Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus
Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector competence for arboviruses still remained to be investigated. We examined the influence of two insecticide resistance mechanisms on vector competence...
Saved in:
Published in | Proceedings of the Royal Society. B, Biological sciences Vol. 286; no. 1894; p. 20182273 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society, The
16.01.2019
The Royal Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector competence for arboviruses still remained to be investigated. We examined the influence of two insecticide resistance mechanisms on vector competence of the mosquito
Culex quinquefasciatus
for two arboviruses, Rift Valley Fever virus (RVFV) and West Nile virus (WNV). Three
Cx. quinquefasciatus
lines sharing a common genetic background were used: two insecticide-resistant lines, one homozygous for amplification of the
Ester
2
locus (SA2), the other homozygous for the acetylcholinesterase
ace-1 G119S
mutation (SR) and the insecticide-susceptible reference line Slab. Statistical analyses revealed no significant effect of insecticide-resistant mechanisms on vector competence for RVFV. However, both insecticide resistance mechanisms significantly influenced the outcome of WNV infections by increasing the dissemination of WNV in the mosquito body, therefore leading to an increase in transmission efficiency by resistant mosquitoes. These results showed that insecticide resistance mechanisms enhanced vector competence for WNV and may have a significant impact on transmission dynamics of arboviruses. Our findings highlight the importance of understanding the impacts of insecticide resistance on the vectorial capacity parameters to assess the overall consequence on transmission. |
---|---|
AbstractList | Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector competence for arboviruses still remained to be investigated. We examined the influence of two insecticide resistance mechanisms on vector competence of the mosquito Culex quinquefasciatus for two arboviruses, Rift Valley Fever virus (RVFV) and West Nile virus (WNV). Three Cx. quin-quefasciatus lines sharing a common genetic background were used: two insecticide-resistant lines, one homozygous for amplification of the Ester 2 locus (SA2), the other homozygous for the acetylcholinesterase ace-1 G119S mutation (SR) and the insecticide-susceptible reference line Slab. Statistical analyses revealed no significant effect of insecticide-resistant mechanisms on vector competence for RVFV. However, both insecticide resistance mechanisms significantly influenced the outcome of WNV infections by increasing the dissemination of WNV in the mosquito body, therefore leading to an increase in transmission efficiency by resistant mosquitoes. These results showed that insecticide resistance mechanisms enhanced vector competence for WNV and may have a significant impact on transmission dynamics of arboviruses. Our findings highlight the importance of understanding the impacts of insecticide resistance on the vectorial capacity parameters to assess the overall consequence on transmission. Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector competence for arboviruses still remained to be investigated. We examined the influence of two insecticide resistance mechanisms on vector competence of the mosquito Culex quinquefasciatus for two arboviruses, Rift Valley Fever virus (RVFV) and West Nile virus (WNV). Three Cx. quinquefasciatus lines sharing a common genetic background were used: two insecticide-resistant lines, one homozygous for amplification of the Ester locus (SA2), the other homozygous for the acetylcholinesterase ace-1 G119S mutation (SR) and the insecticide-susceptible reference line Slab. Statistical analyses revealed no significant effect of insecticide-resistant mechanisms on vector competence for RVFV. However, both insecticide resistance mechanisms significantly influenced the outcome of WNV infections by increasing the dissemination of WNV in the mosquito body, therefore leading to an increase in transmission efficiency by resistant mosquitoes. These results showed that insecticide resistance mechanisms enhanced vector competence for WNV and may have a significant impact on transmission dynamics of arboviruses. Our findings highlight the importance of understanding the impacts of insecticide resistance on the vectorial capacity parameters to assess the overall consequence on transmission. Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector competence for arboviruses still remained to be investigated. We examined the influence of two insecticide resistance mechanisms on vector competence of the mosquito Culex quinquefasciatus for two arboviruses, Rift Valley Fever virus (RVFV) and West Nile virus (WNV). Three Cx. quinquefasciatus lines sharing a common genetic background were used: two insecticide-resistant lines, one homozygous for amplification of the Ester 2 locus (SA2), the other homozygous for the acetylcholinesterase ace-1 G119S mutation (SR) and the insecticide-susceptible reference line Slab. Statistical analyses revealed no significant effect of insecticide-resistant mechanisms on vector competence for RVFV. However, both insecticide resistance mechanisms significantly influenced the outcome of WNV infections by increasing the dissemination of WNV in the mosquito body, therefore leading to an increase in transmission efficiency by resistant mosquitoes. These results showed that insecticide resistance mechanisms enhanced vector competence for WNV and may have a significant impact on transmission dynamics of arboviruses. Our findings highlight the importance of understanding the impacts of insecticide resistance on the vectorial capacity parameters to assess the overall consequence on transmission. Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector competence for arboviruses still remained to be investigated. We examined the influence of two insecticide resistance mechanisms on vector competence of the mosquito Culex quinquefasciatus for two arboviruses, Rift Valley Fever virus (RVFV) and West Nile virus (WNV). Three Cx. quinquefasciatus lines sharing a common genetic background were used: two insecticide-resistant lines, one homozygous for amplification of the Ester2 locus (SA2), the other homozygous for the acetylcholinesterase ace-1 G119S mutation (SR) and the insecticide-susceptible reference line Slab. Statistical analyses revealed no significant effect of insecticide-resistant mechanisms on vector competence for RVFV. However, both insecticide resistance mechanisms significantly influenced the outcome of WNV infections by increasing the dissemination of WNV in the mosquito body, therefore leading to an increase in transmission efficiency by resistant mosquitoes. These results showed that insecticide resistance mechanisms enhanced vector competence for WNV and may have a significant impact on transmission dynamics of arboviruses. Our findings highlight the importance of understanding the impacts of insecticide resistance on the vectorial capacity parameters to assess the overall consequence on transmission.Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector competence for arboviruses still remained to be investigated. We examined the influence of two insecticide resistance mechanisms on vector competence of the mosquito Culex quinquefasciatus for two arboviruses, Rift Valley Fever virus (RVFV) and West Nile virus (WNV). Three Cx. quinquefasciatus lines sharing a common genetic background were used: two insecticide-resistant lines, one homozygous for amplification of the Ester2 locus (SA2), the other homozygous for the acetylcholinesterase ace-1 G119S mutation (SR) and the insecticide-susceptible reference line Slab. Statistical analyses revealed no significant effect of insecticide-resistant mechanisms on vector competence for RVFV. However, both insecticide resistance mechanisms significantly influenced the outcome of WNV infections by increasing the dissemination of WNV in the mosquito body, therefore leading to an increase in transmission efficiency by resistant mosquitoes. These results showed that insecticide resistance mechanisms enhanced vector competence for WNV and may have a significant impact on transmission dynamics of arboviruses. Our findings highlight the importance of understanding the impacts of insecticide resistance on the vectorial capacity parameters to assess the overall consequence on transmission. |
Author | Failloux, Anna-Bella Alout, Haoues Atyame, Célestine M. Mousson, Laurence Vazeille, Marie Weill, Mylène Diallo, Mawlouth |
AuthorAffiliation | 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France 4 Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier , Montpellier , France 3 INRA, UMR 1309 ASTRE, INRA-CIRAD , 34598 Montpellier , France 2 Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS-INSERM-IRD-Université de La Réunion , île de La Réunion , France 5 Institut Pasteur de Dakar, Unité d'Entomologie médicale , Dakar , Sénégal |
AuthorAffiliation_xml | – name: 2 Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS-INSERM-IRD-Université de La Réunion , île de La Réunion , France – name: 5 Institut Pasteur de Dakar, Unité d'Entomologie médicale , Dakar , Sénégal – name: 3 INRA, UMR 1309 ASTRE, INRA-CIRAD , 34598 Montpellier , France – name: 4 Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier , Montpellier , France – name: 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France |
Author_xml | – sequence: 1 givenname: Célestine M. orcidid: 0000-0003-0233-2239 surname: Atyame fullname: Atyame, Célestine M. organization: Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors, Paris, France, Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS-INSERM-IRD-Université de La Réunion, île de La Réunion, France – sequence: 2 givenname: Haoues surname: Alout fullname: Alout, Haoues organization: INRA, UMR 1309 ASTRE, INRA-CIRAD, 34598 Montpellier, France, Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Montpellier, France – sequence: 3 givenname: Laurence surname: Mousson fullname: Mousson, Laurence organization: Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors, Paris, France – sequence: 4 givenname: Marie surname: Vazeille fullname: Vazeille, Marie organization: Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors, Paris, France – sequence: 5 givenname: Mawlouth surname: Diallo fullname: Diallo, Mawlouth organization: Institut Pasteur de Dakar, Unité d'Entomologie médicale, Dakar, Sénégal – sequence: 6 givenname: Mylène surname: Weill fullname: Weill, Mylène organization: Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Montpellier, France – sequence: 7 givenname: Anna-Bella surname: Failloux fullname: Failloux, Anna-Bella organization: Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors, Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30963855$$D View this record in MEDLINE/PubMed https://pasteur.hal.science/pasteur-02098394$$DView record in HAL |
BookMark | eNp1UU1vEzEQtVARTQtXjshHLhv8GdsXpCoqbaUILiCOxnFmW6ONvbW9Efx7vEpbQSVOo6f3Mfa8M3QSUwSE3lKypMToD7mM2yUjVC8ZU_wFWlChaMeMFCdoQcyKdVpIdorOSvlJCDFSy1folDeGaykX6MdNLOBr8GEHOEMJpbroAd9ChIJd3zcSr6cBfuH7KcT7CXpXfHB1KvjQuJSxT_sRKsyuvsHvUCr-HAbAh5Cn8hq97N1Q4M3DPEffPl1-XV93my9XN-uLTeeFYrWTjoHemr4hKrVzoOlWawrO7zxlSmkA6XeG816C8KYh5bhSlGolOGWen6OPx9xx2u5h5yHW7AY75rB3-bdNLth_mRju7G062BVfKapkC-iOAXfPbNcXGzu6UmHKlrB2dG7EgTb9-4eFObWzlGr3oXgYBhchTcUyRlaMGSFm6bu_3_aU_lhDEyyPAp9TKRn6Jwkldu7Zzj3buWc799wM4pnBh-pqSPPfwvA_2x9ki69m |
CitedBy_id | crossref_primary_10_3389_fgene_2019_01266 crossref_primary_10_1093_jisesa_ieac023 crossref_primary_10_1111_aen_12631 crossref_primary_10_1371_journal_pone_0276493 crossref_primary_10_7554_eLife_65655 crossref_primary_10_1093_jme_tjac138 crossref_primary_10_1111_mve_12593 crossref_primary_10_3390_insects12010071 crossref_primary_10_1128_mbio_00480_23 crossref_primary_10_3390_insects16010033 crossref_primary_10_1002_ps_6127 crossref_primary_10_3389_fphys_2022_818531 crossref_primary_10_1186_s13071_023_05997_6 crossref_primary_10_3390_v14102198 |
Cites_doi | 10.1023/A:1013300108134 10.1186/1756-3305-7-437 10.1016/j.onehlt.2017.06.001 10.1186/s13071-016-1383-y 10.1093/jmedent/47.5.884 10.1038/423136b 10.1186/1475-2875-9-168 10.1186/1297-9716-44-78 10.1038/hdy.2009.100 10.1371/journal.pone.0005895 10.1016/j.coviro.2015.08.011 10.1111/mec.14463 10.1111/j.0014-3820.2004.tb01680.x 10.1046/j.1365-2583.1998.72062.x 10.1111/mec.13855 10.1089/vbz.2009.0246 10.1017/S0016672304006792 10.1046/j.1365-2583.2000.00164.x 10.1111/j.0014-3820.2006.tb01108.x 10.1002/1526-4998(200009)56:9<727::AID-PS214>3.0.CO;2-I 10.1016/0169-4758(88)90083-X 10.1098/rspb.2002.2022 10.1016/j.cub.2004.07.008 10.1074/jbc.M705873200 10.1016/j.cois.2017.05.002 10.1186/s12936-015-0924-8 10.1111/j.0014-3820.2004.tb01579.x 10.1111/j.1365-2583.2007.00728.x 10.18637/jss.v069.i01 10.1038/23685 10.1073/pnas.1116932108 10.1111/j.1365-2583.2005.00582.x 10.1111/j.1420-9101.2005.00938.x 10.1089/vbz.2008.0009 10.1603/ME10121 10.1371/journal.pone.0063849 10.1093/infdis/jiu276 10.3390/v7072795 10.1038/s41598-018-20367-4 10.2987/08-5791.1 10.1146/annurev.ento.45.1.449 10.1017/S001667230100547X 10.1371/journal.ppat.1000098 10.3201/eid0704.017417 10.1186/1475-2875-9-379 10.1186/s12936-016-1331-5 10.1016/S0965-1748(02)00097-8 10.1186/1756-3305-6-184 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License 2019 The Author(s) 2019 |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2019 The Author(s) 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
DOI | 10.1098/rspb.2018.2273 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Ecology |
DocumentTitleAlternate | Insecticide resistance and arboviruses |
EISSN | 1471-2954 |
ExternalDocumentID | PMC6367175 oai_HAL_pasteur_02098394v1 30963855 10_1098_rspb_2018_2273 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: Pasteur-Cantarini postdoctoral fellowship |
GroupedDBID | --- -~X 0R~ 29P 2WC 36Y 4.4 5RE 85S AACGO AANCE AAYXX ABBHK ABPLY ABTLG ABXSQ ACHIC ACIWK ACNCT ACPRK ACQIA ADBBV ADIYS ADQXQ AEUPB AEXZC AFRAH ALMA_UNASSIGNED_HOLDINGS ALMYZ AOIJS AQVQM BAWUL BTFSW CITATION CS3 DCCCD DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 MRS O9- OK1 RPM SA0 TR2 W8F ~02 CGR CUY CVF DOOOF ECM EIF NPM OP1 RHF RRY V1E 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c472t-5a2e8b9fc47158aae81b881eacdc12778ee5cd933f5e4c9ee57a37711874312c3 |
ISSN | 0962-8452 1471-2954 |
IngestDate | Thu Aug 21 18:07:28 EDT 2025 Thu May 29 05:47:26 EDT 2025 Thu Jul 10 23:53:40 EDT 2025 Wed Feb 19 02:31:00 EST 2025 Tue Jul 01 02:07:04 EDT 2025 Thu Apr 24 23:09:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1894 |
Keywords | vector competence insecticide resistance arboviruses Culex quinquefasciatus genetics microbiology Keywords: insecticide resistance Subject Category: Ecology Subject Areas: ecology |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Published by the Royal Society. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c472t-5a2e8b9fc47158aae81b881eacdc12778ee5cd933f5e4c9ee57a37711874312c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0233-2239 0000-0001-7917-2697 0000-0002-4043-1601 0000-0003-4935-4662 0000-0001-6890-0820 |
OpenAccessLink | https://pasteur.hal.science/pasteur-02098394 |
PMID | 30963855 |
PQID | 2206229441 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6367175 hal_primary_oai_HAL_pasteur_02098394v1 proquest_miscellaneous_2206229441 pubmed_primary_30963855 crossref_primary_10_1098_rspb_2018_2273 crossref_citationtrail_10_1098_rspb_2018_2273 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-16 |
PublicationDateYYYYMMDD | 2019-01-16 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Proceedings of the Royal Society. B, Biological sciences |
PublicationTitleAlternate | Proc Biol Sci |
PublicationYear | 2019 |
Publisher | Royal Society, The The Royal Society |
Publisher_xml | – name: Royal Society, The – name: The Royal Society |
References | e_1_3_7_20_2 e_1_3_7_43_2 e_1_3_7_22_2 e_1_3_7_41_2 e_1_3_7_24_2 e_1_3_7_47_2 e_1_3_7_26_2 e_1_3_7_45_2 e_1_3_7_28_2 e_1_3_7_49_2 Labbe P (e_1_3_7_6_2) 2017 e_1_3_7_51_2 e_1_3_7_30_2 e_1_3_7_11_2 e_1_3_7_13_2 e_1_3_7_34_2 e_1_3_7_15_2 e_1_3_7_36_2 e_1_3_7_17_2 e_1_3_7_38_2 e_1_3_7_19_2 e_1_3_7_2_2 e_1_3_7_4_2 e_1_3_7_8_2 e_1_3_7_40_2 e_1_3_7_44_2 e_1_3_7_21_2 e_1_3_7_42_2 e_1_3_7_23_2 e_1_3_7_48_2 e_1_3_7_25_2 e_1_3_7_46_2 e_1_3_7_27_2 e_1_3_7_29_2 e_1_3_7_9_2 R Core Team (e_1_3_7_31_2) 2017 e_1_3_7_50_2 Fox J (e_1_3_7_32_2) 2011 e_1_3_7_10_2 e_1_3_7_33_2 e_1_3_7_52_2 e_1_3_7_12_2 e_1_3_7_35_2 e_1_3_7_14_2 e_1_3_7_37_2 e_1_3_7_16_2 e_1_3_7_39_2 e_1_3_7_18_2 e_1_3_7_3_2 e_1_3_7_5_2 e_1_3_7_7_2 |
References_xml | – ident: e_1_3_7_4_2 doi: 10.1023/A:1013300108134 – ident: e_1_3_7_43_2 doi: 10.1186/1756-3305-7-437 – ident: e_1_3_7_2_2 doi: 10.1016/j.onehlt.2017.06.001 – ident: e_1_3_7_28_2 doi: 10.1186/s13071-016-1383-y – ident: e_1_3_7_35_2 doi: 10.1093/jmedent/47.5.884 – ident: e_1_3_7_9_2 doi: 10.1038/423136b – ident: e_1_3_7_20_2 doi: 10.1186/1475-2875-9-168 – start-page: 449 volume-title: An R companion to applied regression year: 2011 ident: e_1_3_7_32_2 – ident: e_1_3_7_36_2 doi: 10.1186/1297-9716-44-78 – ident: e_1_3_7_19_2 doi: 10.1038/hdy.2009.100 – ident: e_1_3_7_30_2 doi: 10.1371/journal.pone.0005895 – ident: e_1_3_7_52_2 doi: 10.1016/j.coviro.2015.08.011 – ident: e_1_3_7_15_2 doi: 10.1111/mec.14463 – ident: e_1_3_7_13_2 doi: 10.1111/j.0014-3820.2004.tb01680.x – ident: e_1_3_7_7_2 doi: 10.1046/j.1365-2583.1998.72062.x – ident: e_1_3_7_17_2 doi: 10.1111/mec.13855 – ident: e_1_3_7_40_2 doi: 10.1089/vbz.2009.0246 – ident: e_1_3_7_11_2 doi: 10.1017/S0016672304006792 – ident: e_1_3_7_50_2 doi: 10.1046/j.1365-2583.2000.00164.x – ident: e_1_3_7_14_2 doi: 10.1111/j.0014-3820.2006.tb01108.x – ident: e_1_3_7_26_2 doi: 10.1002/1526-4998(200009)56:9<727::AID-PS214>3.0.CO;2-I – ident: e_1_3_7_3_2 doi: 10.1016/0169-4758(88)90083-X – ident: e_1_3_7_18_2 doi: 10.1098/rspb.2002.2022 – ident: e_1_3_7_27_2 doi: 10.1016/j.cub.2004.07.008 – ident: e_1_3_7_46_2 doi: 10.1074/jbc.M705873200 – ident: e_1_3_7_34_2 doi: 10.1016/j.cois.2017.05.002 – ident: e_1_3_7_44_2 doi: 10.1186/s12936-015-0924-8 – start-page: 686 volume-title: Genetics and evolution of infectious diseases year: 2017 ident: e_1_3_7_6_2 – ident: e_1_3_7_12_2 doi: 10.1111/j.0014-3820.2004.tb01579.x – ident: e_1_3_7_49_2 doi: 10.1111/j.1365-2583.2007.00728.x – ident: e_1_3_7_33_2 doi: 10.18637/jss.v069.i01 – ident: e_1_3_7_16_2 doi: 10.1038/23685 – ident: e_1_3_7_47_2 doi: 10.1073/pnas.1116932108 – ident: e_1_3_7_48_2 doi: 10.1111/j.1365-2583.2005.00582.x – ident: e_1_3_7_5_2 doi: 10.1111/j.1420-9101.2005.00938.x – ident: e_1_3_7_37_2 doi: 10.1089/vbz.2008.0009 – ident: e_1_3_7_45_2 doi: 10.1603/ME10121 – ident: e_1_3_7_23_2 doi: 10.1371/journal.pone.0063849 – ident: e_1_3_7_24_2 doi: 10.1093/infdis/jiu276 – volume-title: R: a language and environment for statistical computing year: 2017 ident: e_1_3_7_31_2 – ident: e_1_3_7_38_2 doi: 10.3390/v7072795 – ident: e_1_3_7_21_2 doi: 10.1038/s41598-018-20367-4 – ident: e_1_3_7_39_2 doi: 10.2987/08-5791.1 – ident: e_1_3_7_8_2 doi: 10.1146/annurev.ento.45.1.449 – ident: e_1_3_7_10_2 doi: 10.1017/S001667230100547X – ident: e_1_3_7_51_2 doi: 10.1371/journal.ppat.1000098 – ident: e_1_3_7_29_2 doi: 10.3201/eid0704.017417 – ident: e_1_3_7_42_2 doi: 10.1186/1475-2875-9-379 – ident: e_1_3_7_25_2 doi: 10.1186/s12936-016-1331-5 – ident: e_1_3_7_22_2 doi: 10.1016/S0965-1748(02)00097-8 – ident: e_1_3_7_41_2 doi: 10.1186/1756-3305-6-184 |
SSID | ssj0009585 |
Score | 2.4104214 |
Snippet | Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector... |
SourceID | pubmedcentral hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 20182273 |
SubjectTerms | Animals Culex - drug effects Culex - genetics Culex - virology Ecology Feeding Behavior Female Genes, Insect Insecticide Resistance - genetics Life Sciences Microbiology and Parasitology Mosquito Vectors - drug effects Mosquito Vectors - genetics Mosquito Vectors - virology Virology West Nile Fever - transmission West Nile virus - physiology |
Title | Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30963855 https://www.proquest.com/docview/2206229441 https://pasteur.hal.science/pasteur-02098394 https://pubmed.ncbi.nlm.nih.gov/PMC6367175 |
Volume | 286 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLY6g5C4IGbYyiYjIRZVCU3ibMdSgQqiiMMM6i04jsNEqtLSNBUzv4yfx3t26iadQRq4RFlsR8n7_Bb7LYS8EDKP89jhFktZamFCOYsLUORyGcYiYzySEg3F6Zdgcso-zfxZr_e75bVUr1NbXFwZV_I_VIV7QFeMkv0HyppB4QacA33hCBSG47Vo_LGskF-JIsPiJxWqgjhPfyD_GnCdl3hcz-Wvwc-6KEEC5LxCWtTVYKNW65VHuVablb8h1pkBcMzlYFOsmiWBRnP9aiRdtfUr0EsPjd-nPXinsFIYbtoIV6O0j9bnXNdkH-vt-Tlm-AAld2qbJvNFraTChC_qXc_poq6ayDCM45YtoH7jFxLDGZu4o0K2lzEwckoXqN6tRwbAmplOZ2tLzY1Bclq4Edlm124UtHEZxazNf4dgL7m6OMol4TCMMeBhVS1TdOmL7G3DbhbuPelofBb1bn2UYP8E-yfY_4DccMFAUWHmM6eV7lkVgzUfZdKFRm-77--oQwdn6Ix72dLZd9htaUAnd8jtxnShI43DI9KT5TG5qQl-fkyOGjFR0ddNLvM3d8n3FkTpDqJUQZRqiFIFUboPUaohSncQpQBRihClCFGqIHqPnH54fzKeWE1RD0uw0F1bPndllMY5XDl-xLkEuymKHJD_mXDgVwJz8EUWe17uSyZiuAq5F4YO1o70HFd498lhuSjlQ0KzQMJALPd8JwW7O4hFHmS-dIJ0KEWesT6xtv82EU3Geyy8Mk-upmWfvDLtlzrXy19bvgRSmUaYon0y-pwsOXDmepWACRaD4cE2Tp8831IzAb6Nm3G8lDBpYJhh4LoxWCN98kBT14znDVEs-n6fhB26d17YfVIWZyo3fOAFIVgEj679KY_Jrd10fEIO16taPgU9e50-U5D-A4vV2Hs |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insecticide+resistance+genes+affect+Culex+quinquefasciatus+vector+competence+for+West+Nile+virus&rft.jtitle=Proceedings+of+the+Royal+Society.+B%2C+Biological+sciences&rft.au=Atyame%2C+C%C3%A9lestine+M.&rft.au=Alout%2C+Haoues&rft.au=Mousson%2C+Laurence&rft.au=Vazeille%2C+Marie&rft.date=2019-01-16&rft.issn=0962-8452&rft.eissn=1471-2954&rft.volume=286&rft.issue=1894&rft.spage=20182273&rft_id=info:doi/10.1098%2Frspb.2018.2273&rft.externalDBID=n%2Fa&rft.externalDocID=10_1098_rspb_2018_2273 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8452&client=summon |