Tracking the rearrangement of atomic configurations during the conversion of FAU zeolite to CHA zeolite

In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 10; no. 37; pp. 8533 - 8540
Main Authors Muraoka, Koki, Sada, Yuki, Shimojima, Atsushi, Chaikittisilp, Watcharop, Okubo, Tatsuya
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system that crystallizes CHA zeolite from FAU zeolite as the sole source of tetrahedral atoms of Si and Al, so that end-to-end characterization can be conducted. Solid-state 29 Si MAS NMR is followed by high-throughput computational modeling to understand how atomic configurations changed during the interzeolite conversion. This reveals that the structural motif commonly found in FAU and CHA is not preserved during the conversion; rather, there is a specific rearrangement of silicates and aluminates within the motif. The atomic configuration of CHA seems to be influenced by that of the starting FAU , considering that CHA synthesized without using FAU results in a random Al distribution. A Metropolis Monte-Carlo simulation combined with a lattice minimization technique reveals that CHA derived from FAU has energetically favorable, biased atomic locations, which could be a result of the atomic configurations of the starting FAU . These results suggest that by choosing the appropriate reactant, Al placement could be designed to enhance the targeted properties of zeolites for catalysis and adsorption.
AbstractList In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system that crystallizes zeolite from zeolite as the sole source of tetrahedral atoms of Si and Al, so that end-to-end characterization can be conducted. Solid-state Si MAS NMR is followed by high-throughput computational modeling to understand how atomic configurations changed during the interzeolite conversion. This reveals that the structural motif commonly found in and is not preserved during the conversion; rather, there is a specific rearrangement of silicates and aluminates within the motif. The atomic configuration of seems to be influenced by that of the starting , considering that synthesized without using results in a random Al distribution. A Metropolis Monte-Carlo simulation combined with a lattice minimization technique reveals that derived from has energetically favorable, biased atomic locations, which could be a result of the atomic configurations of the starting . These results suggest that by choosing the appropriate reactant, Al placement could be designed to enhance the targeted properties of zeolites for catalysis and adsorption.
Interzeolite conversion from FAU to CHA results in massive atomic rearrangements in their common structural motif to form a stable atomic configuration. In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system that crystallizes CHA zeolite from FAU zeolite as the sole source of tetrahedral atoms of Si and Al, so that end-to-end characterization can be conducted. Solid-state 29 Si MAS NMR is followed by high-throughput computational modeling to understand how atomic configurations changed during the interzeolite conversion. This reveals that the structural motif commonly found in FAU and CHA is not preserved during the conversion; rather, there is a specific rearrangement of silicates and aluminates within the motif. The atomic configuration of CHA seems to be influenced by that of the starting FAU , considering that CHA synthesized without using FAU results in a random Al distribution. A Metropolis Monte-Carlo simulation combined with a lattice minimization technique reveals that CHA derived from FAU has energetically favorable, biased atomic locations, which could be a result of the atomic configurations of the starting FAU . These results suggest that by choosing the appropriate reactant, Al placement could be designed to enhance the targeted properties of zeolites for catalysis and adsorption.
In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system that crystallizes CHA zeolite from FAU zeolite as the sole source of tetrahedral atoms of Si and Al, so that end-to-end characterization can be conducted. Solid-state 29Si MAS NMR is followed by high-throughput computational modeling to understand how atomic configurations changed during the interzeolite conversion. This reveals that the structural motif commonly found in FAU and CHA is not preserved during the conversion; rather, there is a specific rearrangement of silicates and aluminates within the motif. The atomic configuration of CHA seems to be influenced by that of the starting FAU, considering that CHA synthesized without using FAU results in a random Al distribution. A Metropolis Monte-Carlo simulation combined with a lattice minimization technique reveals that CHA derived from FAU has energetically favorable, biased atomic locations, which could be a result of the atomic configurations of the starting FAU. These results suggest that by choosing the appropriate reactant, Al placement could be designed to enhance the targeted properties of zeolites for catalysis and adsorption.In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system that crystallizes CHA zeolite from FAU zeolite as the sole source of tetrahedral atoms of Si and Al, so that end-to-end characterization can be conducted. Solid-state 29Si MAS NMR is followed by high-throughput computational modeling to understand how atomic configurations changed during the interzeolite conversion. This reveals that the structural motif commonly found in FAU and CHA is not preserved during the conversion; rather, there is a specific rearrangement of silicates and aluminates within the motif. The atomic configuration of CHA seems to be influenced by that of the starting FAU, considering that CHA synthesized without using FAU results in a random Al distribution. A Metropolis Monte-Carlo simulation combined with a lattice minimization technique reveals that CHA derived from FAU has energetically favorable, biased atomic locations, which could be a result of the atomic configurations of the starting FAU. These results suggest that by choosing the appropriate reactant, Al placement could be designed to enhance the targeted properties of zeolites for catalysis and adsorption.
In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system that crystallizes CHA zeolite from FAU zeolite as the sole source of tetrahedral atoms of Si and Al, so that end-to-end characterization can be conducted. Solid-state 29 Si MAS NMR is followed by high-throughput computational modeling to understand how atomic configurations changed during the interzeolite conversion. This reveals that the structural motif commonly found in FAU and CHA is not preserved during the conversion; rather, there is a specific rearrangement of silicates and aluminates within the motif. The atomic configuration of CHA seems to be influenced by that of the starting FAU , considering that CHA synthesized without using FAU results in a random Al distribution. A Metropolis Monte-Carlo simulation combined with a lattice minimization technique reveals that CHA derived from FAU has energetically favorable, biased atomic locations, which could be a result of the atomic configurations of the starting FAU . These results suggest that by choosing the appropriate reactant, Al placement could be designed to enhance the targeted properties of zeolites for catalysis and adsorption.
In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system that crystallizes CHA zeolite from FAU zeolite as the sole source of tetrahedral atoms of Si and Al, so that end-to-end characterization can be conducted. Solid-state 29Si MAS NMR is followed by high-throughput computational modeling to understand how atomic configurations changed during the interzeolite conversion. This reveals that the structural motif commonly found in FAU and CHA is not preserved during the conversion; rather, there is a specific rearrangement of silicates and aluminates within the motif. The atomic configuration of CHA seems to be influenced by that of the starting FAU, considering that CHA synthesized without using FAU results in a random Al distribution. A Metropolis Monte-Carlo simulation combined with a lattice minimization technique reveals that CHA derived from FAU has energetically favorable, biased atomic locations, which could be a result of the atomic configurations of the starting FAU. These results suggest that by choosing the appropriate reactant, Al placement could be designed to enhance the targeted properties of zeolites for catalysis and adsorption.
Author Muraoka, Koki
Chaikittisilp, Watcharop
Sada, Yuki
Okubo, Tatsuya
Shimojima, Atsushi
AuthorAffiliation c Kagami Memorial Research Institute for Materials Science and Technology , Waseda University , 2-8-26 Nishiwaseda, Shinjuku-ku , Tokyo 169-0051 , Japan
a Department of Chemical System Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . Email: okubo@chemsys.t.u-tokyo.ac.jp
d Research and Services Division of Materials Data and Integrated System (MaDIS) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
b Department of Applied Chemistry , Waseda University , 3-4-1 Ohkubo, Shinjuku-ku , Tokyo 169-8555 , Japan
AuthorAffiliation_xml – name: c Kagami Memorial Research Institute for Materials Science and Technology , Waseda University , 2-8-26 Nishiwaseda, Shinjuku-ku , Tokyo 169-0051 , Japan
– name: b Department of Applied Chemistry , Waseda University , 3-4-1 Ohkubo, Shinjuku-ku , Tokyo 169-8555 , Japan
– name: d Research and Services Division of Materials Data and Integrated System (MaDIS) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
– name: a Department of Chemical System Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . Email: okubo@chemsys.t.u-tokyo.ac.jp
Author_xml – sequence: 1
  givenname: Koki
  orcidid: 0000-0003-1830-7978
  surname: Muraoka
  fullname: Muraoka, Koki
  organization: Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan
– sequence: 2
  givenname: Yuki
  orcidid: 0000-0002-7910-646X
  surname: Sada
  fullname: Sada, Yuki
  organization: Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan
– sequence: 3
  givenname: Atsushi
  orcidid: 0000-0003-2863-1587
  surname: Shimojima
  fullname: Shimojima, Atsushi
  organization: Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan, Kagami Memorial Research Institute for Materials Science and Technology
– sequence: 4
  givenname: Watcharop
  orcidid: 0000-0002-3240-0821
  surname: Chaikittisilp
  fullname: Chaikittisilp, Watcharop
  organization: Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Japan
– sequence: 5
  givenname: Tatsuya
  orcidid: 0000-0002-1681-0193
  surname: Okubo
  fullname: Okubo, Tatsuya
  organization: Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31803428$$D View this record in MEDLINE/PubMed
BookMark eNptkV1PFTEQhhuDEURu_AFmE2-IyYF2-rW9MTlZRUhIuBCum55udynutth2SfTXW4SDSpybdjrP-2am8xrthBgcQm8JPiKYquNOfe0wSEk_vUB7gBlZCU7VztMd8C46yPkG16CUcJCv0C4lLaYM2j00XiZjv_kwNuXaNcmZlEwY3exCaeLQmBJnbxsbw-DHJZniY8hNv6StolbuXMr1-R4_WV81P12cfHFNiU13ut6mb9DLwUzZHTye--jq5PNld7o6v_hy1q3PV5ZJKCtKhGOUW47lAJQ7AOwk7oWRLTDTcyVgw4QaFPANbV0NKzi2sme2p9QA3UcfH3xvl83selvnSGbSt8nPJv3Q0Xj9byX4az3GOy1aTnErqsHho0GK3xeXi559tm6aTHBxyRooAKGKtKqi75-hN3FJoY6nAZQQTBKGK_Xu746eWtnuoAL4AbAp5pzcoK0vv3-6NugnTbC-37T-s-kq-fBMsnX9D_wLzoqoRg
CitedBy_id crossref_primary_10_1039_D1CE01067K
crossref_primary_10_1016_j_mtcata_2023_100037
crossref_primary_10_1021_acsami_3c07313
crossref_primary_10_1246_cl_230243
crossref_primary_10_1016_j_jssc_2023_124024
crossref_primary_10_1016_j_jece_2024_114713
crossref_primary_10_1016_j_micromeso_2021_111329
crossref_primary_10_1021_acs_jpclett_1c01448
crossref_primary_10_1021_jacs_9b13817
crossref_primary_10_1016_j_micromeso_2022_111849
crossref_primary_10_1002_advs_202307674
crossref_primary_10_1016_j_micromeso_2021_111248
crossref_primary_10_1039_D1RA03150C
crossref_primary_10_1021_acs_chemmater_0c04832
crossref_primary_10_1021_acs_chemmater_0c04710
crossref_primary_10_1007_s42247_020_00088_z
crossref_primary_10_1016_j_micromeso_2024_113364
crossref_primary_10_1039_D1CP03751J
crossref_primary_10_1039_D4DT00751D
crossref_primary_10_1016_j_micromeso_2022_112196
crossref_primary_10_1016_j_cclet_2023_108470
crossref_primary_10_1134_S0965544123020020
crossref_primary_10_1016_j_jssc_2021_122635
crossref_primary_10_1021_acs_chemmater_4c02175
crossref_primary_10_1039_D1QI01414E
crossref_primary_10_1021_acs_inorgchem_3c03079
crossref_primary_10_1007_s11426_022_1307_5
crossref_primary_10_1016_j_gee_2023_02_005
crossref_primary_10_1016_j_matchemphys_2024_130199
crossref_primary_10_1016_j_cesx_2021_100089
crossref_primary_10_1021_acs_chemmater_4c01848
crossref_primary_10_1021_acs_cgd_2c01009
crossref_primary_10_1021_jacs_1c11014
crossref_primary_10_1016_j_matchemphys_2022_126240
crossref_primary_10_1016_j_micromeso_2024_113099
crossref_primary_10_1016_j_micromeso_2024_113297
crossref_primary_10_1021_acs_jpcc_1c01475
crossref_primary_10_1039_D3SC06924A
crossref_primary_10_1021_jacs_1c03351
crossref_primary_10_1016_j_ultsonch_2023_106598
crossref_primary_10_1021_acs_chemrev_3c00801
crossref_primary_10_1002_chem_202302931
crossref_primary_10_1021_acs_iecr_4c02088
crossref_primary_10_1039_D2CC05370E
crossref_primary_10_1016_j_micromeso_2020_110174
crossref_primary_10_1021_acsami_4c01774
crossref_primary_10_1016_j_cej_2023_143461
crossref_primary_10_1134_S0965544121030105
crossref_primary_10_1021_acs_chemmater_9b03738
crossref_primary_10_1126_sciadv_adi1744
crossref_primary_10_1021_acs_cgd_3c00219
crossref_primary_10_1039_D3CC02314A
crossref_primary_10_1016_j_micromeso_2024_113060
crossref_primary_10_1038_s41467_023_36502_3
crossref_primary_10_1016_S1872_5813_24_60432_9
crossref_primary_10_1021_acs_chemmater_3c01274
crossref_primary_10_1007_s40242_021_1404_z
crossref_primary_10_1016_j_jclepro_2022_135119
crossref_primary_10_1016_j_jcat_2021_04_027
crossref_primary_10_1016_j_micromeso_2022_112245
crossref_primary_10_1021_acs_cgd_2c01277
Cites_doi 10.1021/ja0546267
10.1021/jp200310b
10.1021/cm00022a005
10.1021/jacs.6b01341
10.1002/mrc.984
10.1126/science.1250984
10.1021/acs.chemmater.6b00181
10.1021/j100722a020
10.1002/(SICI)1521-3773(19991102)38:21<3201::AID-ANIE3201>3.0.CO;2-H
10.1002/anie.201805877
10.1016/j.gca.2007.01.011
10.1002/anie.201506101
10.1021/jp106247g
10.1021/acs.chemmater.6b00588
10.1021/acs.chemrev.7b00344
10.1021/ja501361v
10.1021/acscatal.5b00692
10.1126/science.aal1585
10.1021/ar200138n
10.1021/cm504510f
10.1002/anie.201702672
10.1021/acs.chemrev.7b00738
10.1021/jp952189k
10.1021/acs.jpcc.5b03289
10.1002/anie.201808395
10.1002/anie.201709039
10.1021/acs.jchemed.6b00161
10.1021/acscatal.7b03676
10.1002/anie.201712952
10.1039/C7SC02531A
10.1021/ja309831e
10.1021/jp0677445
10.1021/ja3022335
10.1039/C5CC02670A
10.1039/b919704b
10.1021/ja808292c
10.1021/acscatal.5b00404
10.1080/01614940.2012.632662
10.1021/acs.iecr.7b04985
10.1021/jp104639e
10.1021/ja3105939
10.1080/0892702031000104887
10.1002/anie.201713308
10.1002/anie.201711422
10.1627/jpi.56.183
10.1002/asia.201000234
10.1038/nmat1636
10.1080/08927028808080944
10.1246/cl.2008.908
10.1002/chem.201901067
10.1021/jacs.5b11046
10.1038/s41467-018-04296-4
10.1063/1.1699114
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry 2019.
Copyright Royal Society of Chemistry 2019
This journal is © The Royal Society of Chemistry 2019 2019
Copyright_xml – notice: This journal is © The Royal Society of Chemistry 2019.
– notice: Copyright Royal Society of Chemistry 2019
– notice: This journal is © The Royal Society of Chemistry 2019 2019
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/C9SC02773D
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 8540
ExternalDocumentID PMC6853086
31803428
10_1039_C9SC02773D
Genre Journal Article
GroupedDBID 0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CITATION
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c472t-316e435c507f235e220e70d6a7824ad5962b469f925b38eeeec650c7d4cd33a23
ISSN 2041-6520
IngestDate Thu Aug 21 18:03:26 EDT 2025
Fri Jul 11 09:50:06 EDT 2025
Sun Jul 13 05:40:16 EDT 2025
Thu Apr 03 07:03:53 EDT 2025
Thu Apr 24 22:54:12 EDT 2025
Tue Jul 01 03:46:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
License This journal is © The Royal Society of Chemistry 2019.
This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c472t-316e435c507f235e220e70d6a7824ad5962b469f925b38eeeec650c7d4cd33a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally.
Present address: Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
ORCID 0000-0003-2863-1587
0000-0002-1681-0193
0000-0003-1830-7978
0000-0002-7910-646X
0000-0002-3240-0821
OpenAccessLink http://dx.doi.org/10.1039/c9sc02773d
PMID 31803428
PQID 2296647140
PQPubID 2047492
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6853086
proquest_miscellaneous_2322139189
proquest_journals_2296647140
pubmed_primary_31803428
crossref_citationtrail_10_1039_C9SC02773D
crossref_primary_10_1039_C9SC02773D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-07
PublicationDateYYYYMMDD 2019-10-07
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Kumar (C9SC02773D-(cit15)/*[position()=1]) 2018; 9
Schmidt (C9SC02773D-(cit26)/*[position()=1]) 2018; 57
Oleksiak (C9SC02773D-(cit23)/*[position()=1]) 2017; 56
Itakura (C9SC02773D-(cit32)/*[position()=1]) 2008; 37
Gale (C9SC02773D-(cit39)/*[position()=1]) 2003; 29
Knott (C9SC02773D-(cit24)/*[position()=1]) 2018; 8
Muraoka (C9SC02773D-(cit25)/*[position()=1]) 2018; 57
Ikuno (C9SC02773D-(cit29)/*[position()=1]) 2015; 137
Li (C9SC02773D-(cit35)/*[position()=1]) 2018; 57
Muraoka (C9SC02773D-(cit38)/*[position()=1]) 2016; 138
Park (C9SC02773D-(cit3)/*[position()=1]) 2013; 135
Gounder (C9SC02773D-(cit17)/*[position()=1]) 2009; 131
Akporiaye (C9SC02773D-(cit46)/*[position()=1]) 1996; 100
Liu (C9SC02773D-(cit12)/*[position()=1]) 2007; 71
Dusselier (C9SC02773D-(cit30)/*[position()=1]) 2018; 118
Snyder (C9SC02773D-(cit54)/*[position()=1]) 2018; 118
Dědeček (C9SC02773D-(cit16)/*[position()=1]) 2012; 54
Izutani (C9SC02773D-(cit55)/*[position()=1]) 2016; 93
Ji (C9SC02773D-(cit42)/*[position()=1]) 2015; 5
Nishitoba (C9SC02773D-(cit53)/*[position()=1]) 2018; 57
Davis (C9SC02773D-(cit5)/*[position()=1]) 2006; 5
Fletcher (C9SC02773D-(cit50)/*[position()=1]) 2017; 8
Szymkuć (C9SC02773D-(cit1)/*[position()=1]) 2016; 55
Diercks (C9SC02773D-(cit2)/*[position()=1]) 2017; 355
Yoshioka (C9SC02773D-(cit52)/*[position()=1]) 2015; 5
Kumar (C9SC02773D-(cit14)/*[position()=1]) 2007; 111
Di Iorio (C9SC02773D-(cit22)/*[position()=1]) 2016; 28
Li (C9SC02773D-(cit8)/*[position()=1]) 2018; 57
Maldonado (C9SC02773D-(cit44)/*[position()=1]) 2013; 135
Martín (C9SC02773D-(cit34)/*[position()=1]) 2015; 51
Ivanova (C9SC02773D-(cit10)/*[position()=1]) 2017; 56
Khaleel (C9SC02773D-(cit11)/*[position()=1]) 2016; 28
Vjunov (C9SC02773D-(cit20)/*[position()=1]) 2014; 136
Goel (C9SC02773D-(cit31)/*[position()=1]) 2015; 27
Lowenstein (C9SC02773D-(cit47)/*[position()=1]) 1954; 39
Qin (C9SC02773D-(cit45)/*[position()=1]) 2019; 25
Itabashi (C9SC02773D-(cit28)/*[position()=1]) 2012; 134
Schroeder (C9SC02773D-(cit41)/*[position()=1]) 2018; 57
Massiot (C9SC02773D-(cit36)/*[position()=1]) 2002; 40
Kamimura (C9SC02773D-(cit27)/*[position()=1]) 2010; 5
Mintova (C9SC02773D-(cit7)/*[position()=1]) 1999; 38
Aerts (C9SC02773D-(cit13)/*[position()=1]) 2010; 39
Sano (C9SC02773D-(cit33)/*[position()=1]) 2013; 56
Dempsey (C9SC02773D-(cit48)/*[position()=1]) 1969; 73
Ravenelle (C9SC02773D-(cit43)/*[position()=1]) 2010; 114
Román-Leshkov (C9SC02773D-(cit49)/*[position()=1]) 2011; 115
C9SC02773D-(cit37)/*[position()=1]
Metropolis (C9SC02773D-(cit51)/*[position()=1]) 1953; 21
Davis (C9SC02773D-(cit4)/*[position()=1]) 1992; 4
Jackson (C9SC02773D-(cit40)/*[position()=1]) 1988; 1
Yokoi (C9SC02773D-(cit21)/*[position()=1]) 2015; 119
Gounder (C9SC02773D-(cit18)/*[position()=1]) 2012; 45
Lupulescu (C9SC02773D-(cit9)/*[position()=1]) 2014; 344
Valtchev (C9SC02773D-(cit6)/*[position()=1]) 2005; 127
Dedecek (C9SC02773D-(cit19)/*[position()=1]) 2011; 115
References_xml – volume: 127
  start-page: 16171
  year: 2005
  ident: C9SC02773D-(cit6)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0546267
– volume: 115
  start-page: 11056
  year: 2011
  ident: C9SC02773D-(cit19)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp200310b
– volume: 4
  start-page: 756
  year: 1992
  ident: C9SC02773D-(cit4)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm00022a005
– volume: 138
  start-page: 6184
  year: 2016
  ident: C9SC02773D-(cit38)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01341
– volume: 40
  start-page: 70
  year: 2002
  ident: C9SC02773D-(cit36)/*[position()=1]
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.984
– volume: 344
  start-page: 729
  year: 2014
  ident: C9SC02773D-(cit9)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1250984
– volume: 28
  start-page: 2236
  year: 2016
  ident: C9SC02773D-(cit22)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00181
– volume: 73
  start-page: 387
  year: 1969
  ident: C9SC02773D-(cit48)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100722a020
– volume: 38
  start-page: 3201
  year: 1999
  ident: C9SC02773D-(cit7)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19991102)38:21<3201::AID-ANIE3201>3.0.CO;2-H
– volume: 57
  start-page: 11283
  year: 2018
  ident: C9SC02773D-(cit8)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805877
– volume: 71
  start-page: 2072
  year: 2007
  ident: C9SC02773D-(cit12)/*[position()=1]
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2007.01.011
– volume: 55
  start-page: 5904
  year: 2016
  ident: C9SC02773D-(cit1)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201506101
– volume: 115
  start-page: 1096
  year: 2011
  ident: C9SC02773D-(cit49)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp106247g
– volume: 28
  start-page: 4204
  year: 2016
  ident: C9SC02773D-(cit11)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00588
– volume: 118
  start-page: 2718
  year: 2018
  ident: C9SC02773D-(cit54)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00344
– volume: 136
  start-page: 8296
  year: 2014
  ident: C9SC02773D-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501361v
– volume: 5
  start-page: 4268
  year: 2015
  ident: C9SC02773D-(cit52)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00692
– volume: 355
  start-page: eaal1585
  year: 2017
  ident: C9SC02773D-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aal1585
– volume: 45
  start-page: 229
  year: 2012
  ident: C9SC02773D-(cit18)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200138n
– volume: 27
  start-page: 2056
  year: 2015
  ident: C9SC02773D-(cit31)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm504510f
– volume: 56
  start-page: 13366
  year: 2017
  ident: C9SC02773D-(cit23)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702672
– volume: 118
  start-page: 5265
  year: 2018
  ident: C9SC02773D-(cit30)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00738
– volume: 100
  start-page: 4148
  year: 1996
  ident: C9SC02773D-(cit46)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952189k
– volume: 119
  start-page: 15303
  year: 2015
  ident: C9SC02773D-(cit21)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b03289
– volume: 39
  start-page: 92
  year: 1954
  ident: C9SC02773D-(cit47)/*[position()=1]
  publication-title: Am. Mineral.
– volume: 57
  start-page: 14281
  year: 2018
  ident: C9SC02773D-(cit41)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201808395
– volume: 56
  start-page: 15344
  year: 2017
  ident: C9SC02773D-(cit10)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709039
– volume: 93
  start-page: 1667
  year: 2016
  ident: C9SC02773D-(cit55)/*[position()=1]
  publication-title: J. Chem. Educ.
  doi: 10.1021/acs.jchemed.6b00161
– volume: 8
  start-page: 770
  year: 2018
  ident: C9SC02773D-(cit24)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03676
– volume: 57
  start-page: 10422
  year: 2018
  ident: C9SC02773D-(cit26)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712952
– volume: 8
  start-page: 7483
  year: 2017
  ident: C9SC02773D-(cit50)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC02531A
– volume: 135
  start-page: 2248
  year: 2013
  ident: C9SC02773D-(cit3)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309831e
– volume: 111
  start-page: 3398
  year: 2007
  ident: C9SC02773D-(cit14)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0677445
– volume: 134
  start-page: 11542
  year: 2012
  ident: C9SC02773D-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3022335
– volume: 51
  start-page: 9965
  year: 2015
  ident: C9SC02773D-(cit34)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC02670A
– volume-title: Database of Zeolite Structures
  ident: C9SC02773D-(cit37)/*[position()=1]
– volume: 39
  start-page: 4626
  year: 2010
  ident: C9SC02773D-(cit13)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b919704b
– volume: 131
  start-page: 1958
  year: 2009
  ident: C9SC02773D-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808292c
– volume: 5
  start-page: 4456
  year: 2015
  ident: C9SC02773D-(cit42)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00404
– volume: 54
  start-page: 135
  year: 2012
  ident: C9SC02773D-(cit16)/*[position()=1]
  publication-title: Catal. Rev.
  doi: 10.1080/01614940.2012.632662
– volume: 57
  start-page: 3914
  year: 2018
  ident: C9SC02773D-(cit53)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b04985
– volume: 114
  start-page: 19582
  year: 2010
  ident: C9SC02773D-(cit43)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp104639e
– volume: 135
  start-page: 2641
  year: 2013
  ident: C9SC02773D-(cit44)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3105939
– volume: 29
  start-page: 291
  year: 2003
  ident: C9SC02773D-(cit39)/*[position()=1]
  publication-title: Mol. Simul.
  doi: 10.1080/0892702031000104887
– volume: 57
  start-page: 3742
  year: 2018
  ident: C9SC02773D-(cit25)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201713308
– volume: 57
  start-page: 15330
  year: 2018
  ident: C9SC02773D-(cit35)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201711422
– volume: 56
  start-page: 183
  year: 2013
  ident: C9SC02773D-(cit33)/*[position()=1]
  publication-title: J. Jpn. Pet. Inst.
  doi: 10.1627/jpi.56.183
– volume: 5
  start-page: 2182
  year: 2010
  ident: C9SC02773D-(cit27)/*[position()=1]
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.201000234
– volume: 5
  start-page: 400
  year: 2006
  ident: C9SC02773D-(cit5)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1636
– volume: 1
  start-page: 207
  year: 1988
  ident: C9SC02773D-(cit40)/*[position()=1]
  publication-title: Mol. Simul.
  doi: 10.1080/08927028808080944
– volume: 37
  start-page: 908
  year: 2008
  ident: C9SC02773D-(cit32)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2008.908
– volume: 25
  start-page: 5893
  year: 2019
  ident: C9SC02773D-(cit45)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201901067
– volume: 137
  start-page: 14533
  year: 2015
  ident: C9SC02773D-(cit29)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11046
– volume: 9
  start-page: 2129
  year: 2018
  ident: C9SC02773D-(cit15)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04296-4
– volume: 21
  start-page: 1087
  year: 1953
  ident: C9SC02773D-(cit51)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
SSID ssj0000331527
Score 2.5015292
Snippet In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due...
Interzeolite conversion from FAU to CHA results in massive atomic rearrangements in their common structural motif to form a stable atomic configuration. In...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8533
SubjectTerms Aluminates
Aluminum
Catalysis
Chemistry
Computer simulation
Configurations
Conversion
Crystal structure
Monte Carlo simulation
NMR spectroscopy
Silicates
Silicon
Synthesis
Zeolites
Title Tracking the rearrangement of atomic configurations during the conversion of FAU zeolite to CHA zeolite
URI https://www.ncbi.nlm.nih.gov/pubmed/31803428
https://www.proquest.com/docview/2296647140
https://www.proquest.com/docview/2322139189
https://pubmed.ncbi.nlm.nih.gov/PMC6853086
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoAL4nuBMQXBBaFAaidOfKzKqgqNIUEL3SlybWcNHc3UJpf9P_yfPNuJm7IJAT1EjfPyIb-f_T783jNCr3iay0jCAMzDPA4iImnAo5QHoeQyziVw3fg7Pp7S8TT6MItnvd7PTtRSXc3fiqsb80r-h6vQBnzVWbL_wFn3UGiA_8BfOAKH4fh3PF5zsWzzndY66lanCrjl_UpnHOu48rw4r9dNzFuTl6jvMBHnxl2myUeD6ZsrpcPhzG4aw_GgPe0qsK7AQJsPpFeB27yvjlsBGMjLpc03K5eFc-RwadrO6k7bAvDyvfhhPbzVpt4s3LXhghdLvYqyKS7MTnrfQHQs-Lq87Lor-swEviUOYNYp0kakmoiTZl-77cSHw6gf0Bjb9RrVbbOFj9zMHXYQamvHNPMwKCGkK9NjWxPqmrwIiS63KthG6LVsIrdSsY0EOP2UjaYnJ9nkeDa5hfaBSuvh-5-_TmdnzpkXEtJsD-y-vS2FS9i77eN3lZ9rFs3vgbkdTWdyD91tTBR_YPF2H_XU6gG67XrwITpvcecDivwd3Pll7lvc-bu48y3uzB1b3GlywJ3fAM2vSh9w154-QtPR8WQ4DpoNOwIRJbgCeU4VqN8CbIwck1hhHKoklJSDGhrB2GcUzyPKcobjOUkV_AQYCCKRkZCEcEweo71VuVIHyKc4VUIyLJU2mWOm_ZPJPGUcJpY-SbiHXrc9mYmmmr3eVOUiM1EVhGVD9mVoev29h1462ktbw-VGqsOWIVkzxjcZxozSSBe19NALdxm6Wy-r8ZUqa6ABmQh2VD9lHnpi-edeAxJT19hMPZTscNYR6Oruu1dWxcJUeaeA4TClT__8Wc_Qne0oO0R71bpWz0FNruZHxr101ED1F6ZoxRk
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+the+rearrangement+of+atomic+configurations+during+the+conversion+of+FAU+zeolite+to+CHA+zeolite&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Muraoka%2C+Koki&rft.au=Sada%2C+Yuki&rft.au=Shimojima%2C+Atsushi&rft.au=Chaikittisilp%2C+Watcharop&rft.date=2019-10-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=10&rft.issue=37&rft.spage=8533&rft.epage=8540&rft_id=info:doi/10.1039%2Fc9sc02773d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon