High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices
Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation...
Saved in:
Published in | Micromachines (Basel) Vol. 13; no. 4; p. 642 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.04.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products’ mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications. |
---|---|
AbstractList | Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products’ mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications. Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products' mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications.Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products' mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications. |
Author | Ahmad, Zeeshan Song, Yanhua Muldoon, Kirsty Chang, Ming-Wei Chen, Xing |
AuthorAffiliation | 1 Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK; muldoon-k5@ulster.ac.uk 2 Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China; syanhua2015@163.com 3 Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China 4 School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; zahmad@dmu.ac.uk |
AuthorAffiliation_xml | – name: 1 Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK; muldoon-k5@ulster.ac.uk – name: 4 School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; zahmad@dmu.ac.uk – name: 3 Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China – name: 2 Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China; syanhua2015@163.com |
Author_xml | – sequence: 1 givenname: Kirsty surname: Muldoon fullname: Muldoon, Kirsty – sequence: 2 givenname: Yanhua surname: Song fullname: Song, Yanhua – sequence: 3 givenname: Zeeshan surname: Ahmad fullname: Ahmad, Zeeshan – sequence: 4 givenname: Xing orcidid: 0000-0002-6870-3912 surname: Chen fullname: Chen, Xing – sequence: 5 givenname: Ming-Wei orcidid: 0000-0002-0137-8895 surname: Chang fullname: Chang, Ming-Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35457946$$D View this record in MEDLINE/PubMed |
BookMark | eNptkttqVDEUhoO02Dr2xgeQgDcijOZ8uBFqW9tCPYAVvAs57WmGPUlN9hR8e9NO7QlzkawkX37Wyr9egK1ccgTgFUbvKdXowyphihgSjDwDuwRJMhdC_Np6EO-AvdaWqA8pdZ-egx3KGZeaiV1wfpIWF_B7jT61VDKkh32T8pTyAg6lwi_J1wKnAr_aXOAPb8cIP6WyiiH1GNoc4NEY_VRLTh4exqvkY3sJtgc7trh3u87Az89H5wcn87Nvx6cH-2dzzySZ5tQOSijpVeBK6YB8GARxDknONFYaYxsH4awaMFeOEqaFjM4NkihFPA2azsDpRjcUuzSXNa1s_WOKTebmoNSFsXVKfowGMWy1C1goqpnnwnIuCFY2OOow8rFrfdxoXa5dr87HPFU7PhJ9fJPThVmUK6MRpajLzsDbW4Fafq9jm8wqNR_H0eZY1s0QwRlRVGnR0TdP0GVZ19y_6poiWnc51qnXDzO6S-WfeR14twG6Ra3VONwhGJnr5jD3zdFh9AT2abJT97xXk8b_PfkLdfS5fA |
CitedBy_id | crossref_primary_10_1002_ppap_202200219 crossref_primary_10_1016_j_ptlrs_2024_11_004 crossref_primary_10_1016_j_apmt_2024_102363 crossref_primary_10_1016_j_jddst_2023_104395 crossref_primary_10_3390_bioengineering11010032 crossref_primary_10_1007_s11465_024_0792_4 crossref_primary_10_3390_jmmp8030090 crossref_primary_10_3390_ma17215371 crossref_primary_10_5757_ASCT_2023_32_1_1 crossref_primary_10_3390_mi13112016 crossref_primary_10_3390_app15042219 crossref_primary_10_1208_s12249_024_02971_y crossref_primary_10_1002_sstr_202200356 crossref_primary_10_3390_polym15153234 crossref_primary_10_3390_s22239085 crossref_primary_10_3389_fphy_2023_1309373 crossref_primary_10_1016_j_mtcomm_2024_109645 crossref_primary_10_1007_s40964_024_00871_y crossref_primary_10_1016_j_addma_2022_103368 crossref_primary_10_1039_D4YA00202D crossref_primary_10_1002_smll_202206391 crossref_primary_10_1016_j_mex_2023_102366 crossref_primary_10_1016_j_procs_2024_02_143 crossref_primary_10_1109_JPROC_2024_3481315 crossref_primary_10_3390_mi13101794 crossref_primary_10_1007_s00170_024_13588_7 crossref_primary_10_1016_j_xphs_2023_08_017 crossref_primary_10_3390_inventions8040103 crossref_primary_10_3390_micro4020016 crossref_primary_10_2478_lpts_2023_0035 crossref_primary_10_1109_JPROC_2024_3391232 crossref_primary_10_3390_app14219919 crossref_primary_10_1142_S2251237324300043 crossref_primary_10_1016_j_apmt_2025_102619 crossref_primary_10_3389_fbioe_2023_1160760 crossref_primary_10_3390_mi13081207 crossref_primary_10_1016_j_rinma_2023_100393 crossref_primary_10_2174_0113816128322300240725052530 crossref_primary_10_1002_adem_202300750 crossref_primary_10_1007_s11630_024_2008_y crossref_primary_10_1039_D2MA00818A crossref_primary_10_1088_1361_6528_ad3252 crossref_primary_10_3390_technologies12070117 |
Cites_doi | 10.1039/C7NR09570H 10.1007/s10853-018-2468-0 10.1016/j.bios.2019.111980 10.1002/adma.201701985 10.1021/la403111m 10.1016/j.ceramint.2019.12.278 10.1002/admt.201700268 10.1002/adma.202108931 10.1533/9780857098757.194 10.3390/jfb7020011 10.1038/s41378-020-00199-x 10.1038/s41586-021-03353-1 10.3390/polym10060629 10.1021/acsami.8b08880 10.1021/nl503779e 10.1016/j.ijpharm.2021.120303 10.1088/1758-5090/ac5936 10.1016/B978-0-08-102055-5.00016-4 10.1080/10837450.2019.1684520 10.3390/s151026018 10.1088/1361-665X/aa9695 10.1016/j.jallcom.2018.12.334 10.1007/s41403-021-00225-y 10.1080/02670844.2020.1748349 10.1016/j.matpr.2020.02.633 10.1021/acsami.8b20178 10.1117/12.2225411 10.1038/nnano.2012.206 10.1088/1361-6439/ab0c65 10.1039/C6RA15387A 10.1016/j.elstat.2007.10.001 10.2174/187221112800672949 10.1002/adtp.201800024 10.1038/s41467-022-28219-6 10.1016/j.matdes.2015.09.141 10.1016/j.inoche.2020.107947 10.3390/polym13091499 10.1007/s00146-018-0809-9 10.1016/j.actbio.2020.12.044 10.1016/j.jmrt.2019.12.015 10.1016/j.matdes.2019.107609 10.1021/acsami.9b04873 10.3390/ma13071688 10.1038/srep43924 10.1088/0960-1317/22/5/055022 10.1038/s41467-020-20865-y 10.1002/adhm.202102411 10.3390/nano12030391 10.1021/acsami.0c02580 10.1002/mame.201700229 10.1016/j.biotechadv.2015.12.011 10.1115/1.4034663 10.1038/nnano.2007.39 10.3390/polym9090434 10.1109/JSEN.2011.2127472 10.1002/sstr.202100131 10.1016/j.addlet.2022.100027 10.1063/1.2645078 10.1038/s41563-021-01111-2 10.1016/j.msec.2019.04.063 10.1016/B978-0-12-823152-4.00008-9 10.1016/j.jmatprotec.2011.10.024 10.1016/j.jddst.2019.02.006 10.1016/B978-0-08-100354-1.00015-6 10.1002/app.32302 10.1021/acsaem.7b00337 10.1016/j.matt.2021.11.020 10.3390/nano9121789 10.1002/adom.201900019 10.1088/1361-6528/aaafa5 10.1038/s41467-020-15316-7 10.1016/j.matlet.2017.06.015 10.1002/adma.201505118 10.1016/j.aca.2021.339409 10.1016/j.apsusc.2020.148800 10.1088/0022-3727/49/5/055504 10.1016/j.orgel.2017.10.013 10.1093/burnst/tkab011 10.1080/17434440.2017.1363647 10.1002/adfm.201909469 10.1016/j.tsf.2012.07.119 10.1002/adma.202107038 10.1016/j.eurpolymj.2018.05.005 10.1002/adfm.201901102 10.1002/adma.201502092 10.1016/B978-0-08-100717-4.00023-5 10.1002/mame.202100277 10.1016/j.colsurfa.2010.11.038 10.3390/polym12112475 10.1109/MEMSYS.2019.8870837 10.1038/s41467-020-14557-w 10.1088/0957-4484/27/43/435501 10.1007/s00339-007-4210-7 10.1016/j.coelec.2020.04.009 10.1088/1758-5090/ab782c 10.1016/j.ijpharm.2021.120815 10.1109/JMEMS.2012.2226932 10.1016/B978-0-08-096532-1.01001-3 10.1016/j.carbon.2018.11.008 10.1038/ncomms5147 10.1080/05704928.2017.1287082 10.3367/UFNe.2017.11.038239 10.1016/j.colsurfa.2013.07.032 10.1038/s41467-020-20498-1 10.5772/3348 10.1002/app.45044 10.1126/science.aad2688 10.1016/j.nanoen.2020.105711 10.3390/mi7120206 10.1038/nnano.2016.281 10.1021/ac4041857 10.1002/admt.202101493 10.4028/www.scientific.net/AMR.711.352 10.1063/1.4964645 10.1049/mna2.12003 10.1016/j.jddst.2021.102891 10.1039/C5RA12617G 10.1016/j.cej.2021.132221 10.1002/smll.201601695 10.1016/j.cej.2021.132670 10.1021/acsami.8b04051 10.1088/1361-6439/aa9156 10.1108/RPJ-05-2016-0076 10.1002/adma.202004782 10.3367/UFNr.2017.11.038239 10.1007/s003480050327 10.1016/j.jddst.2016.06.009 10.1016/j.cej.2018.03.021 10.1002/adfm.201807569 10.1039/C5NR00278H 10.1002/adhm.202100238 10.1515/ntrev-2020-0073 10.1177/1932296817715272 10.1109/TRANSDUCERS.2011.5969506 10.1002/app.44823 10.1016/j.msec.2018.12.110 10.1038/nature21003 10.1126/science.aal4062 10.1002/adem.201700539 10.1016/j.jaerosci.2019.05.001 10.1016/j.eng.2020.03.019 10.1016/j.promfg.2016.08.070 10.1016/j.msec.2020.111505 10.1039/C5RA18482G 10.1002/smll.201500593 10.1063/1.4905387 10.1038/nmat1974 10.1039/C9CP04864B 10.1515/ntrev-2021-0073 10.1016/j.mee.2020.111496 10.1117/12.2177415 10.1002/adma.201401367 10.1016/j.jobcr.2015.12.002 10.1016/j.actbio.2021.04.036 10.1063/1.2903700 10.1016/j.stlm.2021.100011 10.1088/0960-1317/20/5/055009 10.1002/admt.201800546 10.3390/s17051056 10.1038/s41467-020-18495-5 10.1016/j.polymer.2011.05.033 10.1002/adem.201900699 10.1002/smtd.202001041 10.1088/0960-1317/24/5/053001 10.1016/j.msec.2019.110393 10.1039/D1MA00463H 10.1002/adma.201404790 10.1002/adma.201606425 10.1002/smsc.202100073 10.1021/acsapm.1c01357 10.1016/j.mtchem.2020.100328 10.1016/j.msec.2020.111606 10.3390/jfb9010017 10.1016/j.cirp.2015.03.007 10.3390/mi10020094 10.1017/S0022112007007409 10.1016/j.promfg.2018.10.011 10.1115/1.4041934 10.3389/fmats.2021.647229 10.1002/admt.201700321 10.1002/smll.201900564 10.1089/soro.2018.0021 10.1016/j.addr.2021.04.026 10.1016/j.mee.2020.111266 10.1016/j.jddst.2019.01.032 10.1021/nl801832v 10.1039/B816993D 10.1016/j.msec.2019.110248 10.1039/C9NR05797H 10.1016/j.ijhydene.2013.05.025 10.1016/S0021-8502(99)00033-6 10.1016/j.isci.2020.102012 10.1021/acsami.9b13568 10.1002/adma.201201886 10.1016/j.actbio.2019.04.057 10.1002/adfm.201705551 10.1039/D0NR08236H 10.1016/j.jeurceramsoc.2018.11.013 10.1063/1.3049609 10.1088/1361-6439/aa6758 10.1016/j.orgel.2017.10.023 10.1063/1.4905151 10.1016/j.jaerosci.2011.11.002 10.1016/j.orgel.2016.07.040 10.1149/1945-7111/ab6828 10.1039/C4MH00147H 10.1007/978-3-030-63647-0_24 10.1088/1468-6996/16/3/033502 10.3390/mi11010013 10.3390/nano10010107 10.1038/s41566-021-00906-8 10.1016/j.carbon.2019.07.030 10.1016/j.biomaterials.2009.07.056 10.1016/B978-0-08-100262-9.00009-4 10.1016/j.jeurceramsoc.2021.08.031 10.1016/j.snb.2006.12.015 10.1002/adma.201703817 10.1039/C5RA19462H 10.1016/j.apmt.2018.03.008 10.1002/smll.201700368 10.1007/s40242-021-1197-0 10.3390/s20123349 10.1016/B978-0-12-823358-0.00003-4 10.1109/JSEN.2014.2361651 10.3390/polym13040598 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7SP 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/mi13040642 |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2072-666X |
ExternalDocumentID | oai_doaj_org_article_041a9bd168394c56a556218adb3b10ce PMC9033068 35457946 10_3390_mi13040642 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 L6V M7S MM. MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RPM TR2 TUS NPM 7SP 7TB 8FD ABUWG AZQEC DWQXO FR3 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c472t-3af8687c8d5889d0cdf62bb0754918911aef6ba8f158b324967ebbf72882c3d93 |
IEDL.DBID | DOA |
ISSN | 2072-666X |
IngestDate | Wed Aug 27 01:28:53 EDT 2025 Thu Aug 21 17:59:02 EDT 2025 Thu Jul 10 20:57:24 EDT 2025 Fri Jul 25 12:06:57 EDT 2025 Wed Feb 19 02:06:38 EST 2025 Tue Jul 01 03:41:17 EDT 2025 Thu Apr 24 23:13:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | electronics biomaterial micro/nano scale printing 3D printing |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-3af8687c8d5889d0cdf62bb0754918911aef6ba8f158b324967ebbf72882c3d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0137-8895 0000-0002-6870-3912 |
OpenAccessLink | https://doaj.org/article/041a9bd168394c56a556218adb3b10ce |
PMID | 35457946 |
PQID | 2652996834 |
PQPubID | 2032359 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_041a9bd168394c56a556218adb3b10ce pubmedcentral_primary_oai_pubmedcentral_nih_gov_9033068 proquest_miscellaneous_2654283896 proquest_journals_2652996834 pubmed_primary_35457946 crossref_primary_10_3390_mi13040642 crossref_citationtrail_10_3390_mi13040642 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220418 |
PublicationDateYYYYMMDD | 2022-04-18 |
PublicationDate_xml | – month: 4 year: 2022 text: 20220418 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Micromachines (Basel) |
PublicationTitleAlternate | Micromachines (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_92 Eckel (ref_168) 2016; 351 Grotevent (ref_215) 2019; 7 ref_130 ref_96 Zang (ref_233) 2015; 2 Cai (ref_80) 2021; 10 He (ref_99) 2014; 105 Khan (ref_120) 2012; 212 Mehrotra (ref_226) 2016; 6 Wei (ref_11) 2020; 37 Aubert (ref_194) 2020; 11 Liashenko (ref_95) 2020; 11 John (ref_190) 2021; 10 Liu (ref_139) 2022; 1194 ref_125 Sinha (ref_197) 2021; 12 Hou (ref_137) 2021; 8 Pugliese (ref_138) 2021; 2 Qin (ref_204) 2016; 139 Murr (ref_4) 2020; 9 Gomes (ref_52) 2012; 520 Boley (ref_131) 2015; 27 Wu (ref_203) 2022; 132 Lim (ref_146) 2016; 6 Stoneman (ref_32) 2009; 9 Kim (ref_114) 2015; 106 Xu (ref_186) 2021; 119 Shallan (ref_221) 2014; 86 Yuk (ref_104) 2020; 11 ref_152 Wang (ref_124) 2019; 153 ref_155 Tawk (ref_158) 2018; 5 Krivoshapkina (ref_35) 2016; 11 Ru (ref_6) 2014; 24 Guo (ref_50) 2017; 23 Park (ref_149) 2018; 52 Bae (ref_106) 2017; 134 Su (ref_90) 2020; 12 Lyu (ref_147) 2020; 12 Truby (ref_159) 2016; 540 Wang (ref_103) 2016; 35 Li (ref_236) 2018; 29 Han (ref_71) 2018; 6 Hou (ref_232) 2014; 26 ref_144 ref_143 ref_85 Han (ref_65) 2018; 3 Onses (ref_69) 2015; 11 Wang (ref_66) 2019; 29 Liu (ref_61) 2019; 29 Khorsandi (ref_128) 2021; 122 Lee (ref_94) 2013; 29 Wu (ref_59) 2020; 108 Pumera (ref_227) 2020; 151 (ref_23) 2018; 20 Barmpakos (ref_237) 2020; 225 Tang (ref_150) 2019; 21 Rahmat (ref_75) 2017; 18 Huang (ref_102) 2019; 4 Kim (ref_64) 2015; 15 Lim (ref_223) 2016; 27 Cui (ref_98) 2018; 10 McCoul (ref_45) 2017; 26 Wang (ref_22) 2018; 53 Kim (ref_83) 2011; 52 Dickey (ref_129) 2017; 29 Kim (ref_170) 2017; 302 ref_206 Mehta (ref_84) 2019; 2 Li (ref_153) 2020; 167 Xenikakis (ref_182) 2022; 67 Choi (ref_73) 2008; 92 Enayati (ref_86) 2011; 382 Cao (ref_199) 2021; 7 Wu (ref_217) 2019; 29 ref_201 Duda (ref_175) 2018; 33 Gmeiner (ref_166) 2015; 6 Wang (ref_196) 2022; 34 Yoon (ref_10) 2017; 27 Pan (ref_109) 2017; 27 Xu (ref_132) 2012; 24 Yao (ref_192) 2022; 429 ref_235 Adams (ref_230) 2017; 12 Collins (ref_77) 2007; 588 Zhu (ref_177) 2020; 12 Ni (ref_126) 2019; 3 Li (ref_40) 2021; 37 Nocheseda (ref_127) 2021; 48 Zhang (ref_70) 2015; 5 Zhu (ref_110) 2019; 50 Ren (ref_16) 2021; 118 Mkhize (ref_79) 2022; 2 Economidou (ref_185) 2019; 102 Bhagoria (ref_36) 2019; 26 Liu (ref_171) 2021; 33 Datta (ref_161) 2021; 6 Mohammadi (ref_87) 2019; 135 Zhang (ref_117) 2013; 436 An (ref_173) 2015; 27 Ravanbakhsh (ref_202) 2022; 5 Kucherov (ref_3) 2022; 430 Huang (ref_57) 2020; 46 Moghadam (ref_93) 2010; 118 Yu (ref_112) 2007; 89 Palo (ref_179) 2017; 14 ref_101 Li (ref_210) 2022; 3 Xenikakis (ref_180) 2021; 597 Kim (ref_97) 2010; 20 Rim (ref_136) 2016; 28 Wei (ref_13) 2020; 117 Lee (ref_118) 2007; 90 Hahn (ref_28) 2021; 15 Kwon (ref_81) 2021; 2 Fritzler (ref_19) 2019; 189 Dabbagh (ref_183) 2021; 24 He (ref_135) 2021; 5 Chen (ref_160) 2019; 39 Han (ref_116) 2016; 5 Liu (ref_33) 2019; 15 Mandrycky (ref_198) 2016; 34 Lian (ref_191) 2021; 11 Park (ref_82) 2007; 6 ref_15 Chen (ref_216) 2015; 5 Singh (ref_12) 2018; 17 Valentine (ref_157) 2017; 29 Huang (ref_7) 2021; 9 ref_25 ref_24 Lee (ref_211) 2017; 13 Wu (ref_63) 2021; 128 Wang (ref_121) 2018; 343 ref_21 Bodkhe (ref_212) 2018; 1 ref_20 Zhou (ref_156) 2019; 11 Ni (ref_219) 2017; 52 ref_29 Koroglu (ref_154) 2021; 306 Chen (ref_162) 2019; 783 Zheng (ref_42) 2020; 6 Hossain (ref_224) 2015; 15 Dong (ref_195) 2021; 12 Lee (ref_91) 2012; 46 Haque (ref_205) 2015; 15 Yao (ref_123) 2019; 97 Ahn (ref_14) 2015; 64 Uddin (ref_184) 2020; 107 Wen (ref_165) 2021; 20 Gao (ref_218) 2017; 29 Fukuda (ref_208) 2014; 5 Yan (ref_30) 2019; 62 Ho (ref_231) 2018; 12 Park (ref_148) 2016; 38 Abdalla (ref_225) 2020; 20 Zhang (ref_107) 2016; 6 Park (ref_113) 2008; 8 Zhang (ref_108) 2016; 109 Magazine (ref_55) 2022; 50 Song (ref_151) 2022; 4 McManus (ref_213) 2017; 12 Wang (ref_122) 2018; 104 Pikul (ref_207) 2011; 11 Arshad (ref_178) 2019; 25 Luo (ref_200) 2022; 34 Liu (ref_189) 2022; 12 Wang (ref_141) 2018; 28 Chang (ref_142) 2018; 10 Jung (ref_145) 2018; 52 Huang (ref_172) 2019; 143 Wu (ref_176) 2017; 204 Jaworek (ref_78) 1999; 27 Abbas (ref_72) 2021; 237 Wang (ref_89) 2019; 21 Cai (ref_229) 2019; 11 Huang (ref_100) 2013; 684 He (ref_62) 2016; 49 Zou (ref_214) 2021; 543 Li (ref_8) 2019; 11 Yadav (ref_181) 2021; 605 Yu (ref_105) 2016; 89 ref_174 ref_51 Chen (ref_17) 2020; 30 Duan (ref_169) 2013; 22 Park (ref_134) 2012; 7 Li (ref_53) 2013; 38 Zou (ref_115) 2019; 166 Kullmann (ref_49) 2012; 22 ref_68 ref_67 Huang (ref_26) 2020; 9 ref_167 Cui (ref_58) 2009; 30 Ali (ref_187) 2021; 176 Goren (ref_37) 2017; 4 Yao (ref_88) 2019; 50 Farid (ref_43) 2015; 16 Wang (ref_111) 2017; 7 Kelly (ref_209) 2017; 356 Emon (ref_140) 2022; 2 Jaworek (ref_74) 2008; 66 Cui (ref_54) 2012; 6 ref_34 Wu (ref_18) 2018; 10 Lee (ref_119) 2008; 93 Chu (ref_133) 2018; 3 Hartman (ref_76) 1999; 30 ref_38 Thompson (ref_31) 2019; 94 Setti (ref_56) 2007; 126 Salonitis (ref_9) 2014; 10 Cheng (ref_60) 2021; 16 Wang (ref_193) 2022; 14 Zeng (ref_228) 2021; 82 ref_47 ref_46 Jung (ref_48) 2021; 592 Guo (ref_220) 2015; 7 ref_44 Salaita (ref_39) 2007; 2 ref_188 Chizari (ref_222) 2016; 12 Deng (ref_234) 2019; 11 ref_41 ref_1 Ginebra (ref_163) 2021; 41 ref_2 Coelho (ref_27) 2022; 13 ref_5 Mondal (ref_164) 2020; 17 |
References_xml | – volume: 10 start-page: 6806 year: 2018 ident: ref_98 article-title: Electrohydrodynamic Printing of Silver Nanowires for Flexible and Stretchable Electronics publication-title: Nanoscale doi: 10.1039/C7NR09570H – volume: 53 start-page: 11943 year: 2018 ident: ref_22 article-title: Fabrication of Stacked-Ring Netted Tubular Constructs via 3D Template Electrohydrodynamic Printing publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2468-0 – volume: 151 start-page: 111980 year: 2020 ident: ref_227 article-title: 3D-Printed Graphene Direct Electron Transfer Enzyme Biosensors publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111980 – volume: 29 start-page: 1701985 year: 2017 ident: ref_218 article-title: Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring publication-title: Adv. Mater. doi: 10.1002/adma.201701985 – volume: 6 start-page: 75 year: 2015 ident: ref_166 article-title: Additive Manufacturing of Bioactive Glasses and Silicate Bioceramics publication-title: J. Ceram. Sci. Technol. – volume: 29 start-page: 13630 year: 2013 ident: ref_94 article-title: Optimization of Experimental Parameters to Determine the Jetting Regimes in Electrohydrodynamic Printing publication-title: Langmuir doi: 10.1021/la403111m – volume: 46 start-page: 10096 year: 2020 ident: ref_57 article-title: 3D Printing of Ceramics and Graphene Circuits-on-Ceramics by Thermal Bubble Inkjet Technology and High Temperature Sintering publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.12.278 – volume: 3 start-page: 1700268 year: 2018 ident: ref_65 article-title: Electrohydrodynamic (EHD) Printing of Molten Metal Ink for Flexible and Stretchable Conductor with Self-Healing Capability publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201700268 – volume: 34 start-page: 2108931 year: 2022 ident: ref_200 article-title: 2108931 (1 of 13) Vertical Extrusion Cryo(Bio)Printing for Anisotropic Tissue Manufacturing publication-title: Adv. Mater. doi: 10.1002/adma.202108931 – ident: ref_38 doi: 10.1533/9780857098757.194 – ident: ref_201 doi: 10.3390/jfb7020011 – volume: 6 start-page: 89 year: 2020 ident: ref_42 article-title: Inkjet Printing-Based Fabrication of Microscale 3D Ice Structures publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-020-00199-x – volume: 592 start-page: 54 year: 2021 ident: ref_48 article-title: Three-Dimensional Nanoprinting via Charged Aerosol Jets publication-title: Nature doi: 10.1038/s41586-021-03353-1 – ident: ref_152 doi: 10.3390/polym10060629 – volume: 4 start-page: 248 year: 2017 ident: ref_37 article-title: Patterned Biointerfaces publication-title: Compr. Biomater. II – volume: 10 start-page: 24876 year: 2018 ident: ref_18 article-title: Three-Dimensional Electrohydrodynamic Printing and Spinning of Flexible Composite Structures for Oral Multidrug Forms publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.8b08880 – volume: 15 start-page: 969 year: 2015 ident: ref_64 article-title: High-Resolution Patterns of Quantum Dots Formed by Electrohydrodynamic Jet Printing for Light-Emitting Diodes publication-title: Nano Lett. doi: 10.1021/nl503779e – volume: 597 start-page: 120303 year: 2021 ident: ref_180 article-title: Fabrication of Hollow Microneedles Using Liquid Crystal Display (LCD) Vat Polymerization 3D Printing Technology for Transdermal Macromolecular Delivery publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120303 – volume: 14 start-page: 024105 year: 2022 ident: ref_193 article-title: A Multifunctional Micropore-Forming Bioink with Enhanced Anti-Bacterial and Anti-Inflammatory Properties publication-title: Biofabrication doi: 10.1088/1758-5090/ac5936 – ident: ref_67 doi: 10.1016/B978-0-08-102055-5.00016-4 – volume: 25 start-page: 197 year: 2019 ident: ref_178 article-title: Preparation and Characterization of Indomethacin Loaded Films by Piezoelectric Inkjet Printing: A Personalized Medication Approach publication-title: Pharm. Dev. Technol. doi: 10.1080/10837450.2019.1684520 – volume: 15 start-page: 26018 year: 2015 ident: ref_205 article-title: Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques publication-title: Sensors doi: 10.3390/s151026018 – volume: 26 start-page: 125022 year: 2017 ident: ref_45 article-title: Inkjet 3D Printing of UV and Thermal Cure Silicone Elastomers for Dielectric Elastomer Actuators publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa9695 – volume: 783 start-page: 321 year: 2019 ident: ref_162 article-title: Rheological Behavior of Titania Ink and Mechanical Properties of Titania Ceramic Structures by 3D Direct Ink Writing Using High Solid Loading Titania Ceramic Ink publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.12.334 – volume: 6 start-page: 879 year: 2021 ident: ref_161 article-title: Ceramics Processing by Additive Manufacturing publication-title: Trans. Indian Natl. Acad. Eng. doi: 10.1007/s41403-021-00225-y – volume: 37 start-page: 373 year: 2020 ident: ref_11 article-title: Fabrication of Sr-Functionalized Micro/Nano-Hierarchical Structure Ceramic Coatings on 3D Printing Titanium publication-title: Surf. Eng. doi: 10.1080/02670844.2020.1748349 – volume: 26 start-page: 3048 year: 2019 ident: ref_36 article-title: Nanolithography and Its Alternate Techniques publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.02.633 – volume: 11 start-page: 6796 year: 2019 ident: ref_234 article-title: Stimuli-Responsive Conductive Nanocomposite Hydrogels with High Stretchability, Self-Healing, Adhesiveness, and 3D Printability for Human Motion Sensing publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.8b20178 – ident: ref_144 doi: 10.1117/12.2225411 – volume: 7 start-page: 803 year: 2012 ident: ref_134 article-title: Highly Stretchable Electric Circuits from a Composite Material of Silver Nanoparticles and Elastomeric Fibres publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.206 – volume: 29 start-page: 65002 year: 2019 ident: ref_61 article-title: Theoretical and Experimental Studies of Electrostatic Focusing for Electrohydrodynamic Jet Printing publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/ab0c65 – volume: 6 start-page: 77174 year: 2016 ident: ref_107 article-title: Janus Particle Synthesis via Aligned Non-Concentric Angular Nozzles and Electrohydrodynamic Co-Flow for Tunable Drug Release publication-title: RSC Adv. doi: 10.1039/C6RA15387A – volume: 66 start-page: 197 year: 2008 ident: ref_74 article-title: Electrospraying Route to Nanotechnology: An Overview publication-title: J. Electrostat. doi: 10.1016/j.elstat.2007.10.001 – volume: 6 start-page: 149 year: 2012 ident: ref_54 article-title: Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine publication-title: Recent Patents Drug Deliv. Formul. doi: 10.2174/187221112800672949 – volume: 2 start-page: 1800024 year: 2019 ident: ref_84 article-title: Broad Scale and Structure Fabrication of Healthcare Materials for Drug and Emerging Therapies via Electrohydrodynamic Techniques publication-title: Adv. Ther. doi: 10.1002/adtp.201800024 – volume: 13 start-page: 647 year: 2022 ident: ref_27 article-title: Direct-Laser Writing for Subnanometer Focusing and Single-Molecule Imaging publication-title: Nat. Commun. doi: 10.1038/s41467-022-28219-6 – volume: 89 start-page: 109 year: 2016 ident: ref_105 article-title: Design Optimization of Ink in Electrohydrodynamic Jet Printing: Effect of Viscoelasticity on the Formation of Taylor Cone Jet publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.09.141 – volume: 117 start-page: 107947 year: 2020 ident: ref_13 article-title: Sr-Containing Micro/Nano-Hierarchical Textured TiO2 Nanotubes on 3D Printing Titanium publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2020.107947 – ident: ref_174 doi: 10.3390/polym13091499 – volume: 33 start-page: 241 year: 2018 ident: ref_175 article-title: 3D Metal Printing Technology: The Need to Re-Invent Design Practice publication-title: AI Soc. doi: 10.1007/s00146-018-0809-9 – volume: 122 start-page: 26 year: 2021 ident: ref_128 article-title: 3D and 4D Printing in Dentistry and Maxillofacial Surgery: Printing Techniques, Materials, and Applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.12.044 – volume: 9 start-page: 1087 year: 2020 ident: ref_4 article-title: Metallurgy Principles Applied to Powder Bed Fusion 3D Printing/Additive Manufacturing of Personalized and Optimized Metal and Alloy Biomedical Implants: An Overview publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2019.12.015 – volume: 166 start-page: 107609 year: 2019 ident: ref_115 article-title: Tip-Assisted Electrohydrodynamic Jet Printing for High-Resolution Microdroplet Deposition publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107609 – volume: 11 start-page: 23573 year: 2019 ident: ref_156 article-title: Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.9b04873 – ident: ref_167 doi: 10.3390/ma13071688 – volume: 7 start-page: srep43924 year: 2017 ident: ref_111 article-title: Preparation of Active 3D Film Patches via Aligned Fiber Electrohydrodynamic (EHD) Printing publication-title: Sci. Rep. doi: 10.1038/srep43924 – volume: 22 start-page: 055022 year: 2012 ident: ref_49 article-title: 3D Micro-Structures by Piezoelectric Inkjet Printing of Gold Nanofluids publication-title: J. Micromec. Microeng. doi: 10.1088/0960-1317/22/5/055022 – volume: 12 start-page: 500 year: 2021 ident: ref_197 article-title: A Hybrid Additive Manufacturing Platform to Create Bulk and Surface Composition Gradients on Scaffolds for Tissue Regeneration publication-title: Nat. Commun. doi: 10.1038/s41467-020-20865-y – volume: 11 start-page: 2102411 year: 2021 ident: ref_191 article-title: Uniaxial and Coaxial Vertical Embedded Extrusion Bioprinting publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202102411 – ident: ref_188 doi: 10.3390/nano12030391 – ident: ref_25 – volume: 12 start-page: 17799 year: 2020 ident: ref_147 article-title: Work Function Engineering of Electrohydrodynamic-Jet-Printed PEDOT:PSS Electrodes for High-Performance Printed Electronics publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.0c02580 – volume: 302 start-page: 1700229 year: 2017 ident: ref_170 article-title: 3D Printing of BaTiO3/PVDF Composites with Electric In Situ Poling for Pressure Sensor Applications publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201700229 – volume: 34 start-page: 422 year: 2016 ident: ref_198 article-title: 3D Bioprinting for Engineering Complex Tissues publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2015.12.011 – volume: 139 start-page: 031011 year: 2016 ident: ref_204 article-title: Direct Printing of Capacitive Touch Sensors on Flexible Substrates by Additive E-Jet Printing with Silver Nanoinks publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4034663 – volume: 2 start-page: 145 year: 2007 ident: ref_39 article-title: Applications of Dip-Pen Nanolithography publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.39 – ident: ref_46 doi: 10.3390/polym9090434 – volume: 11 start-page: 2246 year: 2011 ident: ref_207 article-title: High Precision Electrohydrodynamic Printing of Polymer onto Microcantilever Sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2011.2127472 – volume: 3 start-page: 2100131 year: 2022 ident: ref_210 article-title: Printed Strain Sensors for On-Skin Electronics publication-title: Small Struct. doi: 10.1002/sstr.202100131 – volume: 2 start-page: 100027 year: 2022 ident: ref_140 article-title: Conformal 3D Printing of a Polymeric Tactile Sensor publication-title: Addit. Manuf. Lett. doi: 10.1016/j.addlet.2022.100027 – volume: 90 start-page: 81905 year: 2007 ident: ref_118 article-title: Electrohydrodynamic Printing of Silver Nanoparticles by Using a Focused Nanocolloid Jet publication-title: Appl. Phys. Lett. doi: 10.1063/1.2645078 – volume: 20 start-page: 1506 year: 2021 ident: ref_165 article-title: 3D-Printed Silica with Nanoscale Resolution publication-title: Nat. Mater. doi: 10.1038/s41563-021-01111-2 – volume: 102 start-page: 743 year: 2019 ident: ref_185 article-title: 3D Printed Microneedle Patches Using Stereolithography (SLA) for Intradermal Insulin Delivery publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.04.063 – ident: ref_21 doi: 10.1016/B978-0-12-823152-4.00008-9 – volume: 212 start-page: 700 year: 2012 ident: ref_120 article-title: Direct Printing of Copper Conductive Micro-Tracks by Multi-Nozzle Electrohydrodynamic Inkjet Printing Process publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2011.10.024 – volume: 50 start-page: 372 year: 2019 ident: ref_88 article-title: A Novel Approach for Tailored Medicines: Direct Writing of Janus Fibers publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2019.02.006 – volume: 11 start-page: 497 year: 2016 ident: ref_35 article-title: Tip-Based Nanolithography Methods and Materials publication-title: Front. Nanosci. doi: 10.1016/B978-0-08-100354-1.00015-6 – volume: 118 start-page: 1288 year: 2010 ident: ref_93 article-title: Electrospray Modeling of Highly Viscous and Non-Newtonian Liquids publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.32302 – volume: 1 start-page: 2474 year: 2018 ident: ref_212 article-title: Simultaneous 3D Printing and Poling of PVDF and Its Nanocomposites publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.7b00337 – volume: 5 start-page: 573 year: 2022 ident: ref_202 article-title: Freeform Cell-Laden Cryobioprinting for Shelf-Ready Tissue Fabrication and Storage publication-title: Matter doi: 10.1016/j.matt.2021.11.020 – ident: ref_15 doi: 10.3390/nano9121789 – volume: 7 start-page: 1900019 year: 2019 ident: ref_215 article-title: Nanoprinted Quantum Dot–Graphene Photodetectors publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900019 – volume: 29 start-page: 185501 year: 2018 ident: ref_236 article-title: 3D Printed Stretchable Capacitive Sensors for Highly Sensitive Tactile and Electrochemical Sensing publication-title: Nanotechnology doi: 10.1088/1361-6528/aaafa5 – volume: 11 start-page: 1604 year: 2020 ident: ref_104 article-title: 3D Printing of Conducting Polymers publication-title: Nat. Commun. doi: 10.1038/s41467-020-15316-7 – volume: 204 start-page: 73 year: 2017 ident: ref_176 article-title: Surface Modified Electrospun Porous Magnetic Hollow Fibers Using Secondary Downstream Collection Solvent Contouring publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.06.015 – volume: 28 start-page: 4415 year: 2016 ident: ref_136 article-title: Recent Progress in Materials and Devices toward Printable and Flexible Sensors publication-title: Adv. Mater. doi: 10.1002/adma.201505118 – volume: 1194 start-page: 339409 year: 2022 ident: ref_139 article-title: Electrochemical Monitoring the Effect of Drug Intervention on PC12 Cell Damage Model Cultured on Paper-PLA 3D Printed Device publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2021.339409 – volume: 543 start-page: 148800 year: 2021 ident: ref_214 article-title: High-Resolution Additive Direct Writing of Metal Micro/Nanostructures by Electrohydrodynamic Jet Printing publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148800 – volume: 49 start-page: 55504 year: 2016 ident: ref_62 article-title: Towards Microscale Electrohydrodynamic Three-Dimensional Printing publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/49/5/055504 – volume: 52 start-page: 123 year: 2018 ident: ref_145 article-title: Printed Ion-Gel Transistor Using Electrohydrodynamic (EHD) Jet Printing Process publication-title: Org. Electron. doi: 10.1016/j.orgel.2017.10.013 – volume: 9 start-page: tkab011 year: 2021 ident: ref_7 article-title: 3D Printing of Functional Nerve Guide Conduits publication-title: Burn. Trauma doi: 10.1093/burnst/tkab011 – volume: 14 start-page: 685 year: 2017 ident: ref_179 article-title: 3D Printed Drug Delivery Devices: Perspectives and Technical Challenges publication-title: Exp. Rev. Med. Devices doi: 10.1080/17434440.2017.1363647 – volume: 30 start-page: 1909469 year: 2020 ident: ref_17 article-title: 3D Printed High-Loading Lithium-Sulfur Battery Toward Wearable Energy Storage publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909469 – volume: 520 start-page: 7200 year: 2012 ident: ref_52 article-title: Thermal Inkjet Printing of Polyaniline on Paper publication-title: Thin Solid Films doi: 10.1016/j.tsf.2012.07.119 – volume: 34 start-page: 2107038 year: 2022 ident: ref_196 article-title: Digital Light Processing Based Bioprinting with Composable Gradients publication-title: Adv. Mater. doi: 10.1002/adma.202107038 – volume: 104 start-page: 81 year: 2018 ident: ref_122 article-title: Co-Printing of Vertical Axis Aligned Micron-Scaled Filaments via Simultaneous Dual Needle Electrohydrodynamic Printing publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2018.05.005 – volume: 29 start-page: 1901102 year: 2019 ident: ref_217 article-title: Electrohydrodynamic Jet Printing Driven by a Triboelectric Nanogenerator publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901102 – volume: 27 start-page: 4322 year: 2015 ident: ref_173 article-title: High-Resolution Printing of 3D Structures Using an Electrohydrodynamic Inkjet with Multiple Functional Inks publication-title: Adv. Mater. doi: 10.1002/adma.201502092 – ident: ref_68 doi: 10.1016/B978-0-08-100717-4.00023-5 – volume: 306 start-page: 2100277 year: 2021 ident: ref_154 article-title: 3D Printing of Polyvinylidene Fluoride Based Piezoelectric Nanocomposites: An Overview publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.202100277 – volume: 382 start-page: 154 year: 2011 ident: ref_86 article-title: Electrohydrodynamic Preparation of Particles, Capsules and Bubbles for Biomedical Engineering Applications publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2010.11.038 – ident: ref_96 doi: 10.3390/polym12112475 – ident: ref_47 doi: 10.1109/MEMSYS.2019.8870837 – volume: 11 start-page: 753 year: 2020 ident: ref_95 article-title: Ultrafast 3D Printing with Submicrometer Features Using Electrostatic Jet Deflection publication-title: Nat. Commun. doi: 10.1038/s41467-020-14557-w – volume: 27 start-page: 435501 year: 2016 ident: ref_223 article-title: Electrohydrodynamic Printing for Scalable MoS2flake Coating: Application to Gas Sensing Device publication-title: Nanotechnology doi: 10.1088/0957-4484/27/43/435501 – volume: 89 start-page: 157 year: 2007 ident: ref_112 article-title: Effect of Viscosity of Silver Nanoparticle Suspension on Conductive Line Patterned by Electrohydrodynamic Jet Printing publication-title: Appl. Phys. A doi: 10.1007/s00339-007-4210-7 – volume: 20 start-page: 78 year: 2020 ident: ref_225 article-title: 3D-Printed Electrochemical Sensors: A New Horizon for Measurement of Biomolecules publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2020.04.009 – volume: 12 start-page: 025026 year: 2020 ident: ref_177 article-title: A Core–Shell Multi-Drug Platform to Improve Gastrointestinal Tract Microbial Health Using 3D Printing publication-title: Biofabrication doi: 10.1088/1758-5090/ab782c – volume: 605 start-page: 120815 year: 2021 ident: ref_181 article-title: 3D Printed Hollow Microneedles Array Using Stereolithography for Efficient Transdermal Delivery of Rifampicin publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120815 – volume: 22 start-page: 1 year: 2013 ident: ref_169 article-title: Near-Field Electrospray Microprinting of Polymer-Derived Ceramics publication-title: J. Microelectrom. Syst. doi: 10.1109/JMEMS.2012.2226932 – volume: 10 start-page: 19 year: 2014 ident: ref_9 article-title: Stereolithography publication-title: Compr. Mater. Process. doi: 10.1016/B978-0-08-096532-1.01001-3 – volume: 143 start-page: 63 year: 2019 ident: ref_172 article-title: Three-Dimensional Printing of a Tunable Graphene-Based Elastomer for Strain Sensors with Ultrahigh Sensitivity publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2018.11.008 – volume: 5 start-page: 4147 year: 2014 ident: ref_208 article-title: Fully-Printed High-Performance Organic Thin-Film Transistors and Circuitry on One-Micron-Thick Polymer Films publication-title: Nat. Commun. doi: 10.1038/ncomms5147 – volume: 52 start-page: 623 year: 2017 ident: ref_219 article-title: A Review of 3D-Printed Sensors publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2017.1287082 – volume: 62 start-page: 54 year: 2019 ident: ref_30 article-title: Physics-Uspekhi instruments and methods of investigation 3D Printing Methods for Micro-and Nanostructures publication-title: Phys. Usp. doi: 10.3367/UFNe.2017.11.038239 – volume: 436 start-page: 937 year: 2013 ident: ref_117 article-title: Direct Observation and Characterization of the Generation of Organic Solvent Droplets with and without Triglyceride Oil by Electrospraying publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2013.07.032 – volume: 12 start-page: 1 year: 2021 ident: ref_195 article-title: 3D Printing of Inherently Nanoporous Polymers via Polymerization-Induced Phase Separation publication-title: Nat. Commun. doi: 10.1038/s41467-020-20498-1 – ident: ref_29 doi: 10.5772/3348 – ident: ref_2 – volume: 134 start-page: 45044 year: 2017 ident: ref_106 article-title: Effects of Polymer Properties on Jetting Performance of Electrohydrodynamic Printing publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.45044 – volume: 351 start-page: 58 year: 2016 ident: ref_168 article-title: Additive Manufacturing of Polymer-Derived Ceramics publication-title: Science doi: 10.1126/science.aad2688 – volume: 82 start-page: 105711 year: 2021 ident: ref_228 article-title: CRISPR-Cas12a-Driven MXene-PEDOT:PSS Piezoresistive Wireless Biosensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105711 – ident: ref_130 doi: 10.3390/mi7120206 – volume: 12 start-page: 343 year: 2017 ident: ref_213 article-title: Water-Based and Biocompatible 2D Crystal Inks for All-Inkjet-Printed Heterostructures publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.281 – volume: 86 start-page: 3124 year: 2014 ident: ref_221 article-title: Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes publication-title: Anal. Chem. doi: 10.1021/ac4041857 – ident: ref_41 doi: 10.1002/admt.202101493 – volume: 684 start-page: 352 year: 2013 ident: ref_100 article-title: The Effect of Substrate on Continuous Electrohydrodynamic Printing publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.711.352 – volume: 109 start-page: 151903 year: 2016 ident: ref_108 article-title: Continuous Micron-Scaled Rope Engineering Using a Rotating Multi-Nozzle Electrospinning Emitter publication-title: Appl. Phys. Lett. doi: 10.1063/1.4964645 – volume: 16 start-page: 23 year: 2021 ident: ref_60 article-title: High Scaling Ratio Line Width Reduction and Fabrication Method with Electrohydrodynamic Jet Printing publication-title: Micro Nano Lett. doi: 10.1049/mna2.12003 – volume: 67 start-page: 102891 year: 2022 ident: ref_182 article-title: Transdermal Delivery of Insulin across Human Skin in Vitro with 3D Printed Hollow Microneedles publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2021.102891 – volume: 5 start-page: 70707 year: 2015 ident: ref_216 article-title: Inkjet-Printed Transparent Nanowire Thin Film Features for UV Photodetectors publication-title: RSC Adv. doi: 10.1039/C5RA12617G – volume: 429 start-page: 132221 year: 2022 ident: ref_192 article-title: Controlled Engineering of Multifunctional Porous Structures Using Tri-Needle Co-Axial Electrohydrodynamic Flow and Sacrificial Media publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132221 – volume: 12 start-page: 6076 year: 2016 ident: ref_222 article-title: 3D Printing of Highly Conductive Nanocomposites for the Functional Optimization of Liquid Sensors publication-title: Small doi: 10.1002/smll.201601695 – volume: 430 start-page: 132670 year: 2022 ident: ref_3 article-title: Development of 3D+G Printing for the Design of Customizable Flow Reactors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132670 – volume: 10 start-page: 19116 year: 2018 ident: ref_142 article-title: Electrohydrodynamic Printing of Microscale PEDOT:PSS-PEO Features with Tunable Conductive/Thermal Properties publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.8b04051 – volume: 27 start-page: 125004 year: 2017 ident: ref_109 article-title: Fabrication and Evaluation of a Protruding Si-Based Printhead for Electrohydrodynamic Jet Printing publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aa9156 – volume: 23 start-page: 562 year: 2017 ident: ref_50 article-title: Inkjet and Inkjet-Based 3D Printing: Connecting Fluid Properties and Printing Performance publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-05-2016-0076 – volume: 33 start-page: 2004782 year: 2021 ident: ref_171 article-title: 3D Printed Flexible Strain Sensors: From Printing to Devices and Signals publication-title: Adv. Mater. doi: 10.1002/adma.202004782 – volume: 189 start-page: 55 year: 2019 ident: ref_19 article-title: 3D Printing Methods for Micro- and Nanostructures publication-title: Uspekhi Fiz. Nauk doi: 10.3367/UFNr.2017.11.038239 – volume: 27 start-page: 43 year: 1999 ident: ref_78 article-title: Jet and Drops Formation in Electrohydrodynamic Spraying of Liquids. A Systematic Approach publication-title: Exp. Fluids doi: 10.1007/s003480050327 – volume: 35 start-page: 114 year: 2016 ident: ref_103 article-title: Fabrication of Patterned Polymer-Antibiotic Composite Fibers via Electrohydrodynamic (EHD) Printing publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2016.06.009 – volume: 343 start-page: 379 year: 2018 ident: ref_121 article-title: Development of Random and Ordered Composite Fiber Hybrid Technologies for Controlled Release Functions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.021 – volume: 29 start-page: 1807569 year: 2019 ident: ref_66 article-title: Full 3D Printing of Stretchable Piezoresistive Sensor with Hierarchical Porosity and Multimodulus Architecture publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807569 – volume: 7 start-page: 6451 year: 2015 ident: ref_220 article-title: 3D Printing of a Multifunctional Nanocomposite Helical Liquid Sensor publication-title: Nanoscale doi: 10.1039/C5NR00278H – volume: 10 start-page: e2100238 year: 2021 ident: ref_190 article-title: Freeze-Casting with 3D-Printed Templates Creates Anisotropic Microchannels and Patterned Macrochannels within Biomimetic Nanofiber Aerogels for Rapid Cellular Infiltration publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202100238 – ident: ref_1 – volume: 9 start-page: 1118 year: 2020 ident: ref_26 article-title: Two-Photon Polymerization Nanolithography Technology for Fabrication of Stimulus-Responsive Micro/Nano-Structures for Biomedical Applications publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2020-0073 – volume: 12 start-page: 176 year: 2017 ident: ref_230 article-title: The Development of a Glucose Dehydrogenase 3D-Printed Glucose Sensor: A Proof-of-Concept Study publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296817715272 – ident: ref_235 doi: 10.1109/TRANSDUCERS.2011.5969506 – ident: ref_101 doi: 10.1002/app.44823 – volume: 97 start-page: 776 year: 2019 ident: ref_123 article-title: Fabrication of Patterned Three-Dimensional Micron Scaled Core-Sheath Architectures for Drug Patches publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.12.110 – volume: 540 start-page: 371 year: 2016 ident: ref_159 article-title: Printing Soft Matter in Three Dimensions publication-title: Nature doi: 10.1038/nature21003 – volume: 356 start-page: 69 year: 2017 ident: ref_209 article-title: All-Printed Thin-Film Transistors from Networks of Liquid-Exfoliated Nanosheets publication-title: Science doi: 10.1126/science.aal4062 – volume: 20 start-page: 1700539 year: 2018 ident: ref_23 article-title: Printing Polymer Nanocomposites and Composites in Three Dimensions publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201700539 – volume: 135 start-page: 72 year: 2019 ident: ref_87 article-title: A Multiphysics Model for Analysis of Droplet Formation in Electrohydrodynamic 3D Printing Process publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2019.05.001 – volume: 7 start-page: 832 year: 2021 ident: ref_199 article-title: Bioprinting of Small-Diameter Blood Vessels publication-title: Engineering doi: 10.1016/j.eng.2020.03.019 – volume: 5 start-page: 1031 year: 2016 ident: ref_116 article-title: Design of Integrated Ring Extractor for High Resolution Electrohydrodynamic (EHD) 3D Printing publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2016.08.070 – volume: 118 start-page: 111505 year: 2021 ident: ref_16 article-title: Improved Osseointegration of 3D Printed Ti-6Al-4V Implant with a Hierarchical Micro/Nano Surface Topography: An in Vitro and in Vivo Study publication-title: Mater. Sci. Eng. C. Mater. Biol. Appl. doi: 10.1016/j.msec.2020.111505 – volume: 5 start-page: 87919 year: 2015 ident: ref_70 article-title: Stable Single Device Multi-Pore Electrospraying of Polymeric Microparticles via Controlled Electrostatic Interactions publication-title: RSC Adv. doi: 10.1039/C5RA18482G – volume: 11 start-page: 4237 year: 2015 ident: ref_69 article-title: Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing publication-title: Small doi: 10.1002/smll.201500593 – volume: 106 start-page: 14103 year: 2015 ident: ref_114 article-title: High-Resolution Electrohydrodynamic Printing of Silver Nanoparticle Ink via Commercial Hypodermic Needles publication-title: Appl. Phys. Lett. doi: 10.1063/1.4905387 – volume: 6 start-page: 782 year: 2007 ident: ref_82 article-title: High-Resolution Electrohydrodynamic Jet Printing publication-title: Nat. Mater. doi: 10.1038/nmat1974 – volume: 21 start-page: 25690 year: 2019 ident: ref_150 article-title: Enhanced Solvent Resistance and Electrical Performance of Electrohydrodynamic Jet Printed PEDOT:PSS Composite Patterns: Effects of Hardeners on the Performance of Organic Thin-Film Transistors publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP04864B – volume: 10 start-page: 1046 year: 2021 ident: ref_80 article-title: Mechanisms, Influencing Factors, and Applications of Electrohydrodynamic Jet Printing publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2021-0073 – volume: 237 start-page: 111496 year: 2021 ident: ref_72 article-title: Numerical Simulation of Stable Electrohydrodynamic Cone-Jet Formation and Printing on Flexible Substrate publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2020.111496 – ident: ref_143 doi: 10.1117/12.2177415 – volume: 26 start-page: 5018 year: 2014 ident: ref_232 article-title: Highly Conductive, Flexible, and Compressible All-Graphene Passive Electronic Skin for Sensing Human Touch publication-title: Adv. Mater. doi: 10.1002/adma.201401367 – volume: 6 start-page: 153 year: 2016 ident: ref_226 article-title: Biosensors and Their Applications—A Review publication-title: J. Oral Biol. Craniof. Res. doi: 10.1016/j.jobcr.2015.12.002 – volume: 128 start-page: 21 year: 2021 ident: ref_63 article-title: Electrohydrodynamic Jet 3D Printing in Biomedical Applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.04.036 – volume: 92 start-page: 123109 year: 2008 ident: ref_73 article-title: Scaling Laws for Jet Pulsations Associated with High-Resolution Electrohydrodynamic Printing publication-title: Appl. Phys. Lett. doi: 10.1063/1.2903700 – volume: 2 start-page: 100011 year: 2021 ident: ref_138 article-title: Polymeric Biomaterials for 3D Printing in Medicine: An Overview publication-title: Ann. 3D Print. Med. doi: 10.1016/j.stlm.2021.100011 – volume: 48 start-page: 102380 year: 2021 ident: ref_127 article-title: 3D Printing of Metals Using Biodegradable Cellulose Hydrogel Inks publication-title: Addit. Manuf. – volume: 20 start-page: 55009 year: 2010 ident: ref_97 article-title: Design and Evaluation of Single Nozzle with a Non-Conductive Tip for Reducing Applied Voltage and Pattern Width in Electrohydrodynamic Jet Printing (EHDP) publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/20/5/055009 – volume: 4 start-page: 1800546 year: 2019 ident: ref_102 article-title: Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800546 – ident: ref_206 doi: 10.3390/s17051056 – volume: 11 start-page: 4695 year: 2020 ident: ref_194 article-title: Porous Cage-Derived Nanomaterial Inks for Direct and Internal Three-Dimensional Printing publication-title: Nat. Commun. doi: 10.1038/s41467-020-18495-5 – volume: 52 start-page: 3325 year: 2011 ident: ref_83 article-title: Synthesis of Biodegradable Triple-Layered Capsules Using a Triaxial Electrospray Method publication-title: Polymer doi: 10.1016/j.polymer.2011.05.033 – volume: 21 start-page: 1900699 year: 2019 ident: ref_89 article-title: Engineering On-Demand Magnetic Core–Shell Composite Wound Dressing Matrices via Electrohydrodynamic Micro-Scale Printing publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201900699 – volume: 5 start-page: 2001041 year: 2021 ident: ref_135 article-title: Recent Progress in Flexible Microstructural Pressure Sensors toward Human–Machine Interaction and Healthcare Applications publication-title: Small Methods doi: 10.1002/smtd.202001041 – volume: 24 start-page: 053001 year: 2014 ident: ref_6 article-title: A Review of Non-Contact Micro- and Nano-Printing Technologies publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/24/5/053001 – volume: 108 start-page: 110393 year: 2020 ident: ref_59 article-title: Fabrication of Flexible Composite Drug Films via Foldable Linkages Using Electrohydrodynamic Printing publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.110393 – volume: 2 start-page: 5593 year: 2021 ident: ref_81 article-title: Overview of Recent Progress in Electrohydrodynamic Jet Printing in Practical Printed Electronics: Focus on the Variety of Printable Materials for Each Component publication-title: Mater. Adv. doi: 10.1039/D1MA00463H – volume: 27 start-page: 2355 year: 2015 ident: ref_131 article-title: Mechanically Sintered Gallium–Indium Nanoparticles publication-title: Adv. Mater. doi: 10.1002/adma.201404790 – volume: 29 start-page: 1606425 year: 2017 ident: ref_129 article-title: Stretchable and Soft Electronics Using Liquid Metals publication-title: Adv. Mater. doi: 10.1002/adma.201606425 – volume: 2 start-page: 2100073 year: 2022 ident: ref_79 article-title: Electrohydrodynamic Jet Printing: Introductory Concepts and Considerations publication-title: Small Sci. doi: 10.1002/smsc.202100073 – volume: 4 start-page: 868 year: 2022 ident: ref_151 article-title: Electrostatic Jet Engineering of Flexible Composite Pressure Sensors for Physical Applications publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.1c01357 – volume: 17 start-page: 100328 year: 2020 ident: ref_164 article-title: Present Status of the Functional Advanced Micro-, Nano-Printings—A Mini Review publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2020.100328 – volume: 119 start-page: 111606 year: 2021 ident: ref_186 article-title: Anti-Biofilm Multi Drug-Loaded 3D Printed Hearing Aids publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.111606 – ident: ref_44 doi: 10.3390/jfb9010017 – volume: 64 start-page: 523 year: 2015 ident: ref_14 article-title: Nanoscale 3D Printing Process Using Aerodynamically Focused Nanoparticle (AFN) Printing, Micro-Machining, and Focused Ion Beam (FIB) publication-title: CIRP Ann. doi: 10.1016/j.cirp.2015.03.007 – ident: ref_85 doi: 10.3390/mi10020094 – volume: 588 start-page: 75 year: 2007 ident: ref_77 article-title: Breakup of Electrified Jets publication-title: J. Fluid Mech. doi: 10.1017/S0022112007007409 – volume: 17 start-page: 45 year: 2018 ident: ref_12 article-title: In-Situ Real-Time Characterization of Micro-Filaments for Electrohydrodynamic Ink-Jet Printing Using Machine Vision publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2018.10.011 – volume: 6 start-page: 040802 year: 2018 ident: ref_71 article-title: Electrohydrodynamic Printing for Advanced Micro/Nanomanufacturing: Current Progresses, Opportunities, and Challenges publication-title: J. Micro Nano-Manuf. doi: 10.1115/1.4041934 – volume: 8 start-page: 91 year: 2021 ident: ref_137 article-title: Direct Ink Writing of Materials for Electronics-Related Applications: A Mini Review publication-title: Front. Mater. doi: 10.3389/fmats.2021.647229 – volume: 3 start-page: 1700321 year: 2018 ident: ref_133 article-title: Printing Silver Conductive Inks with High Resolution and High Aspect Ratio publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201700321 – volume: 15 start-page: e1900564 year: 2019 ident: ref_33 article-title: Development of Dip-Pen Nanolithography (DPN) and Its Derivatives publication-title: Small doi: 10.1002/smll.201900564 – volume: 5 start-page: 685 year: 2018 ident: ref_158 article-title: Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles publication-title: Soft Robot. doi: 10.1089/soro.2018.0021 – volume: 176 start-page: 113788 year: 2021 ident: ref_187 article-title: Electrohydrodynamic Atomisation Driven Design and Engineering of Opportunistic Particulate Systems for Applications in Drug Delivery, Therapeutics and Pharmaceutics publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.04.026 – ident: ref_5 – volume: 225 start-page: 111266 year: 2020 ident: ref_237 article-title: Multi-Parameter Paper Sensor Fabricated by Inkjet-Printed Silver Nanoparticle Ink and PEDOT:PSS publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2020.111266 – volume: 50 start-page: 208 year: 2019 ident: ref_110 article-title: Engineering of Ganoderma Lucidum Polysaccharide Loaded Polyvinyl Alcohol Nanofibers for Biopharmaceutical Delivery publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2019.01.032 – volume: 8 start-page: 4210 year: 2008 ident: ref_113 article-title: Nanoscale Patterns of Oligonucleotides Formed by Electrohydrodynamic Jet Printing with Applications in Biosensing and Nanomaterials Assembly publication-title: Nano Lett. doi: 10.1021/nl801832v – volume: 9 start-page: 819 year: 2009 ident: ref_32 article-title: Real-Time Monitoring of Two-Photon Photopolymerization for Use in Fabrication of Microfluidic Devices publication-title: Lab Chip doi: 10.1039/B816993D – volume: 107 start-page: 110248 year: 2020 ident: ref_184 article-title: 3D Printed Microneedles for Anticancer Therapy of Skin Tumours publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.110248 – volume: 11 start-page: 15659 year: 2019 ident: ref_229 article-title: Ti3C2 MXene Quantum Dot-Encapsulated Liposomes for Photothermal Immunoassays Using a Portable near-Infrared Imaging Camera on a Smartphone publication-title: Nanoscale doi: 10.1039/C9NR05797H – volume: 38 start-page: 9310 year: 2013 ident: ref_53 article-title: Thermal Inkjet Printing of Thin-Film Electrolytes and Buffering Layers for Solid Oxide Fuel Cells with Improved Performance publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.05.025 – volume: 30 start-page: 823 year: 1999 ident: ref_76 article-title: Electrohydrodynamic Atomization in The Cone–Jet Mode Physical Modeling of The Liquid Cone And Jet publication-title: J. Aerosol Sci. doi: 10.1016/S0021-8502(99)00033-6 – volume: 24 start-page: 102012 year: 2021 ident: ref_183 article-title: 3D-Printed Microneedles in Biomedical Applications publication-title: iScience doi: 10.1016/j.isci.2020.102012 – volume: 11 start-page: 39179 year: 2019 ident: ref_8 article-title: Precision Printing of Customized Cylindrical Capsules with Multifunctional Layers for Oral Drug Delivery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13568 – volume: 24 start-page: 5117 year: 2012 ident: ref_132 article-title: Highly Conductive and Stretchable Silver Nanowire Conductors publication-title: Adv. Mater. doi: 10.1002/adma.201201886 – volume: 94 start-page: 204 year: 2019 ident: ref_31 article-title: Two-Photon Polymerized Poly(Caprolactone) Retinal Cell Delivery Scaffolds and Their Systemic and Retinal Biocompatibility publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.04.057 – volume: 28 start-page: 1705551 year: 2018 ident: ref_141 article-title: A Self-Healable, Highly Stretchable, and Solution Processable Conductive Polymer Composite for Ultrasensitive Strain and Pressure Sensing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705551 – volume: 12 start-page: 24450 year: 2020 ident: ref_90 article-title: Microtip Focused Electrohydrodynamic Jet Printing with Nanoscale Resolution publication-title: Nanoscale doi: 10.1039/D0NR08236H – volume: 39 start-page: 661 year: 2019 ident: ref_160 article-title: 3D Printing of Ceramics: A Review publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.11.013 – volume: 93 start-page: 243114 year: 2008 ident: ref_119 article-title: Design and Evaluation of a Silicon Based Multi-Nozzle for Addressable Jetting Using a Controlled Flow Rate in Electrohydrodynamic Jet Printing publication-title: Appl. Phys. Lett. doi: 10.1063/1.3049609 – volume: 27 start-page: 065006 year: 2017 ident: ref_10 article-title: Hybrid 3D Printing by Bridging Micro/Nano Processes publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aa6758 – volume: 52 start-page: 165 year: 2018 ident: ref_149 article-title: Organic Thin-Film Transistors with Sub-10-Micrometer Channel Length with Printed Polymer/Carbon Nanotube Electrodes publication-title: Org. Electron. doi: 10.1016/j.orgel.2017.10.023 – volume: 105 start-page: 253109 year: 2014 ident: ref_99 article-title: Electrohydrodynamic Direct-Writing Lithography: An Alternative Maskless Technique for Microstructure Fabrication publication-title: Appl. Phys. Lett. doi: 10.1063/1.4905151 – volume: 46 start-page: 1 year: 2012 ident: ref_91 article-title: A Study of Ejection Modes for Pulsed-DC Electrohydrodynamic Inkjet Printing publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2011.11.002 – volume: 38 start-page: 48 year: 2016 ident: ref_148 article-title: Optimization of Electrohydrodynamic-Printed Organic Electrodes for Bottom-Contact Organic Thin Film Transistors publication-title: Org. Electron. doi: 10.1016/j.orgel.2016.07.040 – volume: 12 start-page: 120 year: 2022 ident: ref_189 article-title: 3D-Printed Bioactive Ceramic Scaffolds with Biomimetic Micro/Nano-HAp Surfaces Mediated Cell Fate and Promoted Bone Augmentation of the Bone–Implant Interface in Vivo publication-title: Bioact. Mater. – volume: 167 start-page: 37561 year: 2020 ident: ref_153 article-title: Review—Recent Progress in Flexible and Stretchable Piezoresistive Sensors and Their Applications publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab6828 – volume: 2 start-page: 140 year: 2015 ident: ref_233 article-title: Advances of Flexible Pressure Sensors toward Artificial Intelligence and Health Care Applications publication-title: Mater. Horizons doi: 10.1039/C4MH00147H – volume: 50 start-page: 102534 year: 2022 ident: ref_55 article-title: 3D Inkjet-Printing of Photo-Crosslinkable Resins for Microlens Fabrication publication-title: Addit. Manuf. – ident: ref_24 doi: 10.1007/978-3-030-63647-0_24 – volume: 16 start-page: 033502 year: 2015 ident: ref_43 article-title: A Review on Powder-Based Additive Manufacturing for Tissue Engineering: Selective Laser Sintering and Inkjet 3D Printing publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/16/3/033502 – ident: ref_92 doi: 10.3390/mi11010013 – ident: ref_125 doi: 10.3390/nano10010107 – volume: 15 start-page: 932 year: 2021 ident: ref_28 article-title: Two-Step Absorption Instead of Two-Photon Absorption in 3D Nanoprinting publication-title: Nat. Photon doi: 10.1038/s41566-021-00906-8 – volume: 153 start-page: 285 year: 2019 ident: ref_124 article-title: 3D Electrohydrodynamic Printing of Highly Aligned Dual-Core Graphene Composite Matrices publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2019.07.030 – volume: 18 start-page: 15 year: 2017 ident: ref_75 article-title: A Systematic Study on Numerical Simulation of Electrified Jet Printing publication-title: Addit. Manuf. – volume: 30 start-page: 6221 year: 2009 ident: ref_58 article-title: Human Microvasculature Fabrication Using Thermal Inkjet Printing Technology publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.07.056 – ident: ref_20 doi: 10.1016/B978-0-08-100262-9.00009-4 – volume: 41 start-page: 18 year: 2021 ident: ref_163 article-title: Rheological Characterisation of Ceramic Inks for 3D Direct Ink Writing: A Review publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2021.08.031 – volume: 126 start-page: 252 year: 2007 ident: ref_56 article-title: An HRP-Based Amperometric Biosensor Fabricated by Thermal Inkjet Printing publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2006.12.015 – volume: 29 start-page: 1703817 year: 2017 ident: ref_157 article-title: Hybrid 3D Printing of Soft Electronics publication-title: Adv. Mater. doi: 10.1002/adma.201703817 – volume: 132 start-page: 112658 year: 2022 ident: ref_203 article-title: Freestanding Vascular Scaffolds Engineered by Direct 3D Printing with Gt-Alg-MMT Bioinks publication-title: Mater. Sci. Eng. C – volume: 6 start-page: 2004 year: 2016 ident: ref_146 article-title: Electrohydrodynamic Printing of Poly(3,4-Ethylenedioxythiophene):Poly(4-Styrenesulfonate) Electrodes with Ratio-Optimized Surfactant publication-title: RSC Adv. doi: 10.1039/C5RA19462H – volume: 12 start-page: 43 year: 2018 ident: ref_231 article-title: Additive Manufacturing of Electrochemical Interfaces: Simultaneous Detection of Biomarkers publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2018.03.008 – volume: 13 start-page: 1700368 year: 2017 ident: ref_211 article-title: Rough-Surface-Enabled Capacitive Pressure Sensors with 3D Touch Capability publication-title: Small doi: 10.1002/smll.201700368 – volume: 37 start-page: 846 year: 2021 ident: ref_40 article-title: Dip-Pen Nanolithography(DPN): From Micro/Nano-Patterns to Biosensing publication-title: Chem. Res. Chin. Univ. doi: 10.1007/s40242-021-1197-0 – ident: ref_51 doi: 10.3390/s20123349 – ident: ref_34 doi: 10.1016/B978-0-12-823358-0.00003-4 – volume: 15 start-page: 5095 year: 2015 ident: ref_224 article-title: Lab-in-a-Phone: Smartphone-Based Portable Fluorometer for PH Measurements of Environmental Water publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2361651 – ident: ref_155 doi: 10.3390/polym13040598 – volume: 3 start-page: 10024 year: 2019 ident: ref_126 article-title: Three-Dimensional Printing of Metals for Biomedical Applications publication-title: Mater. Today Bio. |
SSID | ssj0000779007 |
Score | 2.449025 |
SecondaryResourceType | review_article |
Snippet | Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 642 |
SubjectTerms | 3-D printers 3D printing biomaterial Biomedical engineering Biomedical materials CAD Chemical properties Computer aided design Cost control Electrohydrodynamics Electronic devices electronics Hydrogels Inkjet printing Lasers Manufacturing micro/nano scale printing Nanoparticles Physical properties Polymerization Review Three dimensional printing Tissue engineering Wearable computers |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gIH1PIMLcgILhyiOrFjOyfE0q0qpFYVtFJvkZ9lJUjKdvv_GXu9abequOXhg-UZj7-xx98H8IlLy31du9IoqsooUVjiMoxPVuICWFUyJNG-4xNxdM6_XzQXecPtOpdVrmNiCtRusHGPfL8WDUZOoRj_cvW3jKpR8XQ1S2g8hi0MwUpNYGs6Ozn9Me6y0EinR-WKl5Rhfr__Z45Rm0fYvbESJcL-h1Dm_WLJO6vP4TY8y7CRfF3ZeQce-f45PL1DJvgCzmLJBjldZNEcwg7wZZ6EIAgiU3IcS-_IciAYUAfyE23jyTRdvo92Irp3ZDZq4pADn0LISzg_nJ19OyqzZkJpuayXJdNBCSWtco1SraPWBVEbg8CAt5XCyKZ9EEarUDXKIJhqhfTGBImDV1vmWvYKJv3Q-zdAqJNNYy3DnMrwOgTNNGYfJijEGJQaWcDn9fh1NhOKR12L3x0mFnGsu9uxLuDj2PZqRaPxYKtpNMPYIlJfpw_D4rLLM6mjvNKtcRW6QsttI3SDEK5S2hlmKmp9AXtrI3Z5Pl53t95TwIfxN86keDyiez_cpDaRfU61ooDXK5uPPWEINCMVfwFywxs2urr5p5__SmzdLWWYlqm3_-_WLjyp48WKyCKp9mCyXNz4dwh3luZ99ul_VSf-fw priority: 102 providerName: ProQuest |
Title | High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35457946 https://www.proquest.com/docview/2652996834 https://www.proquest.com/docview/2654283896 https://pubmed.ncbi.nlm.nih.gov/PMC9033068 https://doaj.org/article/041a9bd168394c56a556218adb3b10ce |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucAB8SZQVkZw4RDViR3bObJ0lwqpVQWt1Fvkp7oSZFHZ_n9mnDTsokpcuCXxJHI845lvlMk3AO-l9jLWdSid4aakFoUlhmE88hoDYFXplJv2HZ-oo3P55aK52Gr1RTVhAz3wsHAHXFa2daFS-AjpG2UbjNiVscEJV3EfyftizNtKprIPJho9rgc-UoF5_cGPFXprSXB7JwJlov7b0OXfRZJbUWf5CB6OcJF9HKb5GO7E_gk82CIRfApnVKrBTq_GZjlMHOLJKjeAYIhI2TGV3LHNmqEjXbNvqJPI5vmne9IPs31gi6kXDjuM2XU8g_Pl4uzTUTn2Sii91PWmFDYZZbQ3oTGmDdyHpGrnEBDItjLo0WxMylmTqsY4BFGt0tG5pGtE2F6EVjyHvX7dx5fAeNBN473AXMrJOiUrLGYdLhnEFpw7XcCHm_Xr_EgkTv0svneYUNBad3_WuoB3k-zPgT7jVqk5qWGSIMrrfAENoRsNofuXIRSwf6PEbtyHv7paNRhv8RZZwNtpGHcQfRaxfVxfZxlinTOtKuDFoPNpJgIBJlHwF6B3rGFnqrsj_eoys3S3XGA6Zl79j3d7Dfdr-u2COCbNPuxtrq7jGwRDGzeDu2b5eQb35ouT06-zvAt-A1YxB6o |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWqsgAWiDeBAkbAgkVUx3ZiZ4EQZTpMaadCYip1l9qOAyO1SZlOhfgpvpF7nUc7qGLXXRJ7Ydn3cW5sn0PIG6mc9JyXsdVMxyhRGEMahienIAEmiaqCaN90P5scyC-H6eEa-dPfhcFjlX1MDIG6bBz-I9_kWQqRM9NCfjj9GaNqFO6u9hIarVns-t-_oGQ7e78zgvV9y_l4e_ZpEneqArGTii9jYSqdaeV0mWqdl8yVVcathdQp80SD7xtfZdboKkm1BbiRZ8pbWykOWNSJEsmXIOTfkAIyOd5MH38e_ukwJO9jqmVBhXa2eTKHHCER5K_kvSAPcBWm_fdo5qVcN75L7nQglX5sreoeWfP1fXL7EnXhAzLDAyL066KT6KFiBC_zIDtBAQfTKR70o8uGQvhu6DewBE-3wlV_tApq6pJuDwo8dORDwHpIDq5lLh-R9bqp_RNCWanS1DkBFZyVvKqMMFDr2EoDomHMqoi86-evcB19OapoHBdQxuBcFxdzHZHXQ9_TlrTjyl5buAxDDyTaDh-axfei89uCycTktkzA8HLp0sykABgTbUorbMKcj8hGv4hF5_1nxYWtRuTV0Ax-i5sxpvbNeeiDXHc6zyLyuF3zYSQCYC0S_0dErVjDylBXW-r5j8ANnjMBRaB--v9hvSQ3J7PpXrG3s7_7jNzieKUD-Sv1BllfLs79cwBaS_siWDclR9ftTn8BKH05xg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VWwnBAfFNoIARcOAQrRM7sXNAiGV31VK6WkEr9RZsx4GVICnbrRB_jV_HTJJNu6ji1lsS-2DZ45k38fg9gJdSOenjuAit5jokicIQwzA-OYUBMIpU2Yj2HczS3SP54Tg53oI_67swVFa59omNoy5qR__Ih3GaoOdMtZDDsiuLmI-nb09-hqQgRSetazmN1kT2_e9fmL6dvtkb41q_iuPp5PD9btgpDIROqngVClPqVCuni0TrrOCuKNPYWgyjMos0-gHjy9QaXUaJtgg9slR5a0sVIy51oiAiJnT_24qyogFsjyaz-af-Dw8nKj-uWk5UITI-_LHAiCEJ8m9EwUYs4DKE-2-h5oXIN70FNzvIyt61NnYbtnx1B25cIDK8C4dULsLmy06wh4kxviwaEQqGqJgdUNkfW9UMnXnNPqNdeDZqLv6TjTBTFWzS6_GwsW_c1z04upLZvA-Dqq78Q2C8UEninMB8zsq4LI0wmPnYUiO-4dyqAF6v5y93HZk5aWp8zzGpobnOz-c6gBd935OWwuPSXiNahr4H0W43H-rl17zbxTmXkclsEaEZZtIlqUkQPkbaFFbYiDsfwM56EfPOF5zm55YbwPO-GXcxHc2YytdnTR9ivtNZGsCDds37kQgEuSQDEIDasIaNoW62VItvDVN4xgWmhPrR_4f1DK7hVso_7s32H8P1mO53EJml3oHBannmnyDqWtmnnXkz-HLVO-ov9RI_WA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Precision+3D+Printing+for+Micro+to+Nano+Scale+Biomedical+and+Electronic+Devices&rft.jtitle=Micromachines+%28Basel%29&rft.au=Kirsty+Muldoon&rft.au=Yanhua+Song&rft.au=Zeeshan+Ahmad&rft.au=Xing+Chen&rft.date=2022-04-18&rft.pub=MDPI+AG&rft.eissn=2072-666X&rft.volume=13&rft.issue=4&rft.spage=642&rft_id=info:doi/10.3390%2Fmi13040642&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_041a9bd168394c56a556218adb3b10ce |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon |