High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices

Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 13; no. 4; p. 642
Main Authors Muldoon, Kirsty, Song, Yanhua, Ahmad, Zeeshan, Chen, Xing, Chang, Ming-Wei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.04.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products’ mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications.
AbstractList Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products’ mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications.
Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products' mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications.Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products' mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications.
Author Ahmad, Zeeshan
Song, Yanhua
Muldoon, Kirsty
Chang, Ming-Wei
Chen, Xing
AuthorAffiliation 1 Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK; muldoon-k5@ulster.ac.uk
2 Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China; syanhua2015@163.com
3 Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
4 School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; zahmad@dmu.ac.uk
AuthorAffiliation_xml – name: 1 Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK; muldoon-k5@ulster.ac.uk
– name: 4 School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; zahmad@dmu.ac.uk
– name: 3 Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
– name: 2 Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China; syanhua2015@163.com
Author_xml – sequence: 1
  givenname: Kirsty
  surname: Muldoon
  fullname: Muldoon, Kirsty
– sequence: 2
  givenname: Yanhua
  surname: Song
  fullname: Song, Yanhua
– sequence: 3
  givenname: Zeeshan
  surname: Ahmad
  fullname: Ahmad, Zeeshan
– sequence: 4
  givenname: Xing
  orcidid: 0000-0002-6870-3912
  surname: Chen
  fullname: Chen, Xing
– sequence: 5
  givenname: Ming-Wei
  orcidid: 0000-0002-0137-8895
  surname: Chang
  fullname: Chang, Ming-Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35457946$$D View this record in MEDLINE/PubMed
BookMark eNptkttqVDEUhoO02Dr2xgeQgDcijOZ8uBFqW9tCPYAVvAs57WmGPUlN9hR8e9NO7QlzkawkX37Wyr9egK1ccgTgFUbvKdXowyphihgSjDwDuwRJMhdC_Np6EO-AvdaWqA8pdZ-egx3KGZeaiV1wfpIWF_B7jT61VDKkh32T8pTyAg6lwi_J1wKnAr_aXOAPb8cIP6WyiiH1GNoc4NEY_VRLTh4exqvkY3sJtgc7trh3u87Az89H5wcn87Nvx6cH-2dzzySZ5tQOSijpVeBK6YB8GARxDknONFYaYxsH4awaMFeOEqaFjM4NkihFPA2azsDpRjcUuzSXNa1s_WOKTebmoNSFsXVKfowGMWy1C1goqpnnwnIuCFY2OOow8rFrfdxoXa5dr87HPFU7PhJ9fJPThVmUK6MRpajLzsDbW4Fafq9jm8wqNR_H0eZY1s0QwRlRVGnR0TdP0GVZ19y_6poiWnc51qnXDzO6S-WfeR14twG6Ra3VONwhGJnr5jD3zdFh9AT2abJT97xXk8b_PfkLdfS5fA
CitedBy_id crossref_primary_10_1002_ppap_202200219
crossref_primary_10_1016_j_ptlrs_2024_11_004
crossref_primary_10_1016_j_apmt_2024_102363
crossref_primary_10_1016_j_jddst_2023_104395
crossref_primary_10_3390_bioengineering11010032
crossref_primary_10_1007_s11465_024_0792_4
crossref_primary_10_3390_jmmp8030090
crossref_primary_10_3390_ma17215371
crossref_primary_10_5757_ASCT_2023_32_1_1
crossref_primary_10_3390_mi13112016
crossref_primary_10_3390_app15042219
crossref_primary_10_1208_s12249_024_02971_y
crossref_primary_10_1002_sstr_202200356
crossref_primary_10_3390_polym15153234
crossref_primary_10_3390_s22239085
crossref_primary_10_3389_fphy_2023_1309373
crossref_primary_10_1016_j_mtcomm_2024_109645
crossref_primary_10_1007_s40964_024_00871_y
crossref_primary_10_1016_j_addma_2022_103368
crossref_primary_10_1039_D4YA00202D
crossref_primary_10_1002_smll_202206391
crossref_primary_10_1016_j_mex_2023_102366
crossref_primary_10_1016_j_procs_2024_02_143
crossref_primary_10_1109_JPROC_2024_3481315
crossref_primary_10_3390_mi13101794
crossref_primary_10_1007_s00170_024_13588_7
crossref_primary_10_1016_j_xphs_2023_08_017
crossref_primary_10_3390_inventions8040103
crossref_primary_10_3390_micro4020016
crossref_primary_10_2478_lpts_2023_0035
crossref_primary_10_1109_JPROC_2024_3391232
crossref_primary_10_3390_app14219919
crossref_primary_10_1142_S2251237324300043
crossref_primary_10_1016_j_apmt_2025_102619
crossref_primary_10_3389_fbioe_2023_1160760
crossref_primary_10_3390_mi13081207
crossref_primary_10_1016_j_rinma_2023_100393
crossref_primary_10_2174_0113816128322300240725052530
crossref_primary_10_1002_adem_202300750
crossref_primary_10_1007_s11630_024_2008_y
crossref_primary_10_1039_D2MA00818A
crossref_primary_10_1088_1361_6528_ad3252
crossref_primary_10_3390_technologies12070117
Cites_doi 10.1039/C7NR09570H
10.1007/s10853-018-2468-0
10.1016/j.bios.2019.111980
10.1002/adma.201701985
10.1021/la403111m
10.1016/j.ceramint.2019.12.278
10.1002/admt.201700268
10.1002/adma.202108931
10.1533/9780857098757.194
10.3390/jfb7020011
10.1038/s41378-020-00199-x
10.1038/s41586-021-03353-1
10.3390/polym10060629
10.1021/acsami.8b08880
10.1021/nl503779e
10.1016/j.ijpharm.2021.120303
10.1088/1758-5090/ac5936
10.1016/B978-0-08-102055-5.00016-4
10.1080/10837450.2019.1684520
10.3390/s151026018
10.1088/1361-665X/aa9695
10.1016/j.jallcom.2018.12.334
10.1007/s41403-021-00225-y
10.1080/02670844.2020.1748349
10.1016/j.matpr.2020.02.633
10.1021/acsami.8b20178
10.1117/12.2225411
10.1038/nnano.2012.206
10.1088/1361-6439/ab0c65
10.1039/C6RA15387A
10.1016/j.elstat.2007.10.001
10.2174/187221112800672949
10.1002/adtp.201800024
10.1038/s41467-022-28219-6
10.1016/j.matdes.2015.09.141
10.1016/j.inoche.2020.107947
10.3390/polym13091499
10.1007/s00146-018-0809-9
10.1016/j.actbio.2020.12.044
10.1016/j.jmrt.2019.12.015
10.1016/j.matdes.2019.107609
10.1021/acsami.9b04873
10.3390/ma13071688
10.1038/srep43924
10.1088/0960-1317/22/5/055022
10.1038/s41467-020-20865-y
10.1002/adhm.202102411
10.3390/nano12030391
10.1021/acsami.0c02580
10.1002/mame.201700229
10.1016/j.biotechadv.2015.12.011
10.1115/1.4034663
10.1038/nnano.2007.39
10.3390/polym9090434
10.1109/JSEN.2011.2127472
10.1002/sstr.202100131
10.1016/j.addlet.2022.100027
10.1063/1.2645078
10.1038/s41563-021-01111-2
10.1016/j.msec.2019.04.063
10.1016/B978-0-12-823152-4.00008-9
10.1016/j.jmatprotec.2011.10.024
10.1016/j.jddst.2019.02.006
10.1016/B978-0-08-100354-1.00015-6
10.1002/app.32302
10.1021/acsaem.7b00337
10.1016/j.matt.2021.11.020
10.3390/nano9121789
10.1002/adom.201900019
10.1088/1361-6528/aaafa5
10.1038/s41467-020-15316-7
10.1016/j.matlet.2017.06.015
10.1002/adma.201505118
10.1016/j.aca.2021.339409
10.1016/j.apsusc.2020.148800
10.1088/0022-3727/49/5/055504
10.1016/j.orgel.2017.10.013
10.1093/burnst/tkab011
10.1080/17434440.2017.1363647
10.1002/adfm.201909469
10.1016/j.tsf.2012.07.119
10.1002/adma.202107038
10.1016/j.eurpolymj.2018.05.005
10.1002/adfm.201901102
10.1002/adma.201502092
10.1016/B978-0-08-100717-4.00023-5
10.1002/mame.202100277
10.1016/j.colsurfa.2010.11.038
10.3390/polym12112475
10.1109/MEMSYS.2019.8870837
10.1038/s41467-020-14557-w
10.1088/0957-4484/27/43/435501
10.1007/s00339-007-4210-7
10.1016/j.coelec.2020.04.009
10.1088/1758-5090/ab782c
10.1016/j.ijpharm.2021.120815
10.1109/JMEMS.2012.2226932
10.1016/B978-0-08-096532-1.01001-3
10.1016/j.carbon.2018.11.008
10.1038/ncomms5147
10.1080/05704928.2017.1287082
10.3367/UFNe.2017.11.038239
10.1016/j.colsurfa.2013.07.032
10.1038/s41467-020-20498-1
10.5772/3348
10.1002/app.45044
10.1126/science.aad2688
10.1016/j.nanoen.2020.105711
10.3390/mi7120206
10.1038/nnano.2016.281
10.1021/ac4041857
10.1002/admt.202101493
10.4028/www.scientific.net/AMR.711.352
10.1063/1.4964645
10.1049/mna2.12003
10.1016/j.jddst.2021.102891
10.1039/C5RA12617G
10.1016/j.cej.2021.132221
10.1002/smll.201601695
10.1016/j.cej.2021.132670
10.1021/acsami.8b04051
10.1088/1361-6439/aa9156
10.1108/RPJ-05-2016-0076
10.1002/adma.202004782
10.3367/UFNr.2017.11.038239
10.1007/s003480050327
10.1016/j.jddst.2016.06.009
10.1016/j.cej.2018.03.021
10.1002/adfm.201807569
10.1039/C5NR00278H
10.1002/adhm.202100238
10.1515/ntrev-2020-0073
10.1177/1932296817715272
10.1109/TRANSDUCERS.2011.5969506
10.1002/app.44823
10.1016/j.msec.2018.12.110
10.1038/nature21003
10.1126/science.aal4062
10.1002/adem.201700539
10.1016/j.jaerosci.2019.05.001
10.1016/j.eng.2020.03.019
10.1016/j.promfg.2016.08.070
10.1016/j.msec.2020.111505
10.1039/C5RA18482G
10.1002/smll.201500593
10.1063/1.4905387
10.1038/nmat1974
10.1039/C9CP04864B
10.1515/ntrev-2021-0073
10.1016/j.mee.2020.111496
10.1117/12.2177415
10.1002/adma.201401367
10.1016/j.jobcr.2015.12.002
10.1016/j.actbio.2021.04.036
10.1063/1.2903700
10.1016/j.stlm.2021.100011
10.1088/0960-1317/20/5/055009
10.1002/admt.201800546
10.3390/s17051056
10.1038/s41467-020-18495-5
10.1016/j.polymer.2011.05.033
10.1002/adem.201900699
10.1002/smtd.202001041
10.1088/0960-1317/24/5/053001
10.1016/j.msec.2019.110393
10.1039/D1MA00463H
10.1002/adma.201404790
10.1002/adma.201606425
10.1002/smsc.202100073
10.1021/acsapm.1c01357
10.1016/j.mtchem.2020.100328
10.1016/j.msec.2020.111606
10.3390/jfb9010017
10.1016/j.cirp.2015.03.007
10.3390/mi10020094
10.1017/S0022112007007409
10.1016/j.promfg.2018.10.011
10.1115/1.4041934
10.3389/fmats.2021.647229
10.1002/admt.201700321
10.1002/smll.201900564
10.1089/soro.2018.0021
10.1016/j.addr.2021.04.026
10.1016/j.mee.2020.111266
10.1016/j.jddst.2019.01.032
10.1021/nl801832v
10.1039/B816993D
10.1016/j.msec.2019.110248
10.1039/C9NR05797H
10.1016/j.ijhydene.2013.05.025
10.1016/S0021-8502(99)00033-6
10.1016/j.isci.2020.102012
10.1021/acsami.9b13568
10.1002/adma.201201886
10.1016/j.actbio.2019.04.057
10.1002/adfm.201705551
10.1039/D0NR08236H
10.1016/j.jeurceramsoc.2018.11.013
10.1063/1.3049609
10.1088/1361-6439/aa6758
10.1016/j.orgel.2017.10.023
10.1063/1.4905151
10.1016/j.jaerosci.2011.11.002
10.1016/j.orgel.2016.07.040
10.1149/1945-7111/ab6828
10.1039/C4MH00147H
10.1007/978-3-030-63647-0_24
10.1088/1468-6996/16/3/033502
10.3390/mi11010013
10.3390/nano10010107
10.1038/s41566-021-00906-8
10.1016/j.carbon.2019.07.030
10.1016/j.biomaterials.2009.07.056
10.1016/B978-0-08-100262-9.00009-4
10.1016/j.jeurceramsoc.2021.08.031
10.1016/j.snb.2006.12.015
10.1002/adma.201703817
10.1039/C5RA19462H
10.1016/j.apmt.2018.03.008
10.1002/smll.201700368
10.1007/s40242-021-1197-0
10.3390/s20123349
10.1016/B978-0-12-823358-0.00003-4
10.1109/JSEN.2014.2361651
10.3390/polym13040598
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/mi13040642
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID oai_doaj_org_article_041a9bd168394c56a556218adb3b10ce
PMC9033068
35457946
10_3390_mi13040642
Genre Journal Article
Review
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
L6V
M7S
MM.
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RPM
TR2
TUS
NPM
7SP
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c472t-3af8687c8d5889d0cdf62bb0754918911aef6ba8f158b324967ebbf72882c3d93
IEDL.DBID DOA
ISSN 2072-666X
IngestDate Wed Aug 27 01:28:53 EDT 2025
Thu Aug 21 17:59:02 EDT 2025
Thu Jul 10 20:57:24 EDT 2025
Fri Jul 25 12:06:57 EDT 2025
Wed Feb 19 02:06:38 EST 2025
Tue Jul 01 03:41:17 EDT 2025
Thu Apr 24 23:13:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords electronics
biomaterial
micro/nano scale printing
3D printing
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-3af8687c8d5889d0cdf62bb0754918911aef6ba8f158b324967ebbf72882c3d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0137-8895
0000-0002-6870-3912
OpenAccessLink https://doaj.org/article/041a9bd168394c56a556218adb3b10ce
PMID 35457946
PQID 2652996834
PQPubID 2032359
ParticipantIDs doaj_primary_oai_doaj_org_article_041a9bd168394c56a556218adb3b10ce
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9033068
proquest_miscellaneous_2654283896
proquest_journals_2652996834
pubmed_primary_35457946
crossref_primary_10_3390_mi13040642
crossref_citationtrail_10_3390_mi13040642
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220418
PublicationDateYYYYMMDD 2022-04-18
PublicationDate_xml – month: 4
  year: 2022
  text: 20220418
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Micromachines (Basel)
PublicationTitleAlternate Micromachines (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_92
Eckel (ref_168) 2016; 351
Grotevent (ref_215) 2019; 7
ref_130
ref_96
Zang (ref_233) 2015; 2
Cai (ref_80) 2021; 10
He (ref_99) 2014; 105
Khan (ref_120) 2012; 212
Mehrotra (ref_226) 2016; 6
Wei (ref_11) 2020; 37
Aubert (ref_194) 2020; 11
Liashenko (ref_95) 2020; 11
John (ref_190) 2021; 10
Liu (ref_139) 2022; 1194
ref_125
Sinha (ref_197) 2021; 12
Hou (ref_137) 2021; 8
Pugliese (ref_138) 2021; 2
Qin (ref_204) 2016; 139
Murr (ref_4) 2020; 9
Gomes (ref_52) 2012; 520
Boley (ref_131) 2015; 27
Wu (ref_203) 2022; 132
Lim (ref_146) 2016; 6
Stoneman (ref_32) 2009; 9
Kim (ref_114) 2015; 106
Xu (ref_186) 2021; 119
Shallan (ref_221) 2014; 86
Yuk (ref_104) 2020; 11
ref_152
Wang (ref_124) 2019; 153
ref_155
Tawk (ref_158) 2018; 5
Krivoshapkina (ref_35) 2016; 11
Ru (ref_6) 2014; 24
Guo (ref_50) 2017; 23
Park (ref_149) 2018; 52
Bae (ref_106) 2017; 134
Su (ref_90) 2020; 12
Lyu (ref_147) 2020; 12
Truby (ref_159) 2016; 540
Wang (ref_103) 2016; 35
Li (ref_236) 2018; 29
Han (ref_71) 2018; 6
Hou (ref_232) 2014; 26
ref_144
ref_143
ref_85
Han (ref_65) 2018; 3
Onses (ref_69) 2015; 11
Wang (ref_66) 2019; 29
Liu (ref_61) 2019; 29
Khorsandi (ref_128) 2021; 122
Lee (ref_94) 2013; 29
Wu (ref_59) 2020; 108
Pumera (ref_227) 2020; 151
(ref_23) 2018; 20
Barmpakos (ref_237) 2020; 225
Tang (ref_150) 2019; 21
Rahmat (ref_75) 2017; 18
Huang (ref_102) 2019; 4
Kim (ref_64) 2015; 15
Lim (ref_223) 2016; 27
Cui (ref_98) 2018; 10
McCoul (ref_45) 2017; 26
Wang (ref_22) 2018; 53
Kim (ref_83) 2011; 52
Dickey (ref_129) 2017; 29
Kim (ref_170) 2017; 302
ref_206
Mehta (ref_84) 2019; 2
Li (ref_153) 2020; 167
Xenikakis (ref_182) 2022; 67
Choi (ref_73) 2008; 92
Enayati (ref_86) 2011; 382
Cao (ref_199) 2021; 7
Wu (ref_217) 2019; 29
ref_201
Duda (ref_175) 2018; 33
Gmeiner (ref_166) 2015; 6
Wang (ref_196) 2022; 34
Yoon (ref_10) 2017; 27
Pan (ref_109) 2017; 27
Xu (ref_132) 2012; 24
Yao (ref_192) 2022; 429
ref_235
Adams (ref_230) 2017; 12
Collins (ref_77) 2007; 588
Zhu (ref_177) 2020; 12
Ni (ref_126) 2019; 3
Li (ref_40) 2021; 37
Nocheseda (ref_127) 2021; 48
Zhang (ref_70) 2015; 5
Zhu (ref_110) 2019; 50
Ren (ref_16) 2021; 118
Mkhize (ref_79) 2022; 2
Economidou (ref_185) 2019; 102
Bhagoria (ref_36) 2019; 26
Liu (ref_171) 2021; 33
Datta (ref_161) 2021; 6
Mohammadi (ref_87) 2019; 135
Zhang (ref_117) 2013; 436
An (ref_173) 2015; 27
Ravanbakhsh (ref_202) 2022; 5
Kucherov (ref_3) 2022; 430
Huang (ref_57) 2020; 46
Moghadam (ref_93) 2010; 118
Yu (ref_112) 2007; 89
Palo (ref_179) 2017; 14
ref_101
Li (ref_210) 2022; 3
Xenikakis (ref_180) 2021; 597
Kim (ref_97) 2010; 20
Rim (ref_136) 2016; 28
Wei (ref_13) 2020; 117
Lee (ref_118) 2007; 90
Hahn (ref_28) 2021; 15
Kwon (ref_81) 2021; 2
Fritzler (ref_19) 2019; 189
Dabbagh (ref_183) 2021; 24
He (ref_135) 2021; 5
Chen (ref_160) 2019; 39
Han (ref_116) 2016; 5
Liu (ref_33) 2019; 15
Mandrycky (ref_198) 2016; 34
Lian (ref_191) 2021; 11
Park (ref_82) 2007; 6
ref_15
Chen (ref_216) 2015; 5
Singh (ref_12) 2018; 17
Valentine (ref_157) 2017; 29
Huang (ref_7) 2021; 9
ref_25
ref_24
Lee (ref_211) 2017; 13
Wu (ref_63) 2021; 128
Wang (ref_121) 2018; 343
ref_21
Bodkhe (ref_212) 2018; 1
ref_20
Zhou (ref_156) 2019; 11
Ni (ref_219) 2017; 52
ref_29
Koroglu (ref_154) 2021; 306
Chen (ref_162) 2019; 783
Zheng (ref_42) 2020; 6
Hossain (ref_224) 2015; 15
Dong (ref_195) 2021; 12
Lee (ref_91) 2012; 46
Haque (ref_205) 2015; 15
Yao (ref_123) 2019; 97
Ahn (ref_14) 2015; 64
Uddin (ref_184) 2020; 107
Wen (ref_165) 2021; 20
Gao (ref_218) 2017; 29
Fukuda (ref_208) 2014; 5
Yan (ref_30) 2019; 62
Ho (ref_231) 2018; 12
Park (ref_148) 2016; 38
Abdalla (ref_225) 2020; 20
Zhang (ref_107) 2016; 6
Park (ref_113) 2008; 8
Zhang (ref_108) 2016; 109
Magazine (ref_55) 2022; 50
Song (ref_151) 2022; 4
McManus (ref_213) 2017; 12
Wang (ref_122) 2018; 104
Pikul (ref_207) 2011; 11
Arshad (ref_178) 2019; 25
Luo (ref_200) 2022; 34
Liu (ref_189) 2022; 12
Wang (ref_141) 2018; 28
Chang (ref_142) 2018; 10
Jung (ref_145) 2018; 52
Huang (ref_172) 2019; 143
Wu (ref_176) 2017; 204
Jaworek (ref_78) 1999; 27
Abbas (ref_72) 2021; 237
Wang (ref_89) 2019; 21
Cai (ref_229) 2019; 11
Huang (ref_100) 2013; 684
He (ref_62) 2016; 49
Zou (ref_214) 2021; 543
Li (ref_8) 2019; 11
Yadav (ref_181) 2021; 605
Yu (ref_105) 2016; 89
ref_174
ref_51
Chen (ref_17) 2020; 30
Duan (ref_169) 2013; 22
Park (ref_134) 2012; 7
Li (ref_53) 2013; 38
Zou (ref_115) 2019; 166
Kullmann (ref_49) 2012; 22
ref_68
ref_67
Huang (ref_26) 2020; 9
ref_167
Cui (ref_58) 2009; 30
Ali (ref_187) 2021; 176
Goren (ref_37) 2017; 4
Yao (ref_88) 2019; 50
Farid (ref_43) 2015; 16
Wang (ref_111) 2017; 7
Kelly (ref_209) 2017; 356
Emon (ref_140) 2022; 2
Jaworek (ref_74) 2008; 66
Cui (ref_54) 2012; 6
ref_34
Wu (ref_18) 2018; 10
Lee (ref_119) 2008; 93
Chu (ref_133) 2018; 3
Hartman (ref_76) 1999; 30
ref_38
Thompson (ref_31) 2019; 94
Setti (ref_56) 2007; 126
Salonitis (ref_9) 2014; 10
Cheng (ref_60) 2021; 16
Wang (ref_193) 2022; 14
Zeng (ref_228) 2021; 82
ref_47
ref_46
Jung (ref_48) 2021; 592
Guo (ref_220) 2015; 7
ref_44
Salaita (ref_39) 2007; 2
ref_188
Chizari (ref_222) 2016; 12
Deng (ref_234) 2019; 11
ref_41
ref_1
Ginebra (ref_163) 2021; 41
ref_2
Coelho (ref_27) 2022; 13
ref_5
Mondal (ref_164) 2020; 17
References_xml – volume: 10
  start-page: 6806
  year: 2018
  ident: ref_98
  article-title: Electrohydrodynamic Printing of Silver Nanowires for Flexible and Stretchable Electronics
  publication-title: Nanoscale
  doi: 10.1039/C7NR09570H
– volume: 53
  start-page: 11943
  year: 2018
  ident: ref_22
  article-title: Fabrication of Stacked-Ring Netted Tubular Constructs via 3D Template Electrohydrodynamic Printing
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2468-0
– volume: 151
  start-page: 111980
  year: 2020
  ident: ref_227
  article-title: 3D-Printed Graphene Direct Electron Transfer Enzyme Biosensors
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111980
– volume: 29
  start-page: 1701985
  year: 2017
  ident: ref_218
  article-title: Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701985
– volume: 6
  start-page: 75
  year: 2015
  ident: ref_166
  article-title: Additive Manufacturing of Bioactive Glasses and Silicate Bioceramics
  publication-title: J. Ceram. Sci. Technol.
– volume: 29
  start-page: 13630
  year: 2013
  ident: ref_94
  article-title: Optimization of Experimental Parameters to Determine the Jetting Regimes in Electrohydrodynamic Printing
  publication-title: Langmuir
  doi: 10.1021/la403111m
– volume: 46
  start-page: 10096
  year: 2020
  ident: ref_57
  article-title: 3D Printing of Ceramics and Graphene Circuits-on-Ceramics by Thermal Bubble Inkjet Technology and High Temperature Sintering
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.12.278
– volume: 3
  start-page: 1700268
  year: 2018
  ident: ref_65
  article-title: Electrohydrodynamic (EHD) Printing of Molten Metal Ink for Flexible and Stretchable Conductor with Self-Healing Capability
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201700268
– volume: 34
  start-page: 2108931
  year: 2022
  ident: ref_200
  article-title: 2108931 (1 of 13) Vertical Extrusion Cryo(Bio)Printing for Anisotropic Tissue Manufacturing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108931
– ident: ref_38
  doi: 10.1533/9780857098757.194
– ident: ref_201
  doi: 10.3390/jfb7020011
– volume: 6
  start-page: 89
  year: 2020
  ident: ref_42
  article-title: Inkjet Printing-Based Fabrication of Microscale 3D Ice Structures
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-00199-x
– volume: 592
  start-page: 54
  year: 2021
  ident: ref_48
  article-title: Three-Dimensional Nanoprinting via Charged Aerosol Jets
  publication-title: Nature
  doi: 10.1038/s41586-021-03353-1
– ident: ref_152
  doi: 10.3390/polym10060629
– volume: 4
  start-page: 248
  year: 2017
  ident: ref_37
  article-title: Patterned Biointerfaces
  publication-title: Compr. Biomater. II
– volume: 10
  start-page: 24876
  year: 2018
  ident: ref_18
  article-title: Three-Dimensional Electrohydrodynamic Printing and Spinning of Flexible Composite Structures for Oral Multidrug Forms
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.8b08880
– volume: 15
  start-page: 969
  year: 2015
  ident: ref_64
  article-title: High-Resolution Patterns of Quantum Dots Formed by Electrohydrodynamic Jet Printing for Light-Emitting Diodes
  publication-title: Nano Lett.
  doi: 10.1021/nl503779e
– volume: 597
  start-page: 120303
  year: 2021
  ident: ref_180
  article-title: Fabrication of Hollow Microneedles Using Liquid Crystal Display (LCD) Vat Polymerization 3D Printing Technology for Transdermal Macromolecular Delivery
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120303
– volume: 14
  start-page: 024105
  year: 2022
  ident: ref_193
  article-title: A Multifunctional Micropore-Forming Bioink with Enhanced Anti-Bacterial and Anti-Inflammatory Properties
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ac5936
– ident: ref_67
  doi: 10.1016/B978-0-08-102055-5.00016-4
– volume: 25
  start-page: 197
  year: 2019
  ident: ref_178
  article-title: Preparation and Characterization of Indomethacin Loaded Films by Piezoelectric Inkjet Printing: A Personalized Medication Approach
  publication-title: Pharm. Dev. Technol.
  doi: 10.1080/10837450.2019.1684520
– volume: 15
  start-page: 26018
  year: 2015
  ident: ref_205
  article-title: Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques
  publication-title: Sensors
  doi: 10.3390/s151026018
– volume: 26
  start-page: 125022
  year: 2017
  ident: ref_45
  article-title: Inkjet 3D Printing of UV and Thermal Cure Silicone Elastomers for Dielectric Elastomer Actuators
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa9695
– volume: 783
  start-page: 321
  year: 2019
  ident: ref_162
  article-title: Rheological Behavior of Titania Ink and Mechanical Properties of Titania Ceramic Structures by 3D Direct Ink Writing Using High Solid Loading Titania Ceramic Ink
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.12.334
– volume: 6
  start-page: 879
  year: 2021
  ident: ref_161
  article-title: Ceramics Processing by Additive Manufacturing
  publication-title: Trans. Indian Natl. Acad. Eng.
  doi: 10.1007/s41403-021-00225-y
– volume: 37
  start-page: 373
  year: 2020
  ident: ref_11
  article-title: Fabrication of Sr-Functionalized Micro/Nano-Hierarchical Structure Ceramic Coatings on 3D Printing Titanium
  publication-title: Surf. Eng.
  doi: 10.1080/02670844.2020.1748349
– volume: 26
  start-page: 3048
  year: 2019
  ident: ref_36
  article-title: Nanolithography and Its Alternate Techniques
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.02.633
– volume: 11
  start-page: 6796
  year: 2019
  ident: ref_234
  article-title: Stimuli-Responsive Conductive Nanocomposite Hydrogels with High Stretchability, Self-Healing, Adhesiveness, and 3D Printability for Human Motion Sensing
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.8b20178
– ident: ref_144
  doi: 10.1117/12.2225411
– volume: 7
  start-page: 803
  year: 2012
  ident: ref_134
  article-title: Highly Stretchable Electric Circuits from a Composite Material of Silver Nanoparticles and Elastomeric Fibres
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.206
– volume: 29
  start-page: 65002
  year: 2019
  ident: ref_61
  article-title: Theoretical and Experimental Studies of Electrostatic Focusing for Electrohydrodynamic Jet Printing
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/ab0c65
– volume: 6
  start-page: 77174
  year: 2016
  ident: ref_107
  article-title: Janus Particle Synthesis via Aligned Non-Concentric Angular Nozzles and Electrohydrodynamic Co-Flow for Tunable Drug Release
  publication-title: RSC Adv.
  doi: 10.1039/C6RA15387A
– volume: 66
  start-page: 197
  year: 2008
  ident: ref_74
  article-title: Electrospraying Route to Nanotechnology: An Overview
  publication-title: J. Electrostat.
  doi: 10.1016/j.elstat.2007.10.001
– volume: 6
  start-page: 149
  year: 2012
  ident: ref_54
  article-title: Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine
  publication-title: Recent Patents Drug Deliv. Formul.
  doi: 10.2174/187221112800672949
– volume: 2
  start-page: 1800024
  year: 2019
  ident: ref_84
  article-title: Broad Scale and Structure Fabrication of Healthcare Materials for Drug and Emerging Therapies via Electrohydrodynamic Techniques
  publication-title: Adv. Ther.
  doi: 10.1002/adtp.201800024
– volume: 13
  start-page: 647
  year: 2022
  ident: ref_27
  article-title: Direct-Laser Writing for Subnanometer Focusing and Single-Molecule Imaging
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28219-6
– volume: 89
  start-page: 109
  year: 2016
  ident: ref_105
  article-title: Design Optimization of Ink in Electrohydrodynamic Jet Printing: Effect of Viscoelasticity on the Formation of Taylor Cone Jet
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.09.141
– volume: 117
  start-page: 107947
  year: 2020
  ident: ref_13
  article-title: Sr-Containing Micro/Nano-Hierarchical Textured TiO2 Nanotubes on 3D Printing Titanium
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2020.107947
– ident: ref_174
  doi: 10.3390/polym13091499
– volume: 33
  start-page: 241
  year: 2018
  ident: ref_175
  article-title: 3D Metal Printing Technology: The Need to Re-Invent Design Practice
  publication-title: AI Soc.
  doi: 10.1007/s00146-018-0809-9
– volume: 122
  start-page: 26
  year: 2021
  ident: ref_128
  article-title: 3D and 4D Printing in Dentistry and Maxillofacial Surgery: Printing Techniques, Materials, and Applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.12.044
– volume: 9
  start-page: 1087
  year: 2020
  ident: ref_4
  article-title: Metallurgy Principles Applied to Powder Bed Fusion 3D Printing/Additive Manufacturing of Personalized and Optimized Metal and Alloy Biomedical Implants: An Overview
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2019.12.015
– volume: 166
  start-page: 107609
  year: 2019
  ident: ref_115
  article-title: Tip-Assisted Electrohydrodynamic Jet Printing for High-Resolution Microdroplet Deposition
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107609
– volume: 11
  start-page: 23573
  year: 2019
  ident: ref_156
  article-title: Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.9b04873
– ident: ref_167
  doi: 10.3390/ma13071688
– volume: 7
  start-page: srep43924
  year: 2017
  ident: ref_111
  article-title: Preparation of Active 3D Film Patches via Aligned Fiber Electrohydrodynamic (EHD) Printing
  publication-title: Sci. Rep.
  doi: 10.1038/srep43924
– volume: 22
  start-page: 055022
  year: 2012
  ident: ref_49
  article-title: 3D Micro-Structures by Piezoelectric Inkjet Printing of Gold Nanofluids
  publication-title: J. Micromec. Microeng.
  doi: 10.1088/0960-1317/22/5/055022
– volume: 12
  start-page: 500
  year: 2021
  ident: ref_197
  article-title: A Hybrid Additive Manufacturing Platform to Create Bulk and Surface Composition Gradients on Scaffolds for Tissue Regeneration
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20865-y
– volume: 11
  start-page: 2102411
  year: 2021
  ident: ref_191
  article-title: Uniaxial and Coaxial Vertical Embedded Extrusion Bioprinting
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202102411
– ident: ref_188
  doi: 10.3390/nano12030391
– ident: ref_25
– volume: 12
  start-page: 17799
  year: 2020
  ident: ref_147
  article-title: Work Function Engineering of Electrohydrodynamic-Jet-Printed PEDOT:PSS Electrodes for High-Performance Printed Electronics
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.0c02580
– volume: 302
  start-page: 1700229
  year: 2017
  ident: ref_170
  article-title: 3D Printing of BaTiO3/PVDF Composites with Electric In Situ Poling for Pressure Sensor Applications
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201700229
– volume: 34
  start-page: 422
  year: 2016
  ident: ref_198
  article-title: 3D Bioprinting for Engineering Complex Tissues
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2015.12.011
– volume: 139
  start-page: 031011
  year: 2016
  ident: ref_204
  article-title: Direct Printing of Capacitive Touch Sensors on Flexible Substrates by Additive E-Jet Printing with Silver Nanoinks
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4034663
– volume: 2
  start-page: 145
  year: 2007
  ident: ref_39
  article-title: Applications of Dip-Pen Nanolithography
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.39
– ident: ref_46
  doi: 10.3390/polym9090434
– volume: 11
  start-page: 2246
  year: 2011
  ident: ref_207
  article-title: High Precision Electrohydrodynamic Printing of Polymer onto Microcantilever Sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2011.2127472
– volume: 3
  start-page: 2100131
  year: 2022
  ident: ref_210
  article-title: Printed Strain Sensors for On-Skin Electronics
  publication-title: Small Struct.
  doi: 10.1002/sstr.202100131
– volume: 2
  start-page: 100027
  year: 2022
  ident: ref_140
  article-title: Conformal 3D Printing of a Polymeric Tactile Sensor
  publication-title: Addit. Manuf. Lett.
  doi: 10.1016/j.addlet.2022.100027
– volume: 90
  start-page: 81905
  year: 2007
  ident: ref_118
  article-title: Electrohydrodynamic Printing of Silver Nanoparticles by Using a Focused Nanocolloid Jet
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2645078
– volume: 20
  start-page: 1506
  year: 2021
  ident: ref_165
  article-title: 3D-Printed Silica with Nanoscale Resolution
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01111-2
– volume: 102
  start-page: 743
  year: 2019
  ident: ref_185
  article-title: 3D Printed Microneedle Patches Using Stereolithography (SLA) for Intradermal Insulin Delivery
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.04.063
– ident: ref_21
  doi: 10.1016/B978-0-12-823152-4.00008-9
– volume: 212
  start-page: 700
  year: 2012
  ident: ref_120
  article-title: Direct Printing of Copper Conductive Micro-Tracks by Multi-Nozzle Electrohydrodynamic Inkjet Printing Process
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2011.10.024
– volume: 50
  start-page: 372
  year: 2019
  ident: ref_88
  article-title: A Novel Approach for Tailored Medicines: Direct Writing of Janus Fibers
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2019.02.006
– volume: 11
  start-page: 497
  year: 2016
  ident: ref_35
  article-title: Tip-Based Nanolithography Methods and Materials
  publication-title: Front. Nanosci.
  doi: 10.1016/B978-0-08-100354-1.00015-6
– volume: 118
  start-page: 1288
  year: 2010
  ident: ref_93
  article-title: Electrospray Modeling of Highly Viscous and Non-Newtonian Liquids
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.32302
– volume: 1
  start-page: 2474
  year: 2018
  ident: ref_212
  article-title: Simultaneous 3D Printing and Poling of PVDF and Its Nanocomposites
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.7b00337
– volume: 5
  start-page: 573
  year: 2022
  ident: ref_202
  article-title: Freeform Cell-Laden Cryobioprinting for Shelf-Ready Tissue Fabrication and Storage
  publication-title: Matter
  doi: 10.1016/j.matt.2021.11.020
– ident: ref_15
  doi: 10.3390/nano9121789
– volume: 7
  start-page: 1900019
  year: 2019
  ident: ref_215
  article-title: Nanoprinted Quantum Dot–Graphene Photodetectors
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900019
– volume: 29
  start-page: 185501
  year: 2018
  ident: ref_236
  article-title: 3D Printed Stretchable Capacitive Sensors for Highly Sensitive Tactile and Electrochemical Sensing
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aaafa5
– volume: 11
  start-page: 1604
  year: 2020
  ident: ref_104
  article-title: 3D Printing of Conducting Polymers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15316-7
– volume: 204
  start-page: 73
  year: 2017
  ident: ref_176
  article-title: Surface Modified Electrospun Porous Magnetic Hollow Fibers Using Secondary Downstream Collection Solvent Contouring
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.06.015
– volume: 28
  start-page: 4415
  year: 2016
  ident: ref_136
  article-title: Recent Progress in Materials and Devices toward Printable and Flexible Sensors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505118
– volume: 1194
  start-page: 339409
  year: 2022
  ident: ref_139
  article-title: Electrochemical Monitoring the Effect of Drug Intervention on PC12 Cell Damage Model Cultured on Paper-PLA 3D Printed Device
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2021.339409
– volume: 543
  start-page: 148800
  year: 2021
  ident: ref_214
  article-title: High-Resolution Additive Direct Writing of Metal Micro/Nanostructures by Electrohydrodynamic Jet Printing
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148800
– volume: 49
  start-page: 55504
  year: 2016
  ident: ref_62
  article-title: Towards Microscale Electrohydrodynamic Three-Dimensional Printing
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/49/5/055504
– volume: 52
  start-page: 123
  year: 2018
  ident: ref_145
  article-title: Printed Ion-Gel Transistor Using Electrohydrodynamic (EHD) Jet Printing Process
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2017.10.013
– volume: 9
  start-page: tkab011
  year: 2021
  ident: ref_7
  article-title: 3D Printing of Functional Nerve Guide Conduits
  publication-title: Burn. Trauma
  doi: 10.1093/burnst/tkab011
– volume: 14
  start-page: 685
  year: 2017
  ident: ref_179
  article-title: 3D Printed Drug Delivery Devices: Perspectives and Technical Challenges
  publication-title: Exp. Rev. Med. Devices
  doi: 10.1080/17434440.2017.1363647
– volume: 30
  start-page: 1909469
  year: 2020
  ident: ref_17
  article-title: 3D Printed High-Loading Lithium-Sulfur Battery Toward Wearable Energy Storage
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909469
– volume: 520
  start-page: 7200
  year: 2012
  ident: ref_52
  article-title: Thermal Inkjet Printing of Polyaniline on Paper
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2012.07.119
– volume: 34
  start-page: 2107038
  year: 2022
  ident: ref_196
  article-title: Digital Light Processing Based Bioprinting with Composable Gradients
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107038
– volume: 104
  start-page: 81
  year: 2018
  ident: ref_122
  article-title: Co-Printing of Vertical Axis Aligned Micron-Scaled Filaments via Simultaneous Dual Needle Electrohydrodynamic Printing
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2018.05.005
– volume: 29
  start-page: 1901102
  year: 2019
  ident: ref_217
  article-title: Electrohydrodynamic Jet Printing Driven by a Triboelectric Nanogenerator
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901102
– volume: 27
  start-page: 4322
  year: 2015
  ident: ref_173
  article-title: High-Resolution Printing of 3D Structures Using an Electrohydrodynamic Inkjet with Multiple Functional Inks
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502092
– ident: ref_68
  doi: 10.1016/B978-0-08-100717-4.00023-5
– volume: 306
  start-page: 2100277
  year: 2021
  ident: ref_154
  article-title: 3D Printing of Polyvinylidene Fluoride Based Piezoelectric Nanocomposites: An Overview
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.202100277
– volume: 382
  start-page: 154
  year: 2011
  ident: ref_86
  article-title: Electrohydrodynamic Preparation of Particles, Capsules and Bubbles for Biomedical Engineering Applications
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2010.11.038
– ident: ref_96
  doi: 10.3390/polym12112475
– ident: ref_47
  doi: 10.1109/MEMSYS.2019.8870837
– volume: 11
  start-page: 753
  year: 2020
  ident: ref_95
  article-title: Ultrafast 3D Printing with Submicrometer Features Using Electrostatic Jet Deflection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14557-w
– volume: 27
  start-page: 435501
  year: 2016
  ident: ref_223
  article-title: Electrohydrodynamic Printing for Scalable MoS2flake Coating: Application to Gas Sensing Device
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/43/435501
– volume: 89
  start-page: 157
  year: 2007
  ident: ref_112
  article-title: Effect of Viscosity of Silver Nanoparticle Suspension on Conductive Line Patterned by Electrohydrodynamic Jet Printing
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-007-4210-7
– volume: 20
  start-page: 78
  year: 2020
  ident: ref_225
  article-title: 3D-Printed Electrochemical Sensors: A New Horizon for Measurement of Biomolecules
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2020.04.009
– volume: 12
  start-page: 025026
  year: 2020
  ident: ref_177
  article-title: A Core–Shell Multi-Drug Platform to Improve Gastrointestinal Tract Microbial Health Using 3D Printing
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab782c
– volume: 605
  start-page: 120815
  year: 2021
  ident: ref_181
  article-title: 3D Printed Hollow Microneedles Array Using Stereolithography for Efficient Transdermal Delivery of Rifampicin
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120815
– volume: 22
  start-page: 1
  year: 2013
  ident: ref_169
  article-title: Near-Field Electrospray Microprinting of Polymer-Derived Ceramics
  publication-title: J. Microelectrom. Syst.
  doi: 10.1109/JMEMS.2012.2226932
– volume: 10
  start-page: 19
  year: 2014
  ident: ref_9
  article-title: Stereolithography
  publication-title: Compr. Mater. Process.
  doi: 10.1016/B978-0-08-096532-1.01001-3
– volume: 143
  start-page: 63
  year: 2019
  ident: ref_172
  article-title: Three-Dimensional Printing of a Tunable Graphene-Based Elastomer for Strain Sensors with Ultrahigh Sensitivity
  publication-title: Carbon N. Y.
  doi: 10.1016/j.carbon.2018.11.008
– volume: 5
  start-page: 4147
  year: 2014
  ident: ref_208
  article-title: Fully-Printed High-Performance Organic Thin-Film Transistors and Circuitry on One-Micron-Thick Polymer Films
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5147
– volume: 52
  start-page: 623
  year: 2017
  ident: ref_219
  article-title: A Review of 3D-Printed Sensors
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2017.1287082
– volume: 62
  start-page: 54
  year: 2019
  ident: ref_30
  article-title: Physics-Uspekhi instruments and methods of investigation 3D Printing Methods for Micro-and Nanostructures
  publication-title: Phys. Usp.
  doi: 10.3367/UFNe.2017.11.038239
– volume: 436
  start-page: 937
  year: 2013
  ident: ref_117
  article-title: Direct Observation and Characterization of the Generation of Organic Solvent Droplets with and without Triglyceride Oil by Electrospraying
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2013.07.032
– volume: 12
  start-page: 1
  year: 2021
  ident: ref_195
  article-title: 3D Printing of Inherently Nanoporous Polymers via Polymerization-Induced Phase Separation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20498-1
– ident: ref_29
  doi: 10.5772/3348
– ident: ref_2
– volume: 134
  start-page: 45044
  year: 2017
  ident: ref_106
  article-title: Effects of Polymer Properties on Jetting Performance of Electrohydrodynamic Printing
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.45044
– volume: 351
  start-page: 58
  year: 2016
  ident: ref_168
  article-title: Additive Manufacturing of Polymer-Derived Ceramics
  publication-title: Science
  doi: 10.1126/science.aad2688
– volume: 82
  start-page: 105711
  year: 2021
  ident: ref_228
  article-title: CRISPR-Cas12a-Driven MXene-PEDOT:PSS Piezoresistive Wireless Biosensor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105711
– ident: ref_130
  doi: 10.3390/mi7120206
– volume: 12
  start-page: 343
  year: 2017
  ident: ref_213
  article-title: Water-Based and Biocompatible 2D Crystal Inks for All-Inkjet-Printed Heterostructures
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.281
– volume: 86
  start-page: 3124
  year: 2014
  ident: ref_221
  article-title: Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes
  publication-title: Anal. Chem.
  doi: 10.1021/ac4041857
– ident: ref_41
  doi: 10.1002/admt.202101493
– volume: 684
  start-page: 352
  year: 2013
  ident: ref_100
  article-title: The Effect of Substrate on Continuous Electrohydrodynamic Printing
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.711.352
– volume: 109
  start-page: 151903
  year: 2016
  ident: ref_108
  article-title: Continuous Micron-Scaled Rope Engineering Using a Rotating Multi-Nozzle Electrospinning Emitter
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4964645
– volume: 16
  start-page: 23
  year: 2021
  ident: ref_60
  article-title: High Scaling Ratio Line Width Reduction and Fabrication Method with Electrohydrodynamic Jet Printing
  publication-title: Micro Nano Lett.
  doi: 10.1049/mna2.12003
– volume: 67
  start-page: 102891
  year: 2022
  ident: ref_182
  article-title: Transdermal Delivery of Insulin across Human Skin in Vitro with 3D Printed Hollow Microneedles
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2021.102891
– volume: 5
  start-page: 70707
  year: 2015
  ident: ref_216
  article-title: Inkjet-Printed Transparent Nanowire Thin Film Features for UV Photodetectors
  publication-title: RSC Adv.
  doi: 10.1039/C5RA12617G
– volume: 429
  start-page: 132221
  year: 2022
  ident: ref_192
  article-title: Controlled Engineering of Multifunctional Porous Structures Using Tri-Needle Co-Axial Electrohydrodynamic Flow and Sacrificial Media
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132221
– volume: 12
  start-page: 6076
  year: 2016
  ident: ref_222
  article-title: 3D Printing of Highly Conductive Nanocomposites for the Functional Optimization of Liquid Sensors
  publication-title: Small
  doi: 10.1002/smll.201601695
– volume: 430
  start-page: 132670
  year: 2022
  ident: ref_3
  article-title: Development of 3D+G Printing for the Design of Customizable Flow Reactors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132670
– volume: 10
  start-page: 19116
  year: 2018
  ident: ref_142
  article-title: Electrohydrodynamic Printing of Microscale PEDOT:PSS-PEO Features with Tunable Conductive/Thermal Properties
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.8b04051
– volume: 27
  start-page: 125004
  year: 2017
  ident: ref_109
  article-title: Fabrication and Evaluation of a Protruding Si-Based Printhead for Electrohydrodynamic Jet Printing
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aa9156
– volume: 23
  start-page: 562
  year: 2017
  ident: ref_50
  article-title: Inkjet and Inkjet-Based 3D Printing: Connecting Fluid Properties and Printing Performance
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-05-2016-0076
– volume: 33
  start-page: 2004782
  year: 2021
  ident: ref_171
  article-title: 3D Printed Flexible Strain Sensors: From Printing to Devices and Signals
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004782
– volume: 189
  start-page: 55
  year: 2019
  ident: ref_19
  article-title: 3D Printing Methods for Micro- and Nanostructures
  publication-title: Uspekhi Fiz. Nauk
  doi: 10.3367/UFNr.2017.11.038239
– volume: 27
  start-page: 43
  year: 1999
  ident: ref_78
  article-title: Jet and Drops Formation in Electrohydrodynamic Spraying of Liquids. A Systematic Approach
  publication-title: Exp. Fluids
  doi: 10.1007/s003480050327
– volume: 35
  start-page: 114
  year: 2016
  ident: ref_103
  article-title: Fabrication of Patterned Polymer-Antibiotic Composite Fibers via Electrohydrodynamic (EHD) Printing
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2016.06.009
– volume: 343
  start-page: 379
  year: 2018
  ident: ref_121
  article-title: Development of Random and Ordered Composite Fiber Hybrid Technologies for Controlled Release Functions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.021
– volume: 29
  start-page: 1807569
  year: 2019
  ident: ref_66
  article-title: Full 3D Printing of Stretchable Piezoresistive Sensor with Hierarchical Porosity and Multimodulus Architecture
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807569
– volume: 7
  start-page: 6451
  year: 2015
  ident: ref_220
  article-title: 3D Printing of a Multifunctional Nanocomposite Helical Liquid Sensor
  publication-title: Nanoscale
  doi: 10.1039/C5NR00278H
– volume: 10
  start-page: e2100238
  year: 2021
  ident: ref_190
  article-title: Freeze-Casting with 3D-Printed Templates Creates Anisotropic Microchannels and Patterned Macrochannels within Biomimetic Nanofiber Aerogels for Rapid Cellular Infiltration
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202100238
– ident: ref_1
– volume: 9
  start-page: 1118
  year: 2020
  ident: ref_26
  article-title: Two-Photon Polymerization Nanolithography Technology for Fabrication of Stimulus-Responsive Micro/Nano-Structures for Biomedical Applications
  publication-title: Nanotechnol. Rev.
  doi: 10.1515/ntrev-2020-0073
– volume: 12
  start-page: 176
  year: 2017
  ident: ref_230
  article-title: The Development of a Glucose Dehydrogenase 3D-Printed Glucose Sensor: A Proof-of-Concept Study
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296817715272
– ident: ref_235
  doi: 10.1109/TRANSDUCERS.2011.5969506
– ident: ref_101
  doi: 10.1002/app.44823
– volume: 97
  start-page: 776
  year: 2019
  ident: ref_123
  article-title: Fabrication of Patterned Three-Dimensional Micron Scaled Core-Sheath Architectures for Drug Patches
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2018.12.110
– volume: 540
  start-page: 371
  year: 2016
  ident: ref_159
  article-title: Printing Soft Matter in Three Dimensions
  publication-title: Nature
  doi: 10.1038/nature21003
– volume: 356
  start-page: 69
  year: 2017
  ident: ref_209
  article-title: All-Printed Thin-Film Transistors from Networks of Liquid-Exfoliated Nanosheets
  publication-title: Science
  doi: 10.1126/science.aal4062
– volume: 20
  start-page: 1700539
  year: 2018
  ident: ref_23
  article-title: Printing Polymer Nanocomposites and Composites in Three Dimensions
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201700539
– volume: 135
  start-page: 72
  year: 2019
  ident: ref_87
  article-title: A Multiphysics Model for Analysis of Droplet Formation in Electrohydrodynamic 3D Printing Process
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2019.05.001
– volume: 7
  start-page: 832
  year: 2021
  ident: ref_199
  article-title: Bioprinting of Small-Diameter Blood Vessels
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.03.019
– volume: 5
  start-page: 1031
  year: 2016
  ident: ref_116
  article-title: Design of Integrated Ring Extractor for High Resolution Electrohydrodynamic (EHD) 3D Printing
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2016.08.070
– volume: 118
  start-page: 111505
  year: 2021
  ident: ref_16
  article-title: Improved Osseointegration of 3D Printed Ti-6Al-4V Implant with a Hierarchical Micro/Nano Surface Topography: An in Vitro and in Vivo Study
  publication-title: Mater. Sci. Eng. C. Mater. Biol. Appl.
  doi: 10.1016/j.msec.2020.111505
– volume: 5
  start-page: 87919
  year: 2015
  ident: ref_70
  article-title: Stable Single Device Multi-Pore Electrospraying of Polymeric Microparticles via Controlled Electrostatic Interactions
  publication-title: RSC Adv.
  doi: 10.1039/C5RA18482G
– volume: 11
  start-page: 4237
  year: 2015
  ident: ref_69
  article-title: Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing
  publication-title: Small
  doi: 10.1002/smll.201500593
– volume: 106
  start-page: 14103
  year: 2015
  ident: ref_114
  article-title: High-Resolution Electrohydrodynamic Printing of Silver Nanoparticle Ink via Commercial Hypodermic Needles
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4905387
– volume: 6
  start-page: 782
  year: 2007
  ident: ref_82
  article-title: High-Resolution Electrohydrodynamic Jet Printing
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1974
– volume: 21
  start-page: 25690
  year: 2019
  ident: ref_150
  article-title: Enhanced Solvent Resistance and Electrical Performance of Electrohydrodynamic Jet Printed PEDOT:PSS Composite Patterns: Effects of Hardeners on the Performance of Organic Thin-Film Transistors
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP04864B
– volume: 10
  start-page: 1046
  year: 2021
  ident: ref_80
  article-title: Mechanisms, Influencing Factors, and Applications of Electrohydrodynamic Jet Printing
  publication-title: Nanotechnol. Rev.
  doi: 10.1515/ntrev-2021-0073
– volume: 237
  start-page: 111496
  year: 2021
  ident: ref_72
  article-title: Numerical Simulation of Stable Electrohydrodynamic Cone-Jet Formation and Printing on Flexible Substrate
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2020.111496
– ident: ref_143
  doi: 10.1117/12.2177415
– volume: 26
  start-page: 5018
  year: 2014
  ident: ref_232
  article-title: Highly Conductive, Flexible, and Compressible All-Graphene Passive Electronic Skin for Sensing Human Touch
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401367
– volume: 6
  start-page: 153
  year: 2016
  ident: ref_226
  article-title: Biosensors and Their Applications—A Review
  publication-title: J. Oral Biol. Craniof. Res.
  doi: 10.1016/j.jobcr.2015.12.002
– volume: 128
  start-page: 21
  year: 2021
  ident: ref_63
  article-title: Electrohydrodynamic Jet 3D Printing in Biomedical Applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.04.036
– volume: 92
  start-page: 123109
  year: 2008
  ident: ref_73
  article-title: Scaling Laws for Jet Pulsations Associated with High-Resolution Electrohydrodynamic Printing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2903700
– volume: 2
  start-page: 100011
  year: 2021
  ident: ref_138
  article-title: Polymeric Biomaterials for 3D Printing in Medicine: An Overview
  publication-title: Ann. 3D Print. Med.
  doi: 10.1016/j.stlm.2021.100011
– volume: 48
  start-page: 102380
  year: 2021
  ident: ref_127
  article-title: 3D Printing of Metals Using Biodegradable Cellulose Hydrogel Inks
  publication-title: Addit. Manuf.
– volume: 20
  start-page: 55009
  year: 2010
  ident: ref_97
  article-title: Design and Evaluation of Single Nozzle with a Non-Conductive Tip for Reducing Applied Voltage and Pattern Width in Electrohydrodynamic Jet Printing (EHDP)
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/20/5/055009
– volume: 4
  start-page: 1800546
  year: 2019
  ident: ref_102
  article-title: Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800546
– ident: ref_206
  doi: 10.3390/s17051056
– volume: 11
  start-page: 4695
  year: 2020
  ident: ref_194
  article-title: Porous Cage-Derived Nanomaterial Inks for Direct and Internal Three-Dimensional Printing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18495-5
– volume: 52
  start-page: 3325
  year: 2011
  ident: ref_83
  article-title: Synthesis of Biodegradable Triple-Layered Capsules Using a Triaxial Electrospray Method
  publication-title: Polymer
  doi: 10.1016/j.polymer.2011.05.033
– volume: 21
  start-page: 1900699
  year: 2019
  ident: ref_89
  article-title: Engineering On-Demand Magnetic Core–Shell Composite Wound Dressing Matrices via Electrohydrodynamic Micro-Scale Printing
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201900699
– volume: 5
  start-page: 2001041
  year: 2021
  ident: ref_135
  article-title: Recent Progress in Flexible Microstructural Pressure Sensors toward Human–Machine Interaction and Healthcare Applications
  publication-title: Small Methods
  doi: 10.1002/smtd.202001041
– volume: 24
  start-page: 053001
  year: 2014
  ident: ref_6
  article-title: A Review of Non-Contact Micro- and Nano-Printing Technologies
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/24/5/053001
– volume: 108
  start-page: 110393
  year: 2020
  ident: ref_59
  article-title: Fabrication of Flexible Composite Drug Films via Foldable Linkages Using Electrohydrodynamic Printing
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.110393
– volume: 2
  start-page: 5593
  year: 2021
  ident: ref_81
  article-title: Overview of Recent Progress in Electrohydrodynamic Jet Printing in Practical Printed Electronics: Focus on the Variety of Printable Materials for Each Component
  publication-title: Mater. Adv.
  doi: 10.1039/D1MA00463H
– volume: 27
  start-page: 2355
  year: 2015
  ident: ref_131
  article-title: Mechanically Sintered Gallium–Indium Nanoparticles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404790
– volume: 29
  start-page: 1606425
  year: 2017
  ident: ref_129
  article-title: Stretchable and Soft Electronics Using Liquid Metals
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606425
– volume: 2
  start-page: 2100073
  year: 2022
  ident: ref_79
  article-title: Electrohydrodynamic Jet Printing: Introductory Concepts and Considerations
  publication-title: Small Sci.
  doi: 10.1002/smsc.202100073
– volume: 4
  start-page: 868
  year: 2022
  ident: ref_151
  article-title: Electrostatic Jet Engineering of Flexible Composite Pressure Sensors for Physical Applications
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.1c01357
– volume: 17
  start-page: 100328
  year: 2020
  ident: ref_164
  article-title: Present Status of the Functional Advanced Micro-, Nano-Printings—A Mini Review
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2020.100328
– volume: 119
  start-page: 111606
  year: 2021
  ident: ref_186
  article-title: Anti-Biofilm Multi Drug-Loaded 3D Printed Hearing Aids
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2020.111606
– ident: ref_44
  doi: 10.3390/jfb9010017
– volume: 64
  start-page: 523
  year: 2015
  ident: ref_14
  article-title: Nanoscale 3D Printing Process Using Aerodynamically Focused Nanoparticle (AFN) Printing, Micro-Machining, and Focused Ion Beam (FIB)
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2015.03.007
– ident: ref_85
  doi: 10.3390/mi10020094
– volume: 588
  start-page: 75
  year: 2007
  ident: ref_77
  article-title: Breakup of Electrified Jets
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112007007409
– volume: 17
  start-page: 45
  year: 2018
  ident: ref_12
  article-title: In-Situ Real-Time Characterization of Micro-Filaments for Electrohydrodynamic Ink-Jet Printing Using Machine Vision
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2018.10.011
– volume: 6
  start-page: 040802
  year: 2018
  ident: ref_71
  article-title: Electrohydrodynamic Printing for Advanced Micro/Nanomanufacturing: Current Progresses, Opportunities, and Challenges
  publication-title: J. Micro Nano-Manuf.
  doi: 10.1115/1.4041934
– volume: 8
  start-page: 91
  year: 2021
  ident: ref_137
  article-title: Direct Ink Writing of Materials for Electronics-Related Applications: A Mini Review
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2021.647229
– volume: 3
  start-page: 1700321
  year: 2018
  ident: ref_133
  article-title: Printing Silver Conductive Inks with High Resolution and High Aspect Ratio
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201700321
– volume: 15
  start-page: e1900564
  year: 2019
  ident: ref_33
  article-title: Development of Dip-Pen Nanolithography (DPN) and Its Derivatives
  publication-title: Small
  doi: 10.1002/smll.201900564
– volume: 5
  start-page: 685
  year: 2018
  ident: ref_158
  article-title: Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles
  publication-title: Soft Robot.
  doi: 10.1089/soro.2018.0021
– volume: 176
  start-page: 113788
  year: 2021
  ident: ref_187
  article-title: Electrohydrodynamic Atomisation Driven Design and Engineering of Opportunistic Particulate Systems for Applications in Drug Delivery, Therapeutics and Pharmaceutics
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.04.026
– ident: ref_5
– volume: 225
  start-page: 111266
  year: 2020
  ident: ref_237
  article-title: Multi-Parameter Paper Sensor Fabricated by Inkjet-Printed Silver Nanoparticle Ink and PEDOT:PSS
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2020.111266
– volume: 50
  start-page: 208
  year: 2019
  ident: ref_110
  article-title: Engineering of Ganoderma Lucidum Polysaccharide Loaded Polyvinyl Alcohol Nanofibers for Biopharmaceutical Delivery
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2019.01.032
– volume: 8
  start-page: 4210
  year: 2008
  ident: ref_113
  article-title: Nanoscale Patterns of Oligonucleotides Formed by Electrohydrodynamic Jet Printing with Applications in Biosensing and Nanomaterials Assembly
  publication-title: Nano Lett.
  doi: 10.1021/nl801832v
– volume: 9
  start-page: 819
  year: 2009
  ident: ref_32
  article-title: Real-Time Monitoring of Two-Photon Photopolymerization for Use in Fabrication of Microfluidic Devices
  publication-title: Lab Chip
  doi: 10.1039/B816993D
– volume: 107
  start-page: 110248
  year: 2020
  ident: ref_184
  article-title: 3D Printed Microneedles for Anticancer Therapy of Skin Tumours
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.110248
– volume: 11
  start-page: 15659
  year: 2019
  ident: ref_229
  article-title: Ti3C2 MXene Quantum Dot-Encapsulated Liposomes for Photothermal Immunoassays Using a Portable near-Infrared Imaging Camera on a Smartphone
  publication-title: Nanoscale
  doi: 10.1039/C9NR05797H
– volume: 38
  start-page: 9310
  year: 2013
  ident: ref_53
  article-title: Thermal Inkjet Printing of Thin-Film Electrolytes and Buffering Layers for Solid Oxide Fuel Cells with Improved Performance
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.05.025
– volume: 30
  start-page: 823
  year: 1999
  ident: ref_76
  article-title: Electrohydrodynamic Atomization in The Cone–Jet Mode Physical Modeling of The Liquid Cone And Jet
  publication-title: J. Aerosol Sci.
  doi: 10.1016/S0021-8502(99)00033-6
– volume: 24
  start-page: 102012
  year: 2021
  ident: ref_183
  article-title: 3D-Printed Microneedles in Biomedical Applications
  publication-title: iScience
  doi: 10.1016/j.isci.2020.102012
– volume: 11
  start-page: 39179
  year: 2019
  ident: ref_8
  article-title: Precision Printing of Customized Cylindrical Capsules with Multifunctional Layers for Oral Drug Delivery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13568
– volume: 24
  start-page: 5117
  year: 2012
  ident: ref_132
  article-title: Highly Conductive and Stretchable Silver Nanowire Conductors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201886
– volume: 94
  start-page: 204
  year: 2019
  ident: ref_31
  article-title: Two-Photon Polymerized Poly(Caprolactone) Retinal Cell Delivery Scaffolds and Their Systemic and Retinal Biocompatibility
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.04.057
– volume: 28
  start-page: 1705551
  year: 2018
  ident: ref_141
  article-title: A Self-Healable, Highly Stretchable, and Solution Processable Conductive Polymer Composite for Ultrasensitive Strain and Pressure Sensing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705551
– volume: 12
  start-page: 24450
  year: 2020
  ident: ref_90
  article-title: Microtip Focused Electrohydrodynamic Jet Printing with Nanoscale Resolution
  publication-title: Nanoscale
  doi: 10.1039/D0NR08236H
– volume: 39
  start-page: 661
  year: 2019
  ident: ref_160
  article-title: 3D Printing of Ceramics: A Review
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.11.013
– volume: 93
  start-page: 243114
  year: 2008
  ident: ref_119
  article-title: Design and Evaluation of a Silicon Based Multi-Nozzle for Addressable Jetting Using a Controlled Flow Rate in Electrohydrodynamic Jet Printing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3049609
– volume: 27
  start-page: 065006
  year: 2017
  ident: ref_10
  article-title: Hybrid 3D Printing by Bridging Micro/Nano Processes
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aa6758
– volume: 52
  start-page: 165
  year: 2018
  ident: ref_149
  article-title: Organic Thin-Film Transistors with Sub-10-Micrometer Channel Length with Printed Polymer/Carbon Nanotube Electrodes
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2017.10.023
– volume: 105
  start-page: 253109
  year: 2014
  ident: ref_99
  article-title: Electrohydrodynamic Direct-Writing Lithography: An Alternative Maskless Technique for Microstructure Fabrication
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4905151
– volume: 46
  start-page: 1
  year: 2012
  ident: ref_91
  article-title: A Study of Ejection Modes for Pulsed-DC Electrohydrodynamic Inkjet Printing
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2011.11.002
– volume: 38
  start-page: 48
  year: 2016
  ident: ref_148
  article-title: Optimization of Electrohydrodynamic-Printed Organic Electrodes for Bottom-Contact Organic Thin Film Transistors
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2016.07.040
– volume: 12
  start-page: 120
  year: 2022
  ident: ref_189
  article-title: 3D-Printed Bioactive Ceramic Scaffolds with Biomimetic Micro/Nano-HAp Surfaces Mediated Cell Fate and Promoted Bone Augmentation of the Bone–Implant Interface in Vivo
  publication-title: Bioact. Mater.
– volume: 167
  start-page: 37561
  year: 2020
  ident: ref_153
  article-title: Review—Recent Progress in Flexible and Stretchable Piezoresistive Sensors and Their Applications
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab6828
– volume: 2
  start-page: 140
  year: 2015
  ident: ref_233
  article-title: Advances of Flexible Pressure Sensors toward Artificial Intelligence and Health Care Applications
  publication-title: Mater. Horizons
  doi: 10.1039/C4MH00147H
– volume: 50
  start-page: 102534
  year: 2022
  ident: ref_55
  article-title: 3D Inkjet-Printing of Photo-Crosslinkable Resins for Microlens Fabrication
  publication-title: Addit. Manuf.
– ident: ref_24
  doi: 10.1007/978-3-030-63647-0_24
– volume: 16
  start-page: 033502
  year: 2015
  ident: ref_43
  article-title: A Review on Powder-Based Additive Manufacturing for Tissue Engineering: Selective Laser Sintering and Inkjet 3D Printing
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/16/3/033502
– ident: ref_92
  doi: 10.3390/mi11010013
– ident: ref_125
  doi: 10.3390/nano10010107
– volume: 15
  start-page: 932
  year: 2021
  ident: ref_28
  article-title: Two-Step Absorption Instead of Two-Photon Absorption in 3D Nanoprinting
  publication-title: Nat. Photon
  doi: 10.1038/s41566-021-00906-8
– volume: 153
  start-page: 285
  year: 2019
  ident: ref_124
  article-title: 3D Electrohydrodynamic Printing of Highly Aligned Dual-Core Graphene Composite Matrices
  publication-title: Carbon N. Y.
  doi: 10.1016/j.carbon.2019.07.030
– volume: 18
  start-page: 15
  year: 2017
  ident: ref_75
  article-title: A Systematic Study on Numerical Simulation of Electrified Jet Printing
  publication-title: Addit. Manuf.
– volume: 30
  start-page: 6221
  year: 2009
  ident: ref_58
  article-title: Human Microvasculature Fabrication Using Thermal Inkjet Printing Technology
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.07.056
– ident: ref_20
  doi: 10.1016/B978-0-08-100262-9.00009-4
– volume: 41
  start-page: 18
  year: 2021
  ident: ref_163
  article-title: Rheological Characterisation of Ceramic Inks for 3D Direct Ink Writing: A Review
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2021.08.031
– volume: 126
  start-page: 252
  year: 2007
  ident: ref_56
  article-title: An HRP-Based Amperometric Biosensor Fabricated by Thermal Inkjet Printing
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2006.12.015
– volume: 29
  start-page: 1703817
  year: 2017
  ident: ref_157
  article-title: Hybrid 3D Printing of Soft Electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703817
– volume: 132
  start-page: 112658
  year: 2022
  ident: ref_203
  article-title: Freestanding Vascular Scaffolds Engineered by Direct 3D Printing with Gt-Alg-MMT Bioinks
  publication-title: Mater. Sci. Eng. C
– volume: 6
  start-page: 2004
  year: 2016
  ident: ref_146
  article-title: Electrohydrodynamic Printing of Poly(3,4-Ethylenedioxythiophene):Poly(4-Styrenesulfonate) Electrodes with Ratio-Optimized Surfactant
  publication-title: RSC Adv.
  doi: 10.1039/C5RA19462H
– volume: 12
  start-page: 43
  year: 2018
  ident: ref_231
  article-title: Additive Manufacturing of Electrochemical Interfaces: Simultaneous Detection of Biomarkers
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2018.03.008
– volume: 13
  start-page: 1700368
  year: 2017
  ident: ref_211
  article-title: Rough-Surface-Enabled Capacitive Pressure Sensors with 3D Touch Capability
  publication-title: Small
  doi: 10.1002/smll.201700368
– volume: 37
  start-page: 846
  year: 2021
  ident: ref_40
  article-title: Dip-Pen Nanolithography(DPN): From Micro/Nano-Patterns to Biosensing
  publication-title: Chem. Res. Chin. Univ.
  doi: 10.1007/s40242-021-1197-0
– ident: ref_51
  doi: 10.3390/s20123349
– ident: ref_34
  doi: 10.1016/B978-0-12-823358-0.00003-4
– volume: 15
  start-page: 5095
  year: 2015
  ident: ref_224
  article-title: Lab-in-a-Phone: Smartphone-Based Portable Fluorometer for PH Measurements of Environmental Water
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2361651
– ident: ref_155
  doi: 10.3390/polym13040598
– volume: 3
  start-page: 10024
  year: 2019
  ident: ref_126
  article-title: Three-Dimensional Printing of Metals for Biomedical Applications
  publication-title: Mater. Today Bio.
SSID ssj0000779007
Score 2.449025
SecondaryResourceType review_article
Snippet Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 642
SubjectTerms 3-D printers
3D printing
biomaterial
Biomedical engineering
Biomedical materials
CAD
Chemical properties
Computer aided design
Cost control
Electrohydrodynamics
Electronic devices
electronics
Hydrogels
Inkjet printing
Lasers
Manufacturing
micro/nano scale printing
Nanoparticles
Physical properties
Polymerization
Review
Three dimensional printing
Tissue engineering
Wearable computers
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gIH1PIMLcgILhyiOrFjOyfE0q0qpFYVtFJvkZ9lJUjKdvv_GXu9abequOXhg-UZj7-xx98H8IlLy31du9IoqsooUVjiMoxPVuICWFUyJNG-4xNxdM6_XzQXecPtOpdVrmNiCtRusHGPfL8WDUZOoRj_cvW3jKpR8XQ1S2g8hi0MwUpNYGs6Ozn9Me6y0EinR-WKl5Rhfr__Z45Rm0fYvbESJcL-h1Dm_WLJO6vP4TY8y7CRfF3ZeQce-f45PL1DJvgCzmLJBjldZNEcwg7wZZ6EIAgiU3IcS-_IciAYUAfyE23jyTRdvo92Irp3ZDZq4pADn0LISzg_nJ19OyqzZkJpuayXJdNBCSWtco1SraPWBVEbg8CAt5XCyKZ9EEarUDXKIJhqhfTGBImDV1vmWvYKJv3Q-zdAqJNNYy3DnMrwOgTNNGYfJijEGJQaWcDn9fh1NhOKR12L3x0mFnGsu9uxLuDj2PZqRaPxYKtpNMPYIlJfpw_D4rLLM6mjvNKtcRW6QsttI3SDEK5S2hlmKmp9AXtrI3Z5Pl53t95TwIfxN86keDyiez_cpDaRfU61ooDXK5uPPWEINCMVfwFywxs2urr5p5__SmzdLWWYlqm3_-_WLjyp48WKyCKp9mCyXNz4dwh3luZ99ul_VSf-fw
  priority: 102
  providerName: ProQuest
Title High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices
URI https://www.ncbi.nlm.nih.gov/pubmed/35457946
https://www.proquest.com/docview/2652996834
https://www.proquest.com/docview/2654283896
https://pubmed.ncbi.nlm.nih.gov/PMC9033068
https://doaj.org/article/041a9bd168394c56a556218adb3b10ce
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucAB8SZQVkZw4RDViR3bObJ0lwqpVQWt1Fvkp7oSZFHZ_n9mnDTsokpcuCXxJHI845lvlMk3AO-l9jLWdSid4aakFoUlhmE88hoDYFXplJv2HZ-oo3P55aK52Gr1RTVhAz3wsHAHXFa2daFS-AjpG2UbjNiVscEJV3EfyftizNtKprIPJho9rgc-UoF5_cGPFXprSXB7JwJlov7b0OXfRZJbUWf5CB6OcJF9HKb5GO7E_gk82CIRfApnVKrBTq_GZjlMHOLJKjeAYIhI2TGV3LHNmqEjXbNvqJPI5vmne9IPs31gi6kXDjuM2XU8g_Pl4uzTUTn2Sii91PWmFDYZZbQ3oTGmDdyHpGrnEBDItjLo0WxMylmTqsY4BFGt0tG5pGtE2F6EVjyHvX7dx5fAeNBN473AXMrJOiUrLGYdLhnEFpw7XcCHm_Xr_EgkTv0svneYUNBad3_WuoB3k-zPgT7jVqk5qWGSIMrrfAENoRsNofuXIRSwf6PEbtyHv7paNRhv8RZZwNtpGHcQfRaxfVxfZxlinTOtKuDFoPNpJgIBJlHwF6B3rGFnqrsj_eoys3S3XGA6Zl79j3d7Dfdr-u2COCbNPuxtrq7jGwRDGzeDu2b5eQb35ouT06-zvAt-A1YxB6o
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWqsgAWiDeBAkbAgkVUx3ZiZ4EQZTpMaadCYip1l9qOAyO1SZlOhfgpvpF7nUc7qGLXXRJ7Ydn3cW5sn0PIG6mc9JyXsdVMxyhRGEMahienIAEmiaqCaN90P5scyC-H6eEa-dPfhcFjlX1MDIG6bBz-I9_kWQqRM9NCfjj9GaNqFO6u9hIarVns-t-_oGQ7e78zgvV9y_l4e_ZpEneqArGTii9jYSqdaeV0mWqdl8yVVcathdQp80SD7xtfZdboKkm1BbiRZ8pbWykOWNSJEsmXIOTfkAIyOd5MH38e_ukwJO9jqmVBhXa2eTKHHCER5K_kvSAPcBWm_fdo5qVcN75L7nQglX5sreoeWfP1fXL7EnXhAzLDAyL066KT6KFiBC_zIDtBAQfTKR70o8uGQvhu6DewBE-3wlV_tApq6pJuDwo8dORDwHpIDq5lLh-R9bqp_RNCWanS1DkBFZyVvKqMMFDr2EoDomHMqoi86-evcB19OapoHBdQxuBcFxdzHZHXQ9_TlrTjyl5buAxDDyTaDh-axfei89uCycTktkzA8HLp0sykABgTbUorbMKcj8hGv4hF5_1nxYWtRuTV0Ax-i5sxpvbNeeiDXHc6zyLyuF3zYSQCYC0S_0dErVjDylBXW-r5j8ANnjMBRaB--v9hvSQ3J7PpXrG3s7_7jNzieKUD-Sv1BllfLs79cwBaS_siWDclR9ftTn8BKH05xg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VWwnBAfFNoIARcOAQrRM7sXNAiGV31VK6WkEr9RZsx4GVICnbrRB_jV_HTJJNu6ji1lsS-2DZ45k38fg9gJdSOenjuAit5jokicIQwzA-OYUBMIpU2Yj2HczS3SP54Tg53oI_67swVFa59omNoy5qR__Ih3GaoOdMtZDDsiuLmI-nb09-hqQgRSetazmN1kT2_e9fmL6dvtkb41q_iuPp5PD9btgpDIROqngVClPqVCuni0TrrOCuKNPYWgyjMos0-gHjy9QaXUaJtgg9slR5a0sVIy51oiAiJnT_24qyogFsjyaz-af-Dw8nKj-uWk5UITI-_LHAiCEJ8m9EwUYs4DKE-2-h5oXIN70FNzvIyt61NnYbtnx1B25cIDK8C4dULsLmy06wh4kxviwaEQqGqJgdUNkfW9UMnXnNPqNdeDZqLv6TjTBTFWzS6_GwsW_c1z04upLZvA-Dqq78Q2C8UEninMB8zsq4LI0wmPnYUiO-4dyqAF6v5y93HZk5aWp8zzGpobnOz-c6gBd935OWwuPSXiNahr4H0W43H-rl17zbxTmXkclsEaEZZtIlqUkQPkbaFFbYiDsfwM56EfPOF5zm55YbwPO-GXcxHc2YytdnTR9ivtNZGsCDds37kQgEuSQDEIDasIaNoW62VItvDVN4xgWmhPrR_4f1DK7hVso_7s32H8P1mO53EJml3oHBannmnyDqWtmnnXkz-HLVO-ov9RI_WA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Precision+3D+Printing+for+Micro+to+Nano+Scale+Biomedical+and+Electronic+Devices&rft.jtitle=Micromachines+%28Basel%29&rft.au=Kirsty+Muldoon&rft.au=Yanhua+Song&rft.au=Zeeshan+Ahmad&rft.au=Xing+Chen&rft.date=2022-04-18&rft.pub=MDPI+AG&rft.eissn=2072-666X&rft.volume=13&rft.issue=4&rft.spage=642&rft_id=info:doi/10.3390%2Fmi13040642&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_041a9bd168394c56a556218adb3b10ce
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon