Controlled movement of ssDNA conjugated peptide through Mycobacterium smegmatis porin A (MspA) nanopore by a helicase motor for peptide sequencing application

The lack of an efficient, low-cost sequencing method has long been a significant bottleneck in protein research and applications. In recent years, the nanopore platform has emerged as a fast and inexpensive method for single-molecule nucleic acid sequencing, but attempts to apply it to protein/pepti...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 12; no. 47; pp. 15750 - 15756
Main Authors Chen, Zhijie, Wang, Zhenqin, Xu, Yang, Zhang, Xiaochun, Tian, Boxue, Bai, Jingwei
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 08.12.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The lack of an efficient, low-cost sequencing method has long been a significant bottleneck in protein research and applications. In recent years, the nanopore platform has emerged as a fast and inexpensive method for single-molecule nucleic acid sequencing, but attempts to apply it to protein/peptide sequencing have resulted in limited success. Here we report a strategy to control peptide translocation through the MspA nanopore, which could serve as the first step toward strand peptide sequencing. By conjugating the target peptide to a helicase-regulated handle-ssDNA, we achieved a read length of up to 17 amino acids (aa) and demonstrated the feasibility of distinguishing between amino acid residues of different charges or between different phosphorylation sites. Further improvement of resolution may require engineering MspA-M2 to reduce its constriction zone's size and stretch the target peptide inside the nanopore to minimize random thermal motion. We believe that our method in this study can significantly accelerate the development and commercialization of nanopore-based peptide sequencing technologies.
AbstractList The lack of an efficient, low-cost sequencing method has long been a significant bottleneck in protein research and applications. In recent years, the nanopore platform has emerged as a fast and inexpensive method for single-molecule nucleic acid sequencing, but attempts to apply it to protein/peptide sequencing have resulted in limited success. Here we report a strategy to control peptide translocation through the MspA nanopore, which could serve as the first step toward strand peptide sequencing. By conjugating the target peptide to a helicase-regulated handle-ssDNA, we achieved a read length of up to 17 amino acids (aa) and demonstrated the feasibility of distinguishing between amino acid residues of different charges or between different phosphorylation sites. Further improvement of resolution may require engineering MspA-M2 to reduce its constriction zone's size and stretch the target peptide inside the nanopore to minimize random thermal motion. We believe that our method in this study can significantly accelerate the development and commercialization of nanopore-based peptide sequencing technologies.
The lack of an efficient, low-cost sequencing method has long been a significant bottleneck in protein research and applications. In recent years, the nanopore platform has emerged as a fast and inexpensive method for single-molecule nucleic acid sequencing, but attempts to apply it to protein/peptide sequencing have resulted in limited success. Here we report a strategy to control peptide translocation through the MspA nanopore, which could serve as the first step toward strand peptide sequencing. By conjugating the target peptide to a helicase-regulated handle-ssDNA, we achieved a read length of up to 17 amino acids (aa) and demonstrated the feasibility of distinguishing between amino acid residues of different charges or between different phosphorylation sites. Further improvement of resolution may require engineering MspA-M2 to reduce its constriction zone's size and stretch the target peptide inside the nanopore to minimize random thermal motion. We believe that our method in this study can significantly accelerate the development and commercialization of nanopore-based peptide sequencing technologies.The lack of an efficient, low-cost sequencing method has long been a significant bottleneck in protein research and applications. In recent years, the nanopore platform has emerged as a fast and inexpensive method for single-molecule nucleic acid sequencing, but attempts to apply it to protein/peptide sequencing have resulted in limited success. Here we report a strategy to control peptide translocation through the MspA nanopore, which could serve as the first step toward strand peptide sequencing. By conjugating the target peptide to a helicase-regulated handle-ssDNA, we achieved a read length of up to 17 amino acids (aa) and demonstrated the feasibility of distinguishing between amino acid residues of different charges or between different phosphorylation sites. Further improvement of resolution may require engineering MspA-M2 to reduce its constriction zone's size and stretch the target peptide inside the nanopore to minimize random thermal motion. We believe that our method in this study can significantly accelerate the development and commercialization of nanopore-based peptide sequencing technologies.
The lack of an efficient, low-cost sequencing method has long been a significant bottleneck in protein research and applications. In recent years, the nanopore platform has emerged as a fast and inexpensive method for single-molecule nucleic acid sequencing, but attempts to apply it to protein/peptide sequencing have resulted in limited success. Here we report a strategy to control peptide translocation through the MspA nanopore, which could serve as the first step toward strand peptide sequencing. By conjugating the target peptide to a helicase-regulated handle-ssDNA, we achieved a read length of up to 17 amino acids (aa) and demonstrated the feasibility of distinguishing between amino acid residues of different charges or between different phosphorylation sites. Further improvement of resolution may require engineering MspA-M2 to reduce its constriction zone's size and stretch the target peptide inside the nanopore to minimize random thermal motion. We believe that our method in this study can significantly accelerate the development and commercialization of nanopore-based peptide sequencing technologies. A new technique for single molecular peptide sequencing is demonstrated by translocation of ssDNA-conjugated-peptide through MspA nanopore which is regulated by a DNA helicase motor.
Author Xu, Yang
Bai, Jingwei
Tian, Boxue
Zhang, Xiaochun
Wang, Zhenqin
Chen, Zhijie
Author_xml – sequence: 1
  givenname: Zhijie
  surname: Chen
  fullname: Chen, Zhijie
  organization: School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
– sequence: 2
  givenname: Zhenqin
  surname: Wang
  fullname: Wang, Zhenqin
  organization: School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
– sequence: 3
  givenname: Yang
  surname: Xu
  fullname: Xu, Yang
  organization: School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
– sequence: 4
  givenname: Xiaochun
  surname: Zhang
  fullname: Zhang, Xiaochun
  organization: School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
– sequence: 5
  givenname: Boxue
  orcidid: 0000-0002-5830-0669
  surname: Tian
  fullname: Tian, Boxue
  organization: School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
– sequence: 6
  givenname: Jingwei
  orcidid: 0000-0002-2630-2395
  surname: Bai
  fullname: Bai, Jingwei
  organization: School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35003607$$D View this record in MEDLINE/PubMed
BookMark eNptkttu1DAQhi1UREvpDQ-ALHFTKm3xIbGTG6TVlpPawgVwbTnOJOtVYgfbqbQvw7PibbsFKixZPsw3v2fG8xwdOO8AoZeUnFPC67cX9NuKFLxgl0_QESMFXYiS1wcPe0YO0UmMG5IH57Rk8hk65GU-CCKP0K-Vdyn4YYAWj_4GRnAJ-w7HePFliY13m7nXKRsnmJJtAad18HO_xtdb4xttEgQ7jziO0I862YgnH6zDS3x6HaflG-y08_kKcLPFGq9hsEZHyE8lH3CX5143ws8ZnLGux3qadliy3r1ATzs9RDi5X4_Rjw_vv68-La6-fvy8Wl4tTCFZWnDeaSlkJ7qKNdTUteQGTCOBESNZVVZ13bQNM6KBhhjOC1FVGlre8rKuRUX4MXp3pzvNzQityVUIelBTsKMOW-W1Vf9anF2r3t-oSpQF4TQLnN4LBJ8TiUmNNhoYBu3Az1ExQauSEkF26OtH6MbPweX0MkVkzUsuq0y9-juih1D2X5cBcgeY4GMM0Clj023RcoB2UJSoXYOoPw2SXc4euexV_wP_BvhFvX8
CitedBy_id crossref_primary_10_1021_jacs_2c06211
crossref_primary_10_1002_anie_202200866
crossref_primary_10_1002_ctm2_1615
crossref_primary_10_1002_cbic_202400824
crossref_primary_10_1038_s41586_024_07935_7
crossref_primary_10_1021_jacs_1c09259
crossref_primary_10_1038_s41587_025_02587_y
crossref_primary_10_1002_ange_202423801
crossref_primary_10_1038_s41592_023_01800_7
crossref_primary_10_1038_s44222_024_00260_8
crossref_primary_10_1016_j_ccr_2022_214998
crossref_primary_10_1021_acsnano_3c05628
crossref_primary_10_1021_acs_nanolett_4c03329
crossref_primary_10_1038_s41587_022_01598_3
crossref_primary_10_1038_s41587_023_01954_x
crossref_primary_10_1021_acs_analchem_4c00841
crossref_primary_10_1021_acsnano_3c10679
crossref_primary_10_1038_s41592_023_02021_8
crossref_primary_10_1021_acs_jafc_4c05406
crossref_primary_10_1016_j_isci_2022_104145
crossref_primary_10_1038_s41592_023_02136_y
crossref_primary_10_1073_pnas_2405018121
crossref_primary_10_1002_ange_202209970
crossref_primary_10_1016_j_jelechem_2022_116266
crossref_primary_10_1039_D4SM01534G
crossref_primary_10_1038_s41467_023_38399_4
crossref_primary_10_1039_D4SC05493H
crossref_primary_10_1007_s12274_022_4379_2
crossref_primary_10_1021_acsnano_4c09872
crossref_primary_10_1038_s41587_023_01839_z
crossref_primary_10_1002_anie_202423801
crossref_primary_10_1016_j_trac_2023_117060
crossref_primary_10_1038_s41565_022_01193_2
crossref_primary_10_1002_ange_202200866
crossref_primary_10_1093_nsr_nwae183
crossref_primary_10_1021_acs_jpcc_3c07728
crossref_primary_10_1039_D1SC06459B
crossref_primary_10_1007_s12010_024_05027_w
crossref_primary_10_1002_anie_202209970
crossref_primary_10_1021_jacs_4c15469
crossref_primary_10_2142_biophysico_bppb_v19_0032
crossref_primary_10_6023_A23040113
crossref_primary_10_1039_D4SC01466A
crossref_primary_10_1039_D2NR06361A
crossref_primary_10_1038_s41592_023_02095_4
crossref_primary_10_1080_14789450_2025_2476979
crossref_primary_10_1038_s41587_021_01205_x
crossref_primary_10_1039_D2NA00190J
Cites_doi 10.1021/nn3019943
10.1093/nar/gkq543
10.1038/nbt.4278
10.1038/nbt1011
10.1016/j.htct.2018.03.001
10.1021/nn5049987
10.1088/1478-3975/12/5/055003
10.1021/acsnano.6b00940
10.1038/nbt.2171
10.1038/nbt.3357
10.1021/ja901088b
10.1126/science.abl4381
10.12688/wellcomeopenres.11246.2
10.1038/nbt.2950
10.1016/j.isci.2020.100916
10.1073/pnas.071047998
10.1146/annurev.bi.50.070181.001401
10.1039/C8SC05228J
10.1021/acsnano.7b01212
10.1039/C6NR06936C
10.1038/s41565-018-0236-6
10.1038/s41587-019-0345-2
10.1038/s41467-018-03418-2
10.3389/fmolb.2017.00026
10.1038/nbt.2503
10.1038/s41598-019-42867-7
10.1016/B978-0-12-416687-5.00004-X
10.1016/j.gpb.2015.08.002
10.1016/0006-291X(82)91381-X
10.1039/C7NR02450A
10.1021/acs.nanolett.1c02371
10.1038/nmeth.1659
10.1021/ja1073245
10.1007/s10404-017-1928-1
10.1038/nnano.2011.129
10.1126/science.1094114
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/D1SC04342K
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 15756
ExternalDocumentID PMC8654031
35003607
10_1039_D1SC04342K
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 61871250
– fundername: ;
  grantid: 2019YFA0707000
GroupedDBID 0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CITATION
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
-JG
AGSTE
NPM
SMJ
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c472t-33fa767f6f82b1c9973cecb7e20c7285899bdb2c6beb0c334688aed3d35996803
ISSN 2041-6520
IngestDate Thu Aug 21 18:30:45 EDT 2025
Fri Jul 11 14:30:24 EDT 2025
Fri Jul 25 07:24:37 EDT 2025
Thu Jan 02 22:56:40 EST 2025
Tue Jul 01 03:46:56 EDT 2025
Thu Apr 24 23:04:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c472t-33fa767f6f82b1c9973cecb7e20c7285899bdb2c6beb0c334688aed3d35996803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-5830-0669
0000-0002-2630-2395
OpenAccessLink http://dx.doi.org/10.1039/d1sc04342k
PMID 35003607
PQID 2607935378
PQPubID 2047492
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8654031
proquest_miscellaneous_2618510601
proquest_journals_2607935378
pubmed_primary_35003607
crossref_citationtrail_10_1039_D1SC04342K
crossref_primary_10_1039_D1SC04342K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-08
PublicationDateYYYYMMDD 2021-12-08
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-08
  day: 08
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Yan (D1SC04342K/cit37) 2021; 21
Nivala (D1SC04342K/cit17) 2014; 8
Manrao (D1SC04342K/cit27) 2012; 30
Bradley (D1SC04342K/cit3) 1982; 104
Pastoriza-Gallego (D1SC04342K/cit11) 2011; 133
Waduge (D1SC04342K/cit10) 2017; 11
Laszlo (D1SC04342K/cit29) 2014; 32
Venkatesan (D1SC04342K/cit9) 2011; 6
Piguet (D1SC04342K/cit12) 2018; 9
Nivala (D1SC04342K/cit16) 2013; 31
Restrepo-Pérez (D1SC04342K/cit2) 2018; 13
Whitman (D1SC04342K/cit19) 2018; 40
Boukhet (D1SC04342K/cit26) 2016; 8
Bhagavan (D1SC04342K/cit32) 2015
Yan (D1SC04342K/cit21) 2019; 10
Swaminathan (D1SC04342K/cit8) 2018; 36
Yao (D1SC04342K/cit7) 2015; 12
Bonome (D1SC04342K/cit25) 2017; 21
Walsh (D1SC04342K/cit1) 1981; 50
Rhoads (D1SC04342K/cit35) 2015; 13
Yates (D1SC04342K/cit6) 2011; 8
Bhattacharya (D1SC04342K/cit30) 2012; 6
Restrepo-Pérez (D1SC04342K/cit15) 2017; 9
Laszlo (D1SC04342K/cit28) 2014; 32
Ouldali (D1SC04342K/cit13) 2020; 38
LaBreck (D1SC04342K/cit18) 2017; 4
Bhattacharya (D1SC04342K/cit31) 2016; 10
Faller (D1SC04342K/cit33) 2004; 303
Zhou (D1SC04342K/cit24) 2020; 124
Di Muccio (D1SC04342K/cit36) 2019; 9
Travers (D1SC04342K/cit34) 2010; 38
Talaga (D1SC04342K/cit14) 2009; 131
Zhong (D1SC04342K/cit4) 2004; 22
Carter (D1SC04342K/cit23) 2017; 2
Brinkerhoff (D1SC04342K/cit38) 2021
Miyashita (D1SC04342K/cit5) 2001; 98
Zhang (D1SC04342K/cit22) 2020; 23
Derrington (D1SC04342K/cit20) 2015; 33
References_xml – volume: 6
  start-page: 6960
  year: 2012
  ident: D1SC04342K/cit30
  publication-title: ACS Nano
  doi: 10.1021/nn3019943
– volume: 38
  start-page: e159
  year: 2010
  ident: D1SC04342K/cit34
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq543
– volume: 36
  start-page: 1076
  year: 2018
  ident: D1SC04342K/cit8
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4278
– volume: 22
  start-page: 1291
  year: 2004
  ident: D1SC04342K/cit4
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1011
– volume: 40
  start-page: 182
  year: 2018
  ident: D1SC04342K/cit19
  publication-title: Hematol. Transfus. Cell Ther.
  doi: 10.1016/j.htct.2018.03.001
– volume: 8
  start-page: 12365
  year: 2014
  ident: D1SC04342K/cit17
  publication-title: ACS Nano
  doi: 10.1021/nn5049987
– volume: 12
  start-page: 05003
  year: 2015
  ident: D1SC04342K/cit7
  publication-title: Phys. Biol.
  doi: 10.1088/1478-3975/12/5/055003
– volume: 10
  start-page: 4644
  year: 2016
  ident: D1SC04342K/cit31
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00940
– volume: 30
  start-page: 349
  year: 2012
  ident: D1SC04342K/cit27
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2171
– volume: 33
  start-page: 1073
  year: 2015
  ident: D1SC04342K/cit20
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3357
– volume: 131
  start-page: 9287
  year: 2009
  ident: D1SC04342K/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901088b
– year: 2021
  ident: D1SC04342K/cit38
  publication-title: Science
  doi: 10.1126/science.abl4381
– volume: 2
  start-page: 23
  year: 2017
  ident: D1SC04342K/cit23
  publication-title: Wellcome Open Res.
  doi: 10.12688/wellcomeopenres.11246.2
– volume: 32
  start-page: 829
  year: 2014
  ident: D1SC04342K/cit28
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2950
– volume: 23
  start-page: 100916
  year: 2020
  ident: D1SC04342K/cit22
  publication-title: iScience
  doi: 10.1016/j.isci.2020.100916
– volume: 98
  start-page: 4403
  year: 2001
  ident: D1SC04342K/cit5
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.071047998
– volume: 50
  start-page: 261
  year: 1981
  ident: D1SC04342K/cit1
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.50.070181.001401
– volume: 10
  start-page: 3110
  year: 2019
  ident: D1SC04342K/cit21
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC05228J
– volume: 11
  start-page: 5706
  year: 2017
  ident: D1SC04342K/cit10
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01212
– volume: 8
  start-page: 18352
  year: 2016
  ident: D1SC04342K/cit26
  publication-title: Nanoscale
  doi: 10.1039/C6NR06936C
– volume: 13
  start-page: 786
  year: 2018
  ident: D1SC04342K/cit2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0236-6
– volume: 38
  start-page: 176
  year: 2020
  ident: D1SC04342K/cit13
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0345-2
– volume: 9
  start-page: 966
  year: 2018
  ident: D1SC04342K/cit12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03418-2
– volume: 4
  start-page: 26
  year: 2017
  ident: D1SC04342K/cit18
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2017.00026
– volume: 31
  start-page: 247
  year: 2013
  ident: D1SC04342K/cit16
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2503
– volume: 9
  start-page: 6440
  year: 2019
  ident: D1SC04342K/cit36
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-42867-7
– volume: 124
  start-page: 1611
  year: 2020
  ident: D1SC04342K/cit24
  publication-title: J. Phys. Chem. B
– start-page: 31
  volume-title: Essentials of Medical Biochemistry
  year: 2015
  ident: D1SC04342K/cit32
  doi: 10.1016/B978-0-12-416687-5.00004-X
– volume: 13
  start-page: 278
  year: 2015
  ident: D1SC04342K/cit35
  publication-title: Genomics, Proteomics Bioinf.
  doi: 10.1016/j.gpb.2015.08.002
– volume: 104
  start-page: 1223
  year: 1982
  ident: D1SC04342K/cit3
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(82)91381-X
– volume: 9
  start-page: 11685
  year: 2017
  ident: D1SC04342K/cit15
  publication-title: Nanoscale
  doi: 10.1039/C7NR02450A
– volume: 21
  start-page: 6703
  year: 2021
  ident: D1SC04342K/cit37
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c02371
– volume: 8
  start-page: 633
  year: 2011
  ident: D1SC04342K/cit6
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1659
– volume: 32
  start-page: 829
  year: 2014
  ident: D1SC04342K/cit29
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2950
– volume: 133
  start-page: 2923
  year: 2011
  ident: D1SC04342K/cit11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1073245
– volume: 21
  start-page: 96
  year: 2017
  ident: D1SC04342K/cit25
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-017-1928-1
– volume: 6
  start-page: 615
  year: 2011
  ident: D1SC04342K/cit9
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.129
– volume: 303
  start-page: 1189
  year: 2004
  ident: D1SC04342K/cit33
  publication-title: Science
  doi: 10.1126/science.1094114
SSID ssj0000331527
Score 2.5480263
Snippet The lack of an efficient, low-cost sequencing method has long been a significant bottleneck in protein research and applications. In recent years, the nanopore...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 15750
SubjectTerms Amino acids
Chemistry
Commercialization
Nucleic acids
Peptides
Phosphorylation
Proteins
Title Controlled movement of ssDNA conjugated peptide through Mycobacterium smegmatis porin A (MspA) nanopore by a helicase motor for peptide sequencing application
URI https://www.ncbi.nlm.nih.gov/pubmed/35003607
https://www.proquest.com/docview/2607935378
https://www.proquest.com/docview/2618510601
https://pubmed.ncbi.nlm.nih.gov/PMC8654031
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKdgE3iH8KYzKCC6YpkNhp7FxW3aYJtiFBi8puothxWMeWFtJcjIfhnXgjjh3HSaFCwE3U2q4T9Xw5Pn_-jNBznsW5do69OOXgoEQy8NKcUy-PYyHyKM9jkzE9PokOJ-Hr6WDa6_3oVC1VS_FSflu7r-R_pAptIFe9S_YfJOsmhQb4DPKFK0gYrn8l41FdZ34BRuPl3BB_m7x-We6dDHU9-Xmlg2TZ7kKXrmTKHcpzfCXhNTY0zdXlbnmpPmm7tdxd6Go8UBVgdR6Xi6GOGBRpMYdmpc3UFMxKHeMrFdwOfHVTotjMbWuyzZ7HNinetX0dN0GzlUgnkJstY52IxMhuGDk9m53P2tSRDWyfQu-XmYP0tDKLSGoX4G4IfDpL5_KsKrqBDRKYIhHuoFiHT5raVVObYk_Aa1Uk8cPAiwakzuyobltNkeR0POlguab4tBo7AHvV7yz_-nu0dm3xqaZmzYJS-iENyed2BW2qBk7eJgeTo6NkvD8dX0ObBDwXUL2b7z5Mph9d4M-n1B4l7J6-oc2l8at2-lVD6Tfv59ci3o5VNL6Fblp3Bg9rbN5GPVXcQdfdf3gXfW8xihuM4nmODUZxi1FscYQtRvEKRrHDKDYYxUP8QiN0Bzf4xOIKp7jBJzb4xIBPN2-LT9zB5z00Odgfjw49eyaIJ0NGlh6lecoiBlqEExHIOGZUKimYIr5khA846JhMEBkJJXxJaRhxnqqMZlTzEHGf3kcbxbxQDxGW8EMW5cRngocZ81NKM59LERHBclgI-2inEUAiLWG-PrflIjGFGzRO9oL3IyOsN330zI1d1DQxa0dtNXJMrBopExJpjsoBZbyPnrpukJLO3KWFmld6DJjVgaZO6qMHtdjdbehAc0r5rI_YCiDcAE0gv9pTzM4MkTyPwF-jwaM_P9ZjdKN9PbfQxvJrpZ6AJb4U2yaCtW0R_hOex-n8
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+movement+of+ssDNA+conjugated+peptide+through+Mycobacterium+smegmatis+porin+A+%28MspA%29+nanopore+by+a+helicase+motor+for+peptide+sequencing+application&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Chen%2C+Zhijie&rft.au=Wang%2C+Zhenqin&rft.au=Xu%2C+Yang&rft.au=Zhang%2C+Xiaochun&rft.date=2021-12-08&rft.pub=Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=12&rft.issue=47&rft.spage=15750&rft.epage=15756&rft_id=info:doi/10.1039%2Fd1sc04342k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon