Controlled movement of ssDNA conjugated peptide through Mycobacterium smegmatis porin A (MspA) nanopore by a helicase motor for peptide sequencing application
The lack of an efficient, low-cost sequencing method has long been a significant bottleneck in protein research and applications. In recent years, the nanopore platform has emerged as a fast and inexpensive method for single-molecule nucleic acid sequencing, but attempts to apply it to protein/pepti...
Saved in:
Published in | Chemical science (Cambridge) Vol. 12; no. 47; pp. 15750 - 15756 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
08.12.2021
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The lack of an efficient, low-cost sequencing method has long been a significant bottleneck in protein research and applications. In recent years, the nanopore platform has emerged as a fast and inexpensive method for single-molecule nucleic acid sequencing, but attempts to apply it to protein/peptide sequencing have resulted in limited success. Here we report a strategy to control peptide translocation through the MspA nanopore, which could serve as the first step toward strand peptide sequencing. By conjugating the target peptide to a helicase-regulated handle-ssDNA, we achieved a read length of up to 17 amino acids (aa) and demonstrated the feasibility of distinguishing between amino acid residues of different charges or between different phosphorylation sites. Further improvement of resolution may require engineering MspA-M2 to reduce its constriction zone's size and stretch the target peptide inside the nanopore to minimize random thermal motion. We believe that our method in this study can significantly accelerate the development and commercialization of nanopore-based peptide sequencing technologies. |
---|---|
AbstractList | The lack of an efficient, low-cost sequencing method has long been a significant bottleneck in protein research and applications. In recent years, the nanopore platform has emerged as a fast and inexpensive method for single-molecule nucleic acid sequencing, but attempts to apply it to protein/peptide sequencing have resulted in limited success. Here we report a strategy to control peptide translocation through the MspA nanopore, which could serve as the first step toward strand peptide sequencing. By conjugating the target peptide to a helicase-regulated handle-ssDNA, we achieved a read length of up to 17 amino acids (aa) and demonstrated the feasibility of distinguishing between amino acid residues of different charges or between different phosphorylation sites. Further improvement of resolution may require engineering MspA-M2 to reduce its constriction zone's size and stretch the target peptide inside the nanopore to minimize random thermal motion. We believe that our method in this study can significantly accelerate the development and commercialization of nanopore-based peptide sequencing technologies. The lack of an efficient, low-cost sequencing method has long been a significant bottleneck in protein research and applications. In recent years, the nanopore platform has emerged as a fast and inexpensive method for single-molecule nucleic acid sequencing, but attempts to apply it to protein/peptide sequencing have resulted in limited success. Here we report a strategy to control peptide translocation through the MspA nanopore, which could serve as the first step toward strand peptide sequencing. By conjugating the target peptide to a helicase-regulated handle-ssDNA, we achieved a read length of up to 17 amino acids (aa) and demonstrated the feasibility of distinguishing between amino acid residues of different charges or between different phosphorylation sites. Further improvement of resolution may require engineering MspA-M2 to reduce its constriction zone's size and stretch the target peptide inside the nanopore to minimize random thermal motion. We believe that our method in this study can significantly accelerate the development and commercialization of nanopore-based peptide sequencing technologies.The lack of an efficient, low-cost sequencing method has long been a significant bottleneck in protein research and applications. In recent years, the nanopore platform has emerged as a fast and inexpensive method for single-molecule nucleic acid sequencing, but attempts to apply it to protein/peptide sequencing have resulted in limited success. Here we report a strategy to control peptide translocation through the MspA nanopore, which could serve as the first step toward strand peptide sequencing. By conjugating the target peptide to a helicase-regulated handle-ssDNA, we achieved a read length of up to 17 amino acids (aa) and demonstrated the feasibility of distinguishing between amino acid residues of different charges or between different phosphorylation sites. Further improvement of resolution may require engineering MspA-M2 to reduce its constriction zone's size and stretch the target peptide inside the nanopore to minimize random thermal motion. We believe that our method in this study can significantly accelerate the development and commercialization of nanopore-based peptide sequencing technologies. The lack of an efficient, low-cost sequencing method has long been a significant bottleneck in protein research and applications. In recent years, the nanopore platform has emerged as a fast and inexpensive method for single-molecule nucleic acid sequencing, but attempts to apply it to protein/peptide sequencing have resulted in limited success. Here we report a strategy to control peptide translocation through the MspA nanopore, which could serve as the first step toward strand peptide sequencing. By conjugating the target peptide to a helicase-regulated handle-ssDNA, we achieved a read length of up to 17 amino acids (aa) and demonstrated the feasibility of distinguishing between amino acid residues of different charges or between different phosphorylation sites. Further improvement of resolution may require engineering MspA-M2 to reduce its constriction zone's size and stretch the target peptide inside the nanopore to minimize random thermal motion. We believe that our method in this study can significantly accelerate the development and commercialization of nanopore-based peptide sequencing technologies. A new technique for single molecular peptide sequencing is demonstrated by translocation of ssDNA-conjugated-peptide through MspA nanopore which is regulated by a DNA helicase motor. |
Author | Xu, Yang Bai, Jingwei Tian, Boxue Zhang, Xiaochun Wang, Zhenqin Chen, Zhijie |
Author_xml | – sequence: 1 givenname: Zhijie surname: Chen fullname: Chen, Zhijie organization: School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China – sequence: 2 givenname: Zhenqin surname: Wang fullname: Wang, Zhenqin organization: School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China – sequence: 3 givenname: Yang surname: Xu fullname: Xu, Yang organization: School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China – sequence: 4 givenname: Xiaochun surname: Zhang fullname: Zhang, Xiaochun organization: School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China – sequence: 5 givenname: Boxue orcidid: 0000-0002-5830-0669 surname: Tian fullname: Tian, Boxue organization: School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China – sequence: 6 givenname: Jingwei orcidid: 0000-0002-2630-2395 surname: Bai fullname: Bai, Jingwei organization: School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35003607$$D View this record in MEDLINE/PubMed |
BookMark | eNptkttu1DAQhi1UREvpDQ-ALHFTKm3xIbGTG6TVlpPawgVwbTnOJOtVYgfbqbQvw7PibbsFKixZPsw3v2fG8xwdOO8AoZeUnFPC67cX9NuKFLxgl0_QESMFXYiS1wcPe0YO0UmMG5IH57Rk8hk65GU-CCKP0K-Vdyn4YYAWj_4GRnAJ-w7HePFliY13m7nXKRsnmJJtAad18HO_xtdb4xttEgQ7jziO0I862YgnH6zDS3x6HaflG-y08_kKcLPFGq9hsEZHyE8lH3CX5143ws8ZnLGux3qadliy3r1ATzs9RDi5X4_Rjw_vv68-La6-fvy8Wl4tTCFZWnDeaSlkJ7qKNdTUteQGTCOBESNZVVZ13bQNM6KBhhjOC1FVGlre8rKuRUX4MXp3pzvNzQityVUIelBTsKMOW-W1Vf9anF2r3t-oSpQF4TQLnN4LBJ8TiUmNNhoYBu3Az1ExQauSEkF26OtH6MbPweX0MkVkzUsuq0y9-juih1D2X5cBcgeY4GMM0Clj023RcoB2UJSoXYOoPw2SXc4euexV_wP_BvhFvX8 |
CitedBy_id | crossref_primary_10_1021_jacs_2c06211 crossref_primary_10_1002_anie_202200866 crossref_primary_10_1002_ctm2_1615 crossref_primary_10_1002_cbic_202400824 crossref_primary_10_1038_s41586_024_07935_7 crossref_primary_10_1021_jacs_1c09259 crossref_primary_10_1038_s41587_025_02587_y crossref_primary_10_1002_ange_202423801 crossref_primary_10_1038_s41592_023_01800_7 crossref_primary_10_1038_s44222_024_00260_8 crossref_primary_10_1016_j_ccr_2022_214998 crossref_primary_10_1021_acsnano_3c05628 crossref_primary_10_1021_acs_nanolett_4c03329 crossref_primary_10_1038_s41587_022_01598_3 crossref_primary_10_1038_s41587_023_01954_x crossref_primary_10_1021_acs_analchem_4c00841 crossref_primary_10_1021_acsnano_3c10679 crossref_primary_10_1038_s41592_023_02021_8 crossref_primary_10_1021_acs_jafc_4c05406 crossref_primary_10_1016_j_isci_2022_104145 crossref_primary_10_1038_s41592_023_02136_y crossref_primary_10_1073_pnas_2405018121 crossref_primary_10_1002_ange_202209970 crossref_primary_10_1016_j_jelechem_2022_116266 crossref_primary_10_1039_D4SM01534G crossref_primary_10_1038_s41467_023_38399_4 crossref_primary_10_1039_D4SC05493H crossref_primary_10_1007_s12274_022_4379_2 crossref_primary_10_1021_acsnano_4c09872 crossref_primary_10_1038_s41587_023_01839_z crossref_primary_10_1002_anie_202423801 crossref_primary_10_1016_j_trac_2023_117060 crossref_primary_10_1038_s41565_022_01193_2 crossref_primary_10_1002_ange_202200866 crossref_primary_10_1093_nsr_nwae183 crossref_primary_10_1021_acs_jpcc_3c07728 crossref_primary_10_1039_D1SC06459B crossref_primary_10_1007_s12010_024_05027_w crossref_primary_10_1002_anie_202209970 crossref_primary_10_1021_jacs_4c15469 crossref_primary_10_2142_biophysico_bppb_v19_0032 crossref_primary_10_6023_A23040113 crossref_primary_10_1039_D4SC01466A crossref_primary_10_1039_D2NR06361A crossref_primary_10_1038_s41592_023_02095_4 crossref_primary_10_1080_14789450_2025_2476979 crossref_primary_10_1038_s41587_021_01205_x crossref_primary_10_1039_D2NA00190J |
Cites_doi | 10.1021/nn3019943 10.1093/nar/gkq543 10.1038/nbt.4278 10.1038/nbt1011 10.1016/j.htct.2018.03.001 10.1021/nn5049987 10.1088/1478-3975/12/5/055003 10.1021/acsnano.6b00940 10.1038/nbt.2171 10.1038/nbt.3357 10.1021/ja901088b 10.1126/science.abl4381 10.12688/wellcomeopenres.11246.2 10.1038/nbt.2950 10.1016/j.isci.2020.100916 10.1073/pnas.071047998 10.1146/annurev.bi.50.070181.001401 10.1039/C8SC05228J 10.1021/acsnano.7b01212 10.1039/C6NR06936C 10.1038/s41565-018-0236-6 10.1038/s41587-019-0345-2 10.1038/s41467-018-03418-2 10.3389/fmolb.2017.00026 10.1038/nbt.2503 10.1038/s41598-019-42867-7 10.1016/B978-0-12-416687-5.00004-X 10.1016/j.gpb.2015.08.002 10.1016/0006-291X(82)91381-X 10.1039/C7NR02450A 10.1021/acs.nanolett.1c02371 10.1038/nmeth.1659 10.1021/ja1073245 10.1007/s10404-017-1928-1 10.1038/nnano.2011.129 10.1126/science.1094114 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2021 This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2021 – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/D1SC04342K |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 15756 |
ExternalDocumentID | PMC8654031 35003607 10_1039_D1SC04342K |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 61871250 – fundername: ; grantid: 2019YFA0707000 |
GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K CITATION D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH -JG AGSTE NPM SMJ 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c472t-33fa767f6f82b1c9973cecb7e20c7285899bdb2c6beb0c334688aed3d35996803 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:30:45 EDT 2025 Fri Jul 11 14:30:24 EDT 2025 Fri Jul 25 07:24:37 EDT 2025 Thu Jan 02 22:56:40 EST 2025 Tue Jul 01 03:46:56 EDT 2025 Thu Apr 24 23:04:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c472t-33fa767f6f82b1c9973cecb7e20c7285899bdb2c6beb0c334688aed3d35996803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-5830-0669 0000-0002-2630-2395 |
OpenAccessLink | http://dx.doi.org/10.1039/d1sc04342k |
PMID | 35003607 |
PQID | 2607935378 |
PQPubID | 2047492 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8654031 proquest_miscellaneous_2618510601 proquest_journals_2607935378 pubmed_primary_35003607 crossref_citationtrail_10_1039_D1SC04342K crossref_primary_10_1039_D1SC04342K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-08 |
PublicationDateYYYYMMDD | 2021-12-08 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Yan (D1SC04342K/cit37) 2021; 21 Nivala (D1SC04342K/cit17) 2014; 8 Manrao (D1SC04342K/cit27) 2012; 30 Bradley (D1SC04342K/cit3) 1982; 104 Pastoriza-Gallego (D1SC04342K/cit11) 2011; 133 Waduge (D1SC04342K/cit10) 2017; 11 Laszlo (D1SC04342K/cit29) 2014; 32 Venkatesan (D1SC04342K/cit9) 2011; 6 Piguet (D1SC04342K/cit12) 2018; 9 Nivala (D1SC04342K/cit16) 2013; 31 Restrepo-Pérez (D1SC04342K/cit2) 2018; 13 Whitman (D1SC04342K/cit19) 2018; 40 Boukhet (D1SC04342K/cit26) 2016; 8 Bhagavan (D1SC04342K/cit32) 2015 Yan (D1SC04342K/cit21) 2019; 10 Swaminathan (D1SC04342K/cit8) 2018; 36 Yao (D1SC04342K/cit7) 2015; 12 Bonome (D1SC04342K/cit25) 2017; 21 Walsh (D1SC04342K/cit1) 1981; 50 Rhoads (D1SC04342K/cit35) 2015; 13 Yates (D1SC04342K/cit6) 2011; 8 Bhattacharya (D1SC04342K/cit30) 2012; 6 Restrepo-Pérez (D1SC04342K/cit15) 2017; 9 Laszlo (D1SC04342K/cit28) 2014; 32 Ouldali (D1SC04342K/cit13) 2020; 38 LaBreck (D1SC04342K/cit18) 2017; 4 Bhattacharya (D1SC04342K/cit31) 2016; 10 Faller (D1SC04342K/cit33) 2004; 303 Zhou (D1SC04342K/cit24) 2020; 124 Di Muccio (D1SC04342K/cit36) 2019; 9 Travers (D1SC04342K/cit34) 2010; 38 Talaga (D1SC04342K/cit14) 2009; 131 Zhong (D1SC04342K/cit4) 2004; 22 Carter (D1SC04342K/cit23) 2017; 2 Brinkerhoff (D1SC04342K/cit38) 2021 Miyashita (D1SC04342K/cit5) 2001; 98 Zhang (D1SC04342K/cit22) 2020; 23 Derrington (D1SC04342K/cit20) 2015; 33 |
References_xml | – volume: 6 start-page: 6960 year: 2012 ident: D1SC04342K/cit30 publication-title: ACS Nano doi: 10.1021/nn3019943 – volume: 38 start-page: e159 year: 2010 ident: D1SC04342K/cit34 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq543 – volume: 36 start-page: 1076 year: 2018 ident: D1SC04342K/cit8 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4278 – volume: 22 start-page: 1291 year: 2004 ident: D1SC04342K/cit4 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1011 – volume: 40 start-page: 182 year: 2018 ident: D1SC04342K/cit19 publication-title: Hematol. Transfus. Cell Ther. doi: 10.1016/j.htct.2018.03.001 – volume: 8 start-page: 12365 year: 2014 ident: D1SC04342K/cit17 publication-title: ACS Nano doi: 10.1021/nn5049987 – volume: 12 start-page: 05003 year: 2015 ident: D1SC04342K/cit7 publication-title: Phys. Biol. doi: 10.1088/1478-3975/12/5/055003 – volume: 10 start-page: 4644 year: 2016 ident: D1SC04342K/cit31 publication-title: ACS Nano doi: 10.1021/acsnano.6b00940 – volume: 30 start-page: 349 year: 2012 ident: D1SC04342K/cit27 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2171 – volume: 33 start-page: 1073 year: 2015 ident: D1SC04342K/cit20 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3357 – volume: 131 start-page: 9287 year: 2009 ident: D1SC04342K/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901088b – year: 2021 ident: D1SC04342K/cit38 publication-title: Science doi: 10.1126/science.abl4381 – volume: 2 start-page: 23 year: 2017 ident: D1SC04342K/cit23 publication-title: Wellcome Open Res. doi: 10.12688/wellcomeopenres.11246.2 – volume: 32 start-page: 829 year: 2014 ident: D1SC04342K/cit28 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2950 – volume: 23 start-page: 100916 year: 2020 ident: D1SC04342K/cit22 publication-title: iScience doi: 10.1016/j.isci.2020.100916 – volume: 98 start-page: 4403 year: 2001 ident: D1SC04342K/cit5 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.071047998 – volume: 50 start-page: 261 year: 1981 ident: D1SC04342K/cit1 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.50.070181.001401 – volume: 10 start-page: 3110 year: 2019 ident: D1SC04342K/cit21 publication-title: Chem. Sci. doi: 10.1039/C8SC05228J – volume: 11 start-page: 5706 year: 2017 ident: D1SC04342K/cit10 publication-title: ACS Nano doi: 10.1021/acsnano.7b01212 – volume: 8 start-page: 18352 year: 2016 ident: D1SC04342K/cit26 publication-title: Nanoscale doi: 10.1039/C6NR06936C – volume: 13 start-page: 786 year: 2018 ident: D1SC04342K/cit2 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0236-6 – volume: 38 start-page: 176 year: 2020 ident: D1SC04342K/cit13 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0345-2 – volume: 9 start-page: 966 year: 2018 ident: D1SC04342K/cit12 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03418-2 – volume: 4 start-page: 26 year: 2017 ident: D1SC04342K/cit18 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2017.00026 – volume: 31 start-page: 247 year: 2013 ident: D1SC04342K/cit16 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2503 – volume: 9 start-page: 6440 year: 2019 ident: D1SC04342K/cit36 publication-title: Sci. Rep. doi: 10.1038/s41598-019-42867-7 – volume: 124 start-page: 1611 year: 2020 ident: D1SC04342K/cit24 publication-title: J. Phys. Chem. B – start-page: 31 volume-title: Essentials of Medical Biochemistry year: 2015 ident: D1SC04342K/cit32 doi: 10.1016/B978-0-12-416687-5.00004-X – volume: 13 start-page: 278 year: 2015 ident: D1SC04342K/cit35 publication-title: Genomics, Proteomics Bioinf. doi: 10.1016/j.gpb.2015.08.002 – volume: 104 start-page: 1223 year: 1982 ident: D1SC04342K/cit3 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(82)91381-X – volume: 9 start-page: 11685 year: 2017 ident: D1SC04342K/cit15 publication-title: Nanoscale doi: 10.1039/C7NR02450A – volume: 21 start-page: 6703 year: 2021 ident: D1SC04342K/cit37 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c02371 – volume: 8 start-page: 633 year: 2011 ident: D1SC04342K/cit6 publication-title: Nat. Methods doi: 10.1038/nmeth.1659 – volume: 32 start-page: 829 year: 2014 ident: D1SC04342K/cit29 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2950 – volume: 133 start-page: 2923 year: 2011 ident: D1SC04342K/cit11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1073245 – volume: 21 start-page: 96 year: 2017 ident: D1SC04342K/cit25 publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-017-1928-1 – volume: 6 start-page: 615 year: 2011 ident: D1SC04342K/cit9 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.129 – volume: 303 start-page: 1189 year: 2004 ident: D1SC04342K/cit33 publication-title: Science doi: 10.1126/science.1094114 |
SSID | ssj0000331527 |
Score | 2.5480263 |
Snippet | The lack of an efficient, low-cost sequencing method has long been a significant bottleneck in protein research and applications. In recent years, the nanopore... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 15750 |
SubjectTerms | Amino acids Chemistry Commercialization Nucleic acids Peptides Phosphorylation Proteins |
Title | Controlled movement of ssDNA conjugated peptide through Mycobacterium smegmatis porin A (MspA) nanopore by a helicase motor for peptide sequencing application |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35003607 https://www.proquest.com/docview/2607935378 https://www.proquest.com/docview/2618510601 https://pubmed.ncbi.nlm.nih.gov/PMC8654031 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKdgE3iH8KYzKCC6YpkNhp7FxW3aYJtiFBi8puothxWMeWFtJcjIfhnXgjjh3HSaFCwE3U2q4T9Xw5Pn_-jNBznsW5do69OOXgoEQy8NKcUy-PYyHyKM9jkzE9PokOJ-Hr6WDa6_3oVC1VS_FSflu7r-R_pAptIFe9S_YfJOsmhQb4DPKFK0gYrn8l41FdZ34BRuPl3BB_m7x-We6dDHU9-Xmlg2TZ7kKXrmTKHcpzfCXhNTY0zdXlbnmpPmm7tdxd6Go8UBVgdR6Xi6GOGBRpMYdmpc3UFMxKHeMrFdwOfHVTotjMbWuyzZ7HNinetX0dN0GzlUgnkJstY52IxMhuGDk9m53P2tSRDWyfQu-XmYP0tDKLSGoX4G4IfDpL5_KsKrqBDRKYIhHuoFiHT5raVVObYk_Aa1Uk8cPAiwakzuyobltNkeR0POlguab4tBo7AHvV7yz_-nu0dm3xqaZmzYJS-iENyed2BW2qBk7eJgeTo6NkvD8dX0ObBDwXUL2b7z5Mph9d4M-n1B4l7J6-oc2l8at2-lVD6Tfv59ci3o5VNL6Fblp3Bg9rbN5GPVXcQdfdf3gXfW8xihuM4nmODUZxi1FscYQtRvEKRrHDKDYYxUP8QiN0Bzf4xOIKp7jBJzb4xIBPN2-LT9zB5z00Odgfjw49eyaIJ0NGlh6lecoiBlqEExHIOGZUKimYIr5khA846JhMEBkJJXxJaRhxnqqMZlTzEHGf3kcbxbxQDxGW8EMW5cRngocZ81NKM59LERHBclgI-2inEUAiLWG-PrflIjGFGzRO9oL3IyOsN330zI1d1DQxa0dtNXJMrBopExJpjsoBZbyPnrpukJLO3KWFmld6DJjVgaZO6qMHtdjdbehAc0r5rI_YCiDcAE0gv9pTzM4MkTyPwF-jwaM_P9ZjdKN9PbfQxvJrpZ6AJb4U2yaCtW0R_hOex-n8 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+movement+of+ssDNA+conjugated+peptide+through+Mycobacterium+smegmatis+porin+A+%28MspA%29+nanopore+by+a+helicase+motor+for+peptide+sequencing+application&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Chen%2C+Zhijie&rft.au=Wang%2C+Zhenqin&rft.au=Xu%2C+Yang&rft.au=Zhang%2C+Xiaochun&rft.date=2021-12-08&rft.pub=Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=12&rft.issue=47&rft.spage=15750&rft.epage=15756&rft_id=info:doi/10.1039%2Fd1sc04342k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |