Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish
The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated wi...
Saved in:
Published in | Disease models & mechanisms Vol. 11; no. 2 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists Ltd
01.02.2018
The Company of Biologists |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt, which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease.
This article has an associated First Person interview with the first author of the paper. |
---|---|
AbstractList | The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt, which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease. This article has an associated First Person interview with the first author of the paper. The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of , which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease.This article has an associated First Person interview with the first author of the paper. The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt , which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease. This article has an associated First Person interview with the first author of the paper . Summary: Using zebrafish, the authors show that exposure to a common environmental contaminant, inorganic arsenic, increases the risk of alcoholic liver disease. The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt, which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease.This article has an associated First Person interview with the first author of the paper.The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt, which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease.This article has an associated First Person interview with the first author of the paper. The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt, which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease. This article has an associated First Person interview with the first author of the paper. |
Author | Amarasiriwardena, Chitra Arora, Manish Bambino, Kathryn Zhang, Chi Austin, Christine Chu, Jaime Sadler, Kirsten C. |
AuthorAffiliation | 3 Department of Pediatrics , Division of Pediatric Hepatology, Icahn School of Medicine at Mount Sinai , New York, New York 10029 , USA 1 Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York, New York 10029 , USA 2 Program in Biology , New York University Abu Dhabi, Saadiyat Island Campus , PO Box 129188 Abu Dhabi, United Arab Emirates |
AuthorAffiliation_xml | – name: 3 Department of Pediatrics , Division of Pediatric Hepatology, Icahn School of Medicine at Mount Sinai , New York, New York 10029 , USA – name: 1 Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York, New York 10029 , USA – name: 2 Program in Biology , New York University Abu Dhabi, Saadiyat Island Campus , PO Box 129188 Abu Dhabi, United Arab Emirates |
Author_xml | – sequence: 1 givenname: Kathryn orcidid: 0000-0001-8541-973X surname: Bambino fullname: Bambino, Kathryn – sequence: 2 givenname: Chi surname: Zhang fullname: Zhang, Chi – sequence: 3 givenname: Christine surname: Austin fullname: Austin, Christine – sequence: 4 givenname: Chitra surname: Amarasiriwardena fullname: Amarasiriwardena, Chitra – sequence: 5 givenname: Manish surname: Arora fullname: Arora, Manish – sequence: 6 givenname: Jaime orcidid: 0000-0002-9291-8630 surname: Chu fullname: Chu, Jaime – sequence: 7 givenname: Kirsten C. orcidid: 0000-0002-1100-4125 surname: Sadler fullname: Sadler, Kirsten C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29361514$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1rFTEUhgep2A_d-ANkwI0It-ZzJrMRpGh7oeBG1-HMSaaTy0xSk0xL_fXmOm2xxdUJyfM-nCTnuDrwwduqekvJKWWCfTLzfEo4la18UR3RVoqNEpQePK4JP6yOU9oR0jDFu1fVIet4QyUVR9W89SFegXdYQ0x2XxGWZFM9QM539eRubKzBm9r5bCNgTvWty2Nt8wg-THUOa6CGCcMYpiJYM8YlC2Xf-fq37SMMLo2vq5cDTMm-ua8n1c9vX3-cXWwuv59vz75cblC0LG9434vemr7vzEAko6KRg-mxkxIUMZb1bQOyNcQIFIBECgQUDPjQMcoZB35SbVevCbDT19HNEO90AKf_bpQba4jZ4WQ1sWxQHJGiLB4E1QNQM4BkCltseXF9Xl3XSz9bg9bnCNMT6dMT70Z9FW60VJ3oBC2CD_eCGH4tNmU9u4R2msDbsCRNu44oKUjbFPT9M3QXlujLU2nWKNk0qpCFevdvR4-tPPxqAcgKYAwpRTtodBmyC_sG3aQp0fvB0WVw9Do4JfLxWeTB-h_4D7Q8xn4 |
CitedBy_id | crossref_primary_10_1242_bio_060094 crossref_primary_10_3390_biom8020026 crossref_primary_10_1002_jat_4763 crossref_primary_10_1016_j_envres_2024_118653 crossref_primary_10_1242_dmm_043844 crossref_primary_10_1016_j_chemosphere_2021_129735 crossref_primary_10_1155_2022_6405911 crossref_primary_10_3390_ijms222413417 crossref_primary_10_1002_tox_22675 crossref_primary_10_1016_j_metabol_2024_155811 crossref_primary_10_1002_jat_4581 crossref_primary_10_1016_j_envint_2021_106555 crossref_primary_10_14218_JCTH_2020_00185 crossref_primary_10_1038_s41598_024_52737_6 crossref_primary_10_1007_s10646_020_02222_3 crossref_primary_10_1016_j_cbpc_2019_04_016 crossref_primary_10_1016_j_prenap_2025_100155 crossref_primary_10_1177_07482337221098319 crossref_primary_10_32350_BSR_0103_01 crossref_primary_10_1016_j_pestbp_2024_106064 crossref_primary_10_1016_j_ygeno_2021_11_034 crossref_primary_10_61634_2782_3024_2023_9_84_94 crossref_primary_10_1007_s10646_021_02376_8 crossref_primary_10_1016_j_chemosphere_2020_128678 crossref_primary_10_1016_j_ecoenv_2024_116023 crossref_primary_10_1016_j_envres_2023_117134 crossref_primary_10_1007_s10811_020_02262_6 crossref_primary_10_1016_j_taap_2020_115307 crossref_primary_10_1242_dmm_039370 crossref_primary_10_1007_s10311_021_01383_9 crossref_primary_10_1016_j_cjac_2022_100068 crossref_primary_10_1515_jbcpp_2019_0298 crossref_primary_10_1016_j_cld_2018_09_006 crossref_primary_10_3390_ijerph19094991 crossref_primary_10_1016_j_aquatox_2022_106175 crossref_primary_10_1126_sciadv_abf4865 crossref_primary_10_3390_brainsci13121633 crossref_primary_10_1007_s40572_019_00232_w crossref_primary_10_1002_cpz1_231 crossref_primary_10_3390_genes12071081 crossref_primary_10_1242_dmm_050786 crossref_primary_10_1016_j_envpol_2021_117637 crossref_primary_10_1038_s41573_021_00210_8 crossref_primary_10_1016_j_ecoenv_2021_113098 crossref_primary_10_1042_BST20180335 crossref_primary_10_1186_s12915_022_01298_z crossref_primary_10_1007_s40572_024_00463_6 crossref_primary_10_1016_j_cbpc_2023_109546 |
Cites_doi | 10.1016/j.freeradbiomed.2014.07.037 10.1002/hep.22667 10.1186/1471-2458-12-639 10.1038/nature17041 10.1002/hep.24396 10.1016/j.taap.2012.04.035 10.1038/srep16093 10.1089/ars.2007.1782 10.1038/cddis.2013.502 10.1289/ehp.1103441 10.1289/ehp.1409501 10.1242/dmm.012195 10.1021/bi801988x 10.1002/mas.21481 10.1002/hep.24368 10.1053/j.gastro.2015.08.034 10.1007/s00204-013-1101-x 10.1289/ehp.1104173 10.1002/hep.23567 10.1016/S0016-5085(98)70599-2 10.1016/S0378-4274(02)00084-X 10.1016/j.cbpc.2015.04.001 10.1111/j.1530-0277.2011.01602.x 10.1111/j.1365-2559.2011.04145.x 10.3109/10715762.2015.1078461 10.1289/ehp.1002471 10.3892/or.2012.1977 10.1152/physiolgenomics.00201.2005 10.1007/s00204-012-0904-5 10.1081/CLT-100100949 10.1177/0192623312468517 10.1007/s12011-016-0810-4 10.1038/sj.jea.7500449 10.1093/database/baw093 10.1016/j.aquatox.2014.04.006 10.1016/j.celrep.2013.03.024 10.1089/ars.2011.4004 10.1289/ehp.02110s5883 10.1177/003685049908200104 10.1242/dmm.014472 10.1186/gb-2004-5-10-r80 10.1016/j.taap.2004.08.025 10.1371/journal.pgen.1004335 10.1159/000324289 10.1093/qjmed/hcp158 10.1080/10590500701201695 10.1016/j.mrgentox.2016.09.006 10.1016/j.etap.2016.10.020 10.3390/ijerph121012628 10.1016/j.pharmthera.2016.03.009 10.1055/s-0035-1562947 10.1007/s00204-012-0920-5 10.1016/j.aquatox.2008.11.007 10.1038/nrgastro.2015.35 10.1089/zeb.2012.0821 10.1016/j.taap.2006.12.029 10.1016/j.aquatox.2013.10.006 10.1021/bi501360e 10.1007/BF00288353 10.1186/1476-069X-10-64 10.1289/ehp.96104620 10.1289/ehp.1205797 10.2337/dc14-1641 10.1016/j.taap.2007.07.011 10.1016/j.taap.2003.10.020 10.1091/mbc.E09-02-0133 10.1186/s12940-016-0194-0 10.1016/j.toxlet.2012.05.011 10.1016/j.taap.2011.09.019 10.1016/S0140-6736(10)60481-3 10.1289/ehp.1205875 10.1097/MOL.0000000000000056 10.1016/j.toxlet.2005.10.024 10.1242/dev.147629 10.1186/s13059-014-0550-8 10.1242/dev.115980 10.1038/srep44424 10.1371/journal.pone.0053732 10.1371/journal.pone.0068737 10.1177/0192623314549960 10.1016/j.envres.2014.08.034 10.1016/j.annepidem.2007.05.013 10.1093/toxsci/kfw185 10.7326/0003-4819-159-10-201311190-00719 10.1093/bioinformatics/btp120 10.1242/jcs.107029 10.1016/j.ccr.2014.01.003 10.1016/j.taap.2008.12.016 10.1039/c2an15792f 10.1016/j.aquatox.2016.04.013 10.1093/bioinformatics/btu170 10.1371/journal.pone.0151225 10.1242/dmm.011726 10.1126/science.1103160 10.1093/bioinformatics/btu638 10.1172/JCI200422422 10.1002/jat.1649 10.1002/jbt.21600 10.1089/zeb.2016.1252 10.1080/19338244.2015.1129301 10.3390/biom7010009 10.1098/rstb.2011.0403 10.1039/c3mb70508k 10.1023/B:MCBI.0000007261.04684.78 10.1023/B:MCBI.0000007262.26044.e8 10.1002/em.21987 10.3389/fonc.2017.00055 10.1021/es803141m 10.1002/hep.24349 10.1136/jech-2013-203114 10.1186/1471-2199-10-104 10.1016/j.freeradbiomed.2007.11.004 |
ContentType | Journal Article |
Copyright | 2018. Published by The Company of Biologists Ltd. 2018. This work is licensed under http://creativecommons.org/licenses/by/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018. Published by The Company of Biologists Ltd 2018 |
Copyright_xml | – notice: 2018. Published by The Company of Biologists Ltd. – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018. Published by The Company of Biologists Ltd 2018 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.1242/dmm.031575 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1754-8411 |
ExternalDocumentID | oai_doaj_org_article_0e2f83cc1c554cca8baa1dfa528c7c73 PMC5894941 29361514 10_1242_dmm_031575 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: P30 ES023515 – fundername: NICHD NIH HHS grantid: T32 HD049311 – fundername: NIAAA NIH HHS grantid: R01 AA018886 – fundername: NIDDK NIH HHS grantid: K08 DK101340 – fundername: ; grantid: T32 HD049311-09 – fundername: ; grantid: 5RO1AA018886 – fundername: ; grantid: P30ES023515 |
GroupedDBID | 0R~ 29G 2WC 53G 5GY 5VS 6~0 6~1 7X7 8FI 8FJ AAFWJ AAYXX ABUWG ADBBV AENEX AFKRA AFPKN AGGIJ AIPOO ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI BTFSW CCPQU CITATION CS3 DIK DU5 E3Z EBS EE- EJD F5P F9R FRP FYUFA GROUPED_DOAJ H13 HCIFZ HMCUK HYE HZ~ INIJC KQ8 M7P O9- OK1 P2P PHGZM PHGZT PIMPY RCB RHI RNS RPM TR2 UKHRP W2D W8F FRJ M~E NPM RHF 3V. 7XB 8FE 8FH 8FK AZQEC DWQXO GNUQQ K9. LK8 PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c472t-3bb4bedbb9df0521465fdbc955a80de2b76a57d0d4c4ac054cac42a3f921323a3 |
IEDL.DBID | DOA |
ISSN | 1754-8403 1754-8411 |
IngestDate | Wed Aug 27 01:30:29 EDT 2025 Thu Aug 21 18:45:46 EDT 2025 Thu Jul 10 23:45:11 EDT 2025 Fri Jul 25 12:02:42 EDT 2025 Wed Feb 19 02:44:00 EST 2025 Thu Apr 24 23:02:08 EDT 2025 Thu Jul 03 08:31:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Environmental exposure Fatty liver disease Arsenic Ethanol |
Language | English |
License | http://creativecommons.org/licenses/by/3.0 2018. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-3bb4bedbb9df0521465fdbc955a80de2b76a57d0d4c4ac054cac42a3f921323a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9291-8630 0000-0001-8541-973X 0000-0002-1100-4125 |
OpenAccessLink | https://doaj.org/article/0e2f83cc1c554cca8baa1dfa528c7c73 |
PMID | 29361514 |
PQID | 2685668085 |
PQPubID | 5510497 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0e2f83cc1c554cca8baa1dfa528c7c73 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5894941 proquest_miscellaneous_1990854076 proquest_journals_2685668085 pubmed_primary_29361514 crossref_citationtrail_10_1242_dmm_031575 crossref_primary_10_1242_dmm_031575 |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Disease models & mechanisms |
PublicationTitleAlternate | Dis Model Mech |
PublicationYear | 2018 |
Publisher | The Company of Biologists Ltd The Company of Biologists |
Publisher_xml | – name: The Company of Biologists Ltd – name: The Company of Biologists |
References | Wang (2024061302130115600_DMM031575C105) 2016; 529 Das (2024061302130115600_DMM031575C25) 2010; 51 Louvet (2024061302130115600_DMM031575C63) 2015; 12 Trapnell (2024061302130115600_DMM031575C97) 2009; 25 Benham (2024061302130115600_DMM031575C14) 2013; 368 Santra (2024061302130115600_DMM031575C84) 2007; 220 Malhotra (2024061302130115600_DMM031575C69) 2007; 9 Wahlang (2024061302130115600_DMM031575C103) 2013; 41 Vahter (2024061302130115600_DMM031575C102) 1999; 82 Ashraf (2024061302130115600_DMM031575C12) 2015; 49 Lu (2024061302130115600_DMM031575C65) 2008; 44 States (2024061302130115600_DMM031575C92) 2011; 119 Chen (2024061302130115600_DMM031575C21) 2013; 121 Anstee (2024061302130115600_DMM031575C10) 2015; 35 Engstrom (2024061302130115600_DMM031575C32) 2011; 119 Howarth (2024061302130115600_DMM031575C45) 2014; 10 Santra (2024061302130115600_DMM031575C81) 1999; 18 Kile (2024061302130115600_DMM031575C54) 2012; 120 Farzan (2024061302130115600_DMM031575C34) 2016; 15 Hallauer (2024061302130115600_DMM031575C38) 2016; 13 Hughes (2024061302130115600_DMM031575C48) 2002; 133 Goessling (2024061302130115600_DMM031575C37) 2015; 149 Mazumder (2024061302130115600_DMM031575C71) 2005; 206 Sinha (2024061302130115600_DMM031575C91) 2013; 87 Tseng (2024061302130115600_DMM031575C100) 2009; 235 Carlson (2024061302130115600_DMM031575C17) 2014; 153 Jacob (2024061302130115600_DMM031575C50) 2015; 142 Adams (2024061302130115600_DMM031575C2) 2016; 71 Islam (2024061302130115600_DMM031575C49) 2011; 10 Luz (2024061302130115600_DMM031575C66) 2016; 154 Weng (2024061302130115600_DMM031575C110) 2014; 88 Sussulini (2024061302130115600_DMM031575C93) 2017; 36 Hopenhayn-Rich (2024061302130115600_DMM031575C42) 1996; 104 Santra (2024061302130115600_DMM031575C82) 2000; 19 Chernyavskaya (2024061302130115600_DMM031575C23) 2017; 144 Browning (2024061302130115600_DMM031575C16) 2004; 114 Li (2024061302130115600_DMM031575C59) 2012; 212 Das (2024061302130115600_DMM031575C26) 2012; 12 Moon (2024061302130115600_DMM031575C73) 2013; 159 Bambino (2024061302130115600_DMM031575C13) 2017 Mauro (2024061302130115600_DMM031575C70) 2016; 57 Xu (2024061302130115600_DMM031575C113) 2017; 176 Das (2024061302130115600_DMM031575C27) 2016; 809 Garcia (2024061302130115600_DMM031575C35) 2016; 161 Naujokas (2024061302130115600_DMM031575C75) 2013; 121 Wu (2024061302130115600_DMM031575C111) 2017; 7 Xu (2024061302130115600_DMM031575C112) 2013; 8 Kuo (2024061302130115600_DMM031575C55) 2015; 38 Bolger (2024061302130115600_DMM031575C15) 2014; 30 Santra (2024061302130115600_DMM031575C83) 2000; 38 Jacobson (2024061302130115600_DMM031575C51) 2012; 125 Vacaru (2024061302130115600_DMM031575C101) 2014; 7 Yamamoto (2024061302130115600_DMM031575C114) 2010; 21 Gentleman (2024061302130115600_DMM031575C36) 2004; 5 Al-Eryani (2024061302130115600_DMM031575C7) 2015; 43 Love (2024061302130115600_DMM031575C64) 2014; 15 Hudson (2024061302130115600_DMM031575C47) 2015; 80 Wang (2024061302130115600_DMM031575C104) 2014; 25 Argos (2024061302130115600_DMM031575C11) 2010; 376 Liu (2024061302130115600_DMM031575C62) 2013; 6 Levene (2024061302130115600_DMM031575C57) 2012; 61 Tseng (2024061302130115600_DMM031575C99) 2007; 25 Yang (2024061302130115600_DMM031575C115) 2009; 43 Ditzel (2024061302130115600_DMM031575C29) 2016; 124 Engstrom (2024061302130115600_DMM031575C33) 2013; 8 Cederbaum (2024061302130115600_DMM031575C19) 2010; 28 Thakur (2024061302130115600_DMM031575C95) 2011; 54 Hamdi (2024061302130115600_DMM031575C40) 2012; 262 Wang (2024061302130115600_DMM031575C107) 2014; 135 Hamdi (2024061302130115600_DMM031575C39) 2009; 10 Seervi (2024061302130115600_DMM031575C87) 2013; 4 Ahsan (2024061302130115600_DMM031575C5) 2006; 16 Hare (2024061302130115600_DMM031575C41) 2012; 137 Thomas (2024061302130115600_DMM031575C96) 2004; 198 Cheng (2024061302130115600_DMM031575C22) 2016; 176 Li (2024061302130115600_DMM031575C60) 2015; 12 Ramadan (2024061302130115600_DMM031575C79) 2009; 48 Passeri (2024061302130115600_DMM031575C78) 2009; 49 Adebayo (2024061302130115600_DMM031575C3) 2015; 29 Anders (2024061302130115600_DMM031575C8) 2015; 31 Carreras-Sureda (2024061302130115600_DMM031575C18) 2017; 7 Wang (2024061302130115600_DMM031575C108) 2014; 68 Dowman (2024061302130115600_DMM031575C31) 2010; 103 Shoulders (2024061302130115600_DMM031575C90) 2013; 3 Li (2024061302130115600_DMM031575C58) 2009; 91 Day (2024061302130115600_DMM031575C28) 1998; 114 Adams (2024061302130115600_DMM031575C1) 2007; 17 Mudbhary (2024061302130115600_DMM031575C74) 2014; 25 Seok (2024061302130115600_DMM031575C88) 2007; 225 Wang (2024061302130115600_DMM031575C106) 2006; 163 Jomova (2024061302130115600_DMM031575C53) 2011; 31 Ma (2024061302130115600_DMM031575C67) 2015; 5 McCollum (2024061302130115600_DMM031575C72) 2014; 152 Huang (2024061302130115600_DMM031575C46) 2004; 255 Tsedensodnom (2024061302130115600_DMM031575C98) 2013; 6 Lam (2024061302130115600_DMM031575C56) 2006; 27 Adeyemi (2024061302130115600_DMM031575C4) 2015; 172-173 Ji (2024061302130115600_DMM031575C52) 2011; 54 Reichl (2024061302130115600_DMM031575C80) 1988; 62 Shi (2024061302130115600_DMM031575C89) 2004; 255 Doudican (2024061302130115600_DMM031575C30) 2012; 28 Howarth (2024061302130115600_DMM031575C44) 2013; 10 Watanabe (2024061302130115600_DMM031575C109) 2013; 87 Anelli (2024061302130115600_DMM031575C9) 2011; 16 Ozcan (2024061302130115600_DMM031575C77) 2004; 306 Howarth (2024061302130115600_DMM031575C43) 2012; 36 Magdaleno (2024061302130115600_DMM031575C68) 2017; 7 O'Connell (2024061302130115600_DMM031575C76) 2014; 10 Tan (2024061302130115600_DMM031575C94) 2011; 257 Aken (2024061302130115600_DMM031575C6) 2016; 2016 Sapra (2024061302130115600_DMM031575C85) 2015; 54 Li (2024061302130115600_DMM031575C61) 2016; 11 Sattar (2024061302130115600_DMM031575C86) 2016; 48 Centeno (2024061302130115600_DMM031575C20) 2002; 110 Cinaroglu (2024061302130115600_DMM031575C24) 2011; 54 26319012 - Gastroenterology. 2015 Nov;149(6):1361-77 25155036 - J Biochem Mol Toxicol. 2015 Jan;29(1):1-9 10531716 - Indian J Gastroenterol. 1999 Oct-Nov;18(4):152-5 27692299 - Mutat Res. 2016 Oct;809:50-56 19914930 - QJM. 2010 Feb;103(2):71-83 17303202 - Toxicol Appl Pharmacol. 2007 Apr 15;220(2):146-55 14971647 - Mol Cell Biochem. 2004 Jan;255(1-2):67-78 19939263 - BMC Mol Biol. 2009 Nov 25;10:104 18078827 - Free Radic Biol Med. 2008 Mar 1;44(5):723-38 23262638 - Toxicol Pathol. 2013 Feb;41(2):343-60 21684831 - Environ Health Perspect. 2011 Oct;119(10):1356-63 28698226 - Development. 2017 Aug 15;144(16):2925-2939 25564650 - Development. 2015 Feb 1;142(3):510-21 19110324 - Aquat Toxicol. 2009 Feb 19;91(3):229-37 26666397 - Arch Environ Occup Health. 2016 Nov;71(6):338-346 24695404 - Bioinformatics. 2014 Aug 1;30(15):2114-20 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 17365340 - J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2007 Jan-Mar;25(1):1-22 27498811 - Biol Trace Elem Res. 2017 Mar;176(1):154-175 22575231 - Toxicol Appl Pharmacol. 2012 Jul 15;262(2):185-93 27337980 - Database (Oxford). 2016 Jun 23;2016 25262084 - Environ Res. 2014 Nov;135:120-5 10445007 - Sci Prog. 1999;82 ( Pt 1):69-88 23458756 - Environ Health Perspect. 2013 Mar;121(3):295-302 3250379 - Arch Toxicol. 1988;62(6):473-5 12076506 - Toxicol Lett. 2002 Jul 7;133(1):1-16 24486181 - Cancer Cell. 2014 Feb 10;25(2):196-209 24768856 - Aquat Toxicol. 2014 Jul;152:152-63 10918716 - Indian J Gastroenterol. 2000 Jul-Sep;19(3):112-5 24488121 - Mol Biosyst. 2014 Apr;10 (4):851-861 22883023 - BMC Public Health. 2012 Aug 10;12:639 16882884 - Physiol Genomics. 2006 Nov 27;27(3):351-61 21740555 - Environ Health. 2011 Jul 08;10:64 28303940 - Sci Rep. 2017 Mar 17;7:44424 20222092 - Hepatology. 2010 May;51(5):1593-602 26791723 - Nature. 2016 Jan 21;529(7586):326-35 24874946 - PLoS Genet. 2014 May 29;10(5):e1004335 27108203 - Aquat Toxicol. 2016 Jul;176:45-52 26151952 - Environ Health Perspect. 2016 Feb;124(2):201-9 22922937 - Oncol Rep. 2012 Nov;28(5):1851-8 26967897 - PLoS One. 2016 Mar 11;11(3):e0151225 25091901 - Free Radic Biol Med. 2015 Mar;80:171-82 27794142 - Toxicol Sci. 2016 Nov;154(1):195 23798569 - Dis Model Mech. 2013 Sep;6(5):1213-26 27825389 - Environ Health. 2016 Nov 8;15(1):106 24061511 - Ann Intern Med. 2013 Nov 19;159(10):649-59 15461798 - Genome Biol. 2004;5(10):R80 21525766 - Dig Dis. 2010;28(6):802-11 17979528 - Antioxid Redox Signal. 2007 Dec;9(12):2277-93 24565920 - Curr Opin Lipidol. 2014 Apr;25(2):125-32 25326588 - Toxicol Pathol. 2015 Jun;43(4):482-97 15967205 - Toxicol Appl Pharmacol. 2005 Aug 7;206(2):169-75 28421160 - Front Oncol. 2017 Apr 03;7:55 28335863 - Curr Top Dev Biol. 2017;124:331-367 19127516 - Hepatology. 2009 Feb;49(2):443-52 26473898 - Int J Environ Res Public Health. 2015 Oct 12;12(10):12628-42 27140519 - Zebrafish. 2016 Oct;13(5):405-12 27829199 - Environ Toxicol Pharmacol. 2016 Dec;48:214-224 16160703 - J Expo Sci Environ Epidemiol. 2006 Mar;16(2):191-205 23892647 - Arch Toxicol. 2014 Feb;88(2):213-26 26378644 - Semin Liver Dis. 2015 Aug;35(3):270-90 21854214 - Antioxid Redox Signal. 2012 May 15;16(10):1077-87 22314636 - Analyst. 2012 Apr 7;137(7):1527-37 21790674 - Alcohol Clin Exp Res. 2012 Jan;36(1):14-23 15254578 - J Clin Invest. 2004 Jul;114(2):147-52 22466225 - Environ Health Perspect. 2012 Jul;120(7):1061-6 21503947 - Hepatology. 2011 Jul;54(1):229-39 22613031 - Toxicol Lett. 2012 Jul 20;212(2):161-8 24176670 - Aquat Toxicol. 2014 Aug;153:66-72 23530257 - Philos Trans R Soc Lond B Biol Sci. 2013 Mar 25;368(1617):20110403 21983427 - Toxicol Appl Pharmacol. 2011 Dec 15;257(3):356-64 22946053 - J Cell Sci. 2012 Nov 1;125(Pt 21):5073-83 17905400 - Toxicol Appl Pharmacol. 2007 Dec 1;225(2):154-61 23813869 - Dis Model Mech. 2013 Sep;6(5):1271-8 22811022 - Arch Toxicol. 2013 Jun;87(6):969-79 24357799 - Cell Death Dis. 2013 Dec 19;4:e968 17728149 - Ann Epidemiol. 2007 Nov;17(11):863-9 26537450 - Sci Rep. 2015 Nov 05;5:16093 9547102 - Gastroenterology. 1998 Apr;114(4):842-5 23341986 - PLoS One. 2013;8(1):e53732 14971646 - Mol Cell Biochem. 2004 Jan;255(1-2):57-66 21247820 - Environ Health Perspect. 2011 Feb;119(2):182-8 15486293 - Science. 2004 Oct 15;306(5695):457-61 27016469 - Pharmacol Ther. 2016 May;161:11-21 22914984 - Arch Toxicol. 2013 Feb;87(2):383-96 23665672 - Environ Health Perspect. 2013 Jul;121(7):832-8 25882832 - Comp Biochem Physiol C Toxicol Pharmacol. 2015 Jun-Jul;172-173:7-12 12426152 - Environ Health Perspect. 2002 Oct;110 Suppl 5:883-6 25516281 - Genome Biol. 2014;15(12):550 26223319 - Free Radic Res. 2015;49(12):1405-18 19168087 - Toxicol Appl Pharmacol. 2009 Mar 15;235(3):338-50 23922661 - PLoS One. 2013 Jul 29;8(7):e68737 25506675 - Biochemistry. 2015 Jan 20;54(2):612-21 10930056 - J Toxicol Clin Toxicol. 2000;38(4):395-405 24973751 - Dis Model Mech. 2014 Jul;7(7):823-35 24133074 - J Epidemiol Community Health. 2014 Feb;68(2):176-84 26398248 - Mass Spectrom Rev. 2017 Jan;36(1):47-57 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 21321970 - J Appl Toxicol. 2011 Mar;31(2):95-107 26581878 - Environ Mol Mutagen. 2016 Mar;57(2):137-50 21488074 - Hepatology. 2011 Aug;54(2):452-62 16376500 - Toxicol Lett. 2006 Jun 1;163(3):191-7 23583182 - Cell Rep. 2013 Apr 25;3(4):1279-92 25782093 - Nat Rev Gastroenterol Hepatol. 2015 Apr;12(4):231-42 19475939 - Environ Sci Technol. 2009 Apr 15;43(8):2714-9 15276411 - Toxicol Appl Pharmacol. 2004 Aug 1;198(3):319-26 8793350 - Environ Health Perspect. 1996 Jun;104(6):620-8 20646756 - Lancet. 2010 Jul 24;376(9737):252-8 21538441 - Hepatology. 2011 Aug;54(2):495-508 19102631 - Biochemistry. 2009 Jan 20;48(2):424-32 20631254 - Mol Biol Cell. 2010 Sep 1;21(17):2975-86 22372457 - Histopathology. 2012 Aug;61(2):141-52 25583752 - Diabetes Care. 2015 Apr;38(4):620-7 23697887 - Zebrafish. 2013 Jun;10(2):199-210 |
References_xml | – volume: 80 start-page: 171 year: 2015 ident: 2024061302130115600_DMM031575C47 article-title: Oxidative protein folding: From thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.07.037 – volume: 49 start-page: 443 year: 2009 ident: 2024061302130115600_DMM031575C78 article-title: Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation publication-title: Hepatology doi: 10.1002/hep.22667 – volume: 12 start-page: 639 year: 2012 ident: 2024061302130115600_DMM031575C26 article-title: Arsenic exposure through drinking water increases the risk of liver and cardiovascular diseases in the population of west bengal, india publication-title: BMC Public Health doi: 10.1186/1471-2458-12-639 – volume: 529 start-page: 326 year: 2016 ident: 2024061302130115600_DMM031575C105 article-title: Protein misfolding in the endoplasmic reticulum as a conduit to human disease publication-title: Nature doi: 10.1038/nature17041 – volume: 54 start-page: 495 year: 2011 ident: 2024061302130115600_DMM031575C24 article-title: Activating transcription factor 6 plays protective and pathological roles in steatosis due to endoplasmic reticulum stress in zebrafish publication-title: Hepatology doi: 10.1002/hep.24396 – volume: 262 start-page: 185 year: 2012 ident: 2024061302130115600_DMM031575C40 article-title: Identification of an s-adenosylmethionine (sam) dependent arsenic methyltransferase in danio rerio publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2012.04.035 – volume: 5 start-page: 16093 year: 2015 ident: 2024061302130115600_DMM031575C67 article-title: Folic acid protects against arsenic-mediated embryo toxicity by up-regulating the expression of dvr1 publication-title: Sci. Rep. doi: 10.1038/srep16093 – volume: 9 start-page: 2277 year: 2007 ident: 2024061302130115600_DMM031575C69 article-title: Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? publication-title: Antioxid Redox Signal. doi: 10.1089/ars.2007.1782 – volume: 4 start-page: e968 year: 2013 ident: 2024061302130115600_DMM031575C87 article-title: Ero1α-dependent endoplasmic reticulum–mitochondrial calcium flux contributes to er stress and mitochondrial permeabilization by procaspase-activating compound-1 (pac-1) publication-title: Cell Death Dis. doi: 10.1038/cddis.2013.502 – volume: 119 start-page: 1356 year: 2011 ident: 2024061302130115600_DMM031575C92 article-title: Arsenic toxicology: translating between experimental models and human pathology publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1103441 – volume: 124 start-page: 201 year: 2016 ident: 2024061302130115600_DMM031575C29 article-title: Effects of arsenite exposure during fetal development on energy metabolism and susceptibility to diet-induced fatty liver disease in male mice publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1409501 – volume: 6 start-page: 1213 year: 2013 ident: 2024061302130115600_DMM031575C98 article-title: Ethanol metabolism and oxidative stress are required for unfolded protein response activation and steatosis in zebrafish with alcoholic liver disease publication-title: Dis. Model. Mech. doi: 10.1242/dmm.012195 – volume: 48 start-page: 424 year: 2009 ident: 2024061302130115600_DMM031575C79 article-title: Arsenic(iii) species inhibit oxidative protein folding in vitro publication-title: Biochemistry doi: 10.1021/bi801988x – volume: 36 start-page: 47 year: 2017 ident: 2024061302130115600_DMM031575C93 article-title: Laser ablation icp-ms: Application in biomedical research publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.21481 – volume: 54 start-page: 229 year: 2011 ident: 2024061302130115600_DMM031575C52 article-title: Liver-specific loss of glucose-regulated protein 78 perturbs the unfolded protein response and exacerbates a spectrum of liver diseases in mice publication-title: Hepatology doi: 10.1002/hep.24368 – volume: 149 start-page: 1361 year: 2015 ident: 2024061302130115600_DMM031575C37 article-title: Zebrafish: an important tool for liver disease research publication-title: Gastroenterology doi: 10.1053/j.gastro.2015.08.034 – volume: 88 start-page: 213 year: 2014 ident: 2024061302130115600_DMM031575C110 article-title: Arsenic trioxide induces unfolded protein response in vascular endothelial cells publication-title: Arch. Toxicol. doi: 10.1007/s00204-013-1101-x – volume: 120 start-page: 1061 year: 2012 ident: 2024061302130115600_DMM031575C54 article-title: Prenatal arsenic exposure and DNA methylation in maternal and umbilical cord blood leukocytes publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1104173 – volume: 51 start-page: 1593 year: 2010 ident: 2024061302130115600_DMM031575C25 article-title: Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease publication-title: Hepatology doi: 10.1002/hep.23567 – volume: 114 start-page: 842 year: 1998 ident: 2024061302130115600_DMM031575C28 article-title: Steatohepatitis: a tale of two “hits”? publication-title: Gastroenterology doi: 10.1016/S0016-5085(98)70599-2 – volume: 133 start-page: 1 year: 2002 ident: 2024061302130115600_DMM031575C48 article-title: Arsenic toxicity and potential mechanisms of action publication-title: Toxicol. Lett. doi: 10.1016/S0378-4274(02)00084-X – volume: 172-173 start-page: 7 year: 2015 ident: 2024061302130115600_DMM031575C4 article-title: Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (danio rerio) co-exposed to arsenic and atrazine publication-title: Comp. Biochem. Physiol. C Toxicol. Pharmacol. doi: 10.1016/j.cbpc.2015.04.001 – volume: 36 start-page: 14 year: 2012 ident: 2024061302130115600_DMM031575C43 article-title: Alcohol disrupts endoplasmic reticulum function and protein secretion in hepatocytes publication-title: Alcohol. Clin. Exp. Res. doi: 10.1111/j.1530-0277.2011.01602.x – volume: 61 start-page: 141 year: 2012 ident: 2024061302130115600_DMM031575C57 article-title: The epidemiology, pathogenesis and histopathology of fatty liver disease publication-title: Histopathology doi: 10.1111/j.1365-2559.2011.04145.x – volume: 49 start-page: 1405 year: 2015 ident: 2024061302130115600_DMM031575C12 article-title: Endoplasmic reticulum stress and oxidative stress in the pathogenesis of non-alcoholic fatty liver disease publication-title: Free Radic. Res. doi: 10.3109/10715762.2015.1078461 – volume: 119 start-page: 182 year: 2011 ident: 2024061302130115600_DMM031575C32 article-title: Polymorphisms in arsenic(+iii oxidation state) methyltransferase (as3mt) predict gene expression of as3mt as well as arsenic metabolism publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1002471 – volume: 28 start-page: 1851 year: 2012 ident: 2024061302130115600_DMM031575C30 article-title: Sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide in multiple myeloma cells via stress-mediated pathways publication-title: Oncol. Rep. doi: 10.3892/or.2012.1977 – volume: 27 start-page: 351 year: 2006 ident: 2024061302130115600_DMM031575C56 article-title: Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver publication-title: Physiol. Genomics doi: 10.1152/physiolgenomics.00201.2005 – volume: 87 start-page: 969 year: 2013 ident: 2024061302130115600_DMM031575C109 article-title: Metabolism of arsenic and its toxicological relevance publication-title: Arch. Toxicol. doi: 10.1007/s00204-012-0904-5 – volume: 38 start-page: 395 year: 2000 ident: 2024061302130115600_DMM031575C83 article-title: Hepatic damage caused by chronic arsenic toxicity in experimental animals publication-title: J. Toxicol. Clin. Toxicol. doi: 10.1081/CLT-100100949 – volume: 41 start-page: 343 year: 2013 ident: 2024061302130115600_DMM031575C103 article-title: Toxicant-associated steatohepatitis publication-title: Toxicol. Pathol. doi: 10.1177/0192623312468517 – volume: 176 start-page: 154 year: 2017 ident: 2024061302130115600_DMM031575C113 article-title: Oxidative damage induced by arsenic in mice or rats: A systematic review and meta-analysis publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-016-0810-4 – volume: 18 start-page: 152 year: 1999 ident: 2024061302130115600_DMM031575C81 article-title: Hepatic manifestations in chronic arsenic toxicity publication-title: Indian J. Gastroenterol. – volume: 16 start-page: 191 year: 2006 ident: 2024061302130115600_DMM031575C5 article-title: Health effects of arsenic longitudinal study (heals): Description of a multidisciplinary epidemiologic investigation publication-title: J. Expo. Sci. Environ. Epidemiol. doi: 10.1038/sj.jea.7500449 – volume: 2016 start-page: baw093 year: 2016 ident: 2024061302130115600_DMM031575C6 article-title: The ensembl gene annotation system publication-title: Database (Oxford) doi: 10.1093/database/baw093 – volume: 152 start-page: 152 year: 2014 ident: 2024061302130115600_DMM031575C72 article-title: Embryonic exposure to sodium arsenite perturbs vascular development in zebrafish publication-title: Aquatic Toxicol. doi: 10.1016/j.aquatox.2014.04.006 – volume: 3 start-page: 1279 year: 2013 ident: 2024061302130115600_DMM031575C90 article-title: Stress-independent activation of xbp1s and/or atf6 reveals three functionally diverse er proteostasis environments publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.03.024 – volume: 16 start-page: 1077 year: 2011 ident: 2024061302130115600_DMM031575C9 article-title: Ero1α regulates ca2+ fluxes at the endoplasmic reticulum–mitochondria interface (mam) publication-title: Antioxid Redox Signal. doi: 10.1089/ars.2011.4004 – volume: 110 start-page: 883 issue: Suppl. 5 year: 2002 ident: 2024061302130115600_DMM031575C20 article-title: Pathology related to chronic arsenic exposure publication-title: Environ. Health Perspect. doi: 10.1289/ehp.02110s5883 – volume: 19 start-page: 112 year: 2000 ident: 2024061302130115600_DMM031575C82 article-title: Oxidative stress in liver of mice exposed to arsenic-contaminated water publication-title: Indian J. Gastroenterol. – volume: 82 start-page: 69 year: 1999 ident: 2024061302130115600_DMM031575C102 article-title: Methylation of inorganic arsenic in different mammalian species and population groups publication-title: Sci. Prog. doi: 10.1177/003685049908200104 – volume: 7 start-page: 823 year: 2014 ident: 2024061302130115600_DMM031575C101 article-title: Molecularly defined unfolded protein response subclasses have distinct correlations with fatty liver disease in zebrafish publication-title: Dis. Model. Mech. doi: 10.1242/dmm.014472 – volume: 5 start-page: R80 year: 2004 ident: 2024061302130115600_DMM031575C36 article-title: Bioconductor: open software development for computational biology and bioinformatics publication-title: Genome Biol. doi: 10.1186/gb-2004-5-10-r80 – volume: 206 start-page: 169 year: 2005 ident: 2024061302130115600_DMM031575C71 article-title: Effect of chronic intake of arsenic-contaminated water on liver publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2004.08.025 – volume: 10 start-page: e1004335 year: 2014 ident: 2024061302130115600_DMM031575C45 article-title: Activating transcription factor 6 is necessary and sufficient for alcoholic fatty liver disease in zebrafish publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004335 – volume: 28 start-page: 802 year: 2010 ident: 2024061302130115600_DMM031575C19 article-title: Role of cyp2e1 in ethanol-induced oxidant stress, fatty liver and hepatotoxicity publication-title: Dig. Dis. doi: 10.1159/000324289 – volume: 103 start-page: 71 year: 2010 ident: 2024061302130115600_DMM031575C31 article-title: Pathogenesis of non-alcoholic fatty liver disease publication-title: QJM doi: 10.1093/qjmed/hcp158 – volume: 25 start-page: 1 year: 2007 ident: 2024061302130115600_DMM031575C99 article-title: Arsenic methylation, urinary arsenic metabolites and human diseases: current perspective publication-title: J. Environ. Sci. Health Part C doi: 10.1080/10590500701201695 – volume: 809 start-page: 50 year: 2016 ident: 2024061302130115600_DMM031575C27 article-title: Association of single nucleotide polymorphism with arsenic-induced skin lesions and genetic damage in exposed population of west bengal, india publication-title: Mutat. Res. doi: 10.1016/j.mrgentox.2016.09.006 – start-page: 331 volume-title: Current Topics in Developmental Biology year: 2017 ident: 2024061302130115600_DMM031575C13 article-title: Chapter nine-zebrafish in toxicology and environmental health – volume: 48 start-page: 214 year: 2016 ident: 2024061302130115600_DMM031575C86 article-title: Metabolism and toxicity of arsenicals in mammals publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2016.10.020 – volume: 12 start-page: 12628 year: 2015 ident: 2024061302130115600_DMM031575C60 article-title: Hepatic and nephric nrf2 pathway up-regulation, an early antioxidant response, in acute arsenic-exposed mice publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph121012628 – volume: 161 start-page: 11 year: 2016 ident: 2024061302130115600_DMM031575C35 article-title: Advancements in zebrafish applications for 21st century toxicology publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2016.03.009 – volume: 35 start-page: 270 year: 2015 ident: 2024061302130115600_DMM031575C10 article-title: The genetics of nonalcoholic fatty liver disease: Spotlight on pnpla3 and tm6sf2 publication-title: Semin. Liver Dis. doi: 10.1055/s-0035-1562947 – volume: 87 start-page: 383 year: 2013 ident: 2024061302130115600_DMM031575C91 article-title: Nrf2-mediated redox signaling in arsenic carcinogenesis: a review publication-title: Arch. Toxicol. doi: 10.1007/s00204-012-0920-5 – volume: 91 start-page: 229 year: 2009 ident: 2024061302130115600_DMM031575C58 article-title: Developmental mechanisms of arsenite toxicity in zebrafish (danio rerio) embryos publication-title: Aquatic Toxicol. doi: 10.1016/j.aquatox.2008.11.007 – volume: 12 start-page: 231 year: 2015 ident: 2024061302130115600_DMM031575C63 article-title: Alcoholic liver disease: mechanisms of injury and targeted treatment publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2015.35 – volume: 10 start-page: 199 year: 2013 ident: 2024061302130115600_DMM031575C44 article-title: Defining hepatic dysfunction parameters in two models of fatty liver disease in zebrafish larvae publication-title: Zebrafish doi: 10.1089/zeb.2012.0821 – volume: 220 start-page: 146 year: 2007 ident: 2024061302130115600_DMM031575C84 article-title: Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by n-acetylcysteine publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2006.12.029 – volume: 153 start-page: 66 year: 2014 ident: 2024061302130115600_DMM031575C17 article-title: Arsenic exposure alters expression of cell cycle and lipid metabolism genes in the liver of adult zebrafish (danio rerio) publication-title: Aquatic Toxicol. doi: 10.1016/j.aquatox.2013.10.006 – volume: 54 start-page: 612 year: 2015 ident: 2024061302130115600_DMM031575C85 article-title: Multivalency in the inhibition of oxidative protein folding by arsenic(iii) species publication-title: Biochemistry doi: 10.1021/bi501360e – volume: 62 start-page: 473 year: 1988 ident: 2024061302130115600_DMM031575C80 article-title: Effect of arsenic on carbohydrate metabolism after single or repeated injection in guinea pigs publication-title: Arch. Toxicol. doi: 10.1007/BF00288353 – volume: 10 start-page: 64 year: 2011 ident: 2024061302130115600_DMM031575C49 article-title: Dose-response relationship between arsenic exposure and the serum enzymes for liver function tests in the individuals exposed to arsenic: A cross sectional study in Bangladesh publication-title: Environ. Health doi: 10.1186/1476-069X-10-64 – volume: 104 start-page: 620 year: 1996 ident: 2024061302130115600_DMM031575C42 article-title: Methylation study of a population environmentally exposed to arsenic in drinking water publication-title: Environ. Health Perspect. doi: 10.1289/ehp.96104620 – volume: 121 start-page: 832 year: 2013 ident: 2024061302130115600_DMM031575C21 article-title: A prospective study of arsenic exposure, arsenic methylation capacity, and risk of cardiovascular disease in bangladesh publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1205797 – volume: 38 start-page: 620 year: 2015 ident: 2024061302130115600_DMM031575C55 article-title: Arsenic exposure, arsenic metabolism, and incident diabetes in the strong heart study publication-title: Diabetes Care doi: 10.2337/dc14-1641 – volume: 225 start-page: 154 year: 2007 ident: 2024061302130115600_DMM031575C88 article-title: Quantitative gfp fluorescence as an indicator of arsenite developmental toxicity in mosaic heat shock protein 70 transgenic zebrafish publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2007.07.011 – volume: 198 start-page: 319 year: 2004 ident: 2024061302130115600_DMM031575C96 article-title: Elucidating the pathway for arsenic methylation publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2003.10.020 – volume: 21 start-page: 2975 year: 2010 ident: 2024061302130115600_DMM031575C114 article-title: Induction of liver steatosis and lipid droplet formation in atf6alpha-knockout mice burdened with pharmacological endoplasmic reticulum stress publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E09-02-0133 – volume: 15 start-page: 106 year: 2016 ident: 2024061302130115600_DMM031575C34 article-title: Maternal arsenic exposure and gestational diabetes and glucose intolerance in the New Hampshire birth cohort study publication-title: Envir. Health doi: 10.1186/s12940-016-0194-0 – volume: 212 start-page: 161 year: 2012 ident: 2024061302130115600_DMM031575C59 article-title: Arsenic impairs embryo development via down-regulating dvr1 expression in zebrafish publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2012.05.011 – volume: 257 start-page: 356 year: 2011 ident: 2024061302130115600_DMM031575C94 article-title: Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2011.09.019 – volume: 376 start-page: 252 year: 2010 ident: 2024061302130115600_DMM031575C11 article-title: Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in bangladesh (heals): a prospective cohort study publication-title: Lancet doi: 10.1016/S0140-6736(10)60481-3 – volume: 121 start-page: 295 year: 2013 ident: 2024061302130115600_DMM031575C75 article-title: The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1205875 – volume: 25 start-page: 125 year: 2014 ident: 2024061302130115600_DMM031575C104 article-title: How does protein misfolding in the endoplasmic reticulum affect lipid metabolism in the liver? publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0000000000000056 – volume: 163 start-page: 191 year: 2006 ident: 2024061302130115600_DMM031575C106 article-title: A keratin 18 transgenic zebrafish tg(k18(2.9):Rfp) treated with inorganic arsenite reveals visible overproliferation of epithelial cells publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2005.10.024 – volume: 144 start-page: 2925 year: 2017 ident: 2024061302130115600_DMM031575C23 article-title: Loss of DNA methylation in zebrafish embryos activates retrotransposons to trigger antiviral signaling publication-title: Development doi: 10.1242/dev.147629 – volume: 15 start-page: 550 year: 2014 ident: 2024061302130115600_DMM031575C64 article-title: Moderated estimation of fold change and dispersion for rna-seq data with deseq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 142 start-page: 510 year: 2015 ident: 2024061302130115600_DMM031575C50 article-title: DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos publication-title: Development doi: 10.1242/dev.115980 – volume: 7 start-page: 44424 year: 2017 ident: 2024061302130115600_DMM031575C111 article-title: Strain differences in arsenic-induced oxidative lesion via arsenic biomethylation between c57bl/6j and 129x1/svj mice publication-title: Sci. Rep. doi: 10.1038/srep44424 – volume: 8 start-page: e53732 year: 2013 ident: 2024061302130115600_DMM031575C33 article-title: Efficient arsenic metabolism--the as3mt haplotype is associated with DNA methylation and expression of multiple genes around as3mt publication-title: PLoS ONE doi: 10.1371/journal.pone.0053732 – volume: 8 start-page: e68737 year: 2013 ident: 2024061302130115600_DMM031575C112 article-title: Genome-wide identification of molecular pathways and biomarkers in response to arsenic exposure in zebrafish liver publication-title: PLoS ONE doi: 10.1371/journal.pone.0068737 – volume: 43 start-page: 482 year: 2015 ident: 2024061302130115600_DMM031575C7 article-title: Identification of environmental chemicals associated with the development of toxicant-associated fatty liver disease in rodents publication-title: Toxicol. Pathol. doi: 10.1177/0192623314549960 – volume: 135 start-page: 120 year: 2014 ident: 2024061302130115600_DMM031575C107 article-title: Association of inorganic arsenic exposure with liver cancer mortality: a meta-analysis publication-title: Environ. Res. doi: 10.1016/j.envres.2014.08.034 – volume: 17 start-page: 863 year: 2007 ident: 2024061302130115600_DMM031575C1 article-title: Nonalcoholic fatty liver disease publication-title: Ann. Epidemiol. doi: 10.1016/j.annepidem.2007.05.013 – volume: 154 start-page: 195 year: 2016 ident: 2024061302130115600_DMM031575C66 article-title: Arsenite uncouples mitochondrial respiration and induces a warburg-like effect in caenorhabditis elegans publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfw185 – volume: 159 start-page: 649 year: 2013 ident: 2024061302130115600_DMM031575C73 article-title: Association between exposure to low to moderate arsenic levels and incident cardiovascular disease. A prospective cohort study publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-159-10-201311190-00719 – volume: 25 start-page: 1105 year: 2009 ident: 2024061302130115600_DMM031575C97 article-title: Tophat: discovering splice junctions with rna-seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp120 – volume: 125 start-page: 5073 year: 2012 ident: 2024061302130115600_DMM031575C51 article-title: Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast publication-title: J. Cell Sci. doi: 10.1242/jcs.107029 – volume: 25 start-page: 196 year: 2014 ident: 2024061302130115600_DMM031575C74 article-title: Uhrf1 overexpression drives DNA hypomethylation and hepatocellular carcinoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.01.003 – volume: 235 start-page: 338 year: 2009 ident: 2024061302130115600_DMM031575C100 article-title: A review on environmental factors regulating arsenic methylation in humans publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2008.12.016 – volume: 137 start-page: 1527 year: 2012 ident: 2024061302130115600_DMM031575C41 article-title: Quantification strategies for elemental imaging of biological samples using laser ablation-inductively coupled plasma-mass spectrometry publication-title: Analyst doi: 10.1039/c2an15792f – volume: 176 start-page: 45 year: 2016 ident: 2024061302130115600_DMM031575C22 article-title: Chronic perfluorooctane sulfonate (pfos) exposure induces hepatic steatosis in zebrafish publication-title: Aquatic Toxicol. doi: 10.1016/j.aquatox.2016.04.013 – volume: 30 start-page: 2114 year: 2014 ident: 2024061302130115600_DMM031575C15 article-title: Trimmomatic: a flexible trimmer for illumina sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 11 start-page: e0151225 year: 2016 ident: 2024061302130115600_DMM031575C61 article-title: Metabolomic characterizations of liver injury caused by acute arsenic toxicity in zebrafish publication-title: PLoS ONE doi: 10.1371/journal.pone.0151225 – volume: 6 start-page: 1271 year: 2013 ident: 2024061302130115600_DMM031575C62 article-title: Functional validation of gwas gene candidates for abnormal liver function during zebrafish liver development publication-title: Dis. Model. Mech. doi: 10.1242/dmm.011726 – volume: 306 start-page: 457 year: 2004 ident: 2024061302130115600_DMM031575C77 article-title: Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes publication-title: Science doi: 10.1126/science.1103160 – volume: 31 start-page: 166 year: 2015 ident: 2024061302130115600_DMM031575C8 article-title: Htseq--a python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 114 start-page: 147 year: 2004 ident: 2024061302130115600_DMM031575C16 article-title: Molecular mediators of hepatic steatosis and liver injury publication-title: J. Clin. Investig. doi: 10.1172/JCI200422422 – volume: 31 start-page: 95 year: 2011 ident: 2024061302130115600_DMM031575C53 article-title: Arsenic: Toxicity, oxidative stress and human disease publication-title: J. Appl. Toxicol. doi: 10.1002/jat.1649 – volume: 29 start-page: 1 year: 2015 ident: 2024061302130115600_DMM031575C3 article-title: Chronic exposure to low-dose arsenic modulates lipogenic gene expression in mice publication-title: J. Biochem. Mol. Toxicol. doi: 10.1002/jbt.21600 – volume: 13 start-page: 405 year: 2016 ident: 2024061302130115600_DMM031575C38 article-title: The effect of chronic arsenic exposure in zebrafish publication-title: Zebrafish doi: 10.1089/zeb.2016.1252 – volume: 71 start-page: 338 year: 2016 ident: 2024061302130115600_DMM031575C2 article-title: Urinary heavy metals in hispanics 40–85 years old in doña ana county, new mexico publication-title: Arch. Environ. Occup. Health doi: 10.1080/19338244.2015.1129301 – volume: 7 start-page: 9 year: 2017 ident: 2024061302130115600_DMM031575C68 article-title: Key events participating in the pathogenesis of alcoholic liver disease publication-title: Biomolecules doi: 10.3390/biom7010009 – volume: 368 start-page: 20110403 year: 2013 ident: 2024061302130115600_DMM031575C14 article-title: Ero1–pdi interactions, the response to redox flux and the implications for disulfide bond formation in the mammalian endoplasmic reticulum publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2011.0403 – volume: 10 start-page: 851 year: 2014 ident: 2024061302130115600_DMM031575C76 article-title: A proteomic survey of widespread protein aggregation in yeast publication-title: Mol. Biosyst. doi: 10.1039/c3mb70508k – volume: 255 start-page: 57 year: 2004 ident: 2024061302130115600_DMM031575C46 article-title: Molecular mechanisms of arsenic carcinogenesis publication-title: Mol. Cell. Biochem. doi: 10.1023/B:MCBI.0000007261.04684.78 – volume: 255 start-page: 67 year: 2004 ident: 2024061302130115600_DMM031575C89 article-title: Oxidative mechanism of arsenic toxicity and carcinogenesis publication-title: Mol. Cell. Biochem. doi: 10.1023/B:MCBI.0000007262.26044.e8 – volume: 57 start-page: 137 year: 2016 ident: 2024061302130115600_DMM031575C70 article-title: Dysregulation of DNA methylation induced by past arsenic treatment causes persistent genomic instability in mammalian cells publication-title: Environ. Mol. Mutagen. doi: 10.1002/em.21987 – volume: 7 start-page: 55 year: 2017 ident: 2024061302130115600_DMM031575C18 article-title: The unfolded protein response: At the intersection between endoplasmic reticulum function and mitochondrial bioenergetics publication-title: Front. Oncol. doi: 10.3389/fonc.2017.00055 – volume: 43 start-page: 2714 year: 2009 ident: 2024061302130115600_DMM031575C115 article-title: Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in greater augusta, maine publication-title: Environ. Sci. Technol. doi: 10.1021/es803141m – volume: 54 start-page: 452 year: 2011 ident: 2024061302130115600_DMM031575C95 article-title: Lack of de novo phosphatidylinositol synthesis leads to endoplasmic reticulum stress and hepatic steatosis in cdipt-deficient zebrafish publication-title: Hepatology doi: 10.1002/hep.24349 – volume: 68 start-page: 176 year: 2014 ident: 2024061302130115600_DMM031575C108 article-title: Association of inorganic arsenic exposure with type 2 diabetes mellitus: a meta-analysis publication-title: J. Epidemiol. Community Health doi: 10.1136/jech-2013-203114 – volume: 10 start-page: 104 year: 2009 ident: 2024061302130115600_DMM031575C39 article-title: Arsenic transport by zebrafish aquaglyceroporins publication-title: BMC Mol. Biol. doi: 10.1186/1471-2199-10-104 – volume: 44 start-page: 723 year: 2008 ident: 2024061302130115600_DMM031575C65 article-title: Cyp2e1 and oxidative liver injury by alcohol publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2007.11.004 – reference: 15461798 - Genome Biol. 2004;5(10):R80 – reference: 21854214 - Antioxid Redox Signal. 2012 May 15;16(10):1077-87 – reference: 27140519 - Zebrafish. 2016 Oct;13(5):405-12 – reference: 17365340 - J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2007 Jan-Mar;25(1):1-22 – reference: 12076506 - Toxicol Lett. 2002 Jul 7;133(1):1-16 – reference: 19168087 - Toxicol Appl Pharmacol. 2009 Mar 15;235(3):338-50 – reference: 23341986 - PLoS One. 2013;8(1):e53732 – reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 – reference: 25262084 - Environ Res. 2014 Nov;135:120-5 – reference: 22466225 - Environ Health Perspect. 2012 Jul;120(7):1061-6 – reference: 25091901 - Free Radic Biol Med. 2015 Mar;80:171-82 – reference: 16376500 - Toxicol Lett. 2006 Jun 1;163(3):191-7 – reference: 22914984 - Arch Toxicol. 2013 Feb;87(2):383-96 – reference: 19110324 - Aquat Toxicol. 2009 Feb 19;91(3):229-37 – reference: 21488074 - Hepatology. 2011 Aug;54(2):452-62 – reference: 28698226 - Development. 2017 Aug 15;144(16):2925-2939 – reference: 18078827 - Free Radic Biol Med. 2008 Mar 1;44(5):723-38 – reference: 20631254 - Mol Biol Cell. 2010 Sep 1;21(17):2975-86 – reference: 27825389 - Environ Health. 2016 Nov 8;15(1):106 – reference: 24357799 - Cell Death Dis. 2013 Dec 19;4:e968 – reference: 17905400 - Toxicol Appl Pharmacol. 2007 Dec 1;225(2):154-61 – reference: 19102631 - Biochemistry. 2009 Jan 20;48(2):424-32 – reference: 16882884 - Physiol Genomics. 2006 Nov 27;27(3):351-61 – reference: 27829199 - Environ Toxicol Pharmacol. 2016 Dec;48:214-224 – reference: 8793350 - Environ Health Perspect. 1996 Jun;104(6):620-8 – reference: 21983427 - Toxicol Appl Pharmacol. 2011 Dec 15;257(3):356-64 – reference: 25506675 - Biochemistry. 2015 Jan 20;54(2):612-21 – reference: 26398248 - Mass Spectrom Rev. 2017 Jan;36(1):47-57 – reference: 27016469 - Pharmacol Ther. 2016 May;161:11-21 – reference: 15967205 - Toxicol Appl Pharmacol. 2005 Aug 7;206(2):169-75 – reference: 24486181 - Cancer Cell. 2014 Feb 10;25(2):196-209 – reference: 25583752 - Diabetes Care. 2015 Apr;38(4):620-7 – reference: 10531716 - Indian J Gastroenterol. 1999 Oct-Nov;18(4):152-5 – reference: 17303202 - Toxicol Appl Pharmacol. 2007 Apr 15;220(2):146-55 – reference: 24176670 - Aquat Toxicol. 2014 Aug;153:66-72 – reference: 24973751 - Dis Model Mech. 2014 Jul;7(7):823-35 – reference: 22883023 - BMC Public Health. 2012 Aug 10;12:639 – reference: 26967897 - PLoS One. 2016 Mar 11;11(3):e0151225 – reference: 27692299 - Mutat Res. 2016 Oct;809:50-56 – reference: 23813869 - Dis Model Mech. 2013 Sep;6(5):1271-8 – reference: 10918716 - Indian J Gastroenterol. 2000 Jul-Sep;19(3):112-5 – reference: 22613031 - Toxicol Lett. 2012 Jul 20;212(2):161-8 – reference: 28335863 - Curr Top Dev Biol. 2017;124:331-367 – reference: 10930056 - J Toxicol Clin Toxicol. 2000;38(4):395-405 – reference: 9547102 - Gastroenterology. 1998 Apr;114(4):842-5 – reference: 21503947 - Hepatology. 2011 Jul;54(1):229-39 – reference: 23530257 - Philos Trans R Soc Lond B Biol Sci. 2013 Mar 25;368(1617):20110403 – reference: 28303940 - Sci Rep. 2017 Mar 17;7:44424 – reference: 10445007 - Sci Prog. 1999;82 ( Pt 1):69-88 – reference: 24768856 - Aquat Toxicol. 2014 Jul;152:152-63 – reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 – reference: 25882832 - Comp Biochem Physiol C Toxicol Pharmacol. 2015 Jun-Jul;172-173:7-12 – reference: 27337980 - Database (Oxford). 2016 Jun 23;2016: – reference: 14971646 - Mol Cell Biochem. 2004 Jan;255(1-2):57-66 – reference: 23922661 - PLoS One. 2013 Jul 29;8(7):e68737 – reference: 26791723 - Nature. 2016 Jan 21;529(7586):326-35 – reference: 19939263 - BMC Mol Biol. 2009 Nov 25;10:104 – reference: 26319012 - Gastroenterology. 2015 Nov;149(6):1361-77 – reference: 17979528 - Antioxid Redox Signal. 2007 Dec;9(12):2277-93 – reference: 26223319 - Free Radic Res. 2015;49(12):1405-18 – reference: 20646756 - Lancet. 2010 Jul 24;376(9737):252-8 – reference: 24565920 - Curr Opin Lipidol. 2014 Apr;25(2):125-32 – reference: 22946053 - J Cell Sci. 2012 Nov 1;125(Pt 21):5073-83 – reference: 21684831 - Environ Health Perspect. 2011 Oct;119(10):1356-63 – reference: 15254578 - J Clin Invest. 2004 Jul;114(2):147-52 – reference: 21538441 - Hepatology. 2011 Aug;54(2):495-508 – reference: 22372457 - Histopathology. 2012 Aug;61(2):141-52 – reference: 24488121 - Mol Biosyst. 2014 Apr;10 (4):851-861 – reference: 25155036 - J Biochem Mol Toxicol. 2015 Jan;29(1):1-9 – reference: 21740555 - Environ Health. 2011 Jul 08;10:64 – reference: 26473898 - Int J Environ Res Public Health. 2015 Oct 12;12(10):12628-42 – reference: 20222092 - Hepatology. 2010 May;51(5):1593-602 – reference: 24133074 - J Epidemiol Community Health. 2014 Feb;68(2):176-84 – reference: 22811022 - Arch Toxicol. 2013 Jun;87(6):969-79 – reference: 19127516 - Hepatology. 2009 Feb;49(2):443-52 – reference: 26537450 - Sci Rep. 2015 Nov 05;5:16093 – reference: 23798569 - Dis Model Mech. 2013 Sep;6(5):1213-26 – reference: 26666397 - Arch Environ Occup Health. 2016 Nov;71(6):338-346 – reference: 25326588 - Toxicol Pathol. 2015 Jun;43(4):482-97 – reference: 17728149 - Ann Epidemiol. 2007 Nov;17(11):863-9 – reference: 23892647 - Arch Toxicol. 2014 Feb;88(2):213-26 – reference: 27794142 - Toxicol Sci. 2016 Nov;154(1):195 – reference: 23458756 - Environ Health Perspect. 2013 Mar;121(3):295-302 – reference: 23697887 - Zebrafish. 2013 Jun;10(2):199-210 – reference: 25564650 - Development. 2015 Feb 1;142(3):510-21 – reference: 24695404 - Bioinformatics. 2014 Aug 1;30(15):2114-20 – reference: 27498811 - Biol Trace Elem Res. 2017 Mar;176(1):154-175 – reference: 23583182 - Cell Rep. 2013 Apr 25;3(4):1279-92 – reference: 21525766 - Dig Dis. 2010;28(6):802-11 – reference: 22922937 - Oncol Rep. 2012 Nov;28(5):1851-8 – reference: 19914930 - QJM. 2010 Feb;103(2):71-83 – reference: 25782093 - Nat Rev Gastroenterol Hepatol. 2015 Apr;12(4):231-42 – reference: 28421160 - Front Oncol. 2017 Apr 03;7:55 – reference: 26151952 - Environ Health Perspect. 2016 Feb;124(2):201-9 – reference: 22314636 - Analyst. 2012 Apr 7;137(7):1527-37 – reference: 26378644 - Semin Liver Dis. 2015 Aug;35(3):270-90 – reference: 21247820 - Environ Health Perspect. 2011 Feb;119(2):182-8 – reference: 15276411 - Toxicol Appl Pharmacol. 2004 Aug 1;198(3):319-26 – reference: 12426152 - Environ Health Perspect. 2002 Oct;110 Suppl 5:883-6 – reference: 25516281 - Genome Biol. 2014;15(12):550 – reference: 15486293 - Science. 2004 Oct 15;306(5695):457-61 – reference: 19475939 - Environ Sci Technol. 2009 Apr 15;43(8):2714-9 – reference: 27108203 - Aquat Toxicol. 2016 Jul;176:45-52 – reference: 22575231 - Toxicol Appl Pharmacol. 2012 Jul 15;262(2):185-93 – reference: 23665672 - Environ Health Perspect. 2013 Jul;121(7):832-8 – reference: 24874946 - PLoS Genet. 2014 May 29;10(5):e1004335 – reference: 14971647 - Mol Cell Biochem. 2004 Jan;255(1-2):67-78 – reference: 16160703 - J Expo Sci Environ Epidemiol. 2006 Mar;16(2):191-205 – reference: 21321970 - J Appl Toxicol. 2011 Mar;31(2):95-107 – reference: 3250379 - Arch Toxicol. 1988;62(6):473-5 – reference: 21790674 - Alcohol Clin Exp Res. 2012 Jan;36(1):14-23 – reference: 23262638 - Toxicol Pathol. 2013 Feb;41(2):343-60 – reference: 24061511 - Ann Intern Med. 2013 Nov 19;159(10):649-59 – reference: 26581878 - Environ Mol Mutagen. 2016 Mar;57(2):137-50 |
SSID | ssj0062839 |
Score | 2.3910177 |
Snippet | The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Adults Alcohol Arsenic Chronic illnesses DNA methylation Environmental exposure Ethanol Fatty liver Fatty liver disease Gene expression Investigations Liver diseases Metabolism Mortality Protein folding Risk factors Toxicity Zebra Zebrafish |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEYgLggIl0CIjuHAIzcNOnBOiVauCVE5U2pvlV9RKu0kh2UP59czE3tBFFZdESuzIyow933jG3wB8KHmFqFVkqc0kT7nBizEeF0Niu0H7gpCEDieff6_OLvi3hVjEDbchplVu1sRpoXa9pT3yw6KSiDwkIoTP1z9TqhpF0dVYQuM-PCDqMkrpqhezw1Wh6WymA5GCp-jIlJGeFK3SoVutPlGBA8ovvGWQJt7-u8DmvzmTt4zQ6VN4EtEj-xLE_Qzu-W4XHoZ6kje78Og8Rsqfw-prFwo2WYauq6e71evBD6zV43jDlpSPwXTnGBFG0FGpgdGeLPO0l94v2diHDkyHIrr4gdAnhnSwH_tNUef2arh8ARenJz-Oz9JYWiG1vC7GtDSGG--MaVxLx3d5JVpnbCOElpnzhakrLWqXOW65tgjrrLa80GXbFOi-lrp8CTtd3_lXwIT1CPqcyymGX_m6abTPbdailL0Usk7g4-b_Kht5x6n8xVKR_4GyUCgLFWSRwPu57XVg27iz1RGJaW5BDNnTA_yvKk44lfmilaW1uUXAhGoqjda5a7UopK1tXSawvxGyitN2UH-VLIF382uccBRF0Z3v14PK0X5Loi2sEtgLOjGPBLETIUSeQL2lLVtD3X7TXV1OpN5CNrzh-ev_D-sNPEbEJkPa-D7sjL_W_gBR0WjeTqr_B1BaDdk priority: 102 providerName: ProQuest |
Title | Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29361514 https://www.proquest.com/docview/2685668085 https://www.proquest.com/docview/1990854076 https://pubmed.ncbi.nlm.nih.gov/PMC5894941 https://doaj.org/article/0e2f83cc1c554cca8baa1dfa528c7c73 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7alJZcQpu-3KSLSnvpwY0fkiUfk5KQFhJKaWBvQi-TwK631N5D8us7Y3mX3RDopRcbLMmWNZLnG8_oG4BPJa8QtYosdZniKbd4sDbgx5DYblC_ICShzckXl9X5Ff8-FdONVF8UExbpgePAHWWhaFTpXO5Q8eHjlDUm940RhXLSyYHnE3XeypiK3-AKlWY9bIUUPEUTphyJSVEfHfn5_AulNqDIwg1VNDD2PwQz70dLbqifs-ewN-JGdhz7-wIehXYfnsZMkrf78Oxi9JG_hPm3NqZqcgyN1kBnZ5Zd6Fhj-v6WzSgSg5nWM6KKoE1SHaO_sSzQX_TFjPWL2ICZmD4XbxDbjM4cbMfuyN_c3HTXr-Dq7PTX1_N0TKqQOi6LPi2t5TZ4a2vf0MZdXonGW1cLYVTmQ2FlZYT0meeOG4eAzhnHC1M2dYGGa2nK17DTLtrwFphwAeGe9zl576sg69qE3GUNyjcooWQCn1fjq93IOE6JL2aaLA-UhUZZ6CiLBD6u6_6OPBsP1johMa1rEDf2cAHHVY8zRv9rxiRwuBKyHhdsp4tKIbBVCEAT-LAuxqVG_hPThsWy0zlqbkWEhVUCb-KcWPcEURNhQ56A3JotW13dLmlvrgc6b6FqXvP83f94twPYRUSnYlj5Iez0f5bhPaKm3k7gsZzKCTw5Ob388XMyLJe_jCEaPQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qqVguCMpmKDAIOHAw9TK2xweEKLRKaBMh1Eq9mdmsVkrsgh2h8KP4jbyXsUODKm69xFI8Y43mLfO9eRvAq5iniFqTwNeB4D5X-KOURWVI1W7wfEFIQsnJ40k6POafT5KTDfjd58JQWGWvE5eK2tSa7sh3olQg8hCIEN6ff_epaxR5V_sWGo4tDuziJ5pszbvRJ6Tv6yja3zv6OPS7rgK-5lnU-rFSXFmjVG5KylzlaVIapfMkkSIwNlJZKpPMBIZrLjUiGi01j2Rc5hFabrGM8bvXYJPHaMoMYHN3b_Lla6_7Uzys82UKZsJ9NJ3iriAqnoM7ZjZ7Sy0VKKLxwhG47BRwGbz9N0rzwrG3fwdud3iVfXAMdhc2bLUF110Hy8UW3Bh3vvl7MBtVrkWUZmgsW3pqOW9sw0rZtgs2pQgQJivDqEQFJWc1jG6BmaXb-3rK2tpNYNK17cUPuDmdEwnnsV_k5y7PmtP7cHwl2_4ABlVd2UfAEm0RZhoTUtRAarM8lzbUQYl8ZUUiMg_e9Ptb6K7SOTXcmBZk8SAtCqRF4WjhwcvV2HNX3-PSUbtEptUIqsm9_AP3tehEvAhsVIpY61AjREPBEErK0JQyiYTOdBZ7sN0TuegURVP8ZWsPXqxeo4iT30ZWtp43RYiIQVChxNSDh44nVitBtEaYlHuQrXHL2lLX31Rnp8sy4onIec7Dx_9f1nO4OTwaHxaHo8nBE7iFeFG4oPVtGLQ_5vYpYrJWPesEgcG3q5a9P2XATXo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiouCMrLUGARcOBg4seuvT4gBJSoobTiQKXc3H1ZrZQ4be0IhZ_Gr2PG64QGVdx6iaV411rtzOx8s_MCeJ3yDFGriEITSR5yjT9aOzwMqdoN6heEJJScfHCY7R3xr2Mx3oDfy1wYCqtcnondQW1nhu7IB0kmEXlIRAiDqg-L-L47_HB2HlIHKfK0LttpeBbZd4ufaL4170e7SOs3STL88uPzXth3GAgNz5M2TLXm2lmtC1tRFivPRGW1KYRQMrIu0XmmRG4jyw1XBtGNUYYnKq2KBK24VKX43RtwM09FTDKWj1fGXoZqu-iSMQUP0YhK-9KoqBEHdjp9R80VKLbxkjLsegZcBXT_jde8pACHd-FOj1zZR89q92DD1dtwy_eyXGzD1kHvpb8P01Htm0UZhmazo6dR88Y1rFJtu2ATigVhqraMilVQmlbD6D6YObrHn01YO_MTmPINfPEDfk7vTsJ57Bd5vKvT5uQBHF3Lpj-EzXpWu8fAhHEIOK2NKX4gc3lRKBebqEIOc1LIPIC3y_0tTV_znFpvTEqyfZAWJdKi9LQI4NVq7Jmv9HHlqE9EptUIqs7d_YH7WvbCXkYuqWRqTGwQrKGISK1UbCslEmlyk6cB7CyJXPZHRlP-ZfAAXq5eo7CTB0fVbjZvyhixg6SSiVkAjzxPrFaCuI3QKQ8gX-OWtaWuv6lPT7qC4kIWvODxk_8v6wVsocSV30aH-0_hNgJH6aPXd2CzvZi7ZwjOWv28kwIGx9ctdn8A_71QSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inorganic+arsenic+causes+fatty+liver+and+interacts+with+ethanol+to+cause+alcoholic+liver+disease+in+zebrafish&rft.jtitle=Disease+models+%26+mechanisms&rft.au=Kathryn+Bambino&rft.au=Chi+Zhang&rft.au=Christine+Austin&rft.au=Chitra+Amarasiriwardena&rft.date=2018-02-01&rft.pub=The+Company+of+Biologists&rft.issn=1754-8403&rft.eissn=1754-8411&rft.volume=11&rft.issue=2&rft_id=info:doi/10.1242%2Fdmm.031575&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0e2f83cc1c554cca8baa1dfa528c7c73 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-8403&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-8403&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-8403&client=summon |