Block design enhances classification of 3D reach targets from electroencephalographic signals

•Block design enhances classification of 3D reach targets from EEG signals.•The high decoding rate transfers to different trial types (actual/imagery).•The high decoding rate does not transfer to different motion velocities.•Movement repetition promotes the evolution of distinct neural patterns. To...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 329; pp. 201 - 212
Main Authors Sosnik, Ronen, Tadipatri, Vijay Aditya, Tewfik, Ahmed H., Pellizzer, Giuseppe
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 04.08.2016
Subjects
Online AccessGet full text
ISSN0306-4522
1873-7544
1873-7544
DOI10.1016/j.neuroscience.2016.05.015

Cover

Abstract •Block design enhances classification of 3D reach targets from EEG signals.•The high decoding rate transfers to different trial types (actual/imagery).•The high decoding rate does not transfer to different motion velocities.•Movement repetition promotes the evolution of distinct neural patterns. To date, decoding accuracy of actual or imagined pointing movements to targets in 3D space from electroencephalographic (EEG) signals has remained modest. The reason may pertain to the fact that these movements activate essentially the same neural networks. In this study, we aimed at testing whether repetitive pointing movements to each of the targets promotes the development of segregated neural patterns, resulting in enhanced decoding accuracy. Six human subjects generated slow or fast repetitive pointing movements with their right dominant arm to one of five targets distributed in 3D space, followed by repetitive imagery of movements to the same target or to a different target. Nine naive subjects generated both repetitive and non-repetitive slow actual movements to each of the five targets to test the effect of block design on decoding accuracy. In order to assure that base line drift and low frequency motion artifacts do not contaminate the data, the data were high-pass filtered in 4–30Hz, leaving out the delta and gamma band. For the repetitive trials, the model decoded target location with 81% accuracy, which is significantly higher than chance level. The average decoding rate of target location was only 30% for the non-repetitive trials, which is not significantly different than chance level. A subset of electrodes, mainly over the contralateral sensorimotor areas, was found to provide most of the discriminative features for all tested conditions. Time proximity between trained and tested blocks was found to enhance decoding accuracy of target location both by target non-specific and specific mechanisms. Our findings suggest that movement repetition promotes the development of distinct neural patterns, presumably by the formation of target-specific kinesthetic memory.
AbstractList To date, decoding accuracy of actual or imagined pointing movements to targets in 3D space from electroencephalographic (EEG) signals has remained modest. The reason may pertain to the fact that these movements activate essentially the same neural networks. In this study, we aimed at testing whether repetitive pointing movements to each of the targets promotes the development of segregated neural patterns, resulting in enhanced decoding accuracy. Six human subjects generated slow or fast repetitive pointing movements with their right dominant arm to one of five targets distributed in 3D space, followed by repetitive imagery of movements to the same target or to a different target. Nine naive subjects generated both repetitive and non-repetitive slow actual movements to each of the five targets to test the effect of block design on decoding accuracy. In order to assure that base line drift and low frequency motion artifacts do not contaminate the data, the data were high-pass filtered in 4-30Hz, leaving out the delta and gamma band. For the repetitive trials, the model decoded target location with 81% accuracy, which is significantly higher than chance level. The average decoding rate of target location was only 30% for the non-repetitive trials, which is not significantly different than chance level. A subset of electrodes, mainly over the contralateral sensorimotor areas, was found to provide most of the discriminative features for all tested conditions. Time proximity between trained and tested blocks was found to enhance decoding accuracy of target location both by target non-specific and specific mechanisms. Our findings suggest that movement repetition promotes the development of distinct neural patterns, presumably by the formation of target-specific kinesthetic memory.
•Block design enhances classification of 3D reach targets from EEG signals.•The high decoding rate transfers to different trial types (actual/imagery).•The high decoding rate does not transfer to different motion velocities.•Movement repetition promotes the evolution of distinct neural patterns. To date, decoding accuracy of actual or imagined pointing movements to targets in 3D space from electroencephalographic (EEG) signals has remained modest. The reason may pertain to the fact that these movements activate essentially the same neural networks. In this study, we aimed at testing whether repetitive pointing movements to each of the targets promotes the development of segregated neural patterns, resulting in enhanced decoding accuracy. Six human subjects generated slow or fast repetitive pointing movements with their right dominant arm to one of five targets distributed in 3D space, followed by repetitive imagery of movements to the same target or to a different target. Nine naive subjects generated both repetitive and non-repetitive slow actual movements to each of the five targets to test the effect of block design on decoding accuracy. In order to assure that base line drift and low frequency motion artifacts do not contaminate the data, the data were high-pass filtered in 4–30Hz, leaving out the delta and gamma band. For the repetitive trials, the model decoded target location with 81% accuracy, which is significantly higher than chance level. The average decoding rate of target location was only 30% for the non-repetitive trials, which is not significantly different than chance level. A subset of electrodes, mainly over the contralateral sensorimotor areas, was found to provide most of the discriminative features for all tested conditions. Time proximity between trained and tested blocks was found to enhance decoding accuracy of target location both by target non-specific and specific mechanisms. Our findings suggest that movement repetition promotes the development of distinct neural patterns, presumably by the formation of target-specific kinesthetic memory.
To date, decoding accuracy of actual or imagined pointing movements to targets in 3D space from electroencephalographic (EEG) signals has remained modest. The reason may pertain to the fact that these movements activate essentially the same neural networks. In this study, we aimed at testing whether repetitive pointing movements to each of the targets promotes the development of segregated neural patterns, resulting in enhanced decoding accuracy. Six human subjects generated slow or fast repetitive pointing movements with their right dominant arm to one of five targets distributed in 3D space, followed by repetitive imagery of movements to the same target or to a different target. Nine naive subjects generated both repetitive and non-repetitive slow actual movements to each of the five targets to test the effect of block design on decoding accuracy. In order to assure that base line drift and low frequency motion artifacts do not contaminate the data, the data were high-pass filtered in 4-30Hz, leaving out the delta and gamma band. For the repetitive trials, the model decoded target location with 81% accuracy, which is significantly higher than chance level. The average decoding rate of target location was only 30% for the non-repetitive trials, which is not significantly different than chance level. A subset of electrodes, mainly over the contralateral sensorimotor areas, was found to provide most of the discriminative features for all tested conditions. Time proximity between trained and tested blocks was found to enhance decoding accuracy of target location both by target non-specific and specific mechanisms. Our findings suggest that movement repetition promotes the development of distinct neural patterns, presumably by the formation of target-specific kinesthetic memory.To date, decoding accuracy of actual or imagined pointing movements to targets in 3D space from electroencephalographic (EEG) signals has remained modest. The reason may pertain to the fact that these movements activate essentially the same neural networks. In this study, we aimed at testing whether repetitive pointing movements to each of the targets promotes the development of segregated neural patterns, resulting in enhanced decoding accuracy. Six human subjects generated slow or fast repetitive pointing movements with their right dominant arm to one of five targets distributed in 3D space, followed by repetitive imagery of movements to the same target or to a different target. Nine naive subjects generated both repetitive and non-repetitive slow actual movements to each of the five targets to test the effect of block design on decoding accuracy. In order to assure that base line drift and low frequency motion artifacts do not contaminate the data, the data were high-pass filtered in 4-30Hz, leaving out the delta and gamma band. For the repetitive trials, the model decoded target location with 81% accuracy, which is significantly higher than chance level. The average decoding rate of target location was only 30% for the non-repetitive trials, which is not significantly different than chance level. A subset of electrodes, mainly over the contralateral sensorimotor areas, was found to provide most of the discriminative features for all tested conditions. Time proximity between trained and tested blocks was found to enhance decoding accuracy of target location both by target non-specific and specific mechanisms. Our findings suggest that movement repetition promotes the development of distinct neural patterns, presumably by the formation of target-specific kinesthetic memory.
Author Tewfik, Ahmed H.
Pellizzer, Giuseppe
Sosnik, Ronen
Tadipatri, Vijay Aditya
Author_xml – sequence: 1
  givenname: Ronen
  surname: Sosnik
  fullname: Sosnik, Ronen
  email: ronens@hit.ac.il
  organization: Faculty of Electrical, Electronics and Communication Engineering, Holon Institute of Technology, Holon 5810201, Israel
– sequence: 2
  givenname: Vijay Aditya
  surname: Tadipatri
  fullname: Tadipatri, Vijay Aditya
  organization: Electrical and Computer Engineering, The University of Texas, Austin, TX 78705, USA
– sequence: 3
  givenname: Ahmed H.
  surname: Tewfik
  fullname: Tewfik, Ahmed H.
  organization: Electrical and Computer Engineering, The University of Texas, Austin, TX 78705, USA
– sequence: 4
  givenname: Giuseppe
  surname: Pellizzer
  fullname: Pellizzer, Giuseppe
  organization: Brain Sciences Center, Veterans Affairs Health Care Center, Minneapolis, MN 55417, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27223628$$D View this record in MEDLINE/PubMed
BookMark eNqNkctuGyEUQFGVqnHS_EKFuupmpsDwmOmqTdKXFKmbdBkhDBcbBw8ujCPl74tjt6qyqdkgoXOP0D1n6GRMIyD0lpKWEirfr9oRtjkVG2C00LL61hLREipeoBntVdcowfkJmpGOyIYLxk7RWSkrUo_g3St0yhRjnWT9DN1dxmTvsYMSFiOGcWmqsmAbTSnBB2umkEacPO6ucQZjl3gyeQFTwT6nNYYIdspp94_N0sS0yGazDBbvbCaW1-ilrxdcHO5z9PPL59urb83Nj6_frz7dNJYrNjXcSU-cIlyZ-eAM6zkILyyfC0Mp6zvTcVDESPCEO-El75wAoGYYhAJLRHeO3u29m5x-baFMeh2KhRjNCGlbNO1JL3s1KPZ_VA1S9pIMtKJvDuh2vganNzmsTX7Uf7ZXgQ97wNYaJYP_i1Cid6n0Sv-bSu9SaSJ0TVWHPz4btmF6WveUTYjHKa73Cqi7fQiQ9YFyIdcu2qVwnObymcbGMNb28R4ej5X8BmAx0Og
CitedBy_id crossref_primary_10_1063_1_5049191
crossref_primary_10_1088_1741_2552_ab59a7
crossref_primary_10_3389_fnins_2018_00130
Cites_doi 10.1016/j.clinph.2010.08.002
10.1088/1741-2560/6/4/046005
10.1126/science.285.5436.2136
10.3389/fnins.2014.00222
10.1038/nn1355
10.1109/TBME.2008.921154
10.1073/pnas.95.3.861
10.1017/S0140525X00003253
10.1088/1741-2560/12/1/016005
10.1016/j.tins.2005.10.003
10.1016/j.jneumeth.2010.07.015
10.1523/JNEUROSCI.6107-09.2010
10.3389/fneng.2014.00003
10.1016/j.clinph.2010.07.010
10.1016/j.jneumeth.2003.10.009
10.1038/377155a0
10.1126/science.3749885
10.1126/science.277.5327.821
10.1109/MSP.2008.4408443
10.1038/371600a0
10.1088/1741-2560/8/6/066009
10.1523/JNEUROSCI.0816-05.2005
10.1523/JNEUROSCI.2039-14.2014
10.1109/TBME.2014.2377023
10.3389/fnins.2015.00121
10.1152/jn.1999.82.5.2676
10.1088/1741-2560/10/5/056018
10.1109/TBME.2004.827062
10.1152/jn.1995.73.6.2563
10.1523/JNEUROSCI.5171-07.2008
10.1111/j.1468-0394.2007.00435.x
10.1523/JNEUROSCI.4055-10.2011
ContentType Journal Article
Copyright 2016 IBRO
Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2016 IBRO
– notice: Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1016/j.neuroscience.2016.05.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-7544
EndPage 212
ExternalDocumentID 27223628
10_1016_j_neuroscience_2016_05_015
S0306452216301646
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CSRD VA
  grantid: I01 CX000437
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5RE
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABTEW
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AIEXJ
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMQ
IHE
J1W
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
UNMZH
Z5R
~G-
AACTN
AADPK
AAIAV
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
RIG
.55
.GJ
29N
53G
5VS
AAQXK
AAYXX
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SNS
SSH
WUQ
X7M
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
ID FETCH-LOGICAL-c472t-4d6f0d7047ab9da284e5f5c4b5a11283a34e70a6ef04d5f643d5ee1a9957ec053
IEDL.DBID AIKHN
ISSN 0306-4522
1873-7544
IngestDate Fri Sep 05 06:12:39 EDT 2025
Thu Sep 04 15:52:01 EDT 2025
Thu Apr 03 07:02:39 EDT 2025
Thu Apr 24 23:09:56 EDT 2025
Tue Jul 01 02:21:36 EDT 2025
Fri Feb 23 02:29:41 EST 2024
Tue Aug 26 16:32:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords CSP
ISM
EEG
ICA
BCI
motor imagery
SVM
JAD
BP
IBI
IFM
motor areas
FAM
3D reach movements
ERD
ICs
classification of targets
EOG
EMG
SAM
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-4d6f0d7047ab9da284e5f5c4b5a11283a34e70a6ef04d5f643d5ee1a9957ec053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27223628
PQID 1796686091
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1808687972
proquest_miscellaneous_1796686091
pubmed_primary_27223628
crossref_primary_10_1016_j_neuroscience_2016_05_015
crossref_citationtrail_10_1016_j_neuroscience_2016_05_015
elsevier_sciencedirect_doi_10_1016_j_neuroscience_2016_05_015
elsevier_clinicalkey_doi_10_1016_j_neuroscience_2016_05_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-04
PublicationDateYYYYMMDD 2016-08-04
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuroscience
PublicationTitleAlternate Neuroscience
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Crammer, Singer (b0040) 2001; 2
Wolpaw, McFarland (b0195) 2004; 1011
Karni, Meyer, Jezzard, Adams, Turner, Ungerleider (b0085) 1995; 377
Bradberry, Gentili, Contreras-Vidal (b0025) 2010; 30
Mandelblat-Cerf, Novick, Paz, Link, Freeman, Vaadia (b0115) 2011; 31
Paek, Agashe, Contreras-Vidal (b0150) 2014; 7
Brashers-Krug, Shadmehr, Bizzi (b0030) 1996
Brinkman, Stolk, Dijkerman, de Lange, Toni (b0035) 2014; 34
Kakei, Hoffman, Strick (b0080) 1999; 285
Decety, Perani, Jeannerod, Bettinardi, Tadary, Woods, Mazziotta, Fazio (b0045) 1994; 371
Bai, Rathi, Lin, Huang, Battapady, Fei, Schneider, Houdayer, Chen, Hallett (b0020) 2011; 122
Karni, Meyer, Rey-Hipolito, Jezzard, Adams, Turner, Ungerleider (b0090) 1998; 95
Hammon, Makeig, Poizner, Todorov, de Sa (b0070) 2008; 25
Kilner, Vargas, Duval, Blakemore, Sirigu (b0095) 2004; 7
Pfurtscheller, Brunner, Schlögl, Lopes da Silva (b0155) 2006; 311
Lakany, Conway (b0105) 2007; 24
Grosse-Wentrup, Buss (b0065) 2008; 55
Agashe, Contreras-Vidal (b0005) 2011
Robinson, Guan, Vinod, Ang, Tee (b0165) 2013; 10
Moran, Schwartz (b0120) 1999; 82
Tzagarakis, Ince, Leuthold, Pellizzer (b0185) 2010; 3011
Scherer, Muller, Neuper, Graimann, Pfurtscheller (b0170) 2004; 51
Scott, Kalaska (b0175) 1995; 73
Rickert, de Oliveira, Vaadia, Aertsen, Rotter, Mehring (b0160) 2005; 25
Nunez (b0140) 2000; 23
Delorme, Makeig (b0055) 2004; 134
Agashe, Paek, Zhang, Contreras-Vidal (b0010) 2015; 9
Lew, Chavarriaga, Silvoni, Millan Jdel (b0110) 2014; 8
Ofner, Muller-Putz (b0145) 2015; 62
Antelis, Montesano, Minguez (b0015) 2011; 13
Huang, Lin, Fei, Chen, Bai (b0075) 2009; 6
Georgopoulos, Schwartz, Kettner (b0060) 1986; 233
Krakauer, Shadmehr (b0100) 2006; 29
Niazi, Jiang, Tiberghien, Nielsen, Dremstrup, Farina (b0130) 2011; 8
Deecke, Kornhuber (b0050) 2003
Waldert, Preissl, Demandt, Braun, Birbaumer, Aertsen, Mehring (b0190) 2008; 28
Nolan, Whelan, Reilly (b0135) 2010; 192
Yao, Meng, Sheng, Zhang, Zhu (b0200) 2015; 12
Nam, Jeon, Kim, Lee, Park (b0125) 2011; 122
Shadmehr, Holcomb (b0180) 1997; 227
Moran (10.1016/j.neuroscience.2016.05.015_b0120) 1999; 82
Robinson (10.1016/j.neuroscience.2016.05.015_b0165) 2013; 10
Georgopoulos (10.1016/j.neuroscience.2016.05.015_b0060) 1986; 233
Krakauer (10.1016/j.neuroscience.2016.05.015_b0100) 2006; 29
Pfurtscheller (10.1016/j.neuroscience.2016.05.015_b0155) 2006; 311
Agashe (10.1016/j.neuroscience.2016.05.015_b0005) 2011
Bradberry (10.1016/j.neuroscience.2016.05.015_b0025) 2010; 30
Kakei (10.1016/j.neuroscience.2016.05.015_b0080) 1999; 285
Decety (10.1016/j.neuroscience.2016.05.015_b0045) 1994; 371
Yao (10.1016/j.neuroscience.2016.05.015_b0200) 2015; 12
Nunez (10.1016/j.neuroscience.2016.05.015_b0140) 2000; 23
Scott (10.1016/j.neuroscience.2016.05.015_b0175) 1995; 73
Huang (10.1016/j.neuroscience.2016.05.015_b0075) 2009; 6
Niazi (10.1016/j.neuroscience.2016.05.015_b0130) 2011; 8
Waldert (10.1016/j.neuroscience.2016.05.015_b0190) 2008; 28
Deecke (10.1016/j.neuroscience.2016.05.015_b0050) 2003
Karni (10.1016/j.neuroscience.2016.05.015_b0090) 1998; 95
Lew (10.1016/j.neuroscience.2016.05.015_b0110) 2014; 8
Rickert (10.1016/j.neuroscience.2016.05.015_b0160) 2005; 25
Agashe (10.1016/j.neuroscience.2016.05.015_b0010) 2015; 9
Mandelblat-Cerf (10.1016/j.neuroscience.2016.05.015_b0115) 2011; 31
Brinkman (10.1016/j.neuroscience.2016.05.015_b0035) 2014; 34
Lakany (10.1016/j.neuroscience.2016.05.015_b0105) 2007; 24
Nolan (10.1016/j.neuroscience.2016.05.015_b0135) 2010; 192
Kilner (10.1016/j.neuroscience.2016.05.015_b0095) 2004; 7
Bai (10.1016/j.neuroscience.2016.05.015_b0020) 2011; 122
Delorme (10.1016/j.neuroscience.2016.05.015_b0055) 2004; 134
Shadmehr (10.1016/j.neuroscience.2016.05.015_b0180) 1997; 227
Wolpaw (10.1016/j.neuroscience.2016.05.015_b0195) 2004; 1011
Crammer (10.1016/j.neuroscience.2016.05.015_b0040) 2001; 2
Hammon (10.1016/j.neuroscience.2016.05.015_b0070) 2008; 25
Karni (10.1016/j.neuroscience.2016.05.015_b0085) 1995; 377
Brashers-Krug (10.1016/j.neuroscience.2016.05.015_b0030) 1996
Scherer (10.1016/j.neuroscience.2016.05.015_b0170) 2004; 51
Paek (10.1016/j.neuroscience.2016.05.015_b0150) 2014; 7
Tzagarakis (10.1016/j.neuroscience.2016.05.015_b0185) 2010; 3011
Grosse-Wentrup (10.1016/j.neuroscience.2016.05.015_b0065) 2008; 55
Nam (10.1016/j.neuroscience.2016.05.015_b0125) 2011; 122
Antelis (10.1016/j.neuroscience.2016.05.015_b0015) 2011; 13
Ofner (10.1016/j.neuroscience.2016.05.015_b0145) 2015; 62
References_xml – volume: 95
  start-page: 861
  year: 1998
  end-page: 868
  ident: b0090
  article-title: The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: 3
  year: 2014
  ident: b0150
  article-title: Decoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography
  publication-title: Front Neuroeng
– volume: 1011
  start-page: 7849
  year: 2004
  end-page: 17854
  ident: b0195
  article-title: Control of a two-dimensional movement signal by a non-invasive brain-computer interface in humans
  publication-title: Proc Natl Acad Sci USA
– volume: 227
  start-page: 821
  year: 1997
  end-page: 825
  ident: b0180
  article-title: Neural correlates of motor memory consolidation
  publication-title: Science
– start-page: 283
  year: 2003
  end-page: 320
  ident: b0050
  article-title: Human freedom, reasoned will, and the brain. The Bereitschaftspotential story
  publication-title: The Bereitschaftspotential, movement-related cortical potentials
– volume: 8
  start-page: 222
  year: 2014
  ident: b0110
  article-title: Single trial prediction of self-paced reaching directions from EEG signals
  publication-title: Front Neurosci
– volume: 311
  start-page: 53
  year: 2006
  end-page: 159
  ident: b0155
  article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: NeuroImage
– volume: 82
  start-page: 2676
  year: 1999
  end-page: 2692
  ident: b0120
  article-title: Motor cortical representation of speed and direction during reaching
  publication-title: J Neurophysiol
– volume: 7
  start-page: 1299
  year: 2004
  end-page: 1301
  ident: b0095
  article-title: Motor activation prior to observation of a predicted movement
  publication-title: Nat Neurosci
– volume: 122
  start-page: 364
  year: 2011
  end-page: 372
  ident: b0020
  article-title: Prediction of human voluntary movement before it occurs
  publication-title: Clin Neurophysiol
– volume: 23
  start-page: 371
  year: 2000
  end-page: 437
  ident: b0140
  article-title: Toward a quantitative description of large-scale neocortical dynamic function and EEG
  publication-title: Behav Brain Sci
– volume: 28
  start-page: 1000
  year: 2008
  end-page: 1008
  ident: b0190
  article-title: Hand movement direction decoded from MEG and EEG
  publication-title: J Neurosci
– volume: 31
  start-page: 300
  year: 2011
  end-page: 313
  ident: b0115
  article-title: The neuronal basis of long-term sensorimotor learning
  publication-title: J Neurosci
– volume: 62
  start-page: 972
  year: 2015
  end-page: 981
  ident: b0145
  article-title: Using a noninvasive decoding method to classify rhythmic movement imaginations of the arm in two planes
  publication-title: IEEE Trans Biomed Eng
– volume: 25
  start-page: 69
  year: 2008
  end-page: 77
  ident: b0070
  article-title: Predicting reaching targets from human EEG
  publication-title: IEEE Signal Process Mag
– volume: 377
  start-page: 155
  year: 1995
  end-page: 158
  ident: b0085
  article-title: Functional MRI evidence for adult motor cortex plasticity during motor skill learning
  publication-title: Nature
– volume: 122
  start-page: 567
  year: 2011
  end-page: 577
  ident: b0125
  article-title: Movement imagery-related lateralization of event-related (de)synchronization (ERD/ERS): motor-imagery duration effects
  publication-title: Clin Neurophysiol
– volume: 9
  start-page: 121
  year: 2015
  ident: b0010
  article-title: Global cortical activity predicts shape of hand during grasping
  publication-title: Front Neurosci
– volume: 29
  start-page: 58
  year: 2006
  end-page: 64
  ident: b0100
  article-title: Consolidation of motor memory
  publication-title: Trends Neurosci
– volume: 12
  start-page: 016005
  year: 2015
  ident: b0200
  article-title: A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion
  publication-title: J Neural Eng
– volume: 10
  start-page: 056018
  year: 2013
  ident: b0165
  article-title: Multi-class EEG classification of voluntary hand movement directions
  publication-title: J Neural Eng
– volume: 285
  start-page: 2136
  year: 1999
  end-page: 2139
  ident: b0080
  article-title: Muscle and movement representations in the primary motor cortex
  publication-title: Science
– start-page: 382
  year: 1996
  ident: b0030
  article-title: Consolidation in human motor memory
  publication-title: Nature
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: b0055
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics
  publication-title: J Neurosci Methods
– volume: 24
  start-page: 295
  year: 2007
  end-page: 304
  ident: b0105
  article-title: Understanding intention of movement from electroencephalograms
  publication-title: Expert Syst
– volume: 13
  start-page: 112
  year: 2011
  end-page: 114
  ident: b0015
  article-title: Towards decoding 3D finger trajectories from EEG
  publication-title: Int J Bioelectromagnetism
– volume: 192
  start-page: 152
  year: 2010
  end-page: 162
  ident: b0135
  article-title: FASTER: fully automated statistical thresholding for EEG artifact rejection
  publication-title: J Neurosci Methods
– volume: 30
  start-page: 3432
  year: 2010
  end-page: 3437
  ident: b0025
  article-title: Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals
  publication-title: J Neurosci
– volume: 2
  start-page: 265
  year: 2001
  end-page: 292
  ident: b0040
  article-title: On the algorithmic implementation of multi-class SVM
  publication-title: JMLR
– volume: 25
  start-page: 8815
  year: 2005
  end-page: 8824
  ident: b0160
  article-title: Encoding of movement direction in different frequency ranges of motor cortical local field potentials
  publication-title: J Neurosci
– volume: 3011
  start-page: 270
  year: 2010
  end-page: 11277
  ident: b0185
  article-title: Beta-band activity during motor planning reflects response uncertainty
  publication-title: J Neurosci
– year: 2011
  ident: b0005
  article-title: Reconstructing hand kinematics during reach to grasp movements from electroencephalographic signals
  publication-title: 33th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Boston, USA)
– volume: 371
  start-page: 600
  year: 1994
  end-page: 602
  ident: b0045
  article-title: Mapping motor representations with positron emission tomography
  publication-title: Nature
– volume: 51
  start-page: 979
  year: 2004
  end-page: 1307
  ident: b0170
  article-title: An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate
  publication-title: IEEE Trans Biomed Eng
– volume: 34
  start-page: 14783
  year: 2014
  end-page: 14792
  ident: b0035
  article-title: Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions
  publication-title: J Neurosci
– volume: 8
  start-page: 066009
  year: 2011
  ident: b0130
  article-title: Detection of movement intention from single-trial movement-related cortical potentials
  publication-title: J Neural Eng
– volume: 233
  start-page: 1416
  year: 1986
  end-page: 1419
  ident: b0060
  article-title: Neuronal population coding of movement direction
  publication-title: Science
– volume: 55
  start-page: 1991
  year: 2008
  end-page: 2000
  ident: b0065
  article-title: Multiclass common spatial patterns and information theoretic feature extraction
  publication-title: IEEE Trans Biomed Eng
– volume: 73
  start-page: 2563
  year: 1995
  end-page: 2567
  ident: b0175
  article-title: Changes in motor cortex activity during reaching movements with similar hand paths but different arm postures
  publication-title: J Neurophysiol
– volume: 6
  start-page: 046005
  year: 2009
  ident: b0075
  article-title: Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control
  publication-title: J Neural Eng
– volume: 122
  start-page: 567
  year: 2011
  ident: 10.1016/j.neuroscience.2016.05.015_b0125
  article-title: Movement imagery-related lateralization of event-related (de)synchronization (ERD/ERS): motor-imagery duration effects
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.08.002
– volume: 6
  start-page: 046005
  year: 2009
  ident: 10.1016/j.neuroscience.2016.05.015_b0075
  article-title: Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/6/4/046005
– volume: 285
  start-page: 2136
  issue: 5436
  year: 1999
  ident: 10.1016/j.neuroscience.2016.05.015_b0080
  article-title: Muscle and movement representations in the primary motor cortex
  publication-title: Science
  doi: 10.1126/science.285.5436.2136
– volume: 13
  start-page: 112
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroscience.2016.05.015_b0015
  article-title: Towards decoding 3D finger trajectories from EEG
  publication-title: Int J Bioelectromagnetism
– volume: 2
  start-page: 265
  year: 2001
  ident: 10.1016/j.neuroscience.2016.05.015_b0040
  article-title: On the algorithmic implementation of multi-class SVM
  publication-title: JMLR
– volume: 8
  start-page: 222
  year: 2014
  ident: 10.1016/j.neuroscience.2016.05.015_b0110
  article-title: Single trial prediction of self-paced reaching directions from EEG signals
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2014.00222
– volume: 7
  start-page: 1299
  year: 2004
  ident: 10.1016/j.neuroscience.2016.05.015_b0095
  article-title: Motor activation prior to observation of a predicted movement
  publication-title: Nat Neurosci
  doi: 10.1038/nn1355
– start-page: 283
  year: 2003
  ident: 10.1016/j.neuroscience.2016.05.015_b0050
  article-title: Human freedom, reasoned will, and the brain. The Bereitschaftspotential story
– volume: 55
  start-page: 1991
  issue: 8
  year: 2008
  ident: 10.1016/j.neuroscience.2016.05.015_b0065
  article-title: Multiclass common spatial patterns and information theoretic feature extraction
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.921154
– volume: 3011
  start-page: 270
  year: 2010
  ident: 10.1016/j.neuroscience.2016.05.015_b0185
  article-title: Beta-band activity during motor planning reflects response uncertainty
  publication-title: J Neurosci
– volume: 95
  start-page: 861
  year: 1998
  ident: 10.1016/j.neuroscience.2016.05.015_b0090
  article-title: The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.3.861
– volume: 23
  start-page: 371
  year: 2000
  ident: 10.1016/j.neuroscience.2016.05.015_b0140
  article-title: Toward a quantitative description of large-scale neocortical dynamic function and EEG
  publication-title: Behav Brain Sci
  doi: 10.1017/S0140525X00003253
– volume: 12
  start-page: 016005
  issue: 1
  year: 2015
  ident: 10.1016/j.neuroscience.2016.05.015_b0200
  article-title: A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/12/1/016005
– volume: 29
  start-page: 58
  year: 2006
  ident: 10.1016/j.neuroscience.2016.05.015_b0100
  article-title: Consolidation of motor memory
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2005.10.003
– volume: 192
  start-page: 152
  year: 2010
  ident: 10.1016/j.neuroscience.2016.05.015_b0135
  article-title: FASTER: fully automated statistical thresholding for EEG artifact rejection
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2010.07.015
– volume: 30
  start-page: 3432
  issue: 9
  year: 2010
  ident: 10.1016/j.neuroscience.2016.05.015_b0025
  article-title: Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.6107-09.2010
– volume: 7
  start-page: 3
  year: 2014
  ident: 10.1016/j.neuroscience.2016.05.015_b0150
  article-title: Decoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography
  publication-title: Front Neuroeng
  doi: 10.3389/fneng.2014.00003
– volume: 122
  start-page: 364
  year: 2011
  ident: 10.1016/j.neuroscience.2016.05.015_b0020
  article-title: Prediction of human voluntary movement before it occurs
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.07.010
– volume: 134
  start-page: 9
  year: 2004
  ident: 10.1016/j.neuroscience.2016.05.015_b0055
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 377
  start-page: 155
  year: 1995
  ident: 10.1016/j.neuroscience.2016.05.015_b0085
  article-title: Functional MRI evidence for adult motor cortex plasticity during motor skill learning
  publication-title: Nature
  doi: 10.1038/377155a0
– volume: 233
  start-page: 1416
  issue: 4771
  year: 1986
  ident: 10.1016/j.neuroscience.2016.05.015_b0060
  article-title: Neuronal population coding of movement direction
  publication-title: Science
  doi: 10.1126/science.3749885
– volume: 227
  start-page: 821
  year: 1997
  ident: 10.1016/j.neuroscience.2016.05.015_b0180
  article-title: Neural correlates of motor memory consolidation
  publication-title: Science
  doi: 10.1126/science.277.5327.821
– volume: 25
  start-page: 69
  year: 2008
  ident: 10.1016/j.neuroscience.2016.05.015_b0070
  article-title: Predicting reaching targets from human EEG
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2008.4408443
– start-page: 382
  year: 1996
  ident: 10.1016/j.neuroscience.2016.05.015_b0030
  article-title: Consolidation in human motor memory
  publication-title: Nature
– volume: 1011
  start-page: 7849
  year: 2004
  ident: 10.1016/j.neuroscience.2016.05.015_b0195
  article-title: Control of a two-dimensional movement signal by a non-invasive brain-computer interface in humans
  publication-title: Proc Natl Acad Sci USA
– volume: 371
  start-page: 600
  issue: 6498
  year: 1994
  ident: 10.1016/j.neuroscience.2016.05.015_b0045
  article-title: Mapping motor representations with positron emission tomography
  publication-title: Nature
  doi: 10.1038/371600a0
– year: 2011
  ident: 10.1016/j.neuroscience.2016.05.015_b0005
  article-title: Reconstructing hand kinematics during reach to grasp movements from electroencephalographic signals
– volume: 8
  start-page: 066009
  year: 2011
  ident: 10.1016/j.neuroscience.2016.05.015_b0130
  article-title: Detection of movement intention from single-trial movement-related cortical potentials
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/8/6/066009
– volume: 25
  start-page: 8815
  year: 2005
  ident: 10.1016/j.neuroscience.2016.05.015_b0160
  article-title: Encoding of movement direction in different frequency ranges of motor cortical local field potentials
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0816-05.2005
– volume: 34
  start-page: 14783
  year: 2014
  ident: 10.1016/j.neuroscience.2016.05.015_b0035
  article-title: Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2039-14.2014
– volume: 62
  start-page: 972
  year: 2015
  ident: 10.1016/j.neuroscience.2016.05.015_b0145
  article-title: Using a noninvasive decoding method to classify rhythmic movement imaginations of the arm in two planes
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2377023
– volume: 9
  start-page: 121
  year: 2015
  ident: 10.1016/j.neuroscience.2016.05.015_b0010
  article-title: Global cortical activity predicts shape of hand during grasping
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2015.00121
– volume: 82
  start-page: 2676
  issue: 5
  year: 1999
  ident: 10.1016/j.neuroscience.2016.05.015_b0120
  article-title: Motor cortical representation of speed and direction during reaching
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1999.82.5.2676
– volume: 10
  start-page: 056018
  year: 2013
  ident: 10.1016/j.neuroscience.2016.05.015_b0165
  article-title: Multi-class EEG classification of voluntary hand movement directions
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/10/5/056018
– volume: 51
  start-page: 979
  year: 2004
  ident: 10.1016/j.neuroscience.2016.05.015_b0170
  article-title: An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2004.827062
– volume: 73
  start-page: 2563
  issue: 6
  year: 1995
  ident: 10.1016/j.neuroscience.2016.05.015_b0175
  article-title: Changes in motor cortex activity during reaching movements with similar hand paths but different arm postures
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1995.73.6.2563
– volume: 28
  start-page: 1000
  year: 2008
  ident: 10.1016/j.neuroscience.2016.05.015_b0190
  article-title: Hand movement direction decoded from MEG and EEG
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5171-07.2008
– volume: 311
  start-page: 53
  year: 2006
  ident: 10.1016/j.neuroscience.2016.05.015_b0155
  article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: NeuroImage
– volume: 24
  start-page: 295
  year: 2007
  ident: 10.1016/j.neuroscience.2016.05.015_b0105
  article-title: Understanding intention of movement from electroencephalograms
  publication-title: Expert Syst
  doi: 10.1111/j.1468-0394.2007.00435.x
– volume: 31
  start-page: 300
  year: 2011
  ident: 10.1016/j.neuroscience.2016.05.015_b0115
  article-title: The neuronal basis of long-term sensorimotor learning
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4055-10.2011
SSID ssj0000543
Score 2.2072556
Snippet •Block design enhances classification of 3D reach targets from EEG signals.•The high decoding rate transfers to different trial types (actual/imagery).•The...
To date, decoding accuracy of actual or imagined pointing movements to targets in 3D space from electroencephalographic (EEG) signals has remained modest. The...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 201
SubjectTerms 3D reach movements
Adult
Arm - physiology
Biomechanical Phenomena
Brain - physiology
classification of targets
EEG
Electroencephalography
Electromyography
Electrooculography
Functional Laterality
Humans
Imagination - physiology
Learning - physiology
Male
Memory - physiology
Middle Aged
Motor Activity - physiology
motor areas
motor imagery
Signal Processing, Computer-Assisted
Title Block design enhances classification of 3D reach targets from electroencephalographic signals
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0306452216301646
https://dx.doi.org/10.1016/j.neuroscience.2016.05.015
https://www.ncbi.nlm.nih.gov/pubmed/27223628
https://www.proquest.com/docview/1796686091
https://www.proquest.com/docview/1808687972
Volume 329
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED4kztKlyKMPp2nAAEU31bLEJ4oMbh5wWjRLGyBLQVAUibhNZCN2hi797TlSlJsMKQx0lKATKN7x7iP18SPAO-8kts9WmfGSZbRWdRbqfOaVZwIDpHJxwe3rOR9f0M-X7HINjrq9MIFWmXJ_m9Njtk53Bqk3B7PJZPAtoN2gB46IIqpkrcNGUSrOerAxOvsyPv-bkFlLnsPns2DQaY9GmtcD2cigmjnkrZAne6pOPYVDYz063YTnCUiSUdvWLVhzzTbsjBqcRN_8Ju9JpHbGNfMd-PEJS9YvUke2BnHNVXD1nNiAnANVKHqHTD0pj8ltoFeSliA-J2H3CUlH5YS2z65MErmeWBLehtH7Ai5OT74fjbN0rkJmqSgW6BHu81rkVJhK1QYLlGOeWVoxg-hLlqakTuSGO5_TmnnELDVzbmiUYsJZHLUvoddMG_caiPO8YtJwaSSjtrSycFJYo3Dma4QtbB9U14vaJtHxcPbFte7YZT_1Qw_o4AGdM40e6EO5tJ210hsrWX3snKW7zaWYDjVWiJWsD5fWj8JwZfuDLj40jtPw88U0bno315j4OJcc4dk_npE4wZRCiaIPr9rgWn55IRDI8ULu_mcL38CzcBU5jHQPeovbO_cWcdWi2of1D3-G-2n03ANvYCa1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V5QAXBLSly0cxEuKWbjbxV4Q4lJZqW9peaKVekOU4trotZFfd3QMXfjszTrK0h6KVuCaZyPGMZ56d52eA98FrbJ8rExu0SHhVVAnV-SQUQSgMkNLHBbeTUzk650cX4mIN9rq9MESrbHN_k9Njtm6vDNreHEzH48E3QrukB46IIqpkPYCHXOSKeH07v__yPBCTNGck49SZHu-URyPJ65ZoJGlmDmUj4ynuq1L3odBYjQ6ewpMWRrLdpqXPYM3Xz2F9t8Yp9M9f7AOLxM64Yr4O3z9jwbpmVeRqMF9fkqNnzBFuJqJQ9A2bBJbvsxsiV7KGHj5jtPeEtQflUNunl7aVuB47Rm_D2N2A84MvZ3ujpD1VIXFcZXP0hwxppVKubFlUFsuTF0E4XgqL2EvnNudepVb6kPJKBEQslfB-aItCKO9wzG5Cr57UfguYD7IU2kptteAudzrzWjlb4LzXKpe5PhRdLxrXSo7TyRc_TMctuzK3PWDIAyYVBj3Qh3xpO22EN1ay-tg5y3RbSzEZGqwPK1l_WlrfCcKV7d918WFwlNKvF1v7yWJmMO1JqSWCs388o3F6qVWhsj68aIJr-eWZQhgnM_3yP1v4Fh6Nzk6OzfHh6ddX8JjuRDYjfw29-c3Cv0GENS-34wj6A_p9J4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Block+design+enhances+classification+of+3D+reach+targets+from+electroencephalographic+signals&rft.jtitle=Neuroscience&rft.au=Sosnik%2C+Ronen&rft.au=Tadipatri%2C+Vijay+Aditya&rft.au=Tewfik%2C+Ahmed+H.&rft.au=Pellizzer%2C+Giuseppe&rft.date=2016-08-04&rft.pub=Elsevier+Ltd&rft.issn=0306-4522&rft.eissn=1873-7544&rft.volume=329&rft.spage=201&rft.epage=212&rft_id=info:doi/10.1016%2Fj.neuroscience.2016.05.015&rft.externalDocID=S0306452216301646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon