BP-CRN: A Lightweight Two-Stage Convolutional Recurrent Network for Multi-Channel Speech Enhancement
In our work, we propose a lightweight two-stage convolutional recurrent network (BP-CRN) for multichannel speech enhancement (mcse), which consists of beamforming and post-filtering. Drawing inspiration from traditional methods, we design two core modules for spatial filtering and post-filtering wit...
Saved in:
Published in | IEICE Transactions on Information and Systems Vol. E108.D; no. 2; pp. 161 - 164 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Institute of Electronics, Information and Communication Engineers
01.02.2025
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 0916-8532 1745-1361 |
DOI | 10.1587/transinf.2024EDL8042 |
Cover
Loading…
Abstract | In our work, we propose a lightweight two-stage convolutional recurrent network (BP-CRN) for multichannel speech enhancement (mcse), which consists of beamforming and post-filtering. Drawing inspiration from traditional methods, we design two core modules for spatial filtering and post-filtering with compensation, named BM and PF, respectively. Both core modules employ a convolutional encoding-decoding structure and utilize complex frequency-time long short-term memory (CFT-LSTM) blocks in the middle. Furthermore, the inter-module mask module is introduced to estimate and convey implicit spatial information and assist the post-filtering module in refining spatial filtering and suppressing residual noise. Experimental results demonstrate that, our proposed method contains only 1.27M parameters and outperforms three other mcse methods in terms of PESQ and STOI metrics. |
---|---|
AbstractList | In our work, we propose a lightweight two-stage convolutional recurrent network (BP-CRN) for multichannel speech enhancement (mcse), which consists of beamforming and post-filtering. Drawing inspiration from traditional methods, we design two core modules for spatial filtering and post-filtering with compensation, named BM and PF, respectively. Both core modules employ a convolutional encoding-decoding structure and utilize complex frequency-time long short-term memory (CFT-LSTM) blocks in the middle. Furthermore, the inter-module mask module is introduced to estimate and convey implicit spatial information and assist the post-filtering module in refining spatial filtering and suppressing residual noise. Experimental results demonstrate that, our proposed method contains only 1.27M parameters and outperforms three other mcse methods in terms of PESQ and STOI metrics. |
ArticleNumber | 2024EDL8042 |
Author | NI, Ye PANG, Cong CHENG, Jiaming ZHOU, Lin ZHAO, Li |
Author_xml | – sequence: 1 fullname: ZHAO, Li organization: School of Information Science and Engineering, Southeast University – sequence: 1 fullname: CHENG, Jiaming organization: School of Information Science and Engineering, Southeast University – sequence: 1 fullname: ZHOU, Lin organization: School of Information Science and Engineering, Southeast University – sequence: 1 fullname: PANG, Cong organization: School of Information Science and Engineering, Southeast University – sequence: 1 fullname: NI, Ye organization: School of Information Science and Engineering, Southeast University |
BookMark | eNpNkEtPAjEUhRuDiYj-AxdNXI_2yXTc4YCPBB9BXTdt7cjg0GLbkfjvHYKim_tIzndy7zkEPeedBeAEozPMRX6egnKxdtUZQYRNxlOBGNkDfZwznmE6xD3QRwUeZoJTcgAOY1wghAXBvA9eLx-zcnZ_AUdwWr_N09puKnxe--wpqTcLS-8-fdOm2jvVwJk1bQjWJXhv09qHd1j5AO_aJtVZOVfO2QY-raw1czhx3W7sshMfgf1KNdEe__QBeLmaPJc32fTh-rYcTTPDcpIySihRSmilbEF4NaRYa6YNKnRBDFOvGiEisKGG6-5RUXChES2MYUQgLTinA3C69V0F_9HamOTCt6G7O0qK85wSwWjRqdhWZYKPMdhKrkK9VOFLYiQ3ecrfPOW_PDtstsUWcRPMDlIh1aaxf9AEIyHHkuyGP5Od2MxVkNbRb0p6iY8 |
Cites_doi | 10.1109/ASRU51503.2021.9688198 10.1109/TASL.2011.2114881 10.1109/ASRU.2015.7404837 10.1109/ICASSP43922.2022.9746359 10.1023/A:1007515423169 10.1109/LSP.2013.2291240 10.1109/ICASSP.2001.941023 10.21437/Interspeech.2022-159 10.1109/ICASSP40776.2020.9054177 10.1109/ICASSP43922.2022.9746055 10.21437/Interspeech.2016-552 10.1109/LSP.2023.3244428 10.1109/ASRU.2015.7404793 10.21437/Interspeech.2020-2537 10.1109/ICASSP40776.2020.9053989 10.1109/ASRU51503.2021.9688326 10.1109/ICASSP49357.2023.10095770 |
ContentType | Journal Article |
Copyright | 2025 The Institute of Electronics, Information and Communication Engineers Copyright Japan Science and Technology Agency 2025 |
Copyright_xml | – notice: 2025 The Institute of Electronics, Information and Communication Engineers – notice: Copyright Japan Science and Technology Agency 2025 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1587/transinf.2024EDL8042 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1745-1361 |
EndPage | 164 |
ExternalDocumentID | 10_1587_transinf_2024EDL8042 article_transinf_E108_D_2_E108_D_2024EDL8042_article_char_en |
GroupedDBID | -~X 5GY ABJNI ABZEH ACGFS ADNWM AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD F5P ICE JSF JSH KQ8 OK1 P2P RJT RZJ TN5 ZKX AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c472t-3232aa8baae925f631bb4bc09b92c4adb00281c3c5b2028958b039cc4280b8553 |
ISSN | 0916-8532 |
IngestDate | Mon Jun 30 12:10:03 EDT 2025 Tue Jul 01 02:54:11 EDT 2025 Wed Sep 03 06:31:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c472t-3232aa8baae925f631bb4bc09b92c4adb00281c3c5b2028958b039cc4280b8553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/transinf/E108.D/2/E108.D_2024EDL8042/_article/-char/en |
PQID | 3177328439 |
PQPubID | 2048497 |
PageCount | 4 |
ParticipantIDs | proquest_journals_3177328439 crossref_primary_10_1587_transinf_2024EDL8042 jstage_primary_article_transinf_E108_D_2_E108_D_2024EDL8042_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | IEICE Transactions on Information and Systems |
PublicationTitleAlternate | IEICE Trans. Inf. & Syst. |
PublicationYear | 2025 |
Publisher | The Institute of Electronics, Information and Communication Engineers Japan Science and Technology Agency |
Publisher_xml | – name: The Institute of Electronics, Information and Communication Engineers – name: Japan Science and Technology Agency |
References | [1] J. Li, Y. Zhu, D. Luo, Y. Liu, G. Cui, and Z. Li, “The pcg-aiid system for l3das22 challenge: Mimo and miso convolutional recurrent network for multi channel speech enhancement and speech recognition,” ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.9211-9215, IEEE, 2022. 10.1109/icassp43922.2022.9746055 [16] C.H. Taal, R.C. Hendriks, R. Heusdens, and J. Jensen, “An algorithm for intelligibility prediction of time-frequency weighted noisy speech,” IEEE Trans. Audio, Speech, Language Process., vol.19, no.7, pp.2125-2136, 2011. 10.1109/tasl.2011.2114881 [6] X. Ji, L. Lu, F. Fang, J. Ma, L. Zhu, J. Li, D. Zhao, M. Liu, and F. Jiang, “An end-to-end far-field keyword spotting system with neural beamforming,” 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp.892-899, IEEE, 2021. 10.1109/asru51503.2021.9688326 [17] B. Tolooshams, R. Giri, A.H. Song, U. Isik, and A. Krishnaswamy, “Channel-attention dense u-net for multichannel speech enhancement,” ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.836-840, 2020. 10.1109/icassp40776.2020.9053989 [18] D. Lee and J.-W. Choi, “Deft-an: Dense frequency-time attentive network for multichannel speech enhancement,” IEEE Signal Process. Lett., vol.30, pp.155-159, 2023. 10.1109/lsp.2023.3244428 [9] J. Li, A. Mohamed, G. Zweig, and Y. Gong, “Lstm time and frequency recurrence for automatic speech recognition,” 2015 IEEE workshop on automatic speech recognition and understanding (ASRU), pp.187-191, IEEE, 2015. 10.1109/asru.2015.7404793 [19] J. Cheng, C. Pang, R. Liang, J. Fan, and L. Zhao, “Dual-path dilated convolutional recurrent network with group attention for multi-channel speech enhancement,” ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1-2, 2023. 10.1109/icassp49357.2023.10095770 [7] A. Li, G. Yu, C. Zheng, and X. Li, “Taylorbeamformer: Learning all-neural beamformer for multi-channel speech enhancement from taylor’s approximation theory,” Interspeech, pp.5413-5417, 2022. 10.21437/interspeech.2022-159 [13] H.S. Choi, J.H. Kim, J. Huh, A. Kim, J.W. Ha, and K. Lee, “Phase-aware speech enhancement with deep complex u-net,” arXiv preprint arXiv:1903.03107, 2019. [4] Y. Hu, Y. Liu, S. Lv, M. Xing, S. Zhang, Y. Fu, J. Wu, B. Zhang, and L. Xie, “Dccrn: Deep complex convolution recurrent network for phase-aware speech enhancement,” arXiv preprint arXiv:2008. 00264, 2020. [8] Y. Luo, Z. Chen, N. Mesgarani, and T. Yoshioka, “End-to-end microphone permutation and number invariant multi-channel speech separation,” ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.6394-6398, IEEE, 2020. 10.1109/icassp40776.2020.9054177 [14] J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The third ‘chime’ speech separation and recognition challenge: Dataset, task and baselines,” 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp.504-511, IEEE, 2015. 10.1109/asru.2015.7404837 [11] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014. [10] R. Gu, S.-X. Zhang, M. Yu, and D. Yu, “3d spatial features for multi-channel target speech separation,” 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp.996-1002, IEEE, 2021. 10.1109/asru51503.2021.9688198 [15] A.W. Rix, J.G. Beerends, M.P. Hollier, and A.P. Hekstra, “Perceptual evaluation of speech quality (pesq)-a new method for speech quality assessment of telephone networks and codecs,” 2001 IEEE international conference on acoustics, speech, and signal processing. Proceedings (Cat. no.01CH37221), vol.2, pp.749-752, IEEE, 2001. 10.1109/icassp.2001.941023 [12] E. Bauer and R. Kohavi, “An empirical comparison of voting classification algorithms: Bagging, boosting, and variants,” Machine learning, vol.36, pp.105-139, 1999. 10.1023/a:1007515423169 [3] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “An experimental study on speech enhancement based on deep neural networks,” IEEE Signal Process. Lett., vol.21, no.1, pp.65-68, 2013. 10.1109/lsp.2013.2291240 [2] X. Xu, R. Gu, and Y. Zou, “Improving dual-microphone speech enhancement by learning cross-channel features with multi-head attention,” ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.6492-6496, IEEE, 2022. 10.1109/icassp43922.2022.9746359 [5] H. Erdogan, J.R. Hershey, S. Watanabe, M.I. Mandel, and J.L. Roux, “Improved mvdr beamforming using single-channel mask prediction networks.,” Interspeech, pp.1981-1985, 2016. 10.21437/interspeech.2016-552 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 10 |
References_xml | – reference: [10] R. Gu, S.-X. Zhang, M. Yu, and D. Yu, “3d spatial features for multi-channel target speech separation,” 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp.996-1002, IEEE, 2021. 10.1109/asru51503.2021.9688198 – reference: [14] J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The third ‘chime’ speech separation and recognition challenge: Dataset, task and baselines,” 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp.504-511, IEEE, 2015. 10.1109/asru.2015.7404837 – reference: [16] C.H. Taal, R.C. Hendriks, R. Heusdens, and J. Jensen, “An algorithm for intelligibility prediction of time-frequency weighted noisy speech,” IEEE Trans. Audio, Speech, Language Process., vol.19, no.7, pp.2125-2136, 2011. 10.1109/tasl.2011.2114881 – reference: [3] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “An experimental study on speech enhancement based on deep neural networks,” IEEE Signal Process. Lett., vol.21, no.1, pp.65-68, 2013. 10.1109/lsp.2013.2291240 – reference: [8] Y. Luo, Z. Chen, N. Mesgarani, and T. Yoshioka, “End-to-end microphone permutation and number invariant multi-channel speech separation,” ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.6394-6398, IEEE, 2020. 10.1109/icassp40776.2020.9054177 – reference: [15] A.W. Rix, J.G. Beerends, M.P. Hollier, and A.P. Hekstra, “Perceptual evaluation of speech quality (pesq)-a new method for speech quality assessment of telephone networks and codecs,” 2001 IEEE international conference on acoustics, speech, and signal processing. Proceedings (Cat. no.01CH37221), vol.2, pp.749-752, IEEE, 2001. 10.1109/icassp.2001.941023 – reference: [7] A. Li, G. Yu, C. Zheng, and X. Li, “Taylorbeamformer: Learning all-neural beamformer for multi-channel speech enhancement from taylor’s approximation theory,” Interspeech, pp.5413-5417, 2022. 10.21437/interspeech.2022-159 – reference: [5] H. Erdogan, J.R. Hershey, S. Watanabe, M.I. Mandel, and J.L. Roux, “Improved mvdr beamforming using single-channel mask prediction networks.,” Interspeech, pp.1981-1985, 2016. 10.21437/interspeech.2016-552 – reference: [4] Y. Hu, Y. Liu, S. Lv, M. Xing, S. Zhang, Y. Fu, J. Wu, B. Zhang, and L. Xie, “Dccrn: Deep complex convolution recurrent network for phase-aware speech enhancement,” arXiv preprint arXiv:2008. 00264, 2020. – reference: [1] J. Li, Y. Zhu, D. Luo, Y. Liu, G. Cui, and Z. Li, “The pcg-aiid system for l3das22 challenge: Mimo and miso convolutional recurrent network for multi channel speech enhancement and speech recognition,” ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.9211-9215, IEEE, 2022. 10.1109/icassp43922.2022.9746055 – reference: [6] X. Ji, L. Lu, F. Fang, J. Ma, L. Zhu, J. Li, D. Zhao, M. Liu, and F. Jiang, “An end-to-end far-field keyword spotting system with neural beamforming,” 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp.892-899, IEEE, 2021. 10.1109/asru51503.2021.9688326 – reference: [12] E. Bauer and R. Kohavi, “An empirical comparison of voting classification algorithms: Bagging, boosting, and variants,” Machine learning, vol.36, pp.105-139, 1999. 10.1023/a:1007515423169 – reference: [2] X. Xu, R. Gu, and Y. Zou, “Improving dual-microphone speech enhancement by learning cross-channel features with multi-head attention,” ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.6492-6496, IEEE, 2022. 10.1109/icassp43922.2022.9746359 – reference: [17] B. Tolooshams, R. Giri, A.H. Song, U. Isik, and A. Krishnaswamy, “Channel-attention dense u-net for multichannel speech enhancement,” ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.836-840, 2020. 10.1109/icassp40776.2020.9053989 – reference: [18] D. Lee and J.-W. Choi, “Deft-an: Dense frequency-time attentive network for multichannel speech enhancement,” IEEE Signal Process. Lett., vol.30, pp.155-159, 2023. 10.1109/lsp.2023.3244428 – reference: [9] J. Li, A. Mohamed, G. Zweig, and Y. Gong, “Lstm time and frequency recurrence for automatic speech recognition,” 2015 IEEE workshop on automatic speech recognition and understanding (ASRU), pp.187-191, IEEE, 2015. 10.1109/asru.2015.7404793 – reference: [11] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014. – reference: [13] H.S. Choi, J.H. Kim, J. Huh, A. Kim, J.W. Ha, and K. Lee, “Phase-aware speech enhancement with deep complex u-net,” arXiv preprint arXiv:1903.03107, 2019. – reference: [19] J. Cheng, C. Pang, R. Liang, J. Fan, and L. Zhao, “Dual-path dilated convolutional recurrent network with group attention for multi-channel speech enhancement,” ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1-2, 2023. 10.1109/icassp49357.2023.10095770 – ident: 10 doi: 10.1109/ASRU51503.2021.9688198 – ident: 16 doi: 10.1109/TASL.2011.2114881 – ident: 14 doi: 10.1109/ASRU.2015.7404837 – ident: 2 doi: 10.1109/ICASSP43922.2022.9746359 – ident: 11 – ident: 12 doi: 10.1023/A:1007515423169 – ident: 3 doi: 10.1109/LSP.2013.2291240 – ident: 15 doi: 10.1109/ICASSP.2001.941023 – ident: 7 doi: 10.21437/Interspeech.2022-159 – ident: 13 – ident: 8 doi: 10.1109/ICASSP40776.2020.9054177 – ident: 1 doi: 10.1109/ICASSP43922.2022.9746055 – ident: 5 doi: 10.21437/Interspeech.2016-552 – ident: 18 doi: 10.1109/LSP.2023.3244428 – ident: 9 doi: 10.1109/ASRU.2015.7404793 – ident: 4 doi: 10.21437/Interspeech.2020-2537 – ident: 17 doi: 10.1109/ICASSP40776.2020.9053989 – ident: 6 doi: 10.1109/ASRU51503.2021.9688326 – ident: 19 doi: 10.1109/ICASSP49357.2023.10095770 |
SSID | ssj0018215 |
Score | 2.3705676 |
Snippet | In our work, we propose a lightweight two-stage convolutional recurrent network (BP-CRN) for multichannel speech enhancement (mcse), which consists of... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 161 |
SubjectTerms | Beamforming complex network convolutional recurrent network Encoding-Decoding lightweight Modules multichannel speech enhancement neural beamforming Spatial data Spatial filtering Speech processing |
Title | BP-CRN: A Lightweight Two-Stage Convolutional Recurrent Network for Multi-Channel Speech Enhancement |
URI | https://www.jstage.jst.go.jp/article/transinf/E108.D/2/E108.D_2024EDL8042/_article/-char/en https://www.proquest.com/docview/3177328439 |
Volume | E108.D |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | IEICE Transactions on Information and Systems, 2025/02/01, Vol.E108.D(2), pp.161-164 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FwgEOPAqIQEF74FZtsddre80tJK6StoSHEqniYnnXTiuEXERcKvGH-JvMPu1UEaJcLGc1Wa09n2dnZueB0GvYISrQqjkRsH8TFpcJKZNwRbJKhEwGkq8yleD8fp5Ml-zoND4dDH73opYuW3Egf23NK_kfrsIY8FVlyd6As35SGIB74C9cgcNw_Scev_tIxp_nJrn8RFnZV9rRub-4uiCgRZ6plnTNT7sEXUVf2nJMcxP9rYMMdQ4uUWkGTf1NNaSv5fl-3pwrPPi4GKu_zvLZOFd9JVyTcX3aYKuvti60ed0rg67E7sgkRsFizrzzeaaFv4fVeJoboiOVad7RfZl-WFrfQd9BQWMX09x5GsOEgFZghG5t5GzKYhJGpg67E8R5GPCDSQ90tCdZQ0tb219sq_yPlQflUL8FGAfzn7J8csIDRrv9zp3xX9sGfXCiMotgnsLNUvRmuYVu0zTV8QDHn7rjKk5Nqwz3pDZHE2Z5s20tGzrQna_rVtd3uKYLaAVn8RDdt5YJHhmYPUKDutlFD1zXD2w3gV10r1fC8jGqDAbf4hHuIRB7BOINBGKPQGwRiAE5eAOB2CAQ9xD4BC0P88V4SmznDiJZSlsSgZ5ellyUZZ3ReJVEoRBMyCATGZWsrLSpH8pIxoKqo-6YiyDKpARbOBA8jqOnaKe5aOpnCGecrdJE0FUgGFPBOiXovCKoKsFpXYloiIh7l8V3U6Cl-BsHh-jYvHBPbT_fjlrhsJgU1N90__bEKicSRNAQ7TmuFVYwrAtQyVUJLFD1n99wcS_Q3e4L2kM77Y_L-iUova14pQH3B_1urD0 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BP-CRN%3A+A+Lightweight+Two-Stage+Convolutional+Recurrent+Network+for+Multi-Channel+Speech+Enhancement&rft.jtitle=IEICE+transactions+on+information+and+systems&rft.au=PANG%2C+Cong&rft.au=NI%2C+Ye&rft.au=CHENG%2C+Jiaming&rft.au=ZHOU%2C+Lin&rft.date=2025-02-01&rft.issn=0916-8532&rft.eissn=1745-1361&rft.volume=E108.D&rft.issue=2&rft.spage=161&rft.epage=164&rft_id=info:doi/10.1587%2Ftransinf.2024EDL8042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1587_transinf_2024EDL8042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8532&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8532&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8532&client=summon |