Decreased consumption of rewarding sucrose solutions after injection of melanocortins into the ventral tegmental area of rats

Rationale The mesolimbic dopamine system is an important component of the neural circuitry controlling reward-related behavior. We have recently shown that the melanocortin peptides decrease normal homeostatic feeding through actions in the ventral tegmental area. It is unknown, however, whether mel...

Full description

Saved in:
Bibliographic Details
Published inPsychopharmacology Vol. 232; no. 1; pp. 285 - 294
Main Authors Yen, Haw-Han, Roseberry, Aaron G.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2015
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rationale The mesolimbic dopamine system is an important component of the neural circuitry controlling reward-related behavior. We have recently shown that the melanocortin peptides decrease normal homeostatic feeding through actions in the ventral tegmental area. It is unknown, however, whether melanocortin peptides can also act on dopamine pathways to regulate hedonic, reward-related aspects of feeding. Objectives In these studies, we tested whether injection of melanocortin receptor agonists directly into the ventral tegmental area (VTA) affected the intake of appetizing and rewarding sugar solutions in two-bottle choice tests. Methods Varying doses of the melanocortin receptor agonist, MTII, were injected into the VTA, and the intake of different sugar solutions was measured in two-bottle choice tests to distinguish between potential effects on homeostatic versus hedonic aspects of feeding. In addition, 24-h food intake was measured throughout the experiments. Results Injection of MTII into the VTA dose dependently decreased the intake of 1 and 2 % sucrose solutions and 0.2 % saccharin solutions and decreased 24-h food intake in each study. Although MTII also decreased the intake of a 10 % sucrose solution, MTII appeared to be less potent in rats exposed to 10 % sucrose, as only the highest dose of MTII tested was effective at reducing 10 % sucrose intake and food intake in these rats. Conclusions These studies demonstrate that melanocortins can act directly in the VTA to control reward-related feeding. Thus, these studies add to the growing body of evidence showing that melanocortins can interact with the mesolimbic dopamine system to regulate multiple reward-related behaviors.
AbstractList Rationale: The mesolimbic dopamine system is an important component of the neural circuitry controlling reward-related behavior. We have recently shown that the melanocortin peptides decrease normal homeostatic feeding through actions in the ventral tegmental area. It is unknown, however, whether melanocortin peptides can also act on dopamine pathways to regulate hedonic, reward-related aspects of feeding. Objectives: In these studies, we tested whether injection of melanocortin receptor agonists directly into the ventral tegmental area (VTA) affected the intake of appetizing and rewarding sugar solutions in two-bottle choice tests. Methods: Varying doses of the melanocortin receptor agonist, MTII, were injected into the VTA, and the intake of different sugar solutions was measured in two-bottle choice tests to distinguish between potential effects on homeostatic versus hedonic aspects of feeding. In addition, 24-h food intake was measured throughout the experiments. Results: Injection of MTII into the VTA dose dependently decreased the intake of 1 and 2 % sucrose solutions and 0.2 % saccharin solutions and decreased 24-h food intake in each study. Although MTII also decreased the intake of a 10 % sucrose solution, MTII appeared to be less potent in rats exposed to 10 % sucrose, as only the highest dose of MTII tested was effective at reducing 10 % sucrose intake and food intake in these rats. Conclusions: These studies demonstrate that melanocortins can act directly in the VTA to control reward-related feeding. Thus, these studies add to the growing body of evidence showing that melanocortins can interact with the mesolimbic dopamine system to regulate multiple reward-related behaviors.
The mesolimbic dopamine system is an important component of the neural circuitry controlling reward-related behavior. We have recently shown that the melanocortin peptides decrease normal homeostatic feeding through actions in the ventral tegmental area. It is unknown, however, whether melanocortin peptides can also act on dopamine pathways to regulate hedonic, reward-related aspects of feeding. In these studies, we tested whether injection of melanocortin receptor agonists directly into the ventral tegmental area (VTA) affected the intake of appetizing and rewarding sugar solutions in two-bottle choice tests. Varying doses of the melanocortin receptor agonist, MTII, were injected into the VTA, and the intake of different sugar solutions was measured in two-bottle choice tests to distinguish between potential effects on homeostatic versus hedonic aspects of feeding. In addition, 24-h food intake was measured throughout the experiments. Injection of MTII into the VTA dose dependently decreased the intake of 1 and 2 % sucrose solutions and 0.2 % saccharin solutions and decreased 24-h food intake in each study. Although MTII also decreased the intake of a 10 % sucrose solution, MTII appeared to be less potent in rats exposed to 10 % sucrose, as only the highest dose of MTII tested was effective at reducing 10 % sucrose intake and food intake in these rats. These studies demonstrate that melanocortins can act directly in the VTA to control reward-related feeding. Thus, these studies add to the growing body of evidence showing that melanocortins can interact with the mesolimbic dopamine system to regulate multiple reward-related behaviors.[PUBLICATION ABSTRACT]
The mesolimbic dopamine system is an important component of the neural circuitry controlling reward-related behavior. We have recently shown that the melanocortin peptides decrease normal homeostatic feeding through actions in the ventral tegmental area. It is unknown, however, whether melanocortin peptides can also act on dopamine pathways to regulate hedonic, reward-related aspects of feeding.RATIONALEThe mesolimbic dopamine system is an important component of the neural circuitry controlling reward-related behavior. We have recently shown that the melanocortin peptides decrease normal homeostatic feeding through actions in the ventral tegmental area. It is unknown, however, whether melanocortin peptides can also act on dopamine pathways to regulate hedonic, reward-related aspects of feeding.In these studies, we tested whether injection of melanocortin receptor agonists directly into the ventral tegmental area (VTA) affected the intake of appetizing and rewarding sugar solutions in two-bottle choice tests.OBJECTIVESIn these studies, we tested whether injection of melanocortin receptor agonists directly into the ventral tegmental area (VTA) affected the intake of appetizing and rewarding sugar solutions in two-bottle choice tests.Varying doses of the melanocortin receptor agonist, MTII, were injected into the VTA, and the intake of different sugar solutions was measured in two-bottle choice tests to distinguish between potential effects on homeostatic versus hedonic aspects of feeding. In addition, 24-h food intake was measured throughout the experiments.METHODSVarying doses of the melanocortin receptor agonist, MTII, were injected into the VTA, and the intake of different sugar solutions was measured in two-bottle choice tests to distinguish between potential effects on homeostatic versus hedonic aspects of feeding. In addition, 24-h food intake was measured throughout the experiments.Injection of MTII into the VTA dose dependently decreased the intake of 1 and 2 % sucrose solutions and 0.2 % saccharin solutions and decreased 24-h food intake in each study. Although MTII also decreased the intake of a 10 % sucrose solution, MTII appeared to be less potent in rats exposed to 10 % sucrose, as only the highest dose of MTII tested was effective at reducing 10 % sucrose intake and food intake in these rats.RESULTSInjection of MTII into the VTA dose dependently decreased the intake of 1 and 2 % sucrose solutions and 0.2 % saccharin solutions and decreased 24-h food intake in each study. Although MTII also decreased the intake of a 10 % sucrose solution, MTII appeared to be less potent in rats exposed to 10 % sucrose, as only the highest dose of MTII tested was effective at reducing 10 % sucrose intake and food intake in these rats.These studies demonstrate that melanocortins can act directly in the VTA to control reward-related feeding. Thus, these studies add to the growing body of evidence showing that melanocortins can interact with the mesolimbic dopamine system to regulate multiple reward-related behaviors.CONCLUSIONSThese studies demonstrate that melanocortins can act directly in the VTA to control reward-related feeding. Thus, these studies add to the growing body of evidence showing that melanocortins can interact with the mesolimbic dopamine system to regulate multiple reward-related behaviors.
The mesolimbic dopamine system is an important component of the neural circuitry controlling reward-related behavior. We have recently shown that the melanocortin peptides decrease normal homeostatic feeding through actions in the ventral tegmental area. It is unknown, however, whether melanocortin peptides can also act on dopamine pathways to regulate hedonic, reward-related aspects of feeding. In these studies, we tested whether injection of melanocortin receptor agonists directly into the ventral tegmental area (VTA) affected the intake of appetizing and rewarding sugar solutions in two-bottle choice tests. Varying doses of the melanocortin receptor agonist, MTII, were injected into the VTA, and the intake of different sugar solutions was measured in two-bottle choice tests to distinguish between potential effects on homeostatic versus hedonic aspects of feeding. In addition, 24-h food intake was measured throughout the experiments. Injection of MTII into the VTA dose dependently decreased the intake of 1 and 2 % sucrose solutions and 0.2 % saccharin solutions and decreased 24-h food intake in each study. Although MTII also decreased the intake of a 10 % sucrose solution, MTII appeared to be less potent in rats exposed to 10 % sucrose, as only the highest dose of MTII tested was effective at reducing 10 % sucrose intake and food intake in these rats. These studies demonstrate that melanocortins can act directly in the VTA to control reward-related feeding. Thus, these studies add to the growing body of evidence showing that melanocortins can interact with the mesolimbic dopamine system to regulate multiple reward-related behaviors.
Rationale The mesolimbic dopamine system is an important component of the neural circuitry controlling reward-related behavior. We have recently shown that the melanocortin peptides decrease normal homeostatic feeding through actions in the ventral tegmental area. It is unknown, however, whether melanocortin peptides can also act on dopamine pathways to regulate hedonic, reward-related aspects of feeding. Objectives In these studies, we tested whether injection of melanocortin receptor agonists directly into the ventral tegmental area (VTA) affected the intake of appetizing and rewarding sugar solutions in two-bottle choice tests. Methods Varying doses of the melanocortin receptor agonist, MTII, were injected into the VTA, and the intake of different sugar solutions was measured in two-bottle choice tests to distinguish between potential effects on homeostatic versus hedonic aspects of feeding. In addition, 24-h food intake was measured throughout the experiments. Results Injection of MTII into the VTA dose dependently decreased the intake of 1 and 2 % sucrose solutions and 0.2 % saccharin solutions and decreased 24-h food intake in each study. Although MTII also decreased the intake of a 10 % sucrose solution, MTII appeared to be less potent in rats exposed to 10 % sucrose, as only the highest dose of MTII tested was effective at reducing 10 % sucrose intake and food intake in these rats. Conclusions These studies demonstrate that melanocortins can act directly in the VTA to control reward-related feeding. Thus, these studies add to the growing body of evidence showing that melanocortins can interact with the mesolimbic dopamine system to regulate multiple reward-related behaviors.
Rationale The mesolimbic dopamine system is an important component of the neural circuitry controlling reward-related behavior. We have recently shown that the melanocortin peptides decrease normal homeostatic feeding through actions in the ventral tegmental area. It is unknown, however, whether melanocortin peptides can also act on dopamine pathways to regulate hedonic, reward-related aspects of feeding. Objectives In these studies, we tested whether injection of melanocortin receptor agonists directly into the ventral tegmental area (VTA) affected the intake of appetizing and rewarding sugar solutions in two-bottle choice tests. Methods Varying doses of the melanocortin receptor agonist, MTII, were injected into the VTA, and the intake of different sugar solutions was measured in two-bottle choice tests to distinguish between potential effects on homeostatic versus hedonic aspects of feeding. In addition, 24-h food intake was measured throughout the experiments. Results Injection of MTII into the VTA dose dependently decreased the intake of 1 and 2 % sucrose solutions and 0.2 % saccharin solutions and decreased 24-h food intake in each study. Although MTII also decreased the intake of a 10 % sucrose solution, MTII appeared to be less potent in rats exposed to 10 % sucrose, as only the highest dose of MTII tested was effective at reducing 10 % sucrose intake and food intake in these rats. Conclusions These studies demonstrate that melanocortins can act directly in the VTA to control reward-related feeding. Thus, these studies add to the growing body of evidence showing that melanocortins can interact with the mesolimbic dopamine system to regulate multiple reward-related behaviors. Keywords Melanocortin * MTII * Dopamine * Two-bottle test * MC3R * MC4R * Feeding * Reward
Audience Academic
Author Roseberry, Aaron G.
Yen, Haw-Han
Author_xml – sequence: 1
  givenname: Haw-Han
  surname: Yen
  fullname: Yen, Haw-Han
  organization: Department of Biology, Georgia State University
– sequence: 2
  givenname: Aaron G.
  surname: Roseberry
  fullname: Roseberry, Aaron G.
  email: aroseberry@gsu.edu
  organization: Department of Biology, Georgia State University, Center for Obesity Reversal, Georgia State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24985892$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2PFCEQholZ486u_gAvphMvXnqlgKbp42b9TDbxomdC09Ujk24YgXbjwf8uvbMTdaNGOFCB532BqjojJz54JOQp0AugtH2ZKGXAawqi5lLyWj4gGxCc1Yy27IRsKOW85tCoU3KW0o6WIZR4RE6Z6FSjOrYh31-hjWgSDpUNPi3zPrvgqzBWEW9MHJzfVmmxMSSsUpiW9TRVZswYK-d3aI_4jJPxwYaYXQGcz6HKn7H6ij5HM1UZt3MJS2TKdbf-JqfH5OFopoRP7tZz8unN649X7-rrD2_fX11e11a0LNcMkQpJO9V3ykBjuOzpCAqULUHTWGaAW9pa6IA1shcGFFWyH0wrDR8R-Tl5cfDdx_BlwZT17JLFqTwZw5I0SNFS6JRo_geFkjvFaUGf30N3YYm-fOSWglZxgJ_U1kyonR9DSYhdTfWloB2VXSNYoS7-QJU54OxKZXB0Zf83wbO7y5d-xkHvo5tN_KaPpS1AewDW4qWIo7Yum7VcxdlNGqhem0gfmkiXJtJrE2lZlHBPeTT_l4YdNKmwfovxl1z8VfQDu3DXbw
CitedBy_id crossref_primary_10_2147_NDT_S243551
crossref_primary_10_1016_j_neubiorev_2015_06_020
crossref_primary_10_1007_s00213_017_4570_4
crossref_primary_10_1515_nipt_2024_0011
crossref_primary_10_1016_j_physbeh_2015_12_017
crossref_primary_10_3390_nu12113502
crossref_primary_10_1113_JP277193
crossref_primary_10_1038_s41366_023_01265_w
crossref_primary_10_1016_j_physbeh_2016_04_004
crossref_primary_10_1016_j_mce_2016_09_012
crossref_primary_10_26508_lsa_202402754
crossref_primary_10_1016_j_neulet_2016_11_049
crossref_primary_10_3389_fendo_2017_00104
crossref_primary_10_1016_j_physbeh_2016_05_024
crossref_primary_10_1097_HRP_0000000000000111
crossref_primary_10_1002_cne_25013
crossref_primary_10_1517_17460441_2016_1153624
crossref_primary_10_3390_brainsci14010063
crossref_primary_10_1007_s11055_018_0554_z
crossref_primary_10_1038_s41380_019_0506_1
crossref_primary_10_1016_j_psyneuen_2015_02_020
crossref_primary_10_1038_nrendo_2015_103
crossref_primary_10_1002_adbi_202300035
crossref_primary_10_1530_JOE_18_0596
crossref_primary_10_3390_ijms24076664
Cites_doi 10.1126/science.7375926
10.1016/S0092-8674(00)81865-6
10.1210/er.2006-0034
10.1006/phrs.2001.0913
10.1210/endo.141.9.7791
10.1023/A:1013871407464
10.1210/endo.139.10.6332
10.1038/385165a0
10.1038/nrn3105
10.1016/0031-9384(88)90324-1
10.1016/0024-3205(88)90444-4
10.1046/j.1365-201x.1999.00595.x
10.1016/j.ejphar.2003.09.047
10.1038/nn1455
10.1006/appe.2001.0467
10.1016/j.cmet.2013.09.009
10.1016/j.peptides.2005.02.029
10.1016/S0167-0115(02)00299-9
10.1016/j.molmet.2013.10.007
10.1172/JCI46229
10.1038/79254
10.1002/cne.10454
10.1111/j.1471-4159.2004.02896.x
10.1016/j.tins.2007.06.004
10.1038/nn.3202
10.1007/s00213-012-2879-6
10.1016/S0306-4522(98)00583-1
10.1038/nature11270
10.1016/j.pbb.2007.12.018
10.1016/S0014-2999(99)00465-3
10.1016/j.neuron.2011.02.016
10.1038/nature11160
10.1016/j.physbeh.2010.12.017
10.1038/88423
10.1073/pnas.90.19.8856
10.1038/nn.2977
10.1016/j.neulet.2003.12.006
10.1210/en.2013-2049
10.1210/en.2010-0716
10.1111/j.1460-9568.2005.04038.x
10.1126/science.278.5335.135
10.1016/0197-0186(86)90035-5
10.1038/nn.2739
10.1152/ajpregu.2000.279.1.R47
10.1523/JNEUROSCI.15-07-05169.1995
10.1523/JNEUROSCI.23-18-07143.2003
10.1523/JNEUROSCI.15-10-06640.1995
10.1523/JNEUROSCI.17-02-00851.1997
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2014
COPYRIGHT 2015 Springer
Springer-Verlag Berlin Heidelberg 2015
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
– notice: COPYRIGHT 2015 Springer
– notice: Springer-Verlag Berlin Heidelberg 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QR
7RV
7TK
7X7
7XB
88E
88G
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
K9.
KB0
M0S
M1P
M2M
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
DOI 10.1007/s00213-014-3663-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
ProQuest Psychology Journals
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Animal Behavior Abstracts
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
ProQuest One Psychology
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1432-2072
EndPage 294
ExternalDocumentID 3541407701
A409069542
24985892
10_1007_s00213_014_3663_6
Genre Journal Article
GroupedDBID -4W
-BR
.55
3SX
40D
40E
95.
95~
ABMNI
AGWIL
ALMA_UNASSIGNED_HOLDINGS
KOW
N2Q
R9-
RHV
SBY
SOJ
X7M
~EX
AAYXX
CITATION
---
-Y2
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2QV
2VQ
2~H
30V
36B
3O-
4.4
406
408
409
53G
5QI
5RE
5VS
67N
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADIMF
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
CGR
COF
CS3
CSCUP
CUY
CVF
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
DXH
EAD
EAP
EBC
EBD
EBLON
EBS
ECM
EIF
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EN4
EPAXT
EPL
EPS
ESBYG
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
ICJ
IHE
IHR
IJ-
IKXTQ
IMOTQ
INH
INR
IPY
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LLZTM
M1P
M2M
M4Y
MA-
MK0
N9A
NAPCQ
NB0
NDZJH
NPM
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PF-
PHGZT
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UAP
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WJK
WK6
WK8
WOW
XOL
YLTOR
YQJ
YYP
Z45
ZGI
ZMTXR
ZOVNA
ZY4
~8M
3V.
7QG
7QR
7TK
7XB
8FD
8FK
FR3
K9.
P64
PHGZM
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
ABBRH
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
ID FETCH-LOGICAL-c472t-2ee046098b98a15a36b0f1818c6b055c2a13c07c191256b4a18086bda76a3fee3
IEDL.DBID U2A
ISSN 0033-3158
1432-2072
IngestDate Fri Jul 11 03:40:44 EDT 2025
Fri Jul 11 14:57:23 EDT 2025
Sat Aug 16 03:01:21 EDT 2025
Tue Mar 18 23:29:13 EDT 2025
Sat Mar 08 18:30:00 EST 2025
Thu Apr 03 07:06:00 EDT 2025
Thu Apr 24 23:03:01 EDT 2025
Tue Jul 01 04:16:45 EDT 2025
Fri Feb 21 02:34:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords MC4R
MC3R
MTII
Dopamine
Melanocortin
Reward
Two-bottle test
Feeding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-2ee046098b98a15a36b0f1818c6b055c2a13c07c191256b4a18086bda76a3fee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24985892
PQID 1641178311
PQPubID 47309
PageCount 10
ParticipantIDs proquest_miscellaneous_1647019845
proquest_miscellaneous_1641858830
proquest_journals_1641178311
gale_infotracmisc_A409069542
gale_infotracacademiconefile_A409069542
pubmed_primary_24985892
crossref_citationtrail_10_1007_s00213_014_3663_6
crossref_primary_10_1007_s00213_014_3663_6
springer_journals_10_1007_s00213_014_3663_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150100
2015-1-00
2015-Jan
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 1
  year: 2015
  text: 20150100
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Psychopharmacology
PublicationTitleAbbrev Psychopharmacology
PublicationTitleAlternate Psychopharmacology (Berl)
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Smith, Sclafani (CR43) 2002; 38
Torre, Celis (CR47) 1988; 42
Ollmann, Wilson, Yang, Kerns, Chen, Gantz, Barsh (CR34) 1997; 278
Lindblom, Kask, Hagg, Harmark, Bergstrom, Wikberg (CR31) 2002; 45
Yang, Shieh (CR50) 2005; 92
CR36
Pothos, Creese, Hoebel (CR37) 1995; 15
Butler, Marks, Fan, Kuhn, Bartolome, Cone (CR8) 2001; 4
Krashes, Koda, Ye, Rogan, Adams, Cusher, Maratos-Flier, Roth, Lowell (CR27) 2011; 121
Lim, Huang, Grueter, Rothwell, Malenka (CR30) 2012; 487
Kenny (CR23) 2011; 12
Domingos, Vaynshteyn, Sordillo, Friedman (CR15) 2014; 3
Kenny (CR24) 2011; 69
Hagan, Rushing, Pritchard, Schwartz, Strack, Van Der Ploeg, Woods, Seeley (CR17) 2000; 279
Krashes, Shah, Koda, Lowell (CR28) 2013; 18
Butler, Kesterson, Khong, Cullen, Pelleymounter, Dekoning, Baetscher, Cone (CR7) 2000; 141
Cone (CR10) 2005; 8
Davis, Choi, Shurdak, Krause, Fitzgerald, Lipton, Sakai, Benoit (CR12) 2011; 102
Roseberry (CR38) 2013; 226
Torre, Celis (CR46) 1986; 9
Bassareo, Di Chiara (CR4) 1997; 17
Atasoy, Betley, Su, Sternson (CR3) 2012; 488
Wilson, Nomikos, Collu, Fibiger (CR49) 1995; 15
Liu, Kishi, Roseberry, Cai, Lee, Montez, Friedman, Elmquist (CR33) 2003; 23
Srisai, Gillum, Panaro, Zhang, Kotchabhakdi, Shulman, Ellacott, Cone (CR44) 2011; 152
DiLeone, Taylor, Picciotto (CR13) 2012; 15
Adan, Szklarczyk, Oosterom, Brakkee, Nijenhuis, Schaaper, Meloen, Gispen (CR1) 1999; 378
Cone (CR11) 2006; 27
Hsu, Taylor, Newton, Alvaro, Haile, Han, Hruby, Nestler, Duman (CR20) 2005; 21
Tracy, Clegg, Johnson, Davidson, Benoit (CR48) 2008; 89
Thiele, van Dijk, Yagaloff, Fisher, Schwartz, Burn, Seeley (CR45) 1998; 274
Bassareo, Di Chiara (CR5) 1999; 89
Kishi, Aschkenasi, Lee, Mountjoy, Saper, Elmquist (CR25) 2003; 457
Sanchez, Barontini, Armando, Celis (CR42) 2001; 21
Palmiter (CR35) 2007; 30
Chen, Marsh, Trumbauer, Frazier, Guan, Yu, Rosenblum, Vongs, Feng, Cao, Metzger, Strack, Camacho, Mellin, Nunes, Min, Fisher, Gopal-Truter, MacIntyre, Chen, Van der Ploeg (CR9) 2000; 26
Heffner, Hartman, Seiden (CR18) 1980; 208
Fan, Boston, Kesterson, Hruby, Cone (CR16) 1997; 385
Huszar, Lynch, Fairchild-Huntress, Dunmore, Fang, Berkemeier, Gu, Kesterson, Boston, Cone, Smith, Campfield, Burn, Lee (CR21) 1997; 88
Samama, Rumennik, Grippo (CR41) 2003; 113
Jansone, Bergstrom, Svirskis, Lindblom, Klusa, Wikberg (CR22) 2004; 361
Klusa, Svirskis, Opmane, Muceniece, Wikberg (CR26) 1999; 167
Rossi, Kim, Morgan, Small, Edwards, Sunter, Abusnana, Goldstone, Russell, Stanley, Smith, Yagaloff, Ghatei, Bloom (CR40) 1998; 139
Domingos, Vaynshteyn, Voss, Ren, Gradinaru, Zang, Deisseroth, de Araujo, Friedman (CR14) 2011; 14
Butler (CR6) 2006; 27
Krugel, Schraft, Kittner, Kiess, Illes (CR29) 2003; 482
Lippert, Ellacott, Cone (CR32) 2014; 155
Hernandez, Hoebel (CR19) 1988; 44
Roselli-Rehfuss, Mountjoy, Robbins, Mortrud, Low, Tatro, Entwistle, Simerly, Cone (CR39) 1993; 90
Aponte, Atasoy, Sternson (CR2) 2011; 14
PJ Kenny (3663_CR24) 2011; 69
3663_CR36
D Huszar (3663_CR21) 1997; 88
P Samama (3663_CR41) 2003; 113
AA Butler (3663_CR6) 2006; 27
V Bassareo (3663_CR4) 1997; 17
MM Ollmann (3663_CR34) 1997; 278
PJ Kenny (3663_CR23) 2011; 12
U Krugel (3663_CR29) 2003; 482
MM Hagan (3663_CR17) 2000; 279
W Fan (3663_CR16) 1997; 385
T Kishi (3663_CR25) 2003; 457
M Rossi (3663_CR40) 1998; 139
EN Pothos (3663_CR37) 1995; 15
E Torre (3663_CR47) 1988; 42
RD Cone (3663_CR11) 2006; 27
RJ DiLeone (3663_CR13) 2012; 15
AS Chen (3663_CR9) 2000; 26
AI Domingos (3663_CR14) 2011; 14
RD Cone (3663_CR10) 2005; 8
RD Palmiter (3663_CR35) 2007; 30
AG Roseberry (3663_CR38) 2013; 226
Y Aponte (3663_CR2) 2011; 14
AA Butler (3663_CR7) 2000; 141
SC Yang (3663_CR50) 2005; 92
H Liu (3663_CR33) 2003; 23
MJ Krashes (3663_CR27) 2011; 121
MS Sanchez (3663_CR42) 2001; 21
L Hernandez (3663_CR19) 1988; 44
C Wilson (3663_CR49) 1995; 15
JF Davis (3663_CR12) 2011; 102
AI Domingos (3663_CR15) 2014; 3
J Lindblom (3663_CR31) 2002; 45
RA Adan (3663_CR1) 1999; 378
D Atasoy (3663_CR3) 2012; 488
R Hsu (3663_CR20) 2005; 21
D Srisai (3663_CR44) 2011; 152
E Torre (3663_CR46) 1986; 9
JC Smith (3663_CR43) 2002; 38
AA Butler (3663_CR8) 2001; 4
TG Heffner (3663_CR18) 1980; 208
TE Thiele (3663_CR45) 1998; 274
V Klusa (3663_CR26) 1999; 167
BK Lim (3663_CR30) 2012; 487
MJ Krashes (3663_CR28) 2013; 18
V Bassareo (3663_CR5) 1999; 89
RN Lippert (3663_CR32) 2014; 155
AL Tracy (3663_CR48) 2008; 89
L Roselli-Rehfuss (3663_CR39) 1993; 90
B Jansone (3663_CR22) 2004; 361
8415620 - Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8856-60
10199600 - Neuroscience. 1999 Mar;89(3):637-41
22081158 - Nat Neurosci. 2011 Nov 13;14 (12 ):1562-8
22011680 - Nat Rev Neurosci. 2011 Oct 20;12(11):638-51
24093681 - Cell Metab. 2013 Oct 1;18(4):588-95
9458925 - Am J Physiol. 1998 Jan;274(1 Pt 2):R248-54
23007187 - Nat Neurosci. 2012 Oct;15(10):1330-5
17077189 - Endocr Rev. 2006 Dec;27(7):736-49
10493100 - Eur J Pharmacol. 1999 Aug 13;378(3):249-58
21239438 - Endocrinology. 2011 Mar;152(3):890-902
2835562 - Life Sci. 1988;42(17):1651-7
24567906 - Mol Metab. 2013 Dec 05;3(1):73-80
8990120 - Nature. 1997 Jan 9;385(6612):165-8
21172367 - Physiol Behav. 2011 Mar 28;102(5):491-5
9751529 - Endocrinology. 1998 Oct;139(10):4428-31
8987806 - J Neurosci. 1997 Jan 15;17 (2):851-61
24605830 - Endocrinology. 2014 May;155(5):1718-27
15659233 - J Neurochem. 2005 Feb;92(3):637-46
12904474 - J Neurosci. 2003 Aug 6;23(18):7143-54
15856065 - Nat Neurosci. 2005 May;8(5):571-8
12027377 - Appetite. 2002 Apr;38(2):155-60
7375926 - Science. 1980 Jun 6;208(4448):1168-70
17604133 - Trends Neurosci. 2007 Aug;30(8):375-81
9019399 - Cell. 1997 Jan 10;88(1):131-41
16434123 - Peptides. 2006 Feb;27(2):281-90
14660021 - Eur J Pharmacol. 2003 Dec 15;482(1-3):185-7
15135895 - Neurosci Lett. 2004 May 6;361(1-3):68-71
22785313 - Nature. 2012 Jul 11;487(7406):183-9
22801496 - Nature. 2012 Aug 9;488(7410):172-7
11369941 - Nat Neurosci. 2001 Jun;4(6):605-11
21209617 - Nat Neurosci. 2011 Mar;14(3):351-5
9311920 - Science. 1997 Oct 3;278(5335):135-8
10896863 - Am J Physiol Regul Integr Comp Physiol. 2000 Jul;279(1):R47-52
21338878 - Neuron. 2011 Feb 24;69(4):664-79
23010797 - Psychopharmacology (Berl). 2013 Mar;226(1):25-34
11860189 - Cell Mol Neurobiol. 2001 Oct;21(5):523-33
12686465 - Regul Pept. 2003 May 15;113(1-3):85-8
21364278 - J Clin Invest. 2011 Apr;121(4):1424-8
10571544 - Acta Physiol Scand. 1999 Oct;167(2):99-104
7623143 - J Neurosci. 1995 Jul;15(7 Pt 2):5169-78
20493104 - Neurochem Int. 1986;9(1):85-9
10965927 - Endocrinology. 2000 Sep;141(9):3518-21
11846623 - Pharmacol Res. 2002 Feb;45(2):119-24
18234306 - Pharmacol Biochem Behav. 2008 May;89(3):263-71
15869520 - Eur J Neurosci. 2005 Apr;21(8):2233-42
10973258 - Nat Genet. 2000 Sep;26(1):97-102
3237847 - Physiol Behav. 1988;44(4-5):599-606
12541307 - J Comp Neurol. 2003 Mar 10;457(3):213-35
7472425 - J Neurosci. 1995 Oct;15(10):6640-50
References_xml – volume: 279
  start-page: R47
  year: 2000
  end-page: R52
  ident: CR17
  article-title: Long-term orexigenic effects of AgRP-(83–132) involve mechanisms other than melanocortin receptor blockade
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 208
  start-page: 1168
  year: 1980
  end-page: 1170
  ident: CR18
  article-title: Feeding increases dopamine metabolism in the rat brain
  publication-title: Science
  doi: 10.1126/science.7375926
– volume: 88
  start-page: 131
  year: 1997
  end-page: 141
  ident: CR21
  article-title: Targeted disruption of the melanocortin-4 receptor results in obesity in mice
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81865-6
– volume: 17
  start-page: 851
  year: 1997
  end-page: 861
  ident: CR4
  article-title: Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum
  publication-title: J Neurosci
– volume: 27
  start-page: 736
  year: 2006
  end-page: 749
  ident: CR11
  article-title: Studies on the physiological functions of the melanocortin system
  publication-title: Endocr Rev
  doi: 10.1210/er.2006-0034
– volume: 45
  start-page: 119
  year: 2002
  end-page: 124
  ident: CR31
  article-title: Chronic infusion of a melanocortin receptor agonist modulates dopamine receptor binding in the rat brain
  publication-title: Pharmacol Res
  doi: 10.1006/phrs.2001.0913
– volume: 15
  start-page: 6640
  year: 1995
  end-page: 6650
  ident: CR37
  article-title: Restricted eating with weight loss selectively decreases extracellular dopamine in the nucleus accumbens and alters dopamine response to amphetamine, morphine, and food intake
  publication-title: J Neurosci
– volume: 141
  start-page: 3518
  year: 2000
  end-page: 3521
  ident: CR7
  article-title: A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse
  publication-title: Endocrinology
  doi: 10.1210/endo.141.9.7791
– volume: 23
  start-page: 7143
  year: 2003
  end-page: 7154
  ident: CR33
  article-title: Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter
  publication-title: J Neurosci
– volume: 21
  start-page: 523
  year: 2001
  end-page: 533
  ident: CR42
  article-title: Correlation of increased grooming behavior and motor activity with alterations in nigrostriatal and mesolimbic catecholamines after alpha-melanotropin and neuropeptide glutamine-isoleucine injection in the rat ventral tegmental area
  publication-title: Cell Mol Neurobiol
  doi: 10.1023/A:1013871407464
– volume: 139
  start-page: 4428
  year: 1998
  end-page: 4431
  ident: CR40
  article-title: A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo
  publication-title: Endocrinology
  doi: 10.1210/endo.139.10.6332
– volume: 385
  start-page: 165
  year: 1997
  end-page: 168
  ident: CR16
  article-title: Role of melanocortinergic neurons in feeding and the agouti obesity syndrome
  publication-title: Nature
  doi: 10.1038/385165a0
– volume: 12
  start-page: 638
  year: 2011
  end-page: 651
  ident: CR23
  article-title: Common cellular and molecular mechanisms in obesity and drug addiction
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3105
– volume: 44
  start-page: 599
  year: 1988
  end-page: 606
  ident: CR19
  article-title: Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens
  publication-title: Physiol Behav
  doi: 10.1016/0031-9384(88)90324-1
– volume: 42
  start-page: 1651
  year: 1988
  end-page: 1657
  ident: CR47
  article-title: Cholinergic mediation in the ventral tegmental area of alpha-melanotropin induced excessive grooming: changes of the dopamine activity in the nucleus accumbens and caudate putamen
  publication-title: Life Sci
  doi: 10.1016/0024-3205(88)90444-4
– volume: 167
  start-page: 99
  year: 1999
  end-page: 104
  ident: CR26
  article-title: Behavioural responses of gamma-MSH peptides administered into the rat ventral tegmental area
  publication-title: Acta Physiol Scand
  doi: 10.1046/j.1365-201x.1999.00595.x
– volume: 482
  start-page: 185
  year: 2003
  end-page: 187
  ident: CR29
  article-title: Basal and feeding-evoked dopamine release in the rat nucleus accumbens is depressed by leptin
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2003.09.047
– volume: 8
  start-page: 571
  year: 2005
  end-page: 578
  ident: CR10
  article-title: Anatomy and regulation of the central melanocortin system
  publication-title: Nat Neurosci
  doi: 10.1038/nn1455
– volume: 38
  start-page: 155
  year: 2002
  end-page: 160
  ident: CR43
  article-title: Saccharin as a sugar surrogate revisited
  publication-title: Appetite
  doi: 10.1006/appe.2001.0467
– volume: 18
  start-page: 588
  year: 2013
  end-page: 595
  ident: CR28
  article-title: Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.09.009
– volume: 27
  start-page: 281
  year: 2006
  end-page: 290
  ident: CR6
  article-title: The melanocortin system and energy balance
  publication-title: Peptides
  doi: 10.1016/j.peptides.2005.02.029
– volume: 113
  start-page: 85
  year: 2003
  end-page: 88
  ident: CR41
  article-title: The melanocortin receptor MCR4 controls fat consumption
  publication-title: Regul Pept
  doi: 10.1016/S0167-0115(02)00299-9
– volume: 3
  start-page: 73
  year: 2014
  end-page: 80
  ident: CR15
  article-title: The reward value of sucrose in leptin-deficient obese mice
  publication-title: Mol Metab
  doi: 10.1016/j.molmet.2013.10.007
– volume: 121
  start-page: 1424
  year: 2011
  end-page: 1428
  ident: CR27
  article-title: Rapid, reversible activation of AgRP neurons drives feeding behavior in mice
  publication-title: J Clin Invest
  doi: 10.1172/JCI46229
– ident: CR36
– volume: 26
  start-page: 97
  year: 2000
  end-page: 102
  ident: CR9
  article-title: Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass
  publication-title: Nat Genet
  doi: 10.1038/79254
– volume: 457
  start-page: 213
  year: 2003
  end-page: 235
  ident: CR25
  article-title: Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat
  publication-title: J Comp Neurol
  doi: 10.1002/cne.10454
– volume: 92
  start-page: 637
  year: 2005
  end-page: 646
  ident: CR50
  article-title: Differential effects of melanin concentrating hormone on the central dopaminergic neurons induced by the cocaine- and amphetamine-regulated transcript peptide
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2004.02896.x
– volume: 30
  start-page: 375
  year: 2007
  end-page: 381
  ident: CR35
  article-title: Is dopamine a physiologically relevant mediator of feeding behavior?
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2007.06.004
– volume: 15
  start-page: 1330
  year: 2012
  end-page: 1335
  ident: CR13
  article-title: The drive to eat: comparisons and distinctions between mechanisms of food reward and drug addiction
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3202
– volume: 226
  start-page: 25
  year: 2013
  end-page: 34
  ident: CR38
  article-title: Altered feeding and body weight following melanocortin administration to the ventral tegmental area in adult rats
  publication-title: Psychopharmacology (Berl)
  doi: 10.1007/s00213-012-2879-6
– volume: 89
  start-page: 637
  year: 1999
  end-page: 641
  ident: CR5
  article-title: Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(98)00583-1
– volume: 488
  start-page: 172
  year: 2012
  end-page: 177
  ident: CR3
  article-title: Deconstruction of a neural circuit for hunger
  publication-title: Nature
  doi: 10.1038/nature11270
– volume: 89
  start-page: 263
  year: 2008
  end-page: 271
  ident: CR48
  article-title: The melanocortin antagonist AgRP (83-132) increases appetitive responding for a fat, but not a carbohydrate, reinforcer
  publication-title: Pharmacol Biochem Behav
  doi: 10.1016/j.pbb.2007.12.018
– volume: 15
  start-page: 5169
  year: 1995
  end-page: 5178
  ident: CR49
  article-title: Dopaminergic correlates of motivated behavior: importance of drive
  publication-title: J Neurosci
– volume: 378
  start-page: 249
  year: 1999
  end-page: 258
  ident: CR1
  article-title: Characterization of melanocortin receptor ligands on cloned brain melanocortin receptors and on grooming behavior in the rat
  publication-title: Eur J Pharmacol
  doi: 10.1016/S0014-2999(99)00465-3
– volume: 69
  start-page: 664
  year: 2011
  end-page: 679
  ident: CR24
  article-title: Reward mechanisms in obesity: new insights and future directions
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.02.016
– volume: 487
  start-page: 183
  year: 2012
  end-page: 189
  ident: CR30
  article-title: Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens
  publication-title: Nature
  doi: 10.1038/nature11160
– volume: 102
  start-page: 491
  year: 2011
  end-page: 495
  ident: CR12
  article-title: Central melanocortins modulate mesocorticolimbic activity and food seeking behavior in the rat
  publication-title: Physiol Behav
  doi: 10.1016/j.physbeh.2010.12.017
– volume: 4
  start-page: 605
  year: 2001
  end-page: 611
  ident: CR8
  article-title: Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat
  publication-title: Nat Neurosci
  doi: 10.1038/88423
– volume: 274
  start-page: R248
  year: 1998
  end-page: R254
  ident: CR45
  article-title: Central infusion of melanocortin agonist MTII in rats: assessment of c-Fos expression and taste aversion
  publication-title: Am J Physiol
– volume: 90
  start-page: 8856
  year: 1993
  end-page: 8860
  ident: CR39
  article-title: Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.90.19.8856
– volume: 14
  start-page: 1562
  year: 2011
  end-page: 1568
  ident: CR14
  article-title: Leptin regulates the reward value of nutrient
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2977
– volume: 361
  start-page: 68
  year: 2004
  end-page: 71
  ident: CR22
  article-title: Opposite effects of gamma(1)- and gamma(2)-melanocyte stimulating hormone on regulation of the dopaminergic mesolimbic system in rats
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2003.12.006
– volume: 155
  start-page: 1718
  year: 2014
  end-page: 1727
  ident: CR32
  article-title: Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice
  publication-title: Endocrinology
  doi: 10.1210/en.2013-2049
– volume: 152
  start-page: 890
  year: 2011
  end-page: 902
  ident: CR44
  article-title: Characterization of the hyperphagic response to dietary fat in the MC4R knockout mouse
  publication-title: Endocrinology
  doi: 10.1210/en.2010-0716
– volume: 21
  start-page: 2233
  year: 2005
  end-page: 2242
  ident: CR20
  article-title: Blockade of melanocortin transmission inhibits cocaine reward
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2005.04038.x
– volume: 278
  start-page: 135
  year: 1997
  end-page: 138
  ident: CR34
  article-title: Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein
  publication-title: Science
  doi: 10.1126/science.278.5335.135
– volume: 9
  start-page: 85
  year: 1986
  end-page: 89
  ident: CR46
  article-title: Alpha-MSH injected into the substantia nigra or intraventricularly alters behavior and the striatal dopaminergic activity
  publication-title: Neurochem Int
  doi: 10.1016/0197-0186(86)90035-5
– volume: 14
  start-page: 351
  year: 2011
  end-page: 355
  ident: CR2
  article-title: AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2739
– volume: 113
  start-page: 85
  year: 2003
  ident: 3663_CR41
  publication-title: Regul Pept
  doi: 10.1016/S0167-0115(02)00299-9
– volume: 361
  start-page: 68
  year: 2004
  ident: 3663_CR22
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2003.12.006
– volume: 89
  start-page: 637
  year: 1999
  ident: 3663_CR5
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(98)00583-1
– volume: 152
  start-page: 890
  year: 2011
  ident: 3663_CR44
  publication-title: Endocrinology
  doi: 10.1210/en.2010-0716
– volume: 457
  start-page: 213
  year: 2003
  ident: 3663_CR25
  publication-title: J Comp Neurol
  doi: 10.1002/cne.10454
– volume: 92
  start-page: 637
  year: 2005
  ident: 3663_CR50
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2004.02896.x
– volume: 488
  start-page: 172
  year: 2012
  ident: 3663_CR3
  publication-title: Nature
  doi: 10.1038/nature11270
– volume: 141
  start-page: 3518
  year: 2000
  ident: 3663_CR7
  publication-title: Endocrinology
  doi: 10.1210/endo.141.9.7791
– volume: 44
  start-page: 599
  year: 1988
  ident: 3663_CR19
  publication-title: Physiol Behav
  doi: 10.1016/0031-9384(88)90324-1
– volume: 487
  start-page: 183
  year: 2012
  ident: 3663_CR30
  publication-title: Nature
  doi: 10.1038/nature11160
– volume: 278
  start-page: 135
  year: 1997
  ident: 3663_CR34
  publication-title: Science
  doi: 10.1126/science.278.5335.135
– volume: 27
  start-page: 736
  year: 2006
  ident: 3663_CR11
  publication-title: Endocr Rev
  doi: 10.1210/er.2006-0034
– volume: 14
  start-page: 1562
  year: 2011
  ident: 3663_CR14
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2977
– volume: 279
  start-page: R47
  year: 2000
  ident: 3663_CR17
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.2000.279.1.R47
– ident: 3663_CR36
– volume: 274
  start-page: R248
  year: 1998
  ident: 3663_CR45
  publication-title: Am J Physiol
– volume: 15
  start-page: 1330
  year: 2012
  ident: 3663_CR13
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3202
– volume: 30
  start-page: 375
  year: 2007
  ident: 3663_CR35
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2007.06.004
– volume: 139
  start-page: 4428
  year: 1998
  ident: 3663_CR40
  publication-title: Endocrinology
  doi: 10.1210/endo.139.10.6332
– volume: 482
  start-page: 185
  year: 2003
  ident: 3663_CR29
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2003.09.047
– volume: 26
  start-page: 97
  year: 2000
  ident: 3663_CR9
  publication-title: Nat Genet
  doi: 10.1038/79254
– volume: 88
  start-page: 131
  year: 1997
  ident: 3663_CR21
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81865-6
– volume: 9
  start-page: 85
  year: 1986
  ident: 3663_CR46
  publication-title: Neurochem Int
  doi: 10.1016/0197-0186(86)90035-5
– volume: 8
  start-page: 571
  year: 2005
  ident: 3663_CR10
  publication-title: Nat Neurosci
  doi: 10.1038/nn1455
– volume: 4
  start-page: 605
  year: 2001
  ident: 3663_CR8
  publication-title: Nat Neurosci
  doi: 10.1038/88423
– volume: 42
  start-page: 1651
  year: 1988
  ident: 3663_CR47
  publication-title: Life Sci
  doi: 10.1016/0024-3205(88)90444-4
– volume: 21
  start-page: 523
  year: 2001
  ident: 3663_CR42
  publication-title: Cell Mol Neurobiol
  doi: 10.1023/A:1013871407464
– volume: 12
  start-page: 638
  year: 2011
  ident: 3663_CR23
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3105
– volume: 45
  start-page: 119
  year: 2002
  ident: 3663_CR31
  publication-title: Pharmacol Res
  doi: 10.1006/phrs.2001.0913
– volume: 14
  start-page: 351
  year: 2011
  ident: 3663_CR2
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2739
– volume: 18
  start-page: 588
  year: 2013
  ident: 3663_CR28
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.09.009
– volume: 155
  start-page: 1718
  year: 2014
  ident: 3663_CR32
  publication-title: Endocrinology
  doi: 10.1210/en.2013-2049
– volume: 21
  start-page: 2233
  year: 2005
  ident: 3663_CR20
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2005.04038.x
– volume: 121
  start-page: 1424
  year: 2011
  ident: 3663_CR27
  publication-title: J Clin Invest
  doi: 10.1172/JCI46229
– volume: 90
  start-page: 8856
  year: 1993
  ident: 3663_CR39
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.90.19.8856
– volume: 15
  start-page: 5169
  year: 1995
  ident: 3663_CR49
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.15-07-05169.1995
– volume: 27
  start-page: 281
  year: 2006
  ident: 3663_CR6
  publication-title: Peptides
  doi: 10.1016/j.peptides.2005.02.029
– volume: 69
  start-page: 664
  year: 2011
  ident: 3663_CR24
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.02.016
– volume: 23
  start-page: 7143
  year: 2003
  ident: 3663_CR33
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-18-07143.2003
– volume: 15
  start-page: 6640
  year: 1995
  ident: 3663_CR37
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.15-10-06640.1995
– volume: 385
  start-page: 165
  year: 1997
  ident: 3663_CR16
  publication-title: Nature
  doi: 10.1038/385165a0
– volume: 208
  start-page: 1168
  year: 1980
  ident: 3663_CR18
  publication-title: Science
  doi: 10.1126/science.7375926
– volume: 102
  start-page: 491
  year: 2011
  ident: 3663_CR12
  publication-title: Physiol Behav
  doi: 10.1016/j.physbeh.2010.12.017
– volume: 17
  start-page: 851
  year: 1997
  ident: 3663_CR4
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-02-00851.1997
– volume: 38
  start-page: 155
  year: 2002
  ident: 3663_CR43
  publication-title: Appetite
  doi: 10.1006/appe.2001.0467
– volume: 89
  start-page: 263
  year: 2008
  ident: 3663_CR48
  publication-title: Pharmacol Biochem Behav
  doi: 10.1016/j.pbb.2007.12.018
– volume: 167
  start-page: 99
  year: 1999
  ident: 3663_CR26
  publication-title: Acta Physiol Scand
  doi: 10.1046/j.1365-201x.1999.00595.x
– volume: 226
  start-page: 25
  year: 2013
  ident: 3663_CR38
  publication-title: Psychopharmacology (Berl)
  doi: 10.1007/s00213-012-2879-6
– volume: 378
  start-page: 249
  year: 1999
  ident: 3663_CR1
  publication-title: Eur J Pharmacol
  doi: 10.1016/S0014-2999(99)00465-3
– volume: 3
  start-page: 73
  year: 2014
  ident: 3663_CR15
  publication-title: Mol Metab
  doi: 10.1016/j.molmet.2013.10.007
– reference: 11846623 - Pharmacol Res. 2002 Feb;45(2):119-24
– reference: 21172367 - Physiol Behav. 2011 Mar 28;102(5):491-5
– reference: 10199600 - Neuroscience. 1999 Mar;89(3):637-41
– reference: 22011680 - Nat Rev Neurosci. 2011 Oct 20;12(11):638-51
– reference: 24093681 - Cell Metab. 2013 Oct 1;18(4):588-95
– reference: 17077189 - Endocr Rev. 2006 Dec;27(7):736-49
– reference: 10493100 - Eur J Pharmacol. 1999 Aug 13;378(3):249-58
– reference: 16434123 - Peptides. 2006 Feb;27(2):281-90
– reference: 9311920 - Science. 1997 Oct 3;278(5335):135-8
– reference: 17604133 - Trends Neurosci. 2007 Aug;30(8):375-81
– reference: 22785313 - Nature. 2012 Jul 11;487(7406):183-9
– reference: 2835562 - Life Sci. 1988;42(17):1651-7
– reference: 8415620 - Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8856-60
– reference: 8987806 - J Neurosci. 1997 Jan 15;17 (2):851-61
– reference: 21364278 - J Clin Invest. 2011 Apr;121(4):1424-8
– reference: 10571544 - Acta Physiol Scand. 1999 Oct;167(2):99-104
– reference: 15659233 - J Neurochem. 2005 Feb;92(3):637-46
– reference: 9458925 - Am J Physiol. 1998 Jan;274(1 Pt 2):R248-54
– reference: 10896863 - Am J Physiol Regul Integr Comp Physiol. 2000 Jul;279(1):R47-52
– reference: 23010797 - Psychopharmacology (Berl). 2013 Mar;226(1):25-34
– reference: 22081158 - Nat Neurosci. 2011 Nov 13;14 (12 ):1562-8
– reference: 24567906 - Mol Metab. 2013 Dec 05;3(1):73-80
– reference: 21338878 - Neuron. 2011 Feb 24;69(4):664-79
– reference: 22801496 - Nature. 2012 Aug 9;488(7410):172-7
– reference: 9751529 - Endocrinology. 1998 Oct;139(10):4428-31
– reference: 7623143 - J Neurosci. 1995 Jul;15(7 Pt 2):5169-78
– reference: 3237847 - Physiol Behav. 1988;44(4-5):599-606
– reference: 7472425 - J Neurosci. 1995 Oct;15(10):6640-50
– reference: 7375926 - Science. 1980 Jun 6;208(4448):1168-70
– reference: 21209617 - Nat Neurosci. 2011 Mar;14(3):351-5
– reference: 15869520 - Eur J Neurosci. 2005 Apr;21(8):2233-42
– reference: 9019399 - Cell. 1997 Jan 10;88(1):131-41
– reference: 10973258 - Nat Genet. 2000 Sep;26(1):97-102
– reference: 24605830 - Endocrinology. 2014 May;155(5):1718-27
– reference: 12541307 - J Comp Neurol. 2003 Mar 10;457(3):213-35
– reference: 23007187 - Nat Neurosci. 2012 Oct;15(10):1330-5
– reference: 11369941 - Nat Neurosci. 2001 Jun;4(6):605-11
– reference: 18234306 - Pharmacol Biochem Behav. 2008 May;89(3):263-71
– reference: 20493104 - Neurochem Int. 1986;9(1):85-9
– reference: 15135895 - Neurosci Lett. 2004 May 6;361(1-3):68-71
– reference: 12686465 - Regul Pept. 2003 May 15;113(1-3):85-8
– reference: 14660021 - Eur J Pharmacol. 2003 Dec 15;482(1-3):185-7
– reference: 10965927 - Endocrinology. 2000 Sep;141(9):3518-21
– reference: 8990120 - Nature. 1997 Jan 9;385(6612):165-8
– reference: 11860189 - Cell Mol Neurobiol. 2001 Oct;21(5):523-33
– reference: 21239438 - Endocrinology. 2011 Mar;152(3):890-902
– reference: 12027377 - Appetite. 2002 Apr;38(2):155-60
– reference: 12904474 - J Neurosci. 2003 Aug 6;23(18):7143-54
– reference: 15856065 - Nat Neurosci. 2005 May;8(5):571-8
SSID ssj0000484
ssj0068394
Score 2.2699049
Snippet Rationale The mesolimbic dopamine system is an important component of the neural circuitry controlling reward-related behavior. We have recently shown that the...
The mesolimbic dopamine system is an important component of the neural circuitry controlling reward-related behavior. We have recently shown that the...
Rationale The mesolimbic dopamine system is an important component of the neural circuitry controlling reward-related behavior. We have recently shown that the...
Rationale: The mesolimbic dopamine system is an important component of the neural circuitry controlling reward-related behavior. We have recently shown that...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 285
SubjectTerms Animals
Biomedical and Life Sciences
Biomedicine
Body weight
Choice Behavior - drug effects
Choice Behavior - physiology
Dopamine
Dose-Response Relationship, Drug
Eating - drug effects
Eating - physiology
Food
Health aspects
Hormones
Injections, Intraventricular
Male
Melanocortins - administration & dosage
Neurosciences
Original Investigation
Peptides
Pharmacology/Toxicology
Psychiatry
Psychopharmacology
Rats
Rats, Sprague-Dawley
Reward
Rewards
Rodents
Sucrose
Sucrose - administration & dosage
Ventral Tegmental Area - drug effects
Ventral Tegmental Area - physiology
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDDdbB2MvZe2-snbDg9HB1rA4iR3naZRupQw6-tDCvQXHUcqNLmmb3KAP_d8n2UmuV9i9XYicOCdZlizpJ8Y-mqy0SSXqEAW4ClOoo1BXEeBlrrSqIPKHOSe_1PF5-nMmZ8OBWzekVY460SnqqrV0Rv4VzXohMp0I8e3qOqSuURRdHVpoPGZPCLqMUrqyWbbUxCkVYfoLhZaAh2ROqKBM6jHEGTlE0ZiaHIg0THAHDtXKJvVQVd_bqx4ET92edPScbQ7GJD_w3N9ij6DZZk9PhnD5Nts79cDUt_v8bFln1e3zPX66hKy-fcHuvjvrsYOKW1eT6RQJb2t-A5RWi2_n3YImC3wSVu76i_N589ulcznyP3BpmhY92n6OBPOmbzlamPyvP0PmPVz4ZgLc4Ovc803fvWTnRz_ODo_DoTFDaNMs7sMYgOKpuS5zbYQ0iSqjGk0FbfGHlDY2IrFRZtEXRIuqTI3Q6DmVlcmUSWqA5BXbaNoG3jDuYEmhNCArdAQFlMravE4rDYqw8EzAopEThR1Qy6l5xmUx4S075hXIvIKYV6iAfZ6GXHnIjnXEn4i9BS1nfK41Q1UCzo6AsYoD9H8jlcs0DtjuCiUuQ7t6exSQYlADXbEU2oB9mG7TSEpta6BdeBottU6itTQEm69TGbDXXvimT8O_DYfnOIEvozTem8D_vvvt-unusGdoGUp_1rTLNvqbBbxD66sv37sl9g-oYijE
  priority: 102
  providerName: ProQuest
Title Decreased consumption of rewarding sucrose solutions after injection of melanocortins into the ventral tegmental area of rats
URI https://link.springer.com/article/10.1007/s00213-014-3663-6
https://www.ncbi.nlm.nih.gov/pubmed/24985892
https://www.proquest.com/docview/1641178311
https://www.proquest.com/docview/1641858830
https://www.proquest.com/docview/1647019845
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xTUK8IBhfhVEZCQ0JFilfdpzHFlom0KoKrVJ5ihzngopGipYUaQ_875ztJF0nmMRTGuXsOL2z78539zPAa5XkOiqC0iMBLrwYS9-ThY90mwopCvTdZs7ZTJwu4k9LvmzruOsu270LSdqVui92M-rI5P7EXkRq0hN7cMCN605CvAhH2-U3NpWX7kaQ-nc4zJGpIuOyi2v-rb8dzXRzfb6moG5ETK0imj6A-60FyUaO5Q_hDlaHcPesjZEfwvHcoVFfnbDzbXFVfcKO2XyLU331CH5_sCZjjQXTthDTrh5sXbJLNLm09HZWb8xgkfUSyuyh4mxVfbc5XJb8B16oak1ubLMiglXVrBmZleyX2zhmDX5zJwgwRa-z_aumfgyL6eT8_anXnsbg6TgJGy9ENEHUVOapVAFXkcj9kuwDqekH5zpUQaT9RJMDSGZUHqtAkruUFyoRKioRoyewX60rfAbMYpFirpAX5P0FmAut0zIuJAoDgKcG4HecyHQLVW5OzLjIepBly7yMmJcZ5mViAG_7Jj8dTsdtxG8MezMzh6lfrdpSBBqdQcPKRuT0-iLlcTiAox1Kmnt693EnIFk79-uMHNAgSGQUBAN41T82LU0-W4XrjaORXMrIv5XGYOXLmA_gqRO-_tPob6PmKQ3gXSeN1wbwr-9-_l_UL-AeWYfc7TcdwX5zucGXZIE1-RD2kmUyhIPRdDyemevHr58ndB1PZvMvQzsf_wAykirY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEIyvwgAjwZDYIvLpOg8IDbapY2tVoU7aW3CcCyoayVhSUB_4l_gbOdtJu06ib3tLlLPj5M73Yft-B_BK9lIVZF7ukABnToi564jMRbqNueAZunYxZzDk_ZPw82l0ugZ_21wYfayy1YlGUWel0mvk78it97yeCDzvw_lPR1eN0rurbQkNKxZHOPtNIVv1_nCP-Pva9w_2x5_6TlNVwFFhz68dH1FvBsYijYX0Ihnw1M3JzglFF1GkfOkFyu0pCmTIHUhD6Qly-9NM9rgMcsSA-r0B62FAoUwH1j_uD0dfFro_1Gmf9oaT72FBoAOdwhaJdlPVNRimvi6r4IVOQDbf4Utm8apxuGQdr2zXGit4cBfuNO4r27Xydg_WsNiAm4Nmg34DtkYWCnu2w8aLzK5qh22x0QIke3Yf_uwZf7XCjCmTBWpUFytzdoH6IC-9nVVTPVhk8-nBTEVzNim-mwNkhvwHnsmipBi6nhDBpKhLRj4t-2VXrVmN32z5AibpdaZ_WVcP4ORamPYQOkVZ4GNgBggVU4lRRqGnhylXKs7DTCDX6HuyC27LiUQ1OOm6XMdZMkd4NsxLiHmJZl7Cu_B23uTcgoSsIn6j2ZtoBUL9KtnkQdDoNBRXsksRt8vjKPS7sLlESRNfLT9uBSRpFE-VLKZJF17OH-uW-jBdgeXU0ohIiMBdSaOB-kUYdeGRFb75p9Fvo-YxDWC7lcZLA_jfdz9ZPdwXcKs_Hhwnx4fDo6dwm_zSyK50bUKnvpjiM_L96vR5M-EYfL3uOf4PKHZl3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8aQ5q4IBhfgQFGgiHBosVJ7DgHhCZKtTE29bBJvWWO46CikYwlBfXAP8Zfx7OdtOsketutUZ4Tp-_b9vs9gNcyyVVU0NJHAS78WJeBL4pA42XKBS904BZzjo75_mn8ZczGa_C3r4Uxxyp7m2gNdVErs0a-i2E9pYmIKN0tu2MRo8Hw48VP33SQMjutfTsNJyKHevYb07fmw8EAef0mDIefTz7t-12HAV_FSdj6odZmYzAVeSokZTLieVCizxMKfzCmQkkjFSQKkxoMDfJYUoEpQF7IhMuo1DrC596C20nEqNGxZJwsvEBsCkDdBccoxMFBR6aYjYl-ezWwaKahabBAYz9C7-_zJQd53U1c8ZPXNm6tPxzeg7tdIEv2nOTdhzVdbcLGUbdVvwnbIweKPdshJ4sar2aHbJPRAi579gD-DGzk2uiCKFsPao0YqUtyqc2RXnw7aaZmsprMFYXY3uZkUn23R8ks-Q99Lqsas-l2ggSTqq0JRrfkl1u_Jq3-5hoZEImvs8-XbfMQTm-EZY9gvaor_QSIhUTVudSswCSU6pwrlZZxITQ3OHzSg6DnRKY6xHTTuOM8m2M9W-ZlyLzMMC_jHrybD7lwcCGriN8a9mbGlOBzlewqInB2BpQr28PcO-Api0MPtpYo0QSo5du9gGSdCWqyhcJ48Gp-24w0x-oqXU8djWBCRMFKGgPZL2LmwWMnfPNPw78Nh6c4gfe9NF6ZwP----nq6b6EDdTs7OvB8eEzuIMBKnNLXluw3l5O9XMMAtv8hdU2Amc3rd7_ABW3aK8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decreased+consumption+of+rewarding+sucrose+solutions+after+injection+of+melanocortins+into+the+ventral+tegmental+area+of+rats&rft.jtitle=Psychopharmacology+%28Berlin%2C+Germany%29&rft.au=Yen%2C+Haw-Han&rft.au=Roseberry%2C+Aaron+G&rft.date=2015-01-01&rft.eissn=1432-2072&rft.volume=232&rft.issue=1&rft.spage=285&rft_id=info:doi/10.1007%2Fs00213-014-3663-6&rft_id=info%3Apmid%2F24985892&rft.externalDocID=24985892
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-3158&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-3158&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-3158&client=summon