Direct analysis of airborne microplastics collected on quartz filters by pyrolysis-gas chromatography/mass spectrometry
This paper reports the direct analysis of polymer components in the airborne particulates collected on quartz filters by pyrolysis (Py)-GC/MS. The airborne microplastics (AMPs) were collected with three classification stages depending on different aerodynamic diameters using a multi-nozzle cascade i...
Saved in:
Published in | Journal of Analytical and Applied Pyrolysis Vol. 171; p. 105946 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2023
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper reports the direct analysis of polymer components in the airborne particulates collected on quartz filters by pyrolysis (Py)-GC/MS. The airborne microplastics (AMPs) were collected with three classification stages depending on different aerodynamic diameters using a multi-nozzle cascade impact (MCI) sampler. The quartz filter holding AMPs was punched directly into several pieces without pretreatment procedures. Three pieces were introduced into a sample cup, and Py-GC/MS measurements were done to analyze AMPs. Evolved gas analysis (EGA) of AMPs showed the volatilization of phthalates, the generation of sulfur dioxide and nitrogen oxide, and the thermal decomposition of polymer components as the heating temperature increased. In thermal desorption (TD)-GC/MS prior to Py-GC/MS, polycyclic aromatic hydrocarbons were detected in addition to phthalates and some aliphatic carboxylic acids. The following Py-GC/MS results indicated the presence of polyethylene, polypropylene (PP), polystyrene (PS), styrene-butadiene rubber (SBR), and natural rubber in AMPs. Among these polymers, PS, PP, and SBR were quantified using the indicator ions of their characteristic pyrolysis products. The analytical results showed that PS and PP seem to accumulate in the smaller aerodynamic diameter stage, while SBR appears to collect in the larger one. The analytical method using Py-GC/MS described herein is a powerful one that requires no pretreatment of the AMP samples.
[Display omitted]
•AMPs were collected on quartz filters depending on different aerodynamic diameters.•Different shapes of EGA curves among the stages in aerodynamic diameter.•TD-GC/MS detected phthalates, aliphatic carboxylic acids, and PAHs.•Double-shot method distinguishes PAHs originating from the atmosphere and pyrolysis.•The tendency of MPs mass concentrations was dependent on aerodynamic diameter. |
---|---|
AbstractList | This paper reports the direct analysis of polymer components in the airborne particulates collected on quartz filters by pyrolysis (Py)-GC/MS. The airborne microplastics (AMPs) were collected with three classification stages depending on different aerodynamic diameters using a multi-nozzle cascade impact (MCI) sampler. The quartz filter holding AMPs was punched directly into several pieces without pretreatment procedures. Three pieces were introduced into a sample cup, and Py-GC/MS measurements were done to analyze AMPs. Evolved gas analysis (EGA) of AMPs showed the volatilization of phthalates, the generation of sulfur dioxide and nitrogen oxide, and the thermal decomposition of polymer components as the heating temperature increased. In thermal desorption (TD)-GC/MS prior to Py-GC/MS, polycyclic aromatic hydrocarbons were detected in addition to phthalates and some aliphatic carboxylic acids. The following Py-GC/MS results indicated the presence of polyethylene, polypropylene (PP), polystyrene (PS), styrene-butadiene rubber (SBR), and natural rubber in AMPs. Among these polymers, PS, PP, and SBR were quantified using the indicator ions of their characteristic pyrolysis products. The analytical results showed that PS and PP seem to accumulate in the smaller aerodynamic diameter stage, while SBR appears to collect in the larger one. The analytical method using Py-GC/MS described herein is a powerful one that requires no pretreatment of the AMP samples. This paper reports the direct analysis of polymer components in the airborne particulates collected on quartz filters by pyrolysis (Py)-GC/MS. The airborne microplastics (AMPs) were collected with three classification stages depending on different aerodynamic diameters using a multi-nozzle cascade impact (MCI) sampler. The quartz filter holding AMPs was punched directly into several pieces without pretreatment procedures. Three pieces were introduced into a sample cup, and Py-GC/MS measurements were done to analyze AMPs. Evolved gas analysis (EGA) of AMPs showed the volatilization of phthalates, the generation of sulfur dioxide and nitrogen oxide, and the thermal decomposition of polymer components as the heating temperature increased. In thermal desorption (TD)-GC/MS prior to Py-GC/MS, polycyclic aromatic hydrocarbons were detected in addition to phthalates and some aliphatic carboxylic acids. The following Py-GC/MS results indicated the presence of polyethylene, polypropylene (PP), polystyrene (PS), styrene-butadiene rubber (SBR), and natural rubber in AMPs. Among these polymers, PS, PP, and SBR were quantified using the indicator ions of their characteristic pyrolysis products. The analytical results showed that PS and PP seem to accumulate in the smaller aerodynamic diameter stage, while SBR appears to collect in the larger one. The analytical method using Py-GC/MS described herein is a powerful one that requires no pretreatment of the AMP samples. [Display omitted] •AMPs were collected on quartz filters depending on different aerodynamic diameters.•Different shapes of EGA curves among the stages in aerodynamic diameter.•TD-GC/MS detected phthalates, aliphatic carboxylic acids, and PAHs.•Double-shot method distinguishes PAHs originating from the atmosphere and pyrolysis.•The tendency of MPs mass concentrations was dependent on aerodynamic diameter. |
ArticleNumber | 105946 |
Author | Takeuchi, Masaki Watanabe, Chuichi Teramae, Norio Takayanagi, Toshio Pipkin, William Kinoshita, Kyosuke Takeda, Hiroto Mizuguchi, Hitoshi Watanabe, Atsushi Matsui, Kazuko |
Author_xml | – sequence: 1 givenname: Hitoshi orcidid: 0000-0003-2396-6812 surname: Mizuguchi fullname: Mizuguchi, Hitoshi email: mizu@tokushima-u.ac.jp organization: Department of Applied Chemistry, Tokushima University, Tokushima 770-8506, Japan – sequence: 2 givenname: Hiroto surname: Takeda fullname: Takeda, Hiroto organization: Department of Applied Chemistry, Tokushima University, Tokushima 770-8506, Japan – sequence: 3 givenname: Kyosuke surname: Kinoshita fullname: Kinoshita, Kyosuke organization: Faculty of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan – sequence: 4 givenname: Masaki surname: Takeuchi fullname: Takeuchi, Masaki email: masaki.takeuchi@tokushima-u.ac.jp organization: Faculty of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan – sequence: 5 givenname: Toshio surname: Takayanagi fullname: Takayanagi, Toshio organization: Department of Applied Chemistry, Tokushima University, Tokushima 770-8506, Japan – sequence: 6 givenname: Norio surname: Teramae fullname: Teramae, Norio organization: Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan – sequence: 7 givenname: William surname: Pipkin fullname: Pipkin, William email: william.pipkin@gmail.com organization: Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-579, Japan – sequence: 8 givenname: Kazuko surname: Matsui fullname: Matsui, Kazuko organization: Frontier Laboratories Ltd., Koriyama, Fukushima 963-8862, Japan – sequence: 9 givenname: Atsushi surname: Watanabe fullname: Watanabe, Atsushi organization: Frontier Laboratories Ltd., Koriyama, Fukushima 963-8862, Japan – sequence: 10 givenname: Chuichi surname: Watanabe fullname: Watanabe, Chuichi organization: Frontier Laboratories Ltd., Koriyama, Fukushima 963-8862, Japan |
BackLink | https://cir.nii.ac.jp/crid/1871429166257539712$$DView record in CiNii |
BookMark | eNp9kUtv3SAQRlGVSr15_IGuWHTRjW94GWypmyp9SpG6SaXsEMbjhCsMDnBbub--3LirLrIBaXTODHxzjs5CDIDQW0r2lFB5fdgfjFn2jDBeC20v5Cu0o53iDWvJ_RnaVahtGFfkDTrP-UAIkZJ2O_T7k0tgCzbB-DW7jOOEjUtDTAHw7GyKize5OJuxjd5XFEYcA346mlT-4Mn5AinjYcXLmuJzi-bBVPgxxdmU-JDM8rhezyZnnJeq1zKUtF6i15PxGa7-3Rfo55fPdzffmtsfX7_ffLxtrFCsNIxR1grDKFW94Woa-DRIxaZp6gUb1QhKWtJ2QwdjawXtuewEJ2IUkgAZe8Ev0Put75Li0xFy0bPLFrw3AeIx6woTwVolVUW7Da2fzjnBpK0rprgYSjLOa0r0KWt90Kes9SlrvWVdVfafuiQ3m7S-LL3bpOBcHXU668aoYD2Vsj6p5b2irGIfNgxqTL8cJJ2tg2BhfN6cHqN7acpfW86m_Q |
CitedBy_id | crossref_primary_10_1007_s11244_024_01927_7 crossref_primary_10_1016_j_jhazmat_2025_137292 crossref_primary_10_3390_bios15010044 crossref_primary_10_1016_j_scitotenv_2024_170262 crossref_primary_10_1002_cpz1_1104 crossref_primary_10_1016_j_scitotenv_2024_173031 crossref_primary_10_1021_acs_analchem_4c05335 crossref_primary_10_1016_j_psep_2024_01_080 crossref_primary_10_1039_D4AN00702F crossref_primary_10_1016_j_envpol_2025_126034 crossref_primary_10_1007_s10337_024_04359_3 crossref_primary_10_1186_s12989_024_00592_8 crossref_primary_10_1016_j_tifs_2025_104964 crossref_primary_10_3389_fenvs_2023_1297646 crossref_primary_10_1021_acsestair_3c00035 crossref_primary_10_1088_2515_7620_ad75eb crossref_primary_10_1016_j_greeac_2024_100191 crossref_primary_10_1016_j_jhazmat_2024_133981 crossref_primary_10_1016_j_rsma_2024_103880 crossref_primary_10_1007_s10311_024_01778_4 crossref_primary_10_1016_j_watres_2024_122061 |
Cites_doi | 10.1016/j.marpolbul.2016.01.006 10.1002/0471238961.1612011903010415.a01 10.1016/j.watres.2018.05.060 10.2116/analsci.20SAR04 10.1039/C9AY00600A 10.3390/microplastics1020016 10.1021/acs.est.2c05850 10.1063/1.882420 10.3389/fsufs.2018.00081 10.1002/etc.4268 10.1001/jama.2022.11254 10.1016/j.scitotenv.2020.137823 10.1016/j.mex.2019.100778 10.1016/j.atmosenv.2007.12.010 10.1016/j.scitotenv.2020.139990 10.1038/s41561-019-0335-5 10.1016/j.jaap.2020.104993 10.2116/analsci.27.1087 10.1021/acs.est.0c02337 10.1016/j.apr.2022.101533 10.1016/j.envpol.2019.06.030 10.1016/j.jaap.2021.105188 10.1016/j.jaut.2009.11.009 10.1016/j.trac.2020.115964 10.1038/d41586-021-01143-3 10.1007/s10661-019-7842-0 10.1177/0003702820921465 10.1016/j.envpol.2022.120442 10.1016/j.jhazmat.2021.126245 10.1016/j.scitotenv.2019.02.278 10.1016/j.marpolbul.2018.11.022 10.1016/j.jaap.2005.12.007 10.1080/02786820903204060 10.1007/s10311-008-0169-7 10.1016/j.envpol.2021.118190 10.1021/acs.est.7b05829 10.1016/j.jaap.2022.105707 10.3390/ijerph17041212 10.1016/j.trac.2020.115981 10.1021/acs.est.0c04522 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | RYH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jaap.2023.105946 |
DatabaseName | CiNii Complete CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-250X |
ExternalDocumentID | 10_1016_j_jaap_2023_105946 S0165237023000906 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCH SDF SDG SES SEW SPC SPCBC SSK SSZ T5K TN5 WUQ YK3 ~02 ~G- AAHBH AATTM AAXKI AAYWO ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV RYH SSH AAYXX ABWVN ACRPL ADNMO AGQPQ CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c472t-221254a21179a37fb3fb672fff942d7de76c058b8ed5c4193684304d460e0d943 |
IEDL.DBID | .~1 |
ISSN | 0165-2370 |
IngestDate | Fri Jul 11 05:04:43 EDT 2025 Thu Apr 24 22:52:25 EDT 2025 Tue Jul 01 01:23:54 EDT 2025 Thu Jun 26 23:10:33 EDT 2025 Fri Feb 23 02:34:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pyrolysis-GC/MS Double-shot method Airborne microplastics Multi-nozzle cascade impact sampler |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-221254a21179a37fb3fb672fff942d7de76c058b8ed5c4193684304d460e0d943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2396-6812 0000-0003-1000-5799 0000-0002-5767-1126 |
OpenAccessLink | https://cir.nii.ac.jp/crid/1871429166257539712 |
PQID | 3040425767 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3040425767 crossref_citationtrail_10_1016_j_jaap_2023_105946 crossref_primary_10_1016_j_jaap_2023_105946 nii_cinii_1871429166257539712 elsevier_sciencedirect_doi_10_1016_j_jaap_2023_105946 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Analytical and Applied Pyrolysis |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Hendrickson, Minor, Schreiner (bib23) 2018; 52 Ravindra, Sokhi, Van Grieken (bib38) 2008; 42 Lamichhane, Acharya, Marahatha, Modi, Paudel, Adhikari, Raut, Aryal, Parajuli (bib2) 2022 Baensch-Baltruschat, Kocher, Stock, Reifferscheid (bib40) 2020; 733 Frias, Nash (bib1) 2019; 138 Fischer, Scholz-Böttcher (bib24) 2019; 11 J.H. Seinfeld, S.N. Pandis, 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, 1998. Dong, Zhang, Xing, Chen, She, Luo (bib18) 2020; 739 Lim (bib19) 2021; 593 Johannessen, Liggio, Zhang, Saini, Harner (bib36) 2022; 13 Terán, Gonzalez-Vila, Gonzalez-Perez (bib34) 2009; 7 Fischer, Goßmann, Scholz-Böttcher (bib41) 2019; 144 Picó, Barceló (bib20) 2020; 130 Ishimura, Iwai, Matsui, Mattonai, Watanabe, Robberson, Cook, Allen, Pipkin, Teramae, Ohtani, Watanabe (bib42) 2021; 157 Tei, Matsueda, Matsui, Ishimura, Watanabe, Pipkin, Teramae, Ohtani, Watanabe (bib43) 2022; 168 D.F. Cadogan, C.J. Howick, 2000. Plasticizers, in: Kirk-Othmer Encycl. Chem. Technol., John Wiley & Sons, Ltd, 2000. https://doi.org/10.1002/0471238961.1612011903010415.a01. Campanale, Massarelli, Savino, Locaputo, Uricchio (bib5) 2020; 17 Bouzid, Anquetil, Dris, Gasperi, Tassin, Derenne (bib27) 2022; 1 Enyoh, Verla, Verla, Ibe, Amaobi (bib12) 2019; 191 Suran (bib13) 2022; 328 Primpke, Christiansen, Cowger, De Frond, Deshpande, Fischer, Holland, Meyns, O’Donnell, Ossmann, Pittroff, Sarau, Scholz-Böttcher, Wiggin (bib15) 2020; 74 Sridharan, Kumar, Singh, Bolan, Saha (bib8) 2021; 418 Araujo, Nolasco, Ribeiro, Ribeiro-Claro (bib17) 2018; 142 Dibke, Fischer, Scholz-Böttcher (bib25) 2021; 55 Roberts (bib30) 2009; 43 Chen, Fu, Yang, Wang (bib14) 2020; 130 Tourinho, Kočí, Loureiro, van Gestel (bib6) 2019; 252 Dris, Gasperi, Saad, Mirande, Tassin (bib4) 2016; 104 Funck, Yildirim, Nickel, Schram, Schmidt, Tuerk (bib22) 2020; 7 Allen, Allen, Phoenix, Le Roux, Durántez Jiménez, Simonneau, Binet, Galop (bib9) 2019; 12 Kumagai, Yoshioka (bib21) 2021; 37 Fan, Salmond, Dirks, Cabedo Sanz, Miskelly, Rindelaub (bib29) 2022; 56 Watteau, Dignac, Bouchard, Revallier, Houot (bib26) 2018; 2 Chang (bib10) 2010; 34 Matsueda, Mattonai, Iwai, Watanabe, Teramae, Robberson, Ohtani, Kim, Watanabe (bib31) 2021; 154 Stanton, Johnson, Nathanail, MacNaughtan, Gomes (bib16) 2019; 666 Burns, Boxall (bib7) 2018; 37 Watanabe, Takeda, Freeman, Ohtani (bib32) 2011; 27 Jung, Sampath, Prunicki, Aguilera, Allen, LaBeaud, Veidis, Barry, Erny, Patel, Akdis, Akdis, Nadeau (bib3) 2022; 315 Ribeiro, Okoffo, O’Brien, Fraissinet-Tachet, O’Brien, Gallen, Samanipour, Kaserzon, Mueller, Galloway, Thomas (bib28) 2020; 54 Lett, Hall, Skidmore, Alves (bib11) 2021; 291 Quénéa, Derenne, González-Vila, González-Pérez, Mariotti, Largeau (bib33) 2006; 76 S. Tsuge, H. Ohtani, C. Watanabe, 2011. Pyrolysis - GC/MS Data Book of Synthetic Polymers: Pyrograms, Thermograms and MS of Pyrolyzates, Elsevier, 2011. Dris (10.1016/j.jaap.2023.105946_bib4) 2016; 104 Dibke (10.1016/j.jaap.2023.105946_bib25) 2021; 55 10.1016/j.jaap.2023.105946_bib37 Ravindra (10.1016/j.jaap.2023.105946_bib38) 2008; 42 10.1016/j.jaap.2023.105946_bib39 Chang (10.1016/j.jaap.2023.105946_bib10) 2010; 34 Picó (10.1016/j.jaap.2023.105946_bib20) 2020; 130 Fischer (10.1016/j.jaap.2023.105946_bib24) 2019; 11 10.1016/j.jaap.2023.105946_bib35 Suran (10.1016/j.jaap.2023.105946_bib13) 2022; 328 Stanton (10.1016/j.jaap.2023.105946_bib16) 2019; 666 Allen (10.1016/j.jaap.2023.105946_bib9) 2019; 12 Kumagai (10.1016/j.jaap.2023.105946_bib21) 2021; 37 Johannessen (10.1016/j.jaap.2023.105946_bib36) 2022; 13 Frias (10.1016/j.jaap.2023.105946_bib1) 2019; 138 Lamichhane (10.1016/j.jaap.2023.105946_bib2) 2022 Lim (10.1016/j.jaap.2023.105946_bib19) 2021; 593 Watanabe (10.1016/j.jaap.2023.105946_bib32) 2011; 27 Roberts (10.1016/j.jaap.2023.105946_bib30) 2009; 43 Sridharan (10.1016/j.jaap.2023.105946_bib8) 2021; 418 Funck (10.1016/j.jaap.2023.105946_bib22) 2020; 7 Quénéa (10.1016/j.jaap.2023.105946_bib33) 2006; 76 Fan (10.1016/j.jaap.2023.105946_bib29) 2022; 56 Ishimura (10.1016/j.jaap.2023.105946_bib42) 2021; 157 Primpke (10.1016/j.jaap.2023.105946_bib15) 2020; 74 Tei (10.1016/j.jaap.2023.105946_bib43) 2022; 168 Dong (10.1016/j.jaap.2023.105946_bib18) 2020; 739 Tourinho (10.1016/j.jaap.2023.105946_bib6) 2019; 252 Burns (10.1016/j.jaap.2023.105946_bib7) 2018; 37 Bouzid (10.1016/j.jaap.2023.105946_bib27) 2022; 1 Chen (10.1016/j.jaap.2023.105946_bib14) 2020; 130 Araujo (10.1016/j.jaap.2023.105946_bib17) 2018; 142 Matsueda (10.1016/j.jaap.2023.105946_bib31) 2021; 154 Enyoh (10.1016/j.jaap.2023.105946_bib12) 2019; 191 Jung (10.1016/j.jaap.2023.105946_bib3) 2022; 315 Hendrickson (10.1016/j.jaap.2023.105946_bib23) 2018; 52 Lett (10.1016/j.jaap.2023.105946_bib11) 2021; 291 Ribeiro (10.1016/j.jaap.2023.105946_bib28) 2020; 54 Terán (10.1016/j.jaap.2023.105946_bib34) 2009; 7 Watteau (10.1016/j.jaap.2023.105946_bib26) 2018; 2 Baensch-Baltruschat (10.1016/j.jaap.2023.105946_bib40) 2020; 733 Campanale (10.1016/j.jaap.2023.105946_bib5) 2020; 17 Fischer (10.1016/j.jaap.2023.105946_bib41) 2019; 144 |
References_xml | – volume: 12 start-page: 339 year: 2019 end-page: 344 ident: bib9 article-title: Atmospheric transport and deposition of microplastics in a remote mountain catchment publication-title: Nat. Geosci. – volume: 34 start-page: J234 year: 2010 end-page: J246 ident: bib10 article-title: The immune effects of naturally occurring and synthetic nanoparticles publication-title: J. Autoimmun. – volume: 7 year: 2020 ident: bib22 article-title: Identification of microplastics in wastewater after cascade filtration using Pyrolysis-GC–MS publication-title: MethodsX – volume: 418 year: 2021 ident: bib8 article-title: Microplastics as an emerging source of particulate air pollution: a critical review publication-title: J. Hazard. Mater. – volume: 1 start-page: 229 year: 2022 end-page: 239 ident: bib27 article-title: Quantification of microplastics by pyrolysis coupled with gas chromatography and mass spectrometry in sediments: challenges and implications publication-title: Microplastics – volume: 138 start-page: 145 year: 2019 end-page: 147 ident: bib1 article-title: Microplastics: finding a consensus on the definition publication-title: Mar. Pollut. Bull. – volume: 76 start-page: 271 year: 2006 end-page: 279 ident: bib33 article-title: Double-shot pyrolysis of the non-hydrolysable organic fraction isolated from a sandy forest soil (Landes de Gascogne, South-West France): comparison with classical Curie point pyrolysis publication-title: J. Anal. Appl. Pyrolysis – volume: 56 start-page: 17556 year: 2022 end-page: 17568 ident: bib29 article-title: Evidence and mass quantification of atmospheric microplastics in a coastal New Zealand City publication-title: Environ. Sci. Technol. – reference: D.F. Cadogan, C.J. Howick, 2000. Plasticizers, in: Kirk-Othmer Encycl. Chem. Technol., John Wiley & Sons, Ltd, 2000. https://doi.org/10.1002/0471238961.1612011903010415.a01. – reference: J.H. Seinfeld, S.N. Pandis, 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, 1998. – volume: 291 year: 2021 ident: bib11 article-title: Environmental microplastic and nanoplastic: exposure routes and effects on coagulation and the cardiovascular system publication-title: Environ. Pollut. – volume: 37 start-page: 145 year: 2021 end-page: 157 ident: bib21 article-title: Latest trends in pyrolysis gas chromatography for analytical and applied pyrolysis of plastics publication-title: Anal. Sci. – volume: 130 year: 2020 ident: bib20 article-title: Pyrolysis gas chromatography-mass spectrometry in environmental analysis: focus on organic matter and microplastics publication-title: TrAC Trends Anal. Chem. – volume: 130 year: 2020 ident: bib14 article-title: An overview of analytical methods for detecting microplastics in the atmosphere publication-title: TrAC Trends Anal. Chem. – volume: 328 start-page: 911 year: 2022 end-page: 913 ident: bib13 article-title: Microplastics are found outside in nature and inside the body—but evidence of health risks is inconclusive publication-title: JAMA – volume: 13 year: 2022 ident: bib36 article-title: Composition and transformation chemistry of tire-wear derived organic chemicals and implications for air pollution publication-title: Atmos. Pollut. Res – volume: 43 start-page: 1119 year: 2009 end-page: 1129 ident: bib30 article-title: Theory of Multi-Nozzle Impactor Stages and the Interpretation of Stage Mensuration Data publication-title: Aerosol Sci. Technol. – volume: 252 start-page: 1246 year: 2019 end-page: 1256 ident: bib6 article-title: Partitioning of chemical contaminants to microplastics: sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation publication-title: Environ. Pollut. – volume: 7 start-page: 301 year: 2009 end-page: 308 ident: bib34 article-title: Detection of organic contamination in sediments by double-shoot pyrolysis–GC/MS publication-title: Environ. Chem. Lett. – volume: 191 start-page: 668 year: 2019 ident: bib12 article-title: Airborne microplastics: a review study on method for analysis, occurrence, movement and risks publication-title: Environ. Monit. Assess. – volume: 74 start-page: 1012 year: 2020 end-page: 1047 ident: bib15 article-title: Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics publication-title: Appl. Spectrosc. – volume: 2 start-page: 81 year: 2018 ident: bib26 article-title: Microplastic detection in soil amended with municipal solid waste composts as revealed by transmission electronic microscopy and pyrolysis/GC/MS publication-title: Front. Sustain. Food Syst. – volume: 733 year: 2020 ident: bib40 article-title: Tyre and road wear particles (TRWP) - A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment publication-title: Sci. Total Environ. – volume: 315 year: 2022 ident: bib3 article-title: Characterization and regulation of microplastic pollution for protecting planetary and human health publication-title: Environ. Pollut. – volume: 37 start-page: 2776 year: 2018 end-page: 2796 ident: bib7 article-title: Microplastics in the aquatic environment: evidence for or against adverse impacts and major knowledge gaps publication-title: Environ. Toxicol. Chem. – volume: 27 start-page: 1087 year: 2011 end-page: 1090 ident: bib32 article-title: Development of a simple Vent-free interface for capillary gas chromatography-mass spectrometry publication-title: Anal. Sci. – volume: 52 start-page: 1787 year: 2018 end-page: 1796 ident: bib23 article-title: Microplastic abundance and composition in western lake superior as determined via microscopy, Pyr-GC/MS, and FTIR publication-title: Environ. Sci. Technol. – volume: 154 year: 2021 ident: bib31 article-title: Preparation and test of a reference mixture of eleven polymers with deactivated inorganic diluent for microplastics analysis by pyrolysis-GC–MS publication-title: J. Anal. Appl. Pyrolysis – reference: S. Tsuge, H. Ohtani, C. Watanabe, 2011. Pyrolysis - GC/MS Data Book of Synthetic Polymers: Pyrograms, Thermograms and MS of Pyrolyzates, Elsevier, 2011. – volume: 144 year: 2019 ident: bib41 article-title: Fleur de Sel—An interregional monitor for microplastics mass load and composition in European coastal waters publication-title: ?, J. Anal. Appl. Pyrolysis – volume: 157 year: 2021 ident: bib42 article-title: Qualitative and quantitative analysis of mixtures of microplastics in the presence of calcium carbonate by pyrolysis-GC/MS publication-title: J. Anal. Appl. Pyrolysis – volume: 104 start-page: 290 year: 2016 end-page: 293 ident: bib4 article-title: Synthetic fibers in atmospheric fallout: a source of microplastics in the environment publication-title: Mar. Pollut. Bull. – volume: 17 start-page: 1212 year: 2020 ident: bib5 article-title: A detailed review study on potential effects of microplastics and additives of concern on human health publication-title: Int. J. Environ. Res. Public. Health – volume: 142 start-page: 426 year: 2018 end-page: 440 ident: bib17 article-title: Identification of microplastics using Raman spectroscopy: latest developments and future prospects publication-title: Water Res – volume: 739 year: 2020 ident: bib18 article-title: Raman spectra and surface changes of microplastics weathered under natural environments publication-title: Sci. Total Environ. – volume: 11 start-page: 2489 year: 2019 end-page: 2497 ident: bib24 article-title: Microplastics analysis in environmental samples – recent pyrolysis-gas chromatography-mass spectrometry method improvements to increase the reliability of mass-related data publication-title: Anal. Methods – year: 2022 ident: bib2 article-title: Microplastics in environment: global concern, challenges, and controlling measures publication-title: Int. J. Environ. Sci. Technol. – volume: 54 start-page: 9408 year: 2020 end-page: 9417 ident: bib28 article-title: Quantitative analysis of selected plastics in high-commercial-value australian seafood by pyrolysis gas chromatography mass spectrometry publication-title: Environ. Sci. Technol. – volume: 55 start-page: 2285 year: 2021 end-page: 2295 ident: bib25 article-title: Microplastic mass concentrations and distribution in german bight waters by Pyrolysis–Gas chromatography–mass spectrometry/thermochemolysis reveal potential impact of marine coatings: do ships leave skid marks publication-title: Environ. Sci. Technol. – volume: 666 start-page: 377 year: 2019 end-page: 389 ident: bib16 article-title: Freshwater and airborne textile fibre populations are dominated by ‘natural’, not microplastic, fibres publication-title: Sci. Total Environ. – volume: 593 start-page: 22 year: 2021 end-page: 25 ident: bib19 article-title: Microplastics are everywhere — but are they harmful publication-title: Nature – volume: 42 start-page: 2895 year: 2008 end-page: 2921 ident: bib38 article-title: Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation publication-title: Atmos. Environ. – volume: 168 year: 2022 ident: bib43 article-title: Highly sensitive detection of polystyrene by on-line splitless pyrolysis-gas chromatography/mass spectrometry with cryo-trapping of pyrolyzates and forced venting of carrier gas publication-title: J. Anal. Appl. Pyrolysis – volume: 104 start-page: 290 year: 2016 ident: 10.1016/j.jaap.2023.105946_bib4 article-title: Synthetic fibers in atmospheric fallout: a source of microplastics in the environment publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.01.006 – ident: 10.1016/j.jaap.2023.105946_bib35 doi: 10.1002/0471238961.1612011903010415.a01 – volume: 142 start-page: 426 year: 2018 ident: 10.1016/j.jaap.2023.105946_bib17 article-title: Identification of microplastics using Raman spectroscopy: latest developments and future prospects publication-title: Water Res doi: 10.1016/j.watres.2018.05.060 – volume: 37 start-page: 145 year: 2021 ident: 10.1016/j.jaap.2023.105946_bib21 article-title: Latest trends in pyrolysis gas chromatography for analytical and applied pyrolysis of plastics publication-title: Anal. Sci. doi: 10.2116/analsci.20SAR04 – volume: 11 start-page: 2489 year: 2019 ident: 10.1016/j.jaap.2023.105946_bib24 article-title: Microplastics analysis in environmental samples – recent pyrolysis-gas chromatography-mass spectrometry method improvements to increase the reliability of mass-related data publication-title: Anal. Methods doi: 10.1039/C9AY00600A – ident: 10.1016/j.jaap.2023.105946_bib39 – volume: 1 start-page: 229 year: 2022 ident: 10.1016/j.jaap.2023.105946_bib27 article-title: Quantification of microplastics by pyrolysis coupled with gas chromatography and mass spectrometry in sediments: challenges and implications publication-title: Microplastics doi: 10.3390/microplastics1020016 – volume: 56 start-page: 17556 year: 2022 ident: 10.1016/j.jaap.2023.105946_bib29 article-title: Evidence and mass quantification of atmospheric microplastics in a coastal New Zealand City publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c05850 – ident: 10.1016/j.jaap.2023.105946_bib37 doi: 10.1063/1.882420 – volume: 2 start-page: 81 year: 2018 ident: 10.1016/j.jaap.2023.105946_bib26 article-title: Microplastic detection in soil amended with municipal solid waste composts as revealed by transmission electronic microscopy and pyrolysis/GC/MS publication-title: Front. Sustain. Food Syst. doi: 10.3389/fsufs.2018.00081 – volume: 37 start-page: 2776 year: 2018 ident: 10.1016/j.jaap.2023.105946_bib7 article-title: Microplastics in the aquatic environment: evidence for or against adverse impacts and major knowledge gaps publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.4268 – volume: 328 start-page: 911 year: 2022 ident: 10.1016/j.jaap.2023.105946_bib13 article-title: Microplastics are found outside in nature and inside the body—but evidence of health risks is inconclusive publication-title: JAMA doi: 10.1001/jama.2022.11254 – volume: 733 year: 2020 ident: 10.1016/j.jaap.2023.105946_bib40 article-title: Tyre and road wear particles (TRWP) - A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137823 – volume: 7 year: 2020 ident: 10.1016/j.jaap.2023.105946_bib22 article-title: Identification of microplastics in wastewater after cascade filtration using Pyrolysis-GC–MS publication-title: MethodsX doi: 10.1016/j.mex.2019.100778 – volume: 42 start-page: 2895 year: 2008 ident: 10.1016/j.jaap.2023.105946_bib38 article-title: Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2007.12.010 – volume: 739 year: 2020 ident: 10.1016/j.jaap.2023.105946_bib18 article-title: Raman spectra and surface changes of microplastics weathered under natural environments publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139990 – volume: 12 start-page: 339 year: 2019 ident: 10.1016/j.jaap.2023.105946_bib9 article-title: Atmospheric transport and deposition of microplastics in a remote mountain catchment publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0335-5 – volume: 154 year: 2021 ident: 10.1016/j.jaap.2023.105946_bib31 article-title: Preparation and test of a reference mixture of eleven polymers with deactivated inorganic diluent for microplastics analysis by pyrolysis-GC–MS publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2020.104993 – volume: 27 start-page: 1087 year: 2011 ident: 10.1016/j.jaap.2023.105946_bib32 article-title: Development of a simple Vent-free interface for capillary gas chromatography-mass spectrometry publication-title: Anal. Sci. doi: 10.2116/analsci.27.1087 – volume: 54 start-page: 9408 year: 2020 ident: 10.1016/j.jaap.2023.105946_bib28 article-title: Quantitative analysis of selected plastics in high-commercial-value australian seafood by pyrolysis gas chromatography mass spectrometry publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c02337 – volume: 13 year: 2022 ident: 10.1016/j.jaap.2023.105946_bib36 article-title: Composition and transformation chemistry of tire-wear derived organic chemicals and implications for air pollution publication-title: Atmos. Pollut. Res doi: 10.1016/j.apr.2022.101533 – volume: 252 start-page: 1246 year: 2019 ident: 10.1016/j.jaap.2023.105946_bib6 article-title: Partitioning of chemical contaminants to microplastics: sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.06.030 – volume: 157 year: 2021 ident: 10.1016/j.jaap.2023.105946_bib42 article-title: Qualitative and quantitative analysis of mixtures of microplastics in the presence of calcium carbonate by pyrolysis-GC/MS publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2021.105188 – volume: 34 start-page: J234 year: 2010 ident: 10.1016/j.jaap.2023.105946_bib10 article-title: The immune effects of naturally occurring and synthetic nanoparticles publication-title: J. Autoimmun. doi: 10.1016/j.jaut.2009.11.009 – volume: 130 year: 2020 ident: 10.1016/j.jaap.2023.105946_bib20 article-title: Pyrolysis gas chromatography-mass spectrometry in environmental analysis: focus on organic matter and microplastics publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2020.115964 – year: 2022 ident: 10.1016/j.jaap.2023.105946_bib2 article-title: Microplastics in environment: global concern, challenges, and controlling measures publication-title: Int. J. Environ. Sci. Technol. – volume: 593 start-page: 22 year: 2021 ident: 10.1016/j.jaap.2023.105946_bib19 article-title: Microplastics are everywhere — but are they harmful publication-title: Nature doi: 10.1038/d41586-021-01143-3 – volume: 191 start-page: 668 year: 2019 ident: 10.1016/j.jaap.2023.105946_bib12 article-title: Airborne microplastics: a review study on method for analysis, occurrence, movement and risks publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-019-7842-0 – volume: 74 start-page: 1012 year: 2020 ident: 10.1016/j.jaap.2023.105946_bib15 article-title: Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics publication-title: Appl. Spectrosc. doi: 10.1177/0003702820921465 – volume: 144 year: 2019 ident: 10.1016/j.jaap.2023.105946_bib41 article-title: Fleur de Sel—An interregional monitor for microplastics mass load and composition in European coastal waters publication-title: ?, J. Anal. Appl. Pyrolysis – volume: 315 year: 2022 ident: 10.1016/j.jaap.2023.105946_bib3 article-title: Characterization and regulation of microplastic pollution for protecting planetary and human health publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.120442 – volume: 418 year: 2021 ident: 10.1016/j.jaap.2023.105946_bib8 article-title: Microplastics as an emerging source of particulate air pollution: a critical review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126245 – volume: 666 start-page: 377 year: 2019 ident: 10.1016/j.jaap.2023.105946_bib16 article-title: Freshwater and airborne textile fibre populations are dominated by ‘natural’, not microplastic, fibres publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.278 – volume: 138 start-page: 145 year: 2019 ident: 10.1016/j.jaap.2023.105946_bib1 article-title: Microplastics: finding a consensus on the definition publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2018.11.022 – volume: 76 start-page: 271 year: 2006 ident: 10.1016/j.jaap.2023.105946_bib33 article-title: Double-shot pyrolysis of the non-hydrolysable organic fraction isolated from a sandy forest soil (Landes de Gascogne, South-West France): comparison with classical Curie point pyrolysis publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2005.12.007 – volume: 43 start-page: 1119 year: 2009 ident: 10.1016/j.jaap.2023.105946_bib30 article-title: Theory of Multi-Nozzle Impactor Stages and the Interpretation of Stage Mensuration Data publication-title: Aerosol Sci. Technol. doi: 10.1080/02786820903204060 – volume: 7 start-page: 301 year: 2009 ident: 10.1016/j.jaap.2023.105946_bib34 article-title: Detection of organic contamination in sediments by double-shoot pyrolysis–GC/MS publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-008-0169-7 – volume: 291 year: 2021 ident: 10.1016/j.jaap.2023.105946_bib11 article-title: Environmental microplastic and nanoplastic: exposure routes and effects on coagulation and the cardiovascular system publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.118190 – volume: 52 start-page: 1787 year: 2018 ident: 10.1016/j.jaap.2023.105946_bib23 article-title: Microplastic abundance and composition in western lake superior as determined via microscopy, Pyr-GC/MS, and FTIR publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05829 – volume: 168 year: 2022 ident: 10.1016/j.jaap.2023.105946_bib43 article-title: Highly sensitive detection of polystyrene by on-line splitless pyrolysis-gas chromatography/mass spectrometry with cryo-trapping of pyrolyzates and forced venting of carrier gas publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2022.105707 – volume: 17 start-page: 1212 year: 2020 ident: 10.1016/j.jaap.2023.105946_bib5 article-title: A detailed review study on potential effects of microplastics and additives of concern on human health publication-title: Int. J. Environ. Res. Public. Health doi: 10.3390/ijerph17041212 – volume: 130 year: 2020 ident: 10.1016/j.jaap.2023.105946_bib14 article-title: An overview of analytical methods for detecting microplastics in the atmosphere publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2020.115981 – volume: 55 start-page: 2285 year: 2021 ident: 10.1016/j.jaap.2023.105946_bib25 article-title: Microplastic mass concentrations and distribution in german bight waters by Pyrolysis–Gas chromatography–mass spectrometry/thermochemolysis reveal potential impact of marine coatings: do ships leave skid marks publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c04522 |
SSID | ssj0006618 ssib006543727 |
Score | 2.5408435 |
Snippet | This paper reports the direct analysis of polymer components in the airborne particulates collected on quartz filters by pyrolysis (Py)-GC/MS. The airborne... |
SourceID | proquest crossref nii elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105946 |
SubjectTerms | aerodynamics Airborne microplastics desorption Double-shot method mass spectrometry microplastics Multi-nozzle cascade impact sampler nitrogen oxides particulates phthalates polyethylene polypropylenes polystyrenes pyrolysis pyrolysis gas chromatography Pyrolysis-GC/MS quartz rubber sulfur dioxide temperature volatilization |
Title | Direct analysis of airborne microplastics collected on quartz filters by pyrolysis-gas chromatography/mass spectrometry |
URI | https://dx.doi.org/10.1016/j.jaap.2023.105946 https://cir.nii.ac.jp/crid/1871429166257539712 https://www.proquest.com/docview/3040425767 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOQAHVAqILbQyEjdkduPYsXOsVlRbEL1Apd4sf0KqNlm2W6H2wG9nJnGAiqoHLpGSjBPLM5p5iWfeEPJGeY6sKoIVzkcmCu2YLpRlorZcV5EnbvE_5KejanEsPpzIkw0yH2thMK0y-_7Bp_feOl-Z5tWcLptm-hkLcXipEEQDUOhpt4VQaOXvfv5J84D4owd-b8lQOhfODDlep9YiZyUvsd1tjSD49uB0r22af5x1H4EOtsjjDB3p_jC7J2QjttvkwXzs2LZNHv1FLviU_Bi8GbWZdoR2idpmBTpvIz3HPLwlIGdkaaZoDCAaA-1a-h3TPK9panAf_YK6K7q8WnX9I9hXC8LfVh3A3Ex1PT0H9E37ek0kPoB5PCPHB--_zBcst1lgXii-ZhyilxSWIzmcLVVyZXKV4imlWvCgQlSVn0ntdAzSCwB8lRblTARRzeIs1KJ8Tjbbro0vCFUebqdQBO-d0KXFTUkng3S1dymVekKKcX2Nzxzk2ArjzIzJZqcGdWJQJ2bQyYS8_T1mOTBw3CktR7WZG3ZkIETcOW4XdAyTwmMBX5EQp2Hy4NAkILaCT8jrUfsGtIq7KraN3eWFgaXoHV-ldv7z3S_JQzwb0ihfkc316jLuAtRZu73elvfI_f3Dj4ujXy_E_DE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615VB6QFBAbGnBSHBCYTeOEycHDqhQbenjQiv1ZmzHpqnaZNndqloO_VP8QWYSh4dAPSD1kkNiO6MZZ-ZzPP4G4KW0nFhVRBQb6yIR5ybKY6kjUWieZ457ruk_5MFhNj4WH0_SkyX43p-FobTK4Ps7n95663BnGLQ5nFTV8BMdxOGJJBCNQGGUhczKPbe4wnXb7O3uezTyK853Phxtj6NQWiCyQvJ5xNFjp0JzIkTTifQm8SaT3HtfCF7K0snMjtLc5K5MrUCQk-UCF_6lyEZuVBYiwXGX4Y5Ad0FlE95c_8orwYCXd4TiaUTihZM6XVLZmdZEkskTqq9bEOr-dzRcrqvqr-jQhryd-3AvYFX2rlPHA1hy9Tqsbvcl4tZh7Tc2w4dw1blPpgPPCWs809UUJ1nt2AUl_k0QqhMtNKPZh01dyZqafaW80m_MV7RxP2NmwSaLadMOEX3R2Ph02iCuDtzawwuE-6w9IEpMCyjHIzi-FeU_hpW6qd0TYNLiY1_GpbVG5ImmXVCTlqkprPE-yQcQ9_pVNpCeU-2Nc9Vnt50psokim6jOJgN4_bPPpKP8uLF12ptN_TFxFcakG_ttoY1RKLrGuGxFYIDCowdNESLGfAAveusrtCpt4-jaNZczhapoPW0mN_7z3c9hdXx0sK_2dw_3nsJdetLlcG7Cynx66bYQZ83Ns3ZeM_h82x_SD4rFNjg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+analysis+of+airborne+microplastics+collected+on+quartz+filters+by+pyrolysis-gas+chromatography%2Fmass+spectrometry&rft.jtitle=Journal+of+analytical+and+applied+pyrolysis&rft.au=Mizuguchi%2C+Hitoshi&rft.au=Takeda%2C+Hiroto&rft.au=Kinoshita%2C+Kyosuke&rft.au=Takeuchi%2C+Masaki&rft.date=2023-05-01&rft.issn=0165-2370&rft.volume=171+p.105946-&rft_id=info:doi/10.1016%2Fj.jaap.2023.105946&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-2370&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-2370&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-2370&client=summon |