_50 Leuders (ref_110) 2014; 19 Takata (ref_133) 2017; 704 Li (ref_300) 2019; 120 Lee (ref_26) 2007; 187–188 Yadroitsev (ref_92) 2010; 210 Zhou (ref_147) 2018; 143 ref_173 Moridi (ref_296) 2019; 768 Cabrini (ref_205) 2016; 48 Romero (ref_109) 2018; 117 Riener (ref_55) 2021; 39 Aboulkhair (ref_7) 2015; 46 Hosseini (ref_334) 2017; 696 Kruth (ref_47) 2005; 7 Du (ref_123) 2019; 12 Olakanmi (ref_68) 2015; 74 Marola (ref_161) 2021; 202 Anwar (ref_117) 2017; 240 Maamoun (ref_148) 2018; 21 Yan (ref_65) 2019; 782 Mathe (ref_154) 2019; 4 Ji (ref_281) 2016; 37 Cao (ref_289) 2021; 2 ref_69 ref_283 Rodriguez (ref_187) 1996; 19 Girelli (ref_189) 2019; 748 ref_163 ref_166 Bartolomeu (ref_67) 2021; 113 Mukherejee (ref_100) 2018; 150 ref_167 Kumar (ref_219) 2018; 154 Yu (ref_78) 2016; 122 Chen (ref_175) 2016; 90 Chandramohan (ref_341) 2017; 92 Haubrick (ref_290) 2019; 167 Murchio (ref_81) 2021; 119 Buchbinder (ref_120) 2011; 12 Khorasani (ref_60) 2017; 23 Zhang (ref_64) 2018; 736 Yang (ref_235) 2017; 127 Zhou (ref_93) 2016; 89 Requena (ref_262) 2009; 61 ref_195 ref_35 Hadadzadeh (ref_182) 2018; 23 Bower (ref_19) 2020; 8 ref_199 Fiocchi (ref_155) 2017; 695 Chin (ref_337) 2018; 279 (ref_12) 2014; 35 Simonelli (ref_218) 2014; 45 ref_38 Leuders (ref_223) 2013; 48 ref_37 Hastie (ref_56) 2020; 163 Vilaro (ref_325) 2011; 42 Cabrini (ref_194) 2016; 206 Karami (ref_216) 2020; 36 Chen (ref_186) 2017; 141 Dong (ref_144) 2020; 126 Xie (ref_259) 2020; 776 Cao (ref_230) 2018; 744 Lingda (ref_134) 2021; 858 Cabrini (ref_202) 2019; 152 ref_46 Li (ref_176) 2020; 127 Tang (ref_48) 2017; 14 Zhang (ref_94) 2017; 30 ref_185 Lifshtz (ref_312) 1961; 19 ref_42 Simonelli (ref_59) 2014; 616 Rugg (ref_5) 2016; 33 Alghamdi (ref_11) 2019; 1 ref_40 ref_2 Kempen (ref_10) 2012; 39 ref_191 ref_49 Su (ref_131) 2012; 212 Li (ref_263) 2011; 2011 ref_192 ref_9 Zafari (ref_324) 2018; 6 Huang (ref_33) 2016; 135 Yang (ref_54) 2020; 849 Revilla (ref_204) 2018; 165 ref_6 |
References_xml | – volume: 149 start-page: 616 year: 2014 ident: ref_112 article-title: Selective laser melting of iron-based powder publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2003.11.051 contributor: fullname: Kruth – volume: 2 start-page: 157 year: 2017 ident: ref_220 article-title: Influence of process parameters on the evolution of MP, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting publication-title: Prog. Add. Manuf. doi: 10.1007/s40964-017-0030-2 contributor: fullname: Dilip – volume: 48 start-page: 300 year: 2013 ident: ref_223 article-title: On the mechanical behavior of titanium alloy Ti6Al4V manufactured by selective laser melting: Fatigue Resistance and Crack Growth Performance publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2012.11.011 contributor: fullname: Leuders – volume: 48 start-page: 279 year: 2002 ident: ref_284 article-title: Synchrotron X-Ray diffraction study of the phase transformation in titanium alloys publication-title: Mater. Charact. doi: 10.1016/S1044-5803(02)00286-3 contributor: fullname: Malinov – volume: 193 start-page: 108846 year: 2020 ident: ref_63 article-title: Study of residual stress in selective laser melting of Ti6Al4V publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108846 contributor: fullname: Xiao – volume: 147 start-page: 406 year: 2019 ident: ref_206 article-title: Influence of heat treatments on the corrosion mechanism of additive manufactured AlSi10Mg publication-title: Corros. Sci. doi: 10.1016/j.corsci.2018.11.038 contributor: fullname: Rubben – volume: 2 start-page: 100031 year: 2021 ident: ref_105 article-title: Productivity enhancement of laser powder bed fusion using compensated shelled geometries and hot isostatic pressing publication-title: Adv. Inf. Manuf. Eng. contributor: fullname: Plessis – volume: 299 start-page: 117366 year: 2022 ident: ref_214 article-title: Understanding the effect of scanning strategies on the microstructure and crystallography texture of Ti-6Al-4V alloy manufactured via laser powder bed fusion publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2021.117366 contributor: fullname: Liu – volume: 120 start-page: 342 year: 2019 ident: ref_300 article-title: Investigation of the mechanisms by which hot isostatic pressing improves the fatigue performance of powder bed fused Ti-6Al-4V publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2018.10.015 contributor: fullname: Li – volume: 48 start-page: 2504 year: 2017 ident: ref_102 article-title: Effects of partition coefficients, diffusion coefficients, and solidification paths on microsegregations in Fe-based multinary alloy publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-017-1045-2 contributor: fullname: Huang – ident: ref_27 doi: 10.3390/ma12010164 – volume: 782 start-page: 209 year: 2019 ident: ref_65 article-title: Mechanical and in vitro study of anisotropic Ti6Al4V lattice structure fabricated using selective lase melting publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.12.220 contributor: fullname: Yan – volume: 108 start-page: 308 year: 2016 ident: ref_244 article-title: Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.06.117 contributor: fullname: Yang – volume: 167 start-page: 136 year: 2019 ident: ref_290 article-title: The role of lattice defects, element portioning and intrinsic heat effects on the microstructure in selective laser melted Ti-6Al-4V publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.01.039 contributor: fullname: Haubrick – ident: ref_201 doi: 10.3390/ma13214804 – volume: 21 start-page: 234 year: 2018 ident: ref_148 article-title: Thermal post processing of AlSi10Mg parts produces by Selective Laser Melting using recycled powder publication-title: Addit. Manuf. contributor: fullname: Maamoun – volume: 632 start-page: 505 year: 2015 ident: ref_234 article-title: Grain morphology evolution behaviour of titanium alloy components during laser melting deposition additive manufacturing publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.01.256 contributor: fullname: Wang – volume: 475–479 start-page: 607 year: 2005 ident: ref_239 article-title: Progress of directional solidification in processing of advanced materials publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.475-479.607 contributor: fullname: Fu – volume: 46 start-page: 3337 year: 2015 ident: ref_7 article-title: On the precipitation hardening of selective laser melted AlSi10Mg publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-015-2980-7 contributor: fullname: Aboulkhair – ident: ref_241 – volume: 35 start-page: 1578 year: 2019 ident: ref_314 article-title: Static coarsening behavior of lamellar microstructure in selective laser melted Ti-6Al-4V publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.04.008 contributor: fullname: Cao – volume: 182 start-page: 108062 year: 2019 ident: ref_130 article-title: Structure-property relationship in high strength and lightweight AlSi10Mg microlattice fabricated be selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108062 contributor: fullname: Yu – volume: 30 start-page: 2611 year: 1999 ident: ref_15 article-title: Hypoeutectic Al-Si-Mg foundry alloys publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-999-0301-8 contributor: fullname: Caceres – volume: 772 start-page: 138713 year: 2020 ident: ref_168 article-title: Effects of hot isostatic pressing and internal porosity on the performance of selective laser melted AlSi10Mg alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138713 contributor: fullname: Hirata – volume: 41 start-page: 3199 year: 1964 ident: ref_309 article-title: Atomic radii in crystals publication-title: J. Chem. Phys. doi: 10.1063/1.1725697 contributor: fullname: Slater – ident: ref_253 doi: 10.1201/9781420037678 – volume: 831 start-page: 142241 year: 2022 ident: ref_335 article-title: The microstructure and tensile properties of additively manufactured Ti-6Al-2Zr-1Mo-1W with a trimodal microstructure obtained by multiple annealing heat treatment publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2021.142241 contributor: fullname: Zhang – ident: ref_119 doi: 10.3390/met8070524 – volume: 12 start-page: 271 year: 2011 ident: ref_120 article-title: High power selective laser melting (HP SLM) of aluminium parts publication-title: Phys. Procedia. doi: 10.1016/j.phpro.2011.03.035 contributor: fullname: Buchbinder – ident: ref_166 – volume: 119 start-page: 104495 year: 2021 ident: ref_81 article-title: Additively manufactured Ti-6Al-4V thin structures via laser powder bed fusion: Effect of Building Orientation on Geometrical Accuracy and Mechanical Properties publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2021.104495 contributor: fullname: Murchio – ident: ref_245 doi: 10.3390/ma11010146 – volume: 117 start-page: 407 year: 2018 ident: ref_109 article-title: Fatigue and fracture properties of Ti alloys from powder-based processes—A review publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2018.08.029 contributor: fullname: Romero – ident: ref_231 doi: 10.3390/ma12060930 – volume: 12 start-page: 237 year: 2008 ident: ref_272 article-title: Dynamic strength and failure behavior of titanium alloy TI-6Al-4V for a variation of heat treatments publication-title: Mech. Time-Depend. Mater. doi: 10.1007/s11043-008-9060-y contributor: fullname: Meyer – volume: 1–4 start-page: 77 year: 2014 ident: ref_51 article-title: Reducing porosity in AlSi10Mg parts processed by selective laser melting publication-title: Add. Manuf. contributor: fullname: Aboulkhair – volume: 279 start-page: 143 year: 2018 ident: ref_337 article-title: Corrosion assessment of Ti6Al-4V fabricated using laser powder-bed fusion additive manufacturing publication-title: Electrochem. Acta doi: 10.1016/j.electacta.2018.04.189 contributor: fullname: Chin – volume: 9 start-page: 975 year: 2012 ident: ref_129 article-title: Selective laser melting—A manufacturing technology for the future? publication-title: Laser Technik J. contributor: fullname: Bremer – ident: ref_269 – volume: 638–642 start-page: 712 year: 2010 ident: ref_25 article-title: Study of alpha-beta transformation in Ti-6Al-4V ELI, Mechanical and Microstructural characteristics publication-title: Mater. Sci. Forum contributor: fullname: Chandra – ident: ref_124 doi: 10.3390/met11111856 – ident: ref_266 doi: 10.1016/B978-0-12-824090-8.00024-X – volume: 176 start-page: 111113 year: 2021 ident: ref_158 article-title: Effect of direct aging on microstructure and tensile properties of AlSi10Mg alloy manufactured by selective laser melting publication-title: Mater. Charact. doi: 10.1016/j.matchar.2021.111113 contributor: fullname: Park – volume: 127 start-page: 137 year: 2017 ident: ref_235 article-title: Effect of crystallographic orientation on mechanical anisotropy of selective laser melted Ti-6Al-4V alloy publication-title: Mater. Charact. doi: 10.1016/j.matchar.2017.01.014 contributor: fullname: Yang – volume: 63 start-page: 857 year: 2014 ident: ref_141 article-title: Parametric analysis of thermal behavior during selective laser melting additve manufacturing of aluminum alloy powder publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.07.006 contributor: fullname: Li – ident: ref_307 doi: 10.3390/ma12142331 – volume: 118 start-page: 1239 year: 2022 ident: ref_76 article-title: Development of an empirical process model for adjusted porosity in laser-based powder bed fusion Ti-6Al-4V publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-07847-0 contributor: fullname: Emminghaus – volume: 13 start-page: 669 year: 2021 ident: ref_165 article-title: Multiple, comparative heat treatment and aging schedules for controlling the microstructures and mechanical properties of laser powder bed fusion fabricated AlSi10Mg alloy publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.04.062 contributor: fullname: Merino – ident: ref_211 doi: 10.3390/met9090976 – volume: 212 start-page: 2074 year: 2012 ident: ref_131 article-title: Research on tack overlapping during selective laser melting of powders publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2012.05.012 contributor: fullname: Su – ident: ref_135 doi: 10.20944/preprints201805.0373.v1 – volume: 1 start-page: C1 year: 2012 ident: ref_209 article-title: Electrochemical behavior and localized corrosion associated with Mg2Si particles in Al and Mg alloys publication-title: ECS Electrochem. Lett. doi: 10.1149/2.002201eel contributor: fullname: Gupta – volume: 87 start-page: 309 year: 2015 ident: ref_320 article-title: Anisotropy tensile behavior of Ti-6Al-4V components fabricated with direct energy deposition additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.12.054 contributor: fullname: Carroll – volume: 188 start-page: 720 year: 2020 ident: ref_227 article-title: Mechanism of stress relaxation and phase transformation in additively manufactured Ti-6Al-4V via in-situ high temperature XRD and TEM analyses publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.02.056 contributor: fullname: Kaschel – volume: 48 start-page: 818 year: 2016 ident: ref_205 article-title: Corrosion resistance of direct metal lase sintering AlSi10Mg alloy publication-title: Suf. Interface Anal. doi: 10.1002/sia.5981 contributor: fullname: Cabrini – volume: 72 start-page: 96 year: 2017 ident: ref_41 article-title: The additive manufacturing (AM) of titanium alloys publication-title: Met. Powder Rep. doi: 10.1016/j.mprp.2016.12.062 contributor: fullname: Dutta – ident: ref_146 doi: 10.3390/ma13183969 – volume: 13 start-page: 3632 year: 2020 ident: ref_91 article-title: Balling behavior of stainless steel and nickel powder during selective laser melting process publication-title: Int. J. Adv. Manuf. Syst. contributor: fullname: Liu – volume: 687 start-page: 199 year: 2016 ident: ref_22 article-title: The application of direct metal laser sintering (DMLS) of titanium alloy powder in fabricating components of aircraft structures publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.687.199 contributor: fullname: Bernaczek – volume: 187–188 start-page: 526 year: 2007 ident: ref_26 article-title: A study of diffusion bonding of superplastic Ti-6Al-4V ELI grade publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2006.11.215 contributor: fullname: Lee – volume: 739 start-page: 317 year: 2019 ident: ref_53 article-title: Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.10.026 contributor: fullname: Girelli – volume: 36 start-page: 101433 year: 2020 ident: ref_216 article-title: Continuous and pulsed selective laser melting of Ti6Al4V lattice structures: Effect of Post-Processing on Microstructural Anisotropy and Fatigue Behavior publication-title: Add. Manuf. contributor: fullname: Karami – volume: 45 start-page: 78 year: 2021 ident: ref_178 article-title: Studies on mechanical behaviour of AlSi10Mg alloy produced by selective laser melting and A360 alloy by die casting publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.10.095 contributor: fullname: Bharath – volume: 792 start-page: 574 year: 2019 ident: ref_79 article-title: Influence od re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.04.017 contributor: fullname: Yu – ident: ref_97 doi: 10.3390/coatings9070418 – volume: 598 start-page: 327 year: 2014 ident: ref_58 article-title: Fatigue performance evaluation of selective laser melted Ti-6Al-4V publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2014.01.041 contributor: fullname: Edwards – volume: 37 start-page: 1999 year: 2006 ident: ref_184 article-title: Strengthening mechanism in solid solution aluminum alloy publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-006-0142-7 contributor: fullname: Ryen – volume: 69 start-page: 2684 year: 2017 ident: ref_288 article-title: Defect, microstructure, and mechanical property of Ti-6Al-4V alloy fabricated by high-power selective laser melting publication-title: JOM doi: 10.1007/s11837-017-2581-6 contributor: fullname: Cao – ident: ref_38 doi: 10.1108/RPJ-09-2021-0253 – volume: 201 start-page: 231 year: 2020 ident: ref_87 article-title: Influence on microstructure, strength and ductility of BP temperature during laser powder bed fusion of AlSi10Mg publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.10.001 contributor: fullname: Douillard – volume: 221 start-page: 112 year: 2015 ident: ref_75 article-title: Formation and reduction of hydrogen during selective laser melting of AlS10Mg publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.02.013 contributor: fullname: Weingarten – ident: ref_222 doi: 10.3390/ma10030268 – volume: 42 start-page: 3190 year: 2011 ident: ref_325 article-title: As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-011-0731-y contributor: fullname: Vilaro – volume: 135 start-page: 1559 year: 2016 ident: ref_33 article-title: Energy and emissions saving potential of additive manufacturing: The Case of Lightweight Aircraft Components publication-title: J. Chem. Prod. contributor: fullname: Huang – volume: 54 start-page: 149 year: 2016 ident: ref_229 article-title: Ductility improvement due to martensite’ decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.09.020 contributor: fullname: Caram – volume: 214 start-page: 2915 year: 2014 ident: ref_83 article-title: Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2014.06.005 contributor: fullname: King – volume: 10 start-page: 7579 year: 2020 ident: ref_99 article-title: Computational assessment of thermokinetics and associated microstructural evolution in laser powder bed fusion manufacturing of Ti-6Al-4V alloy publication-title: Sci. Rep. doi: 10.1038/s41598-020-63281-4 contributor: fullname: Pantawane – volume: 212 start-page: 116811 year: 2021 ident: ref_251 article-title: Mechanisms of Ti3Al precipitation in hpc α-Ti publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.116811 contributor: fullname: Dear – ident: ref_163 doi: 10.3390/met11020179 – volume: 92 start-page: 3051 year: 2017 ident: ref_341 article-title: Laser additive manufactured Ti-6Al-4V alloys: Tribology and Corrosion Studies publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-0410-2 contributor: fullname: Chandramohan – volume: 57 start-page: 184 year: 2014 ident: ref_319 article-title: Mechanical properties of alloy Ti-6Al-4V and of stainless steel 316L processed by selective laser melting: Influence of Out-of-Equilibrium Microstructure publication-title: Powder Metall. doi: 10.1179/1743290114Y.0000000092 contributor: fullname: Mertens – volume: 90 start-page: 1059 year: 2016 ident: ref_175 article-title: Precipitation behavior and hardening effects of Si-containing dispersoids in Al-Si-Mg alloy during SHT publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.11.069 contributor: fullname: Chen – volume: 696 start-page: 155 year: 2017 ident: ref_334 article-title: Development of a trimodal microstructure with superior combined strength ductility and creep-rupture properties in a near α titanium alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.04.068 contributor: fullname: Hosseini – volume: 14 start-page: 782 year: 2019 ident: ref_28 article-title: Effect of temperature and cooling rates of α + β morphology of Ti-6Al-4V alloy publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2019.07.056 contributor: fullname: Shaikh – ident: ref_213 doi: 10.3390/ma12020321 – volume: 748 start-page: 38 year: 2019 ident: ref_189 article-title: Evaluation of impact behaviour of AlSi10Mg alloy produced using laser additive manufacturing publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.01.078 contributor: fullname: Girelli – volume: 240 start-page: 388 year: 2017 ident: ref_117 article-title: Selective laser melting of AlSi10Mg: Effects of Scan Direction, Part Placement and Inert Gas Flow Velocity on Tensile Strength publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2016.10.015 contributor: fullname: Anwar – ident: ref_126 – ident: ref_160 doi: 10.3390/met9111216 – ident: ref_121 doi: 10.3390/ma12081272 – volume: 30 start-page: 2404 year: 2009 ident: ref_116 article-title: Effects of shielding gas composition and activating flux of GTAW weldments publication-title: Mater. Des. doi: 10.1016/j.matdes.2008.10.024 contributor: fullname: Huang – volume: 33 start-page: 101147 year: 2020 ident: ref_62 article-title: As-fabricated surface morphologies of Ti-6Al-4V samples fabricated by different laser processing parameters in selective laser melting publication-title: Add. Manuf. contributor: fullname: Pal – volume: 23 start-page: 295 year: 2017 ident: ref_60 article-title: On the role of different annealing heat treatments on mechanical properties and microstructure of selective laser melted and conventional wrought Ti-6Al-4V publication-title: Rapid. Prototyp. J. doi: 10.1108/RPJ-02-2016-0022 contributor: fullname: Khorasani – volume: 795 start-page: 139922 year: 2020 ident: ref_104 article-title: Relationship between ductility and the porosity of additively manufactured AlSi10Mg publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139922 contributor: fullname: Laursen – volume: 22 start-page: 817 year: 2018 ident: ref_118 article-title: Predictive model for porosity in powder-bed fusion additive manufacturing at high beam energy regime publication-title: Add. Manuf. contributor: fullname: Vastola – volume: 49 start-page: 442 year: 2006 ident: ref_254 article-title: Evolution of the structural and phase states of Ti-6Al-4V alloy in forming submicroscopy crystalline structure with use of temporary hydrogenation publication-title: Russ. Phys. J. doi: 10.1007/s11182-006-0123-8 contributor: fullname: Grabovetskaya – volume: 89 start-page: 1199 year: 2016 ident: ref_93 article-title: A novel titanium alloy manufactured by selective laser melting microstructure, high temperature oxidation publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.10.092 contributor: fullname: Zhou – ident: ref_185 – volume: 178 start-page: 135 year: 2006 ident: ref_240 article-title: Thermal process maps for predicting solidification microstructure in laser fabrication on thin-wall structures publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2006.03.155 contributor: fullname: Bontha – volume: 69 start-page: 2679 year: 2017 ident: ref_215 article-title: New development in selective laser melting of Ti-6Al-4V: A Wider Processing window for the achievement of fully lamellar α + β microstructures publication-title: JOM doi: 10.1007/s11837-017-2599-9 contributor: fullname: Lui – volume: 4 start-page: 307 year: 2017 ident: ref_43 article-title: Lasers in additive manufacturing: A Review publication-title: Int. J. Precis. Eng. Manuf.-Green Technol. doi: 10.1007/s40684-017-0037-7 contributor: fullname: Lee – volume: 108 start-page: 103775 year: 2020 ident: ref_258 article-title: Laser Powder bed fusion of titanium-tantalium alloys: Compositions and Designs for Biomedical Applications publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2020.103775 contributor: fullname: Huang – volume: 154 start-page: 246 year: 2018 ident: ref_219 article-title: Micro- and macro-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.05.044 contributor: fullname: Kumar – volume: 220 start-page: 202 year: 2015 ident: ref_303 article-title: Improvement of fatigue resistance and ductility of Ti6Al4V processed by selective laser melting publication-title: J. Mater. Proc. Technol. doi: 10.1016/j.jmatprotec.2015.01.025 contributor: fullname: Kasperovich – volume: 31 start-page: 714 year: 2021 ident: ref_164 article-title: Effects of heat treatments on microstructure and mechanical properties of SLMed Sc-Modified AlSi10Mg alloy publication-title: Prog. Nat. Sci. Mater. doi: 10.1016/j.pnsc.2021.08.003 contributor: fullname: Chen – volume: 616 start-page: 1 year: 2014 ident: ref_59 article-title: Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2014.07.086 contributor: fullname: Simonelli – volume: 46 start-page: 3893 year: 1998 ident: ref_150 article-title: The precipitation sequence in Al-Si-Mg alloys publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00059-7 contributor: fullname: Edwards – volume: 34 start-page: 691 year: 2003 ident: ref_315 article-title: Mechanisms of globularization of Ti-6Al-4V during static heat treatment publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-003-0103-3 contributor: fullname: Stefansonn – volume: 4 start-page: 431 year: 2019 ident: ref_154 article-title: The validation of the microstructural evolution of selective laser-melted AlSi10Mg on the in-house built machine: Energy Density Studies publication-title: Prog. Addit. Manuf. doi: 10.1007/s40964-019-00086-6 contributor: fullname: Mathe – volume: 145 start-page: 28 year: 2018 ident: ref_180 article-title: On the fatigue stresses enhancement of additive manufactured AlSi10Mg parts by mechanical and thermal post-processing publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.02.055 contributor: fullname: Bagherifard – volume: 39 start-page: 416 year: 2012 ident: ref_256 article-title: Materials properties of Ti6Al4V parts produced by laser metal deposition publication-title: Phys. Procedia doi: 10.1016/j.phpro.2012.10.056 contributor: fullname: Yu – volume: 104 start-page: 23 year: 2018 ident: ref_331 article-title: Slip transfer across phase boundaries in dual phase titanium alloys and the effect on strain rate sensitivity publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.01.011 contributor: fullname: Zheng – volume: 51 start-page: 5131 year: 2003 ident: ref_188 article-title: A model for the yield strength of overaged Al-Zn-Mg-Cu alloys publication-title: Acta Mater. doi: 10.1016/S1359-6454(03)00363-X contributor: fullname: Starink – volume: 137 start-page: 119 year: 2018 ident: ref_169 article-title: Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.01.028 – ident: ref_283 – volume: 19 start-page: 1911 year: 2014 ident: ref_110 article-title: On the fatigue properties of metals manufactured by selective laser melting—The role of ductility publication-title: J. Mater. Res. doi: 10.1557/jmr.2014.157 contributor: fullname: Leuders – volume: 19 start-page: 35 year: 1961 ident: ref_312 article-title: The kinetics of precipitation from supersaturated solid solutions publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(61)90054-3 contributor: fullname: Lifshtz – ident: ref_29 doi: 10.3390/app10030764 – volume: 897 start-page: 163155 year: 2022 ident: ref_260 article-title: On the existence of orthorhombic martensite in a near-α titanium base alloy used for additive manufacturing publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.163155 contributor: fullname: Tunes – volume: 8 start-page: 100122 year: 2020 ident: ref_19 article-title: Corrosion resistance of selective laser melted Ti-6Al-4V alloy in salt for environment publication-title: Res. Mater. contributor: fullname: Bower – ident: ref_277 doi: 10.3390/ma13122813 – volume: 148 start-page: 24 year: 2018 ident: ref_294 article-title: The effect of oxidation on the subsurface microstructure of a Ti-6Al-4V alloy publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2018.01.015 contributor: fullname: Bagot – volume: 30 start-page: 5290 year: 2021 ident: ref_268 article-title: Microstructure and mechanical properties of Ti-6Al-4V manufactured by selective laser melting after stress relieving, hot isostatic pressing treatment, and post-heat treatment publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-021-05753-w contributor: fullname: Eshawish – volume: 695 start-page: 211 year: 2017 ident: ref_226 article-title: In situ residual stress reduction martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of selective laser melted Ti6Al4V publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.04.033 contributor: fullname: Ali – volume: 549 start-page: 365 year: 2017 ident: ref_1 article-title: 3D printing of high-strength aluminium alloys publication-title: Nature doi: 10.1038/nature23894 contributor: fullname: Martin – volume: 211 start-page: 116869 year: 2021 ident: ref_137 article-title: Fracture resistance of AlSi10Mg fabricated by laser powder bed fusion publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.116869 contributor: fullname: Paul – volume: 2 start-page: 35 year: 2013 ident: ref_31 article-title: Influence of cooling rate and aging on the lamellar microstrucutre and fractography of TC21 titanium alloy publication-title: Metallogr. Microstruct. Anal. doi: 10.1007/s13632-012-0055-3 contributor: fullname: Shao – volume: 96 start-page: 30 year: 1968 ident: ref_140 article-title: The effect of cooling rate on the dendrite pacing on splat-cooled aluminium alloys publication-title: J. Int. Mater. contributor: fullname: Mtyjia – volume: 127 start-page: 102640 year: 2020 ident: ref_176 article-title: Stress relaxation and the cellular structure-dependence of plastic deformation in additively manufactured AlSi10Mg alloys publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.12.003 contributor: fullname: Li – volume: 26 start-page: 1421 year: 2020 ident: ref_107 article-title: Effect of HIP process and subsequent heat treatment on microstructure and mechanical properties of direct metal laser sintered AlSi10Mg alloy publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-07-2019-0180 contributor: fullname: Yilmaz – ident: ref_42 doi: 10.3390/met11081205 – volume: 30 start-page: 100835 year: 2019 ident: ref_73 article-title: Keyhole-induced porosities in laser-powder bed fusion (L-PBF) of Ti6Al4V: High-Fidelity Modeling and Experimental Validation publication-title: Add. Manuf. contributor: fullname: Bayat – volume: 57 start-page: 40 year: 2013 ident: ref_8 article-title: Aluminium alloys for structural die casting publication-title: Die Cast. Eng. contributor: fullname: Hartlieb – volume: 26 start-page: 1657 year: 2020 ident: ref_85 article-title: Pores and the formation mechanisms of SLMed AlSi10Mg publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-02-2020-0036 contributor: fullname: Wang – volume: 663 start-page: 116 year: 2016 ident: ref_171 article-title: Effect of heat treatment on AlSI10Mg alloy fabricated by selective laser melting: Microstructure Evolution, Mechanical Properties and Fracture Mechanism publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.03.088 contributor: fullname: Li – volume: 175 start-page: 160 year: 2019 ident: ref_142 article-title: Influences of Si particles on fracture mechanisms of AlSi10Mg parts processed by selective lase melted publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.06.013 contributor: fullname: Delahaye – volume: 215 start-page: 117131 year: 2021 ident: ref_242 article-title: Phase transformation pathways in Ti-6Al-4V manufactured via electron beam powder bed fusion publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117131 contributor: fullname: Davis – volume: 103 start-page: 4161 year: 2019 ident: ref_276 article-title: Effect of heat treatments on microstructure/small-scale properties of additive manufactured Ti-6Al-4V publication-title: Int. J. Adv. Manuf. doi: 10.1007/s00170-019-03789-w contributor: fullname: Muhammad – volume: 140 start-page: 257 year: 2018 ident: ref_153 article-title: Process optimization and mechanical properties evolution of AlSi10Mg0.75 by selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.11.045 contributor: fullname: Bai – volume: 816 start-page: 152615 year: 2020 ident: ref_310 article-title: Heat treatment effects on mechanical properties and microstructure evolution of Ti-6Al-4V alloy fabricated by laser powder bed fusion publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.152615 contributor: fullname: Tsai – volume: 52 start-page: 5165 year: 2021 ident: ref_225 article-title: Evolution of the microstructure of laser powder bed fusion Ti-6Al-4V during post-build heat treatment publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-021-06455-7 contributor: fullname: Brown – volume: 23 start-page: 121 year: 2018 ident: ref_136 article-title: Columnar to equiaxed transition during direct laser metal sintering of AlSi10Mg alloy: Effect of Building Direction publication-title: Add. Manuf. contributor: fullname: Hadadzadeh – volume: 706 start-page: 287 year: 2017 ident: ref_321 article-title: Quantitative relationship between anisotropic strain to failure and grain morphology in additively manufactured Ti-6Al-4V publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.09.017 contributor: fullname: Wang – volume: 152 start-page: 101 year: 2019 ident: ref_202 article-title: Corrosion behavior of AlSi10Mg alloy produced by laser powder bed fusion under chloride exposure publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.03.010 contributor: fullname: Cabrini – volume: 2 start-page: 313 year: 2021 ident: ref_289 article-title: Review of laser powder bed fusion (LPBF) fabricated Ti-6Al-4V: Process, Post-Process Treatment, Microstructure, and Property publication-title: Light Adv. Manuf. contributor: fullname: Cao – volume: 5 start-page: 68 year: 2015 ident: ref_323 article-title: Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting publication-title: Add. Manuf. contributor: fullname: Cain – volume: 74 start-page: 401 year: 2015 ident: ref_68 article-title: A review of selective laser sintering/melting (SLS/SLM) of aluminium powders: Processing, Microstructures and Properties publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2015.03.002 contributor: fullname: Olakanmi – volume: 193 start-page: 108762 year: 2020 ident: ref_88 article-title: Processing parameters in laser powder bed fusion metal additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108762 contributor: fullname: Oliviera – volume: 541 start-page: 177 year: 2012 ident: ref_32 article-title: Heat treatment of Ti6Al4V produced by selective laser melting: MicroStrucutre and Mechanical Properties publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.07.022 contributor: fullname: Vrancken – volume: 139 start-page: 106194 year: 2020 ident: ref_52 article-title: Investigation of T4 and T6 heat treatment influences on relative density and porosity of AlSi10Mg alloy components manufactured by SLM publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.106194 contributor: fullname: Majeed – volume: 776 start-page: 139001 year: 2020 ident: ref_259 article-title: Effects of selective laser melting build orientations on the microstructure and tensile performance of Ti-6Al-4V alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139001 contributor: fullname: Xie – volume: 13 start-page: 889 year: 1982 ident: ref_248 article-title: Deformation modes of the α-phase of Ti-6Al-4V as a function of oxygen concentration and aging temperature publication-title: Metall. Trans. A doi: 10.1007/BF02642403 contributor: fullname: Welsch – volume: 71 start-page: 138 year: 2021 ident: ref_304 article-title: Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The Effects on Interfacial Annealing Temperature and Constituent Hardness publication-title: J. Mater. Res. Technol. contributor: fullname: Chong – ident: ref_40 doi: 10.3390/met10081006 – volume: 858 start-page: 157669 year: 2021 ident: ref_134 article-title: A phase-field simulation of columnar-to-equiaxed transition in the entire laser welding MP publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.157669 contributor: fullname: Lingda – volume: 61 start-page: 428 year: 2021 ident: ref_236 article-title: Towards a process-structure model for Ti-6Al-4V during additive manufacturing publication-title: J. Manuf. Proc. doi: 10.1016/j.jmapro.2020.11.033 contributor: fullname: Yang – volume: 104 start-page: 303 year: 2016 ident: ref_282 article-title: Massive transformation in Ti-6Al-4V additively manufactured by selective electron beam melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.11.011 contributor: fullname: Lu – volume: 148 start-page: 103499 year: 2020 ident: ref_71 article-title: High fatigue performance of AlSi10mG alloy produced by selective laser melting publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2020.103499 contributor: fullname: Xu – ident: ref_212 doi: 10.3390/met11020255 – volume: 75 start-page: 327 year: 2020 ident: ref_159 article-title: Heat treatment response of selectively laser melted AlSi10Mg publication-title: J. Heat Treat. Mater. contributor: fullname: Kleiner – volume: 119 start-page: 160 year: 2019 ident: ref_181 article-title: Fatigue properties of AlSi10Mg produced by additive manufacturing publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2018.09.029 contributor: fullname: Ngnekon – ident: ref_191 doi: 10.3390/ma12010073 – volume: 163 start-page: 110225 year: 2020 ident: ref_56 article-title: Classifying shape on internal pores within AlSi10Mg alloy manufactured by laser powder bed fusion using 3d X-Ray microcomputed tomography: Influence of process parameters and heat treatment publication-title: Mater. Charact. doi: 10.1016/j.matchar.2020.110225 contributor: fullname: Hastie – volume: 744 start-page: 357 year: 2018 ident: ref_230 article-title: Role of martensite decomposition in tensile properties of selective laser melted Ti-6Al-4V publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.02.111 contributor: fullname: Cao – volume: 266 start-page: 012009 year: 2017 ident: ref_286 article-title: Microstructural and mechanical properties of selective laser melted Ti6Al4V alloy publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/266/1/012009 – volume: 695 start-page: 3402 year: 2017 ident: ref_155 article-title: Low temperature annealing dedicated to AlSi10Mg selective laser melting products publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.12.019 contributor: fullname: Fiocchi – volume: 96 start-page: 144 year: 2019 ident: ref_279 article-title: The influence of temperature during water-quench rapid heat treatment on the microstructure, mechanical properties and biocompatibility of Ti-6Al-4V ELI alloy publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2019.04.024 contributor: fullname: Chafino – volume: 259 start-page: 1 year: 2018 ident: ref_198 article-title: A comparative study on corrosion and microstructure of direct laser sintered AlSi10Mg_200C and die cast A360.1 aluminium publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2018.04.013 contributor: fullname: Fathi – volume: 503 start-page: 122 year: 2010 ident: ref_210 article-title: Production and corrosion behaviours of the Al-12Si-XMg alloys containing in situ Mg2Si particles publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.04.214 contributor: fullname: Ahlatci – volume: 9 start-page: 373 year: 2015 ident: ref_265 article-title: Specific heat treatment of selective laser melted Ti-6Al-4V for biomedical applications publication-title: Front. Mater. Sci. doi: 10.1007/s11706-015-0315-7 contributor: fullname: Huang – volume: 107 start-page: 1163 year: 2020 ident: ref_23 article-title: Review on direct metal laser deposition manufacturing technology for Ti6Al4V alloy publication-title: J. Adv. Manuf. Tachnol. doi: 10.1007/s00170-019-04851-3 contributor: fullname: Sibisi – volume: 764 start-page: 138210 year: 2019 ident: ref_179 article-title: Damage mechanisms in selective laser melted AlSi10Mg under as built and different post-process conditions publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138210 contributor: fullname: Zhao – ident: ref_257 doi: 10.3390/cryst11070796 – volume: 202 start-page: 109550 year: 2021 ident: ref_161 article-title: Residual stresses in additively manufactured AlSi10Mg: Raman spectroscopy and X-Ray diffraction analysis publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109550 contributor: fullname: Marola – volume: 62 start-page: 885 year: 2018 ident: ref_174 article-title: Selective laser melting of Alsi10Mg alloy: Influence of Heat Treatment Condition on Mechanical Properties and Microstructure publication-title: Weld World doi: 10.1007/s40194-018-0592-8 contributor: fullname: Iturrioz – volume: 30 start-page: 515 year: 2017 ident: ref_94 article-title: Defect formation mechanisms in selective laser melting: A review publication-title: Chin. J. Mech. Eng. doi: 10.1007/s10033-017-0121-5 contributor: fullname: Zhang – ident: ref_249 – ident: ref_46 doi: 10.1007/978-3-319-55128-9 – ident: ref_203 – ident: ref_74 – volume: 831 start-page: 154822 year: 2020 ident: ref_143 article-title: A comparative study of the effects of thermal treatments on AlSi10Mg produced by laser powder bed fusion publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154822 contributor: fullname: Padovano – volume: 104 start-page: 103673 year: 2020 ident: ref_66 article-title: Rationally designed functionally graded porous Ti6Al4V scaffolds with high strength and toughness built via selective laser melting for load-bearing orthopedic applications publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2020.103673 contributor: fullname: Xiong – volume: 58 start-page: 3303 year: 2010 ident: ref_247 article-title: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.02.004 contributor: fullname: Thijs – ident: ref_152 doi: 10.3390/met9121337 – ident: ref_326 doi: 10.3390/met11101628 – volume: 160 start-page: 350 year: 2018 ident: ref_327 article-title: A microstructure sensitive model for deformation of Ti-6Al-4V describing cast-and-wrought and additive manufacturing morphologies publication-title: Materials Des. contributor: fullname: Mumtaz – volume: 746 start-page: 416 year: 2019 ident: ref_132 article-title: A comparative study on single-laser and multi-laser selective laser melting AlSi10Mg: Defects, Microstructure and Mechanical Properties publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.01.024 contributor: fullname: Zhang – ident: ref_95 doi: 10.3390/ma13102248 – volume: 819 start-page: 141486 year: 2021 ident: ref_157 article-title: Influence of heat treatment on the high-cycle fatigue properties and fatigue damage mechanism of selective laser melted AlSi10Mg alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2021.141486 contributor: fullname: Baek – volume: 113 start-page: 104123 year: 2021 ident: ref_67 article-title: Selective laser melting of Ti6Al4V sub-millimetric cellular structures: Prediction of Dimensional Deviations and Mechanical Performance publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2020.104123 contributor: fullname: Bartolomeu – volume: 21 start-page: 2559 year: 2011 ident: ref_208 article-title: Corrosion mechanism associated with Mg2Si and Si particles in Al-Si-Mg alloys publication-title: Trans. Nonferrous Mater. Soc. China doi: 10.1016/S1003-6326(11)61092-3 contributor: fullname: Zeng – volume: 61 start-page: 760 year: 2009 ident: ref_262 article-title: Sub-micrometer synchrotron tomography of multiphase metals using Kirkpatrick-baez optics publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2009.06.025 contributor: fullname: Requena – volume: 740–741 start-page: 148 year: 2019 ident: ref_145 article-title: Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.10.083 contributor: fullname: Xiong – volume: 11 start-page: 6423 year: 2021 ident: ref_139 article-title: Unravelling the multi-scale structure-property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg publication-title: Sci. Rep. doi: 10.1038/s41598-021-85047-2 contributor: fullname: Samaee – volume: 704 start-page: 218 year: 2017 ident: ref_133 article-title: Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.08.029 contributor: fullname: Takata – volume: 70 start-page: 832 year: 2017 ident: ref_338 article-title: Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser for implantation in vivo publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.07.045 contributor: fullname: Zhao – volume: 41 start-page: 775 year: 2016 ident: ref_329 article-title: Additive manufacturing and post processing of Ti-6Al-4V for superior mechanical properties publication-title: MRS Bull. doi: 10.1557/mrs.2016.215 contributor: fullname: Qian – volume: 849 start-page: 156300 year: 2020 ident: ref_54 article-title: Laser powder bed fusion of AlSi10Mg: Influence of Energy Intensities on Spatter and Porosity Evolution, Microstructure and Mechanical Properties publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.156300 contributor: fullname: Yang – volume: 3 start-page: 1616 year: 2017 ident: ref_278 article-title: Surface finish has a critical influence of biofilm formation and mammalian cell attachment to additively manufactured prosthetics publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.7b00336 contributor: fullname: Cox – ident: ref_228 doi: 10.3390/ma14092278 – volume: 126 start-page: 104974 year: 2022 ident: ref_3 article-title: Mechanical behavior of Ti6Al4V produced by laser bed fusion with engineered open porosity for dental applications publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2021.104974 contributor: fullname: Vanmuster – volume: 210 start-page: 1624 year: 2010 ident: ref_92 article-title: Single track formation in selective laser melting of metal powders publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2010.05.010 contributor: fullname: Yadroitsev – volume: 46 start-page: 145 year: 2020 ident: ref_170 article-title: Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.01.037 contributor: fullname: Ji – volume: 43 start-page: 101998 year: 2021 ident: ref_190 article-title: Plasticity and fracture of cast and SLM AlSi10Mg: High-throughput Testing and Modelling publication-title: Add. Manuf. contributor: fullname: Roth – volume: 35 start-page: 735 year: 2014 ident: ref_12 article-title: Phase-diagram: The Beginning of Wisdom publication-title: J. Phase Equilibria Diff. doi: 10.1007/s11669-014-0343-5 – volume: 164 start-page: C27 year: 2017 ident: ref_197 article-title: Local corrosion behavior of additive manufactured AlSiMg alloy assessed by SEM and SKPFM publication-title: J. Electrochem. Soc. doi: 10.1149/2.0461702jes contributor: fullname: Revilla – volume: 84 start-page: 153 year: 2019 ident: ref_232 article-title: Effect of build geometry on the β-grains structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting publication-title: Mater. Charct. doi: 10.1016/j.matchar.2013.07.012 contributor: fullname: Antonysamy – ident: ref_330 doi: 10.3390/designs3020021 – ident: ref_128 doi: 10.3390/ma9120975 – volume: 647 start-page: 34 year: 2015 ident: ref_72 article-title: Thermomechanical response of 3D laser-deposited Ti6Al4V ally over a wide range of strain rates and temperatures publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.08.043 contributor: fullname: Li – ident: ref_108 doi: 10.3390/jmmp3010016 – volume: 62 start-page: 724 year: 2011 ident: ref_255 article-title: Lattice variations of Ti-6Al-4V alloy with hydrogen content publication-title: Mater. Charact. doi: 10.1016/j.matchar.2011.04.019 contributor: fullname: Zhu – volume: 146 start-page: 101 year: 2018 ident: ref_261 article-title: Martensitic transformation in Ti-6Al-4V (ELI) alloy manufactured by 3D printing publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.09.042 contributor: fullname: Katantseva – volume: 736 start-page: 288 year: 2018 ident: ref_64 article-title: Effect of heat treatment on the microstructure and mechanical properties of Ti6Al4V gradient structures manufactured by selective laser melting publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.08.084 contributor: fullname: Zhang – volume: 92 start-page: 112 year: 2018 ident: ref_237 article-title: Additive manufacturing of metallic components-process, structure and properties publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2017.10.001 contributor: fullname: DebRoy – volume: 799 start-page: 140367 year: 2021 ident: ref_287 article-title: Realizing superior ductility of selective laser melted Ti-6Al-4V through a multi-step heat treatment publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.140367 contributor: fullname: Li – ident: ref_243 doi: 10.1016/B978-0-08-096532-1.00202-8 – ident: ref_50 doi: 10.3390/app9030583 – volume: 279 start-page: 116555 year: 2020 ident: ref_115 article-title: Argon-helium mixtures as laser-powder bed fusion atmospheres: Towards Increased Build Rate of Ti-6Al-4V publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2019.116555 contributor: fullname: Pauzon – volume: 509 start-page: 2723 year: 2011 ident: ref_308 article-title: Thermal expansion and lattice parameters of shaped metal deposited Ti-6Al-4V publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.12.014 contributor: fullname: Swarnakar – volume: 2 start-page: 20 year: 2009 ident: ref_20 article-title: Microstructure and mechanical properties of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2008.05.004 contributor: fullname: Murr – volume: 11 start-page: 142 year: 2020 ident: ref_328 article-title: Grain structure control during metal 3D printing by high-intensity ultrasound publication-title: Nat. Commun. doi: 10.1038/s41467-019-13874-z contributor: fullname: Todaro – volume: 30 start-page: 4981 year: 2021 ident: ref_14 article-title: Effect of the distance from BP and post-heat treatment of AlSi10Mg manufactured by single- and multi-laser selective laser melting publication-title: JMEP doi: 10.1007/s11665-021-05577-8 contributor: fullname: Cerri – volume: 673 start-page: 185 year: 2016 ident: ref_274 article-title: Beta heat treatment of laser melting deposited high strength near β titanium alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.07.027 contributor: fullname: Liu – ident: ref_114 doi: 10.3390/met10030341 – volume: 26 start-page: 328 year: 1991 ident: ref_332 article-title: Tensile and fatigue strength of hydrogen-treated Ti6Al4V alloy publication-title: J. Mater. Sci. doi: 10.1007/BF00576523 contributor: fullname: Kohn – volume: 23 start-page: 2100611 year: 2021 ident: ref_295 article-title: Effects of build orientation on mechanical performance of laser powder bed fusion additively manufactured Ti6Al4V under different loadings publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202100611 contributor: fullname: Sun – volume: 25 start-page: 347 year: 2019 ident: ref_70 article-title: Prediction of lack of fusion porosity in selective laser melting based on MP monitoring data publication-title: Add. Manuf. contributor: fullname: Coeck – volume: 798 start-page: 140109 year: 2020 ident: ref_177 article-title: Heterogeneous microstructure and voids dependence of tensile deformation in a selective laser melted AlSi10Mg alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.140109 contributor: fullname: Ben – volume: 1 start-page: 255 year: 2019 ident: ref_11 article-title: Microstructural and small-scale characterization of additive manufactured AlSi10Mg alloy publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-0270-5 contributor: fullname: Alghamdi – volume: 23 start-page: 108 year: 2018 ident: ref_182 article-title: Strengthening mechanisms in direct metal laser sintered AlSi10Mg: Comparison between Virgin and Recycled Powders publication-title: Add. Manuf. contributor: fullname: Hadadzadeh – ident: ref_173 doi: 10.3390/ma13112487 – volume: 22 start-page: 1 year: 2018 ident: ref_162 article-title: Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation publication-title: Addit. Manuf. contributor: fullname: Bartlett – ident: ref_49 doi: 10.3390/jmmp3010021 – ident: ref_318 – ident: ref_111 doi: 10.3390/met11111671 – volume: 39 start-page: 101896 year: 2021 ident: ref_55 article-title: Influence of storage conditions and reconditioning of AlSi10Mg powder on the quality of parts produced by laser powder bed fusion (LPBF) publication-title: Add. Manuf. contributor: fullname: Riener – volume: 747 start-page: 648 year: 2018 ident: ref_207 article-title: Distinction of corrosion resistance of selective laser melted Al-12Si alloy on different planes publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.03.062 contributor: fullname: Chen – volume: 225 start-page: 122 year: 2015 ident: ref_113 article-title: Investigation of the powder laser-atmosphere interaction zone during the selective laser melting process publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.05.008 contributor: fullname: Masmoudi – ident: ref_17 doi: 10.31399/asm.tb.ttg2.9781627082693 – volume: 208 start-page: 109907 year: 2021 ident: ref_336 article-title: Corrosion behavior and characteristics of passive films of laser powder bed fusion produced Ti-6AlV in dynamic Hank’s solution publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109907 contributor: fullname: Chen – volume: 69 start-page: 1299 year: 2013 ident: ref_297 article-title: A comparison of the tensile, fatigue, and fracture behavior of Ti-6Al-4V and 15-5PH stainless steel parts made by selective laser melting publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-013-5106-7 contributor: fullname: Rafi – volume: 162 start-page: 239 year: 2019 ident: ref_305 article-title: Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.09.064 contributor: fullname: Sabban – ident: ref_6 – volume: 143 start-page: 5 year: 2018 ident: ref_147 article-title: Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.04.022 contributor: fullname: Zhou – volume: 1 start-page: 26 year: 1995 ident: ref_89 article-title: Direct selective laser sintering of metals publication-title: Rapid Prototyp. J. doi: 10.1108/13552549510078113 contributor: fullname: Agarwala – ident: ref_167 doi: 10.3390/technologies8030048 – volume: 12 start-page: 52 year: 2019 ident: ref_123 article-title: A model for prediction the temperature field during selective laser melting publication-title: Results Phys. doi: 10.1016/j.rinp.2018.11.031 contributor: fullname: Du – volume: 210 start-page: 2215 year: 2010 ident: ref_122 article-title: Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy publication-title: J. Mater. Process. Techonol. doi: 10.1016/j.jmatprotec.2010.08.007 contributor: fullname: Yang – ident: ref_138 doi: 10.3390/met8110954 – volume: 125 start-page: 106017 year: 2020 ident: ref_342 article-title: Ultra-fine bimodal (α + β) microstructure induced mechanical strength and corrosion resistance of Ti-6Al-4V alloy produced via laser powder bed fusion process publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.106017 contributor: fullname: Pazhanivel – volume: 33 start-page: 241 year: 2018 ident: ref_34 article-title: 3D metal printing technology: The Need to Re-invent Design Practice publication-title: AI Soc. doi: 10.1007/s00146-018-0809-9 contributor: fullname: Duda – volume: 321 start-page: 12014 year: 2020 ident: ref_291 article-title: Effect of microstructure on Ti3Al precipitation during ageing of Ti-6Al-4V alloy publication-title: MATEC Conf. doi: 10.1051/matecconf/202032112014 contributor: fullname: Callegari – volume: 794 start-page: 139932 year: 2020 ident: ref_183 article-title: Microstructural evolution and strengthening mechanism of an Al-Si-Mg alloy processed by high-pressure torsion with different heat treatments publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139932 contributor: fullname: Zhang – volume: 28 start-page: 30 year: 2021 ident: ref_39 article-title: Comparison of powder bed fusion and direct energy deposition for tailoring mechanical properties of traditionally brittle alloys publication-title: Manuf. Lett. doi: 10.1016/j.mfglet.2021.02.003 contributor: fullname: Babuska – ident: ref_333 doi: 10.3390/met10081058 – volume: 14 start-page: 62 year: 2009 ident: ref_4 article-title: Analysis of greenhouse gas emissions related to aluminium transport applications publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-008-0058-0 contributor: fullname: Bertam – volume: 112 start-page: 357 year: 2016 ident: ref_98 article-title: Reducing lack of fusion during selective laser melting of CoCrMo alloy. Effect of laser power on geometrical features of tracks publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.09.086 contributor: fullname: Darvish – volume: 243 start-page: 32 year: 1998 ident: ref_292 article-title: Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(97)00778-8 – volume: 111 start-page: 51 year: 2019 ident: ref_127 article-title: Impact of build envelope on the properties of additive manufactured parts from AlSi10Mg publication-title: Opt. Laser. Technol. doi: 10.1016/j.optlastec.2018.08.050 contributor: fullname: Fiegl – volume: 150 start-page: 369 year: 2018 ident: ref_100 article-title: Heat and fluid flow in additive manufacturing—Part II: Powder Bed Fusion of Stainless Steel, and Titanium, Nickel and Aluminium Base Alloys publication-title: Compt. Mater. Sci. doi: 10.1016/j.commatsci.2018.04.027 contributor: fullname: Mukherejee – volume: 57 start-page: 69 year: 2016 ident: ref_21 article-title: Safety and efficacy of additive and subtractive surface modification of Ti6Al4V endossesous implant in goat bone publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.11.019 contributor: fullname: Mistry – ident: ref_9 doi: 10.3390/ma14174901 – ident: ref_199 doi: 10.3390/met6070148 – volume: 39 start-page: 439 year: 2012 ident: ref_10 article-title: Mechanical properties of ALSi10Mg produced by selective laser melting publication-title: Phys. Procedia doi: 10.1016/j.phpro.2012.10.059 contributor: fullname: Kempen – volume: 28 start-page: 87 year: 2022 ident: ref_36 article-title: Additive manufacturing a powerful tool for the aerospace industry publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-01-2021-0009 contributor: fullname: Khorasani – volume: 45 start-page: 2863 year: 2014 ident: ref_218 article-title: On the texture formation of the selective laser melted Ti-6Al-4V publication-title: Metall. Mater. Trans. doi: 10.1007/s11661-014-2218-0 contributor: fullname: Simonelli – ident: ref_280 – volume: 53 start-page: 634 year: 2014 ident: ref_16 article-title: Effect of Si content on microstructure and mechanical properties of Al-Si-Mg alloys publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.07.067 contributor: fullname: Wang – ident: ref_195 doi: 10.3390/ma11071051 – volume: 126 start-page: 643 year: 2020 ident: ref_144 article-title: Research on deposited tracks and microstructure of AlSi10Mg alloy produced by selective laser melting publication-title: Appl. Phys. A doi: 10.1007/s00339-020-03826-6 contributor: fullname: Dong – volume: 206 start-page: 346 year: 2016 ident: ref_194 article-title: Effect of heat treatment on corrosion resistance of DMLS AlSi10Mg alloy publication-title: Electrochem. Acta. doi: 10.1016/j.electacta.2016.04.157 contributor: fullname: Cabrini – ident: ref_90 – volume: 33 start-page: 536 year: 2016 ident: ref_5 article-title: High-temperature application of titanium alloys in gas turbine. Material life cycle opportunities and threats—An industrial perspective publication-title: Mater. High Temp. doi: 10.1080/09603409.2016.1184423 contributor: fullname: Rugg – volume: 122 start-page: 122 year: 2016 ident: ref_78 article-title: Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy publication-title: Appl. Phys. A doi: 10.1007/s00339-016-0428-6 contributor: fullname: Yu – volume: 531 start-page: 98 year: 2012 ident: ref_275 article-title: Influence of ageing temperature and heating rate on the properties and microstructure β Ti alloys, Ti-6Cr-5Mo-4Al publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2011.10.040 contributor: fullname: Kent – volume: 2 start-page: 72 year: 2015 ident: ref_301 article-title: Fatigue performance of laser additive manufactured TI-6Al-4V in very high cycle fatigue regime up to 109 cycles publication-title: Front. Mater. doi: 10.3389/fmats.2015.00072 contributor: fullname: Wycisk – ident: ref_35 – volume: 171 start-page: 110769 year: 2021 ident: ref_172 article-title: Effect of T6 heat treatment on the surface tribological and corrosion properties of AlSi10Mg samples produced by selective laser melting publication-title: Mater. Charact. doi: 10.1016/j.matchar.2020.110769 contributor: fullname: Wei – volume: 27 start-page: 255 year: 2006 ident: ref_293 article-title: Reassessment of the binary aluminium-titanium phase diagram publication-title: J. Phase Equilibria Diffus. doi: 10.1361/154770306X109809 contributor: fullname: Schuster – volume: 61 start-page: 315 year: 2016 ident: ref_44 article-title: The metallurgy and processing science of metal additive manufacturing publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2015.1116649 contributor: fullname: Sames – volume: 14 start-page: 39 year: 2017 ident: ref_48 article-title: Prediction of a lack-of-fusion porosity for powder bed fusion publication-title: Add. Manuf. contributor: fullname: Tang – volume: 279 start-page: 289 year: 2020 ident: ref_24 article-title: Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti-6Al-4V publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(99)00173-2 contributor: fullname: Seshacharyulu – volume: Volume 4 start-page: 46 year: 2016 ident: ref_45 article-title: Additive manufacturing of metals using powder-based technology publication-title: Additive Manufacturing contributor: fullname: Bandyopadhyay – volume: 814 start-page: 141237 year: 2021 ident: ref_270 article-title: Material modelling of Ti-6Al-4V processed by laser powder bed fusion for application in macro-scale process simulation publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2021.141237 contributor: fullname: Bartsch – volume: 685 start-page: 417 year: 2017 ident: ref_30 article-title: Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM) publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.01.019 contributor: fullname: Gallaraga – volume: 141 start-page: 45 year: 2017 ident: ref_186 article-title: Strength and strain hardening of selective laser melted AlSi10Mg alloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.07.025 contributor: fullname: Chen – volume: 3 start-page: 2979 year: 1972 ident: ref_250 article-title: The influence of oxygen concentration internal stress and dislocations arrangements in α titanium publication-title: Metall. Mater. Trans. B doi: 10.1007/BF02652870 contributor: fullname: Williams – volume: 10 start-page: 47 year: 2016 ident: ref_311 article-title: Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM) publication-title: Add. Manuf. contributor: fullname: Gallaraga – volume: 34 start-page: 523 year: 2003 ident: ref_151 article-title: Precipitation of aluminium in the silicon phase contained in W319 and A356 aluminium alloys publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-003-0088-y contributor: fullname: Dolon – volume: 37 start-page: 53 year: 2016 ident: ref_281 article-title: Theoretical assessment on the phase transformation kinetic pathways of multi-component Ti alloys: Application to Ti-6Al-4V publication-title: J. Phase Equilibria Diffus. doi: 10.1007/s11669-015-0436-9 contributor: fullname: Ji – volume: 2011 start-page: 924032 year: 2011 ident: ref_263 article-title: α″ martensitic twinning in α + β Ti-3.5Al-4.5Mo titanium alloy publication-title: J. Metall. doi: 10.1155/2011/924032 contributor: fullname: Li – volume: 154 start-page: 275 year: 2018 ident: ref_13 article-title: Effect of heat treatment on the microstructure and anisotropy in mechanical properties of A357 alloy produced by selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.05.026 contributor: fullname: Yang – volume: 192 start-page: 108708 year: 2020 ident: ref_61 article-title: The effect of manufacturing defects of the fatigue life of selective laser melted Ti-6Al-4V structures publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108708 contributor: fullname: Hu – volume: 788 start-page: 139445 year: 2020 ident: ref_80 article-title: Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139445 contributor: fullname: Maconachie – volume: 768 start-page: 138456 year: 2019 ident: ref_296 article-title: Deformation and failure mechanisms of Ti-6Al-4V as built by selective laser melting publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138456 contributor: fullname: Moridi – volume: 163 start-page: 110238 year: 2020 ident: ref_217 article-title: Effect of energy density on the microstructure and texture evolution of Ti-6Al-4V manufactured by laser powder bed fusion publication-title: Mater. Charact. doi: 10.1016/j.matchar.2020.110238 contributor: fullname: Potenza – volume: 66 start-page: 1247 year: 2013 ident: ref_86 article-title: A new approach to the design and optimization of support structures in additive manufacturing publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-012-4403-x contributor: fullname: Strano – volume: 48 start-page: 875 year: 2000 ident: ref_317 article-title: Instability mechanisms in lamellar microstructures publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00378-X contributor: fullname: Sharma – volume: 165 start-page: C926 year: 2018 ident: ref_204 article-title: Influence of Si content on the microstructure and corrosion behavior of additive manufactured Al-Si alloys publication-title: J. Electrochem. Soc. doi: 10.1149/2.0101814jes contributor: fullname: Revilla – volume: 53 start-page: 195 year: 2004 ident: ref_77 article-title: Residual stress within metallic model made by selective laser melting process publication-title: CIRP Ann. doi: 10.1016/S0007-8506(07)60677-5 contributor: fullname: Shiomi – ident: ref_96 doi: 10.3390/ma13051226 – volume: 117 start-page: 163 year: 2018 ident: ref_106 article-title: Influence of defects, surface roughness and HIP on fatigue strength of Ti-6Al-4V manufactured by additive manufacturing publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2018.07.020 contributor: fullname: Masuo – volume: 207 start-page: 114261 year: 2022 ident: ref_313 article-title: Grain boundary α-phase precipitation and coarsening: Comparing Laser Powder Bed Fusion with As-cast Ti-6Al-4V publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2021.114261 contributor: fullname: Liu – volume: 85 start-page: 74 year: 2015 ident: ref_221 article-title: Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.11.028 contributor: fullname: Xu – volume: 202 start-page: 138 year: 2017 ident: ref_264 article-title: The clarification of the α″ phase precipitate from β phase in Ti-15Mn alloy by mismatch theory publication-title: Mater. Letter. doi: 10.1016/j.matlet.2017.05.032 contributor: fullname: Zhang – ident: ref_18 doi: 10.1007/978-3-642-40246-3_45 – ident: ref_125 doi: 10.1201/9781315119106-15 – volume: 36 start-page: 101494 year: 2020 ident: ref_302 article-title: Productivity optimization of laser powder bed fusion by hot isostatic pressing publication-title: Add. Manuf. contributor: fullname: Hergoz – volume: 257 start-page: 126690 year: 2019 ident: ref_299 article-title: Hot isostatic pressing (HIP) to achieve isotropic microstructure and retain as-built strength in an additive manufacturing titanium alloy (Ti-6Al-4V) publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.126690 contributor: fullname: Benzing – ident: ref_101 doi: 10.3390/met10030368 – ident: ref_69 doi: 10.3390/technologies7010005 – ident: ref_192 – ident: ref_238 doi: 10.3390/app7090883 – ident: ref_224 doi: 10.3390/met11040534 – volume: 86 start-page: 545 year: 2015 ident: ref_103 article-title: Influence of defects on mechanical properties if Ti-6Al-4V components produced by selective laser melting and electron beam melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.07.147 contributor: fullname: Gong – volume: 109 start-page: 608 year: 2019 ident: ref_298 article-title: Fracture mechanisms in the as-built and stress-relieved laser powder bed fusion Ti-6Al-4V ELI alloy publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2018.08.042 contributor: fullname: Vilardell – volume: 146 start-page: 187 year: 2018 ident: ref_306 article-title: Achieving superior ductility for laser solid formed extra low interstitial Ti-6Al-4V titanium alloy through equiaxial alpha microstructure publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2017.11.021 contributor: fullname: Zhao – volume: 19 start-page: 857 year: 1996 ident: ref_187 article-title: Sixty years dislocations publication-title: Bull. Mater. Sci. doi: 10.1007/BF02744623 contributor: fullname: Rodriguez – ident: ref_252 doi: 10.3390/met8050301 – volume: 76 start-page: 252 year: 2014 ident: ref_82 article-title: Processing window and evaporation phenomena for Ti-6Al-4V produced by selective electron beam melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.05.037 contributor: fullname: Jucther – volume: 28 start-page: 107 year: 2019 ident: ref_196 article-title: Microstructure and early stage corrosion performance of heat treated direct metal laser sintered AlSi10Mg publication-title: Add. Manuf. contributor: fullname: Rafieazad – volume: 816–817 start-page: 134 year: 2013 ident: ref_57 article-title: High cycle fatigue (HCF) performance of Ti-6Al-4V alloy processed by selective laser melting publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.816-817.134 contributor: fullname: Wycisk – volume: 10 start-page: 1987 year: 2019 ident: ref_84 article-title: Dynamics of pore formation during laser powder bed fusion additive manufacturing publication-title: Nat. Commun. doi: 10.1038/s41467-019-10009-2 contributor: fullname: Martin – ident: ref_267 doi: 10.1007/978-3-030-05861-6_36 – volume: 41 start-page: 199 year: 2020 ident: ref_149 article-title: Co MParative study of performance co MParision of AlSi10Mg alloy prepared by selective laser melting and casting publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.08.049 contributor: fullname: Yan – volume: 895 start-page: 162618 year: 2021 ident: ref_285 article-title: Heat treatment of Ti-6Al-4V alloy manufactured by laser-based powder-bed fusion: Process, Microstructures, and Mechanical Properties Correlations publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.162618 contributor: fullname: Etesami – volume: 102 start-page: 484 year: 2016 ident: ref_340 article-title: Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution publication-title: Corros. Soc. doi: 10.1016/j.corsci.2015.10.041 contributor: fullname: Dai – volume: 164 start-page: C428 year: 2017 ident: ref_339 article-title: Heat treatment degrading the corrosion resistance of selective laser melted Ti-6Al-4V alloy publication-title: J. Electrochem. Cos. doi: 10.1149/2.1481707jes contributor: fullname: Dai – volume: 252 start-page: 202 year: 2018 ident: ref_271 article-title: Correlation between microstructure and mechanical properties under tensile and compression test heat-treated Ti-6Al-4V ELI alloy produced by AM for biomedical application publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2017.09.022 contributor: fullname: Longhitano – volume: 189 start-page: 108481 year: 2020 ident: ref_322 article-title: Revealing relationships between porosity, microstructure and mechanical properties of laser powder bed fusion 316L stainless steel through heat treatment publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108481 contributor: fullname: Ronnenberg – volume: 22 start-page: 1901436 year: 2020 ident: ref_273 article-title: Precipitation of secondary phase transformation behavior of a solution-treated Ti-6Al-4V alloy during high-temperature aging publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201901436 contributor: fullname: Lin – volume: 131 start-page: 188 year: 2017 ident: ref_200 article-title: Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by selective laser melting (SLM) publication-title: Mater. Charact. doi: 10.1016/j.matchar.2017.06.029 contributor: fullname: Leon – volume: 7 start-page: 750 year: 2005 ident: ref_47 article-title: Statistical analysis of experimental parameters in selective laser sintering publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200500030 contributor: fullname: Kruth – volume: 134 start-page: 283 year: 2017 ident: ref_316 article-title: Orientation dependent spheroidization response and macro-zone formation during sub β-transus processing of Ti-6Al-4V alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.04.071 contributor: fullname: Roy – ident: ref_37 doi: 10.1108/RPJ-06-2021-0130 – volume: 6 start-page: 627 year: 2018 ident: ref_324 article-title: High ductility in a fully martensitic microstructure: A Paradox in a Ti alloy Produced by Selective Laser Melting publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2018.1525773 contributor: fullname: Zafari – volume: 52 start-page: 2484 year: 2021 ident: ref_156 article-title: Role of direct aging and solution hea treatment on hardness, microstructure and residual stress of the A357 (AlSi17Mg0.6) alloy produced by powder bed fusion publication-title: Metall. Mater. Trans. doi: 10.1007/s11663-021-02179-6 contributor: fullname: Tonelli – volume: 68 start-page: 1387 year: 2021 ident: ref_246 article-title: Influence of substructures on the selective laser melted Ti-6Al-4V alloy as a function of laser re-melting publication-title: J. Mater. Process. Mater. contributor: fullname: Karimi – volume: 231 start-page: 326 year: 2016 ident: ref_193 article-title: Evaluation of corrosion resistance of Al-Si10Mg alloy obtained by means of direct metal laser sintering publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.12.033 contributor: fullname: Cabrini – ident: ref_2 doi: 10.3390/met10060705 – volume: 672 start-page: 643 year: 2016 ident: ref_233 article-title: Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatment publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.02.183 contributor: fullname: Wu |
SSID | ssj0000331829 |
Score | 2.5002508 |
SecondaryResourceType | review_article |
Snippet | Laser powder bed fusion (L-PBF) is an additive manufacturing technology that is gaining increasing interest in aerospace, automotive and biomedical... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 2047 |
SubjectTerms | Additive manufacturing Aging (artificial) Alloy powders Alloys AlSi10Mg Aluminum base alloys Biomedical materials Cooling Corrosion resistance Fracture mechanics Geometry Heat treatment heat treatments Hot isostatic pressing laser powder bed fusion Lasers Lightweight Manufacturing Mechanical properties Metal fatigue Microstructure Optimization Powder beds Precipitation hardening Process heat Process parameters Raw materials Review Tensile strength Ti6Al4V Titanium base alloys |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQnuABbcBY2JiM2Gu01N_mLUOrKrQiJDq0t8iOna1SSaa13cQrfzlnuy0pmrQXnqLEp-TiO5_vfOefEToZEFML50juGFc5C2v4moMuW2ZCHs5YG-Gaxl_F6JJ9ueJXvaO-Qk1YggdOHXda68KAcaDg9lLWDGpFNCvglmplwb6naL3QvWAq2mAKukp0wiOlENef_jQBS48U4RyV3gwUgfof8y7_LZLszTrDXfRy5S7iMrG5h5759hV60QMRfI1-l87FAiA8Nu0ybFSIOw9x1-By9n06KMbX2LQOT6ainLEf-CKE4w9xRRQIZt2vOb6fGnwB09kd_tY9OLiceYeHy7CQ9gmXOOUPwgtHYLnxZF2bPscJ-3j-Bl0OzyefR_nqZIW8ZpIscuGVcY0S3DFpJbHGacU5ccE5YI0RxhPvVD3wQnleWGIsxGXGewrhn3CG0n2003atP0BYJpdK6rp2IOrCSC-tFpwxT2xjZYY-rnu7uk0AGhUEHkEm1V-ZZOgsCGJDEUCv4wNQhWqlCtVTqpCho7UYq9VInFfAHVilcLB7hj5smmEMhcSIaX23jDQsJKQKoHmbpL7hhHIKn9EiQ3JLH7ZY3W5ppzcRp1tpMHBEv_sf_3aInpOw8SJWEh6hncXd0r8Hd2hhj6Pm_wFxvgiP priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLegu8AB8U1gICO4RnNtx4m5oBStqtA6TdCh3SI7drZKJRlNy8SVv5z3nLRrEeIUJX5KrLxnv0__HiHvh9yUyjkeO5lkscQYvk5Alq00mIcz1ga4pumpmpzLzxfJRR9wa_uyys2eGDZq15QYIz8CxQ3ShQ26P17_iLFrFGZX-xYad8kBB0-BDcjB6Pj07Ms2ysIEyCzXHS6pAP_-6LtBTD3OsJ_KjiYKgP3_sjL_Lpbc0T7jh-RBbzbSvOPzI3LH14_J_R0wwSfkd-5cKASiU1Ov8cBCOIFIm4rmi6_zIZteUlM7OpurfCG_0RN0y29CZBQIFs2vlv6cG3oCam1Jz5obB5eRd3S8xoDaB5rTLo-AL5zADk5nmxr1lnYYyO1Tcj4-nn2axH2HhbiUKV_FymfGVZlKnExtyq1xOksS7tBIkJVRxnPvsnLoVeYTZrmx4J8Z7wW4gcoZIZ6RQd3U_gWhaWdapbosHbCcmdSnVqtESs9tZdOIvNv87eK6A9IowAFBnhS3PInICBmxpUDw6_CgWV4W_VoqSs0M6AsBnpCQ1bAEBksGt0JnFlQ-i8jhho1FvyLb4lZ-IvJ2OwxrCRMkpvbNOtBITEwxoHnecX07E5EI-IxWEUn35GFvqvsj9fwq4HVnGjY6rl_-f1qvyD2ORytCreAhGayWa_8aDJ6VfdNL9R9JUwFR priority: 102 providerName: ProQuest |
Title | Additive Manufacturing of AlSi10Mg and Ti6Al4V Lightweight Alloys via Laser Powder Bed Fusion: A Review of Heat Treatments Effects |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35329496 https://www.proquest.com/docview/2642579082 https://www.proquest.com/docview/2644011602 https://pubmed.ncbi.nlm.nih.gov/PMC8953129 https://doaj.org/article/c90aeac374734f1c82940c37398beed0 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5swFLea7rIdpn2PtYs8bVca8Afg3UjVNJqaKtrSKTdkY9MhJVDlo9Wu-8v3bCBLpp12AQEPZPF-9nvPfu9nhD6FROaR1sTXjCc-s3P4ggOWFZN2HU4q5eiaJtfR-IZ9mfP5EeJdLYxL2s9VeVYtlmdV-cPlVt4t80GXJzaYTs4TAcghYtBDPQDoXojuhl8KMCWioSKlENIPltLS6JGA2R33KKdEMMvRv2eHHF3_v3zMv1Ml92zP6Bl62jqNOG0a9xwdmeoFerJHJfgS_Uq1dmlAeCKrrS1XcPWHuC5wuvhWhsHkFstK41kZpQv2HV_ZoPzBzYuCwKL-ucb3pcRXYNRWeFo_aDgNjcajrZ1O-4xT3Kwi2A-OYfzGsy5DfY0bBuT1K3Qzupidj_12fwU_ZzHZ-JFJpC6SiGsWq5goqUXCOdHWRWCFjKQhRid5aKLE8EARqSA6k8ZQCAIjLSl9jY6rujJvEY4bxyoWea5B4YGMTaxExBkzRBUq9tDH7m9ndw2NRgbhh1VP9kc9HhpaRewkLPW1u1GvbrMWAFkuAgnWgkIcRFkR5qBrFsAlFYkCgx946LRTY9b2x3UGrYOxyW7v7qEPu8fQk-zyiKxMvXUyzC5LBSDzptH6riUdajwUH-DhoKmHTwC8jq27Beu7_37zBD0mtubCJRGeouPNamvegye0UX3US0aXffRoeHE9_dp38wlwvJyHfdcnfgOEfA1d |
link.rule.ids | 230,315,730,783,787,867,888,2109,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,53804,53806,74363,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgHIAD4pvAACO4RnNtx4m5oAxRCrQTEh3aLbJjZ1Tqkq1pmbjyl_Oek3YtQpyixFZi5T37ff8eIW8G3JTKOR47mWSxRB--ToCXrTQYhzPWBrimyZEaHcvPJ8lJ73Br-7TK9ZkYDmrXlOgjPwDBDdyFDbrfnV_E2DUKo6t9C43r5IYUIKuxUnz4ceNjYQI4lusOlVSAdX9wZhBRjzPsprIlhwJc_790zL9TJbdkz_AuudMrjTTvqHyPXPP1fXJ7C0rwAfmdOxfSgOjE1CssVwj1h7SpaD7_NhuwySk1taPTmcrn8jsdo1F-GfyiMGHe_Grpz5mhYxBqC_q1uXRwOfSODlfoTntLc9pFEfCFIzi_6XSdod7SDgG5fUiOhx-m70dx318hLmXKl7HymXFVphInU5tya5zOkoQ7VBFkZZTx3LusHHiV-YRZbixYZ8Z7AUagckaIR2Svbmr_hNC0U6xSXZYOCM5M6lOrVSKl57ayaURer_92cd7BaBRgfiBNiiuaROQQCbGZgdDX4UGzOC36nVSUmhmQFgLsICGrQQkElgxuhc4sCHwWkf01GYt-P7bFFfdE5NVmGHYShkdM7ZtVmCMxLMVgzuOO6puViETAZ7SKSLrDDztL3R2pZz8CWnem4Zjj-un_l_WS3BxNJ-Ni_OnoyzNyi2ORRcga3Cd7y8XKPwfVZ2lfBP7-AzsZAtw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELagKyE4IN4EFjCCa1TXduyYC2phqwJtVUEX7S2yY2epVJKlaVlx5ZczdtJuixCnKPEosTJjz9PfIPS6R3UurKWx5Ukacx_DVwnIsuHa5-G0MQGuaTIVo1P-8Sw5a-uf6rascrsnho3aVrmPkXdBcYN0-Qbd3aIti5i9H769-BH7DlI-09q207iOjiQXjHTQ0eBkOvu8i7gQBvJLVYNRysDX737XHl-PEt9bZU8rBfD-f1mcfxdO7mmi4R10uzUhcb_h-V10zZX30K09YMH76Hff2lAUhCe63PjDC-E0Iq4K3F9-WfTI5Bzr0uL5QvSX_Cseexf9MkRJgWBZ_arxz4XGY1BxKzyrLi1cBs7i4cYH197gPm5yCv6FI9jN8Xxbr17jBg-5foBOhyfzd6O47bYQ51zSdSxcqm2RisRyaSQ12qo0Saj1BgMvtNCOOpvmPSdSlxBDtQFfTTvHwCUUVjP2EHXKqnSPEZaNmSVVnltgP9HSSaNEwrmjpjAyQq-2fzu7aEA1MnBGPE-yK55EaOAZsaPwQNjhQbU6z9p1leWKaNAdDLwixoteDgzmBG6ZSg2ofxKh4y0bs3Z11tmVLEXo5W4Y1pVPlujSVZtAw32SigDNo4bru5mwhMFnlIiQPJCHg6kejpSLbwG7O1Ww6VH15P_TeoFugHBn4w_TT0_RTepPXIQSwmPUWa827hnYQWvzvBXwP7LJCHk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additive+Manufacturing+of+AlSi10Mg+and+Ti6Al4V+Lightweight+Alloys+via+Laser+Powder+Bed+Fusion%3A+A+Review+of+Heat+Treatments+Effects&rft.jtitle=Materials&rft.au=Ghio%2C+Emanuele&rft.au=Cerri%2C+Emanuela&rft.date=2022-03-10&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=15&rft.issue=6&rft_id=info:doi/10.3390%2Fma15062047&rft_id=info%3Apmid%2F35329496&rft.externalDBID=PMC8953129 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |