Tracking the rearrangement of atomic configurations during the conversion of FAU zeolite to CHA zeolite
In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system...
Saved in:
Published in | Chemical science (Cambridge) Vol. 10; no. 37; pp. 8533 - 8540 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
07.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system that crystallizes
CHA
zeolite from
FAU
zeolite as the sole source of tetrahedral atoms of Si and Al, so that end-to-end characterization can be conducted. Solid-state
29
Si MAS NMR is followed by high-throughput computational modeling to understand how atomic configurations changed during the interzeolite conversion. This reveals that the structural motif commonly found in
FAU
and
CHA
is not preserved during the conversion; rather, there is a specific rearrangement of silicates and aluminates within the motif. The atomic configuration of
CHA
seems to be influenced by that of the starting
FAU
, considering that
CHA
synthesized without using
FAU
results in a random Al distribution. A Metropolis Monte-Carlo simulation combined with a lattice minimization technique reveals that
CHA
derived from
FAU
has energetically favorable, biased atomic locations, which could be a result of the atomic configurations of the starting
FAU
. These results suggest that by choosing the appropriate reactant, Al placement could be designed to enhance the targeted properties of zeolites for catalysis and adsorption. |
---|---|
AbstractList | In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system that crystallizes
zeolite from
zeolite as the sole source of tetrahedral atoms of Si and Al, so that end-to-end characterization can be conducted. Solid-state
Si MAS NMR is followed by high-throughput computational modeling to understand how atomic configurations changed during the interzeolite conversion. This reveals that the structural motif commonly found in
and
is not preserved during the conversion; rather, there is a specific rearrangement of silicates and aluminates within the motif. The atomic configuration of
seems to be influenced by that of the starting
, considering that
synthesized without using
results in a random Al distribution. A Metropolis Monte-Carlo simulation combined with a lattice minimization technique reveals that
derived from
has energetically favorable, biased atomic locations, which could be a result of the atomic configurations of the starting
. These results suggest that by choosing the appropriate reactant, Al placement could be designed to enhance the targeted properties of zeolites for catalysis and adsorption. Interzeolite conversion from FAU to CHA results in massive atomic rearrangements in their common structural motif to form a stable atomic configuration. In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system that crystallizes CHA zeolite from FAU zeolite as the sole source of tetrahedral atoms of Si and Al, so that end-to-end characterization can be conducted. Solid-state 29 Si MAS NMR is followed by high-throughput computational modeling to understand how atomic configurations changed during the interzeolite conversion. This reveals that the structural motif commonly found in FAU and CHA is not preserved during the conversion; rather, there is a specific rearrangement of silicates and aluminates within the motif. The atomic configuration of CHA seems to be influenced by that of the starting FAU , considering that CHA synthesized without using FAU results in a random Al distribution. A Metropolis Monte-Carlo simulation combined with a lattice minimization technique reveals that CHA derived from FAU has energetically favorable, biased atomic locations, which could be a result of the atomic configurations of the starting FAU . These results suggest that by choosing the appropriate reactant, Al placement could be designed to enhance the targeted properties of zeolites for catalysis and adsorption. In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system that crystallizes CHA zeolite from FAU zeolite as the sole source of tetrahedral atoms of Si and Al, so that end-to-end characterization can be conducted. Solid-state 29Si MAS NMR is followed by high-throughput computational modeling to understand how atomic configurations changed during the interzeolite conversion. This reveals that the structural motif commonly found in FAU and CHA is not preserved during the conversion; rather, there is a specific rearrangement of silicates and aluminates within the motif. The atomic configuration of CHA seems to be influenced by that of the starting FAU, considering that CHA synthesized without using FAU results in a random Al distribution. A Metropolis Monte-Carlo simulation combined with a lattice minimization technique reveals that CHA derived from FAU has energetically favorable, biased atomic locations, which could be a result of the atomic configurations of the starting FAU. These results suggest that by choosing the appropriate reactant, Al placement could be designed to enhance the targeted properties of zeolites for catalysis and adsorption.In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system that crystallizes CHA zeolite from FAU zeolite as the sole source of tetrahedral atoms of Si and Al, so that end-to-end characterization can be conducted. Solid-state 29Si MAS NMR is followed by high-throughput computational modeling to understand how atomic configurations changed during the interzeolite conversion. This reveals that the structural motif commonly found in FAU and CHA is not preserved during the conversion; rather, there is a specific rearrangement of silicates and aluminates within the motif. The atomic configuration of CHA seems to be influenced by that of the starting FAU, considering that CHA synthesized without using FAU results in a random Al distribution. A Metropolis Monte-Carlo simulation combined with a lattice minimization technique reveals that CHA derived from FAU has energetically favorable, biased atomic locations, which could be a result of the atomic configurations of the starting FAU. These results suggest that by choosing the appropriate reactant, Al placement could be designed to enhance the targeted properties of zeolites for catalysis and adsorption. In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system that crystallizes CHA zeolite from FAU zeolite as the sole source of tetrahedral atoms of Si and Al, so that end-to-end characterization can be conducted. Solid-state 29 Si MAS NMR is followed by high-throughput computational modeling to understand how atomic configurations changed during the interzeolite conversion. This reveals that the structural motif commonly found in FAU and CHA is not preserved during the conversion; rather, there is a specific rearrangement of silicates and aluminates within the motif. The atomic configuration of CHA seems to be influenced by that of the starting FAU , considering that CHA synthesized without using FAU results in a random Al distribution. A Metropolis Monte-Carlo simulation combined with a lattice minimization technique reveals that CHA derived from FAU has energetically favorable, biased atomic locations, which could be a result of the atomic configurations of the starting FAU . These results suggest that by choosing the appropriate reactant, Al placement could be designed to enhance the targeted properties of zeolites for catalysis and adsorption. In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system that crystallizes CHA zeolite from FAU zeolite as the sole source of tetrahedral atoms of Si and Al, so that end-to-end characterization can be conducted. Solid-state 29Si MAS NMR is followed by high-throughput computational modeling to understand how atomic configurations changed during the interzeolite conversion. This reveals that the structural motif commonly found in FAU and CHA is not preserved during the conversion; rather, there is a specific rearrangement of silicates and aluminates within the motif. The atomic configuration of CHA seems to be influenced by that of the starting FAU, considering that CHA synthesized without using FAU results in a random Al distribution. A Metropolis Monte-Carlo simulation combined with a lattice minimization technique reveals that CHA derived from FAU has energetically favorable, biased atomic locations, which could be a result of the atomic configurations of the starting FAU. These results suggest that by choosing the appropriate reactant, Al placement could be designed to enhance the targeted properties of zeolites for catalysis and adsorption. |
Author | Muraoka, Koki Chaikittisilp, Watcharop Sada, Yuki Okubo, Tatsuya Shimojima, Atsushi |
AuthorAffiliation | c Kagami Memorial Research Institute for Materials Science and Technology , Waseda University , 2-8-26 Nishiwaseda, Shinjuku-ku , Tokyo 169-0051 , Japan a Department of Chemical System Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . Email: okubo@chemsys.t.u-tokyo.ac.jp d Research and Services Division of Materials Data and Integrated System (MaDIS) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan b Department of Applied Chemistry , Waseda University , 3-4-1 Ohkubo, Shinjuku-ku , Tokyo 169-8555 , Japan |
AuthorAffiliation_xml | – name: c Kagami Memorial Research Institute for Materials Science and Technology , Waseda University , 2-8-26 Nishiwaseda, Shinjuku-ku , Tokyo 169-0051 , Japan – name: b Department of Applied Chemistry , Waseda University , 3-4-1 Ohkubo, Shinjuku-ku , Tokyo 169-8555 , Japan – name: d Research and Services Division of Materials Data and Integrated System (MaDIS) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan – name: a Department of Chemical System Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . Email: okubo@chemsys.t.u-tokyo.ac.jp |
Author_xml | – sequence: 1 givenname: Koki orcidid: 0000-0003-1830-7978 surname: Muraoka fullname: Muraoka, Koki organization: Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan – sequence: 2 givenname: Yuki orcidid: 0000-0002-7910-646X surname: Sada fullname: Sada, Yuki organization: Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan – sequence: 3 givenname: Atsushi orcidid: 0000-0003-2863-1587 surname: Shimojima fullname: Shimojima, Atsushi organization: Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan, Kagami Memorial Research Institute for Materials Science and Technology – sequence: 4 givenname: Watcharop orcidid: 0000-0002-3240-0821 surname: Chaikittisilp fullname: Chaikittisilp, Watcharop organization: Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Japan – sequence: 5 givenname: Tatsuya orcidid: 0000-0002-1681-0193 surname: Okubo fullname: Okubo, Tatsuya organization: Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31803428$$D View this record in MEDLINE/PubMed |
BookMark | eNptkV1PFTEQhhuDEURu_AFmE2-IyYF2-rW9MTlZRUhIuBCum55udynutth2SfTXW4SDSpybdjrP-2am8xrthBgcQm8JPiKYquNOfe0wSEk_vUB7gBlZCU7VztMd8C46yPkG16CUcJCv0C4lLaYM2j00XiZjv_kwNuXaNcmZlEwY3exCaeLQmBJnbxsbw-DHJZniY8hNv6StolbuXMr1-R4_WV81P12cfHFNiU13ut6mb9DLwUzZHTye--jq5PNld7o6v_hy1q3PV5ZJKCtKhGOUW47lAJQ7AOwk7oWRLTDTcyVgw4QaFPANbV0NKzi2sme2p9QA3UcfH3xvl83selvnSGbSt8nPJv3Q0Xj9byX4az3GOy1aTnErqsHho0GK3xeXi559tm6aTHBxyRooAKGKtKqi75-hN3FJoY6nAZQQTBKGK_Xu746eWtnuoAL4AbAp5pzcoK0vv3-6NugnTbC-37T-s-kq-fBMsnX9D_wLzoqoRg |
CitedBy_id | crossref_primary_10_1039_D1CE01067K crossref_primary_10_1016_j_mtcata_2023_100037 crossref_primary_10_1021_acsami_3c07313 crossref_primary_10_1246_cl_230243 crossref_primary_10_1016_j_jssc_2023_124024 crossref_primary_10_1016_j_jece_2024_114713 crossref_primary_10_1016_j_micromeso_2021_111329 crossref_primary_10_1021_acs_jpclett_1c01448 crossref_primary_10_1021_jacs_9b13817 crossref_primary_10_1016_j_micromeso_2022_111849 crossref_primary_10_1002_advs_202307674 crossref_primary_10_1016_j_micromeso_2021_111248 crossref_primary_10_1039_D1RA03150C crossref_primary_10_1021_acs_chemmater_0c04832 crossref_primary_10_1021_acs_chemmater_0c04710 crossref_primary_10_1007_s42247_020_00088_z crossref_primary_10_1016_j_micromeso_2024_113364 crossref_primary_10_1039_D1CP03751J crossref_primary_10_1039_D4DT00751D crossref_primary_10_1016_j_micromeso_2022_112196 crossref_primary_10_1016_j_cclet_2023_108470 crossref_primary_10_1134_S0965544123020020 crossref_primary_10_1016_j_jssc_2021_122635 crossref_primary_10_1021_acs_chemmater_4c02175 crossref_primary_10_1039_D1QI01414E crossref_primary_10_1021_acs_inorgchem_3c03079 crossref_primary_10_1007_s11426_022_1307_5 crossref_primary_10_1016_j_gee_2023_02_005 crossref_primary_10_1016_j_matchemphys_2024_130199 crossref_primary_10_1016_j_cesx_2021_100089 crossref_primary_10_1021_acs_chemmater_4c01848 crossref_primary_10_1021_acs_cgd_2c01009 crossref_primary_10_1021_jacs_1c11014 crossref_primary_10_1016_j_matchemphys_2022_126240 crossref_primary_10_1016_j_micromeso_2024_113099 crossref_primary_10_1016_j_micromeso_2024_113297 crossref_primary_10_1021_acs_jpcc_1c01475 crossref_primary_10_1039_D3SC06924A crossref_primary_10_1021_jacs_1c03351 crossref_primary_10_1016_j_ultsonch_2023_106598 crossref_primary_10_1021_acs_chemrev_3c00801 crossref_primary_10_1002_chem_202302931 crossref_primary_10_1021_acs_iecr_4c02088 crossref_primary_10_1039_D2CC05370E crossref_primary_10_1016_j_micromeso_2020_110174 crossref_primary_10_1021_acsami_4c01774 crossref_primary_10_1016_j_cej_2023_143461 crossref_primary_10_1134_S0965544121030105 crossref_primary_10_1021_acs_chemmater_9b03738 crossref_primary_10_1126_sciadv_adi1744 crossref_primary_10_1021_acs_cgd_3c00219 crossref_primary_10_1039_D3CC02314A crossref_primary_10_1016_j_micromeso_2024_113060 crossref_primary_10_1038_s41467_023_36502_3 crossref_primary_10_1016_S1872_5813_24_60432_9 crossref_primary_10_1021_acs_chemmater_3c01274 crossref_primary_10_1007_s40242_021_1404_z crossref_primary_10_1016_j_jclepro_2022_135119 crossref_primary_10_1016_j_jcat_2021_04_027 crossref_primary_10_1016_j_micromeso_2022_112245 crossref_primary_10_1021_acs_cgd_2c01277 |
Cites_doi | 10.1021/ja0546267 10.1021/jp200310b 10.1021/cm00022a005 10.1021/jacs.6b01341 10.1002/mrc.984 10.1126/science.1250984 10.1021/acs.chemmater.6b00181 10.1021/j100722a020 10.1002/(SICI)1521-3773(19991102)38:21<3201::AID-ANIE3201>3.0.CO;2-H 10.1002/anie.201805877 10.1016/j.gca.2007.01.011 10.1002/anie.201506101 10.1021/jp106247g 10.1021/acs.chemmater.6b00588 10.1021/acs.chemrev.7b00344 10.1021/ja501361v 10.1021/acscatal.5b00692 10.1126/science.aal1585 10.1021/ar200138n 10.1021/cm504510f 10.1002/anie.201702672 10.1021/acs.chemrev.7b00738 10.1021/jp952189k 10.1021/acs.jpcc.5b03289 10.1002/anie.201808395 10.1002/anie.201709039 10.1021/acs.jchemed.6b00161 10.1021/acscatal.7b03676 10.1002/anie.201712952 10.1039/C7SC02531A 10.1021/ja309831e 10.1021/jp0677445 10.1021/ja3022335 10.1039/C5CC02670A 10.1039/b919704b 10.1021/ja808292c 10.1021/acscatal.5b00404 10.1080/01614940.2012.632662 10.1021/acs.iecr.7b04985 10.1021/jp104639e 10.1021/ja3105939 10.1080/0892702031000104887 10.1002/anie.201713308 10.1002/anie.201711422 10.1627/jpi.56.183 10.1002/asia.201000234 10.1038/nmat1636 10.1080/08927028808080944 10.1246/cl.2008.908 10.1002/chem.201901067 10.1021/jacs.5b11046 10.1038/s41467-018-04296-4 10.1063/1.1699114 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry 2019. Copyright Royal Society of Chemistry 2019 This journal is © The Royal Society of Chemistry 2019 2019 |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry 2019. – notice: Copyright Royal Society of Chemistry 2019 – notice: This journal is © The Royal Society of Chemistry 2019 2019 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/C9SC02773D |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 8540 |
ExternalDocumentID | PMC6853086 31803428 10_1039_C9SC02773D |
Genre | Journal Article |
GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K CITATION D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c472t-316e435c507f235e220e70d6a7824ad5962b469f925b38eeeec650c7d4cd33a23 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:03:26 EDT 2025 Fri Jul 11 09:50:06 EDT 2025 Sun Jul 13 05:40:16 EDT 2025 Thu Apr 03 07:03:53 EDT 2025 Thu Apr 24 22:54:12 EDT 2025 Tue Jul 01 03:46:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
License | This journal is © The Royal Society of Chemistry 2019. This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c472t-316e435c507f235e220e70d6a7824ad5962b469f925b38eeeec650c7d4cd33a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally. Present address: Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. |
ORCID | 0000-0003-2863-1587 0000-0002-1681-0193 0000-0003-1830-7978 0000-0002-7910-646X 0000-0002-3240-0821 |
OpenAccessLink | http://dx.doi.org/10.1039/c9sc02773d |
PMID | 31803428 |
PQID | 2296647140 |
PQPubID | 2047492 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6853086 proquest_miscellaneous_2322139189 proquest_journals_2296647140 pubmed_primary_31803428 crossref_citationtrail_10_1039_C9SC02773D crossref_primary_10_1039_C9SC02773D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-07 |
PublicationDateYYYYMMDD | 2019-10-07 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Kumar (C9SC02773D-(cit15)/*[position()=1]) 2018; 9 Schmidt (C9SC02773D-(cit26)/*[position()=1]) 2018; 57 Oleksiak (C9SC02773D-(cit23)/*[position()=1]) 2017; 56 Itakura (C9SC02773D-(cit32)/*[position()=1]) 2008; 37 Gale (C9SC02773D-(cit39)/*[position()=1]) 2003; 29 Knott (C9SC02773D-(cit24)/*[position()=1]) 2018; 8 Muraoka (C9SC02773D-(cit25)/*[position()=1]) 2018; 57 Ikuno (C9SC02773D-(cit29)/*[position()=1]) 2015; 137 Li (C9SC02773D-(cit35)/*[position()=1]) 2018; 57 Muraoka (C9SC02773D-(cit38)/*[position()=1]) 2016; 138 Park (C9SC02773D-(cit3)/*[position()=1]) 2013; 135 Gounder (C9SC02773D-(cit17)/*[position()=1]) 2009; 131 Akporiaye (C9SC02773D-(cit46)/*[position()=1]) 1996; 100 Liu (C9SC02773D-(cit12)/*[position()=1]) 2007; 71 Dusselier (C9SC02773D-(cit30)/*[position()=1]) 2018; 118 Snyder (C9SC02773D-(cit54)/*[position()=1]) 2018; 118 Dědeček (C9SC02773D-(cit16)/*[position()=1]) 2012; 54 Izutani (C9SC02773D-(cit55)/*[position()=1]) 2016; 93 Ji (C9SC02773D-(cit42)/*[position()=1]) 2015; 5 Nishitoba (C9SC02773D-(cit53)/*[position()=1]) 2018; 57 Davis (C9SC02773D-(cit5)/*[position()=1]) 2006; 5 Fletcher (C9SC02773D-(cit50)/*[position()=1]) 2017; 8 Szymkuć (C9SC02773D-(cit1)/*[position()=1]) 2016; 55 Diercks (C9SC02773D-(cit2)/*[position()=1]) 2017; 355 Yoshioka (C9SC02773D-(cit52)/*[position()=1]) 2015; 5 Kumar (C9SC02773D-(cit14)/*[position()=1]) 2007; 111 Di Iorio (C9SC02773D-(cit22)/*[position()=1]) 2016; 28 Li (C9SC02773D-(cit8)/*[position()=1]) 2018; 57 Maldonado (C9SC02773D-(cit44)/*[position()=1]) 2013; 135 Martín (C9SC02773D-(cit34)/*[position()=1]) 2015; 51 Ivanova (C9SC02773D-(cit10)/*[position()=1]) 2017; 56 Khaleel (C9SC02773D-(cit11)/*[position()=1]) 2016; 28 Vjunov (C9SC02773D-(cit20)/*[position()=1]) 2014; 136 Goel (C9SC02773D-(cit31)/*[position()=1]) 2015; 27 Lowenstein (C9SC02773D-(cit47)/*[position()=1]) 1954; 39 Qin (C9SC02773D-(cit45)/*[position()=1]) 2019; 25 Itabashi (C9SC02773D-(cit28)/*[position()=1]) 2012; 134 Schroeder (C9SC02773D-(cit41)/*[position()=1]) 2018; 57 Massiot (C9SC02773D-(cit36)/*[position()=1]) 2002; 40 Kamimura (C9SC02773D-(cit27)/*[position()=1]) 2010; 5 Mintova (C9SC02773D-(cit7)/*[position()=1]) 1999; 38 Aerts (C9SC02773D-(cit13)/*[position()=1]) 2010; 39 Sano (C9SC02773D-(cit33)/*[position()=1]) 2013; 56 Dempsey (C9SC02773D-(cit48)/*[position()=1]) 1969; 73 Ravenelle (C9SC02773D-(cit43)/*[position()=1]) 2010; 114 Román-Leshkov (C9SC02773D-(cit49)/*[position()=1]) 2011; 115 C9SC02773D-(cit37)/*[position()=1] Metropolis (C9SC02773D-(cit51)/*[position()=1]) 1953; 21 Davis (C9SC02773D-(cit4)/*[position()=1]) 1992; 4 Jackson (C9SC02773D-(cit40)/*[position()=1]) 1988; 1 Yokoi (C9SC02773D-(cit21)/*[position()=1]) 2015; 119 Gounder (C9SC02773D-(cit18)/*[position()=1]) 2012; 45 Lupulescu (C9SC02773D-(cit9)/*[position()=1]) 2014; 344 Valtchev (C9SC02773D-(cit6)/*[position()=1]) 2005; 127 Dedecek (C9SC02773D-(cit19)/*[position()=1]) 2011; 115 |
References_xml | – volume: 127 start-page: 16171 year: 2005 ident: C9SC02773D-(cit6)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0546267 – volume: 115 start-page: 11056 year: 2011 ident: C9SC02773D-(cit19)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp200310b – volume: 4 start-page: 756 year: 1992 ident: C9SC02773D-(cit4)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm00022a005 – volume: 138 start-page: 6184 year: 2016 ident: C9SC02773D-(cit38)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01341 – volume: 40 start-page: 70 year: 2002 ident: C9SC02773D-(cit36)/*[position()=1] publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.984 – volume: 344 start-page: 729 year: 2014 ident: C9SC02773D-(cit9)/*[position()=1] publication-title: Science doi: 10.1126/science.1250984 – volume: 28 start-page: 2236 year: 2016 ident: C9SC02773D-(cit22)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00181 – volume: 73 start-page: 387 year: 1969 ident: C9SC02773D-(cit48)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100722a020 – volume: 38 start-page: 3201 year: 1999 ident: C9SC02773D-(cit7)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3201::AID-ANIE3201>3.0.CO;2-H – volume: 57 start-page: 11283 year: 2018 ident: C9SC02773D-(cit8)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805877 – volume: 71 start-page: 2072 year: 2007 ident: C9SC02773D-(cit12)/*[position()=1] publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2007.01.011 – volume: 55 start-page: 5904 year: 2016 ident: C9SC02773D-(cit1)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201506101 – volume: 115 start-page: 1096 year: 2011 ident: C9SC02773D-(cit49)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp106247g – volume: 28 start-page: 4204 year: 2016 ident: C9SC02773D-(cit11)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00588 – volume: 118 start-page: 2718 year: 2018 ident: C9SC02773D-(cit54)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00344 – volume: 136 start-page: 8296 year: 2014 ident: C9SC02773D-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501361v – volume: 5 start-page: 4268 year: 2015 ident: C9SC02773D-(cit52)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b00692 – volume: 355 start-page: eaal1585 year: 2017 ident: C9SC02773D-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.aal1585 – volume: 45 start-page: 229 year: 2012 ident: C9SC02773D-(cit18)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar200138n – volume: 27 start-page: 2056 year: 2015 ident: C9SC02773D-(cit31)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm504510f – volume: 56 start-page: 13366 year: 2017 ident: C9SC02773D-(cit23)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702672 – volume: 118 start-page: 5265 year: 2018 ident: C9SC02773D-(cit30)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00738 – volume: 100 start-page: 4148 year: 1996 ident: C9SC02773D-(cit46)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/jp952189k – volume: 119 start-page: 15303 year: 2015 ident: C9SC02773D-(cit21)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b03289 – volume: 39 start-page: 92 year: 1954 ident: C9SC02773D-(cit47)/*[position()=1] publication-title: Am. Mineral. – volume: 57 start-page: 14281 year: 2018 ident: C9SC02773D-(cit41)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808395 – volume: 56 start-page: 15344 year: 2017 ident: C9SC02773D-(cit10)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709039 – volume: 93 start-page: 1667 year: 2016 ident: C9SC02773D-(cit55)/*[position()=1] publication-title: J. Chem. Educ. doi: 10.1021/acs.jchemed.6b00161 – volume: 8 start-page: 770 year: 2018 ident: C9SC02773D-(cit24)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b03676 – volume: 57 start-page: 10422 year: 2018 ident: C9SC02773D-(cit26)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712952 – volume: 8 start-page: 7483 year: 2017 ident: C9SC02773D-(cit50)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC02531A – volume: 135 start-page: 2248 year: 2013 ident: C9SC02773D-(cit3)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309831e – volume: 111 start-page: 3398 year: 2007 ident: C9SC02773D-(cit14)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0677445 – volume: 134 start-page: 11542 year: 2012 ident: C9SC02773D-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3022335 – volume: 51 start-page: 9965 year: 2015 ident: C9SC02773D-(cit34)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC02670A – volume-title: Database of Zeolite Structures ident: C9SC02773D-(cit37)/*[position()=1] – volume: 39 start-page: 4626 year: 2010 ident: C9SC02773D-(cit13)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b919704b – volume: 131 start-page: 1958 year: 2009 ident: C9SC02773D-(cit17)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808292c – volume: 5 start-page: 4456 year: 2015 ident: C9SC02773D-(cit42)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b00404 – volume: 54 start-page: 135 year: 2012 ident: C9SC02773D-(cit16)/*[position()=1] publication-title: Catal. Rev. doi: 10.1080/01614940.2012.632662 – volume: 57 start-page: 3914 year: 2018 ident: C9SC02773D-(cit53)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b04985 – volume: 114 start-page: 19582 year: 2010 ident: C9SC02773D-(cit43)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp104639e – volume: 135 start-page: 2641 year: 2013 ident: C9SC02773D-(cit44)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3105939 – volume: 29 start-page: 291 year: 2003 ident: C9SC02773D-(cit39)/*[position()=1] publication-title: Mol. Simul. doi: 10.1080/0892702031000104887 – volume: 57 start-page: 3742 year: 2018 ident: C9SC02773D-(cit25)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201713308 – volume: 57 start-page: 15330 year: 2018 ident: C9SC02773D-(cit35)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201711422 – volume: 56 start-page: 183 year: 2013 ident: C9SC02773D-(cit33)/*[position()=1] publication-title: J. Jpn. Pet. Inst. doi: 10.1627/jpi.56.183 – volume: 5 start-page: 2182 year: 2010 ident: C9SC02773D-(cit27)/*[position()=1] publication-title: Chem.–Asian J. doi: 10.1002/asia.201000234 – volume: 5 start-page: 400 year: 2006 ident: C9SC02773D-(cit5)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1636 – volume: 1 start-page: 207 year: 1988 ident: C9SC02773D-(cit40)/*[position()=1] publication-title: Mol. Simul. doi: 10.1080/08927028808080944 – volume: 37 start-page: 908 year: 2008 ident: C9SC02773D-(cit32)/*[position()=1] publication-title: Chem. Lett. doi: 10.1246/cl.2008.908 – volume: 25 start-page: 5893 year: 2019 ident: C9SC02773D-(cit45)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201901067 – volume: 137 start-page: 14533 year: 2015 ident: C9SC02773D-(cit29)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11046 – volume: 9 start-page: 2129 year: 2018 ident: C9SC02773D-(cit15)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-04296-4 – volume: 21 start-page: 1087 year: 1953 ident: C9SC02773D-(cit51)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1699114 |
SSID | ssj0000331527 |
Score | 2.5015292 |
Snippet | In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due... Interzeolite conversion from FAU to CHA results in massive atomic rearrangements in their common structural motif to form a stable atomic configuration. In... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 8533 |
SubjectTerms | Aluminates Aluminum Catalysis Chemistry Computer simulation Configurations Conversion Crystal structure Monte Carlo simulation NMR spectroscopy Silicates Silicon Synthesis Zeolites |
Title | Tracking the rearrangement of atomic configurations during the conversion of FAU zeolite to CHA zeolite |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31803428 https://www.proquest.com/docview/2296647140 https://www.proquest.com/docview/2322139189 https://pubmed.ncbi.nlm.nih.gov/PMC6853086 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoAL4nuBMQXBBaFAaidOfKzKqgqNIUEL3SlybWcNHc3UJpf9P_yfPNuJm7IJAT1EjfPyIb-f_T783jNCr3iay0jCAMzDPA4iImnAo5QHoeQyziVw3fg7Pp7S8TT6MItnvd7PTtRSXc3fiqsb80r-h6vQBnzVWbL_wFn3UGiA_8BfOAKH4fh3PF5zsWzzndY66lanCrjl_UpnHOu48rw4r9dNzFuTl6jvMBHnxl2myUeD6ZsrpcPhzG4aw_GgPe0qsK7AQJsPpFeB27yvjlsBGMjLpc03K5eFc-RwadrO6k7bAvDyvfhhPbzVpt4s3LXhghdLvYqyKS7MTnrfQHQs-Lq87Lor-swEviUOYNYp0kakmoiTZl-77cSHw6gf0Bjb9RrVbbOFj9zMHXYQamvHNPMwKCGkK9NjWxPqmrwIiS63KthG6LVsIrdSsY0EOP2UjaYnJ9nkeDa5hfaBSuvh-5-_TmdnzpkXEtJsD-y-vS2FS9i77eN3lZ9rFs3vgbkdTWdyD91tTBR_YPF2H_XU6gG67XrwITpvcecDivwd3Pll7lvc-bu48y3uzB1b3GlywJ3fAM2vSh9w154-QtPR8WQ4DpoNOwIRJbgCeU4VqN8CbIwck1hhHKoklJSDGhrB2GcUzyPKcobjOUkV_AQYCCKRkZCEcEweo71VuVIHyKc4VUIyLJU2mWOm_ZPJPGUcJpY-SbiHXrc9mYmmmr3eVOUiM1EVhGVD9mVoev29h1462ktbw-VGqsOWIVkzxjcZxozSSBe19NALdxm6Wy-r8ZUqa6ABmQh2VD9lHnpi-edeAxJT19hMPZTscNYR6Oruu1dWxcJUeaeA4TClT__8Wc_Qne0oO0R71bpWz0FNruZHxr101ED1F6ZoxRk |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+the+rearrangement+of+atomic+configurations+during+the+conversion+of+FAU+zeolite+to+CHA+zeolite&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Muraoka%2C+Koki&rft.au=Sada%2C+Yuki&rft.au=Shimojima%2C+Atsushi&rft.au=Chaikittisilp%2C+Watcharop&rft.date=2019-10-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=10&rft.issue=37&rft.spage=8533&rft.epage=8540&rft_id=info:doi/10.1039%2Fc9sc02773d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |