Isospin-breaking effects in the three-pion contribution to hadronic vacuum polarization
A bstract Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise from the e + e − → π + π − channel, also IB in the subleading channels can become relevant for a detailed understanding, e.g., of the...
Saved in:
Published in | The journal of high energy physics Vol. 2023; no. 8; pp. 208 - 31 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
30.08.2023
Springer Nature B.V Springer Nature SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise from the
e
+
e
−
→ π
+
π
−
channel, also IB in the subleading channels can become relevant for a detailed understanding, e.g., of the comparison to lattice QCD. Here, we provide such an analysis for
e
+
e
−
→
3
π
by extending our dispersive description of the process, including estimates of final-state radiation (FSR) and
ρ
–
ω
mixing. In particular, we develop a formalism to capture the leading infrared-enhanced effects in terms of a correction factor
η
3
π
that generalizes the analog treatment of virtual and final-state photons in the 2
π
case. The global fit to the
e
+
e
−
→
3
π
data base, subject to constraints from analyticity, unitarity, and the chiral anomaly, gives
a
μ
3
π
≤
1.8
GeV
=
45.91
53
×
10
−
10
for the total 3
π
contribution to the anomalous magnetic moment of the muon, of which
a
μ
FSR
3
π
=
0.51
1
×
10
−
10
and
a
μ
ρ
−
ω
3
π
=
−
2.68
70
×
10
−
10
can be ascribed to IB. We argue that the resulting cancellation with
ρ
–
ω
mixing in
e
+
e
−
→
2
π
can be understood from a narrow-resonance picture, and provide updated values for the vacuum-polarization-subtracted vector-meson parameters
M
ω
= 782
.
70(3) MeV,
M
ϕ
= 1019
.
21(2) MeV, Γ
ω
= 8
.
71(3) MeV, and Γ
ϕ
= 4
.
27(1) MeV. |
---|---|
AbstractList | Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise from the e+e−→ π+π− channel, also IB in the subleading channels can become relevant for a detailed understanding, e.g., of the comparison to lattice QCD. Here, we provide such an analysis for e+e−→ 3π by extending our dispersive description of the process, including estimates of final-state radiation (FSR) and ρ–ω mixing. In particular, we develop a formalism to capture the leading infrared-enhanced effects in terms of a correction factor η3π that generalizes the analog treatment of virtual and final-state photons in the 2π case. The global fit to the e+e−→ 3π data base, subject to constraints from analyticity, unitarity, and the chiral anomaly, gives aμ3π≤1.8GeV=45.9153×10−10 for the total 3π contribution to the anomalous magnetic moment of the muon, of which aμFSR3π=0.511×10−10 and aμρ−ω3π=−2.6870×10−10 can be ascribed to IB. We argue that the resulting cancellation with ρ–ω mixing in e+e−→ 2π can be understood from a narrow-resonance picture, and provide updated values for the vacuum-polarization-subtracted vector-meson parameters Mω = 782.70(3) MeV, Mϕ = 1019.21(2) MeV, Γω = 8.71(3) MeV, and Γϕ = 4.27(1) MeV. Abstract Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise from the e + e − → π + π − channel, also IB in the subleading channels can become relevant for a detailed understanding, e.g., of the comparison to lattice QCD. Here, we provide such an analysis for e + e − → 3π by extending our dispersive description of the process, including estimates of final-state radiation (FSR) and ρ–ω mixing. In particular, we develop a formalism to capture the leading infrared-enhanced effects in terms of a correction factor η 3π that generalizes the analog treatment of virtual and final-state photons in the 2π case. The global fit to the e + e − → 3π data base, subject to constraints from analyticity, unitarity, and the chiral anomaly, gives a μ 3 π ≤ 1.8 GeV = 45.91 53 × 10 − 10 $$ {\left.{a}_{\mu}^{3\pi}\right|}_{\le 1.8\ \textrm{GeV}}=45.91(53)\times {10}^{-10} $$ for the total 3π contribution to the anomalous magnetic moment of the muon, of which a μ FSR 3 π = 0.51 1 × 10 − 10 $$ {a}_{\mu}^{\textrm{FSR}}\left[3\pi \right]=0.51(1)\times {10}^{-10} $$ and a μ ρ − ω 3 π = − 2.68 70 × 10 − 10 $$ {a}_{\mu}^{\rho -\omega}\left[3\pi \right]=-2.68(70)\times {10}^{-10} $$ can be ascribed to IB. We argue that the resulting cancellation with ρ–ω mixing in e + e − → 2π can be understood from a narrow-resonance picture, and provide updated values for the vacuum-polarization-subtracted vector-meson parameters M ω = 782.70(3) MeV, M ϕ = 1019.21(2) MeV, Γ ω = 8.71(3) MeV, and Γ ϕ = 4.27(1) MeV. Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise from the e+e- → π+π- channel, also IB in the subleading channels can become relevant for a detailed understanding, e.g., of the comparison to lattice QCD. Here, we provide such an analysis for e+e- → 3π by extending our dispersive description of the process, including estimates of final-state radiation (FSR) and ρ–ω mixing. In particular, we develop a formalism to capture the leading infrared-enhanced effects in terms of a correction factor η3π that generalizes the analog treatment of virtual and final-state photons in the 2π case. The global fit to the e+e- → 3π data base, subject to constraints from analyticity, unitarity, and the chiral anomaly, gives for the total 3π contribution to the anomalous magnetic moment of the muon, of which ${a}^{FSR}_\mu [3\pi]$ = 0.51(1) x 10-10 and ${a}^{\rho - \omega}_\mu [3\pi]$ = -2.68(70) x 10-10 can be ascribed to IB. We argue that the resulting cancellation with ρ–ω mixing in e+e- → 2π can be understood from a narrow-resonance picture, and provide updated values for the vacuum-polarization-subtracted vector-meson parameters Mω = 782.70(3) MeV, MΦ = 1019.21(2) MeV, Γω = 8.71(3) MeV, and ΓΦ = 4.27(1) MeV. A bstract Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise from the e + e − → π + π − channel, also IB in the subleading channels can become relevant for a detailed understanding, e.g., of the comparison to lattice QCD. Here, we provide such an analysis for e + e − → 3 π by extending our dispersive description of the process, including estimates of final-state radiation (FSR) and ρ – ω mixing. In particular, we develop a formalism to capture the leading infrared-enhanced effects in terms of a correction factor η 3 π that generalizes the analog treatment of virtual and final-state photons in the 2 π case. The global fit to the e + e − → 3 π data base, subject to constraints from analyticity, unitarity, and the chiral anomaly, gives a μ 3 π ≤ 1.8 GeV = 45.91 53 × 10 − 10 for the total 3 π contribution to the anomalous magnetic moment of the muon, of which a μ FSR 3 π = 0.51 1 × 10 − 10 and a μ ρ − ω 3 π = − 2.68 70 × 10 − 10 can be ascribed to IB. We argue that the resulting cancellation with ρ – ω mixing in e + e − → 2 π can be understood from a narrow-resonance picture, and provide updated values for the vacuum-polarization-subtracted vector-meson parameters M ω = 782 . 70(3) MeV, M ϕ = 1019 . 21(2) MeV, Γ ω = 8 . 71(3) MeV, and Γ ϕ = 4 . 27(1) MeV. Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise from the e + e − → π + π − channel, also IB in the subleading channels can become relevant for a detailed understanding, e.g., of the comparison to lattice QCD. Here, we provide such an analysis for e + e − → 3 π by extending our dispersive description of the process, including estimates of final-state radiation (FSR) and ρ – ω mixing. In particular, we develop a formalism to capture the leading infrared-enhanced effects in terms of a correction factor η 3 π that generalizes the analog treatment of virtual and final-state photons in the 2 π case. The global fit to the e + e − → 3 π data base, subject to constraints from analyticity, unitarity, and the chiral anomaly, gives $$ {\left.{a}_{\mu}^{3\pi}\right|}_{\le 1.8\ \textrm{GeV}}=45.91(53)\times {10}^{-10} $$ a μ 3 π ≤ 1.8 GeV = 45.91 53 × 10 − 10 for the total 3 π contribution to the anomalous magnetic moment of the muon, of which $$ {a}_{\mu}^{\textrm{FSR}}\left[3\pi \right]=0.51(1)\times {10}^{-10} $$ a μ FSR 3 π = 0.51 1 × 10 − 10 and $$ {a}_{\mu}^{\rho -\omega}\left[3\pi \right]=-2.68(70)\times {10}^{-10} $$ a μ ρ − ω 3 π = − 2.68 70 × 10 − 10 can be ascribed to IB. We argue that the resulting cancellation with ρ – ω mixing in e + e − → 2 π can be understood from a narrow-resonance picture, and provide updated values for the vacuum-polarization-subtracted vector-meson parameters M ω = 782 . 70(3) MeV, M ϕ = 1019 . 21(2) MeV, Γ ω = 8 . 71(3) MeV, and Γ ϕ = 4 . 27(1) MeV. |
ArticleNumber | 208 |
Author | Hoid, Bai-Long Hoferichter, Martin Schuh, Dominic Kubis, Bastian |
Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0003-1113-9377 surname: Hoferichter fullname: Hoferichter, Martin email: hoferichter@itp.unibe.ch organization: Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern – sequence: 2 givenname: Bai-Long orcidid: 0000-0001-9471-1740 surname: Hoid fullname: Hoid, Bai-Long organization: Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern – sequence: 3 givenname: Bastian orcidid: 0000-0002-1541-6581 surname: Kubis fullname: Kubis, Bastian organization: Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn – sequence: 4 givenname: Dominic surname: Schuh fullname: Schuh, Dominic organization: Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn |
BackLink | https://www.osti.gov/servlets/purl/2418910$$D View this record in Osti.gov |
BookMark | eNp9UU1v1DAUtFCRaBfOXCO4wCHUH_mwj6gqdFElOIA4Wi_O866XrR1sB4n--joNAoRED_6eGb95c0ZOfPBIyHNG3zBK-_MPV5efqHzFKRevOZWPyCmjXNWy6dXJX_sn5CylA6WsZYqekq_bFNLkfD1EhG_O7yq0Fk1OlfNV3mMZEbGeXPCVCT5HN8x5OeRQ7WGMwTtT_QAzzzfVFI4Q3S0s70_JYwvHhM9-rRvy5d3l54ur-vrj--3F2-vaND3PNQNjbCc6YRVI2tIRoGmHZjQKRmY4jI0V3cjRtrTrEJB1A-9VN_ZSDbJDKzZku-qOAQ56iu4G4k8dwOn7ixB3GmJ25ogae2MkZQIsqMaaQVlUQK0dBEI_UlG0XqxaIWWnk3EZzb6Y9qUfmjdMKkYL6OUKmmL4PmPK-hDm6ItHzaUUrO87xR5GtUoUqQLekPMVZWJIKaL9bYBRvYSq11D1EmqZFkb7D6NUed_wHMEdH-DRlZfKD36H8U89_6PcAYKBt7s |
CitedBy_id | crossref_primary_10_1016_j_nuclphysbps_2024_10_002 crossref_primary_10_1103_PhysRevLett_131_161905 crossref_primary_10_1007_JHEP07_2024_276 crossref_primary_10_1103_PhysRevD_109_036010 crossref_primary_10_1103_PhysRevD_110_112005 crossref_primary_10_1103_PhysRevD_109_096007 crossref_primary_10_1140_epjc_s10052_024_12608_w crossref_primary_10_1103_PhysRevLett_133_211906 crossref_primary_10_1007_JHEP04_2024_092 crossref_primary_10_1007_JHEP04_2024_071 crossref_primary_10_1007_JHEP02_2025_121 crossref_primary_10_1007_JHEP08_2024_052 |
Cites_doi | 10.1007/JHEP04(2017)161 10.1016/j.physrep.2020.07.006 10.1103/PhysRevD.4.3497 10.1007/BF02747746 10.1103/PhysRevD.100.076004 10.1103/PhysRevD.96.114016 10.1016/0550-3213(80)90157-1 10.1103/PhysRevD.97.114025 10.1140/epjc/s10052-020-08611-6 10.1007/JHEP02(2019)006 10.1016/j.physletb.2022.137313 10.1140/epjc/s2004-02103-1 10.22323/1.430.0316 10.1103/PhysRevLett.121.112002 10.1016/j.physletb.2021.136502 10.1007/JHEP03(2020)101 10.1016/j.physletb.2014.05.043 10.1140/epjc/s10052-012-2014-1 10.1007/JHEP12(2021)038 10.1016/j.physletb.2012.07.038 10.22323/1.412.0030 10.1016/0370-2693(71)90582-X 10.1103/PhysRevD.107.054021 10.1007/JHEP10(2020)203 10.1140/epjc/s10052-020-08550-2 10.1103/PhysRevD.64.094009 10.1007/JHEP08(2019)137 10.1140/epjc/s10052-014-3180-0 10.1007/JHEP05(2020)159 10.1140/epjc/s10052-018-6416-6 10.1140/epjc/s10052-022-10589-2 10.1038/s41586-021-03418-1 10.1140/epjc/s10052-020-7857-2 10.1103/PhysRevD.78.013009 10.1007/JHEP09(2015)074 10.1140/epjc/s10052-022-11094-2 10.1016/j.physletb.2022.137283 10.1103/PhysRevD.5.2372 10.1103/PhysRevD.108.013005 10.1016/0168-9002(94)90719-6 10.1007/JHEP08(2022)295 10.1103/PhysRevD.86.054013 10.1016/j.physletb.2019.134994 10.1007/JHEP08(2022)220 10.1007/JHEP05(2010)075 10.1140/epjc/s10052-022-10348-3 10.1140/epjc/s10052-021-09455-4 10.1103/PhysRevD.102.033002 10.1088/0305-4616/4/1/007 10.1007/JHEP09(2014)091 10.1103/PhysRevD.91.094029 10.1140/epjc/s10052-021-09169-7 10.1088/1126-6708/2002/09/008 10.1007/JHEP06(2022)122 10.1007/JHEP04(2021)240 10.1140/epjc/s10052-021-08848-9 10.1016/j.physletb.2021.136073 10.1103/PhysRevD.86.116009 10.1103/PhysRevD.105.093003 10.1016/j.physletb.2014.06.012 10.1140/epjc/s10052-013-2539-y 10.1103/PhysRevD.88.053005 10.1103/PhysRevD.101.014029 10.1103/PhysRevD.95.054026 10.1103/PhysRevLett.121.022003 10.1007/s002180050167 10.1140/epjc/s10052-017-5161-6 10.1103/PhysRevD.70.113006 10.1007/JHEP10(2018)141 10.1103/PhysRevD.101.051501 10.1007/BF01589702 10.1016/0370-2693(76)90150-7 10.1016/0550-3213(83)90063-9 10.1103/PhysRevD.73.034010 10.1007/s100520200916 10.1140/epjc/s10052-018-6346-3 10.1051/jphysrad:01961002202012101 10.1140/epjc/s10052-023-11749-8 10.1007/JHEP07(2021)106 10.1103/PhysRevD.72.114019 10.1103/PhysRevD.67.073006 10.1016/j.physletb.2022.137037 10.1103/PhysRev.168.1620 10.1140/epjc/s2003-01146-0 10.1016/0370-2693(72)90171-2 10.1016/0370-1573(91)90127-8 10.1103/PhysRevLett.124.132002 10.1103/PhysRevD.107.074506 10.1007/JHEP02(2023)167 10.1016/S0370-2693(98)00826-0 10.1016/0370-2693(90)91212-T 10.1103/PhysRev.119.1115 10.1016/0003-4916(59)90051-X 10.1016/j.physletb.2014.09.021 10.1140/epjc/s10052-021-09513-x 10.1007/JHEP04(2023)125 10.1134/S106377610609007X 10.1007/JHEP10(2022)032 10.3390/atoms7010028 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Univ. of Washington, Seattle, WA (United States) |
CorporateAuthor_xml | – name: Univ. of Washington, Seattle, WA (United States) |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI OIOZB OTOTI DOA |
DOI | 10.1007/JHEP08(2023)208 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 31 |
ExternalDocumentID | oai_doaj_org_article_e7cc8013afa94fcb9fe9a0ffb3ea7d03 2418910 10_1007_JHEP08_2023_208 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI OIOZB OTOTI PUEGO |
ID | FETCH-LOGICAL-c472t-1accf6363f9a8050daa45b4dc9ad1c2ad4f36d2ef5066eae16b2796d789b86ef3 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:32:18 EDT 2025 Mon Mar 24 04:18:05 EDT 2025 Sat Jul 26 00:04:05 EDT 2025 Sat Jul 26 00:12:45 EDT 2025 Tue Jul 01 01:01:42 EDT 2025 Thu Apr 24 22:50:31 EDT 2025 Fri Feb 21 02:42:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Chiral Lagrangian Precision QED |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-1accf6363f9a8050daa45b4dc9ad1c2ad4f36d2ef5066eae16b2796d789b86ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 German Research Foundation (DFG) USDOE Office of Science (SC) FG02-00ER41132 |
ORCID | 0000-0001-9471-1740 0000-0002-1541-6581 0000-0003-1113-9377 0000000311139377 0000000215416581 0000000194711740 |
OpenAccessLink | https://www.proquest.com/docview/2859389188?pq-origsite=%requestingapplication% |
PQID | 2859389188 |
PQPubID | 2034718 |
PageCount | 31 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e7cc8013afa94fcb9fe9a0ffb3ea7d03 osti_scitechconnect_2418910 proquest_journals_2883177691 proquest_journals_2859389188 crossref_primary_10_1007_JHEP08_2023_208 crossref_citationtrail_10_1007_JHEP08_2023_208 springer_journals_10_1007_JHEP08_2023_208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-30 |
PublicationDateYYYYMMDD | 2023-08-30 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Nature SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Nature – name: SpringerOpen |
References | Muong – 2 collaboration, Muon (g – 2) Technical Design Report, arXiv:1501.06858 [INSPIRE]. T. Aoyama, T. Kinoshita and M. Nio, Theory of the Anomalous Magnetic Moment of the Electron, Atoms7 (2019) 28 [INSPIRE]. KeshavarziAMarcianoWJPasseraMSirlinAMuon g – 2 and ∆α connectionPhys. Rev. D20201022020PhRvD.102c3002K[arXiv:2006.12666] [INSPIRE] R. Omnès, On the Solution of certain singular integral equations of quantum field theory, Nuovo Cim.8 (1958) 316 [INSPIRE]. Muong – 2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D73 (2006) 072003 [hep-ex/0602035] [INSPIRE]. ColangeloGHoferichterMProcuraMStofferPDispersive approach to hadronic light-by-light scatteringJHEP2014090912014JHEP...09..091C1388.81508[arXiv:1402.7081] [INSPIRE] N.M. Coyle and C.E.M. Wagner, Resolving the muon g – 2 tension through Z′-induced modifications to σhad, arXiv:2305.02354 [INSPIRE]. BijnensJHermansson-TruedssonNRodríguez-SánchezAShort-distance constraints for the HLbL contribution to the muon anomalous magnetic momentPhys. Lett. B2019798[arXiv:1908.03331] [INSPIRE] G. Chanturia, A two-potential formalism for the pion vector form factor, PoSRegio2021 (2022) 030 [INSPIRE]. BABAR collaboration, Study of the process e+e−→ π+π−π0using initial state radiation with BABAR, Phys. Rev. D104 (2021) 112003 [arXiv:2110.00520] [INSPIRE]. ColangeloGHoferichterMProcuraMStofferPRescattering effects in the hadronic-light-by-light contribution to the anomalous magnetic moment of the muonPhys. Rev. Lett.20171182017PhRvL.118w2001C[arXiv:1701.06554] [INSPIRE] BESIII collaboration, Measurement of the e+e−→ π+π−cross section between 600 and 900 MeV using initial state radiation, Phys. Lett. B753 (2016) 629 [Erratum ibid.812 (2021) 135982] [arXiv:1507.08188] [INSPIRE]. R.A. Briceño et al., The ππ → πγ⋆amplitude and the resonant ρ → πγ⋆transition from lattice QCD, Phys. Rev. D93 (2016) 114508 [Erratum ibid.105 (2022) 079902] [arXiv:1604.03530] [INSPIRE]. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to αmZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({m}_Z^2\right) $$\end{document}, Eur. Phys. J. C80 (2020) 241 [Erratum ibid.80 (2020) 410] [arXiv:1908.00921] [INSPIRE]. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B37 (1971) 95 [INSPIRE]. HoferichterMKubisBSakkasDExtracting the chiral anomaly from γπ → ππPhys. Rev. D2012862012PhRvD..86k6009H[arXiv:1210.6793] [INSPIRE] Crystal Barrel collaboration, Antiproton-proton annihilation at rest into ωπ0π0, Phys. Lett. B311 (1993) 362 [INSPIRE]. HoferichterMTeubnerTMixed Leptonic and Hadronic Corrections to the Anomalous Magnetic Moment of the MuonPhys. Rev. Lett.20221282022PhRvL.128k2002H[arXiv:2112.06929] [INSPIRE] I.J.R. Aitchison and R.J.A. Golding, Relativistic Three Pion Dynamics in the omega Channel, J. Phys. G4 (1978) 43 [INSPIRE]. DaxMIskenTKubisBQuark-mass dependence in ω → 3π decaysEur. Phys. J. C2018788592018EPJC...78..859D[arXiv:1808.08957] [INSPIRE] KLOE-2 collaboration, Combination of KLOE σ (e+e−→ π+π−γ(γ)) measurements and determination ofaμπ+π−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {a}_{\mu}^{\pi^{+}{\pi}^{-}} $$\end{document}in the energy range 0.10 < s < 0.95 GeV2, JHEP03 (2018) 173 [arXiv:1711.03085] [INSPIRE]. BijnensJHermansson-TruedssonNLaubLRodríguez-SánchezAThe two-loop perturbative correction to the (g – 2)μHLbL at short distancesJHEP2021042402021JHEP...04..240B[arXiv:2101.09169] [INSPIRE] BoitoDGoltermanMMaltmanKPerisSData-based determination of the isospin-limit light-quark-connected contribution to the anomalous magnetic moment of the muonPhys. Rev. D20231072023PhRvD.107g4001B[arXiv:2211.11055] [INSPIRE] SND collaboration, Study of dynamics of the process e+e−→ π+π−π0in the energy range 1.15–2.00 GeV, Eur. Phys. J. C80 (2020) 993 [arXiv:2007.14595] [INSPIRE]. SND collaboration, Measurement of the e+e−→ π+π−process cross section with the SND detector at the VEPP-2000 collider in the energy region 0.525 < s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} < 0.883 GeV, JHEP01 (2021) 113 [arXiv:2004.00263] [INSPIRE]. BoitoDGoltermanMMaltmanKPerisSEvaluation of the three-flavor quark-disconnected contribution to the muon anomalous magnetic moment from experimental dataPhys. Rev. D20221052022PhRvD.105i3003B[arXiv:2203.05070] [INSPIRE] M. Hoferichter et al., Chiral extrapolation of hadronic vacuum polarization and isospin-breaking corrections, PoSLATTICE2022 (2022) 316 [arXiv:2210.11904] [INSPIRE]. SchneiderSPKubisBNiecknigFThe ω → π0γ∗and ϕ → π0γ∗transition form factors in dispersion theoryPhys. Rev. D2012862012PhRvD..86e4013S[arXiv:1206.3098] [INSPIRE] BijnensJHermansson-TruedssonNLaubLRodríguez-SánchezAShort-distance HLbL contributions to the muon anomalous magnetic moment beyond perturbation theoryJHEP2020102032020JHEP...10..203B[arXiv:2008.13487] [INSPIRE] IgnatovFLeeRNCharge asymmetry in e+e−→ π+π−processPhys. Lett. B2022833[arXiv:2204.12235] [INSPIRE] CèMWindow observable for the hadronic vacuum polarization contribution to the muon g – 2 from lattice QCDPhys. Rev. D20221062022PhRvD.106k4502C[arXiv:2206.06582] [INSPIRE] A. Keshavarzi, D. Nomura and T. Teubner, g – 2 of charged leptons,αMZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({M}_Z^2\right) $$\end{document}, and the hyperfine splitting of muonium, Phys. Rev. D101 (2020) 014029 [arXiv:1911.00367] [INSPIRE]. Particle Data Group collaboration, Review of Particle Physics, PTEP2022 (2022) 083C01 [INSPIRE]. CrivellinAHoferichterMWidth effects of broad new resonances in loop observables and application to (g − 2)μPhys. Rev. D20231082023PhRvD.108a3005C[arXiv:2211.12516] [INSPIRE] R. Aviv and A. Zee, Low-energy theorem for γ → 3π, Phys. Rev. D5 (1972) 2372 [INSPIRE]. S.J. Brodsky and E. de Rafael, Suggested boson-lepton pair couplings and the anomalous magnetic moment of the muon, Phys. Rev.168 (1968) 1620 [INSPIRE]. L. Ametller, M. Knecht and P. Talavera, Electromagnetic corrections to γπ±→ π0π±, Phys. Rev. D64 (2001) 094009 [hep-ph/0107127] [INSPIRE]. CrivellinAHoferichterMManzariCAMontullMHadronic Vacuum Polarization: (g – 2)μversus Global Electroweak FitsPhys. Rev. Lett.20201252020PhRvL.125i1801C[arXiv:2003.04886] [INSPIRE] MasjuanPSánchez-PuertasPPseudoscalar-pole contribution to the (gμ– 2): a rational approachPhys. Rev. D2017952017PhRvD..95e4026M[arXiv:1701.05829] [INSPIRE] AoyamaTThe anomalous magnetic moment of the muon in the Standard ModelPhys. Rept.202088712020PhR...887....1A[arXiv:2006.04822] [INSPIRE] CèMThe hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCDJHEP2022082202022JHEP...08..220C[arXiv:2203.08676] [INSPIRE] J. Gluza, A. Hoefer, S. Jadach and F. Jegerlehner, Measuring the FSR inclusive π+π−cross-section, Eur. Phys. J. C28 (2003) 261 [hep-ph/0212386] [INSPIRE]. Muong – 2 collaboration, Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab, Phys. Rev. Accel. Beams24 (2021) 044002 [arXiv:2104.03240] [INSPIRE]. C. Bouchiat and L. Michel, La résonance dans la diffusion méson π-méson π et le moment magnétique anormal du méson μ, J. Phys. Radium22 (1961) 121 [INSPIRE]. MoussallamBUnified dispersive approach to real and virtual photon-photon scattering at low energyEur. Phys. J. C20137325392013EPJC...73.2539M[arXiv:1305.3143] [INSPIRE] GérardinAMeyerHBNyffelerALattice calculation of the pion transition form factor with Nf = 2 + 1 Wilson quarksPhys. Rev. D20191002019PhRvD.100c4520G[arXiv:1903.09471] [INSPIRE] LeutgebJMagerJRebhanAHadronic light-by-light contribution to the muon g – 2 from holographic QCD with solved U(1)AproblemPhys. Rev. D20231072023PhRvD.107e4021L[arXiv:2211.16562] [INSPIRE] A.I. Ahmedov, G.V. Fedotovich, E.A. Kuraev and Z.K. Silagadze, Near threshold radiative 3π production in e+e−annihilation, JHEP09 (2002) 008 [hep-ph/0201157] [INSPIRE]. S.I. Dolinsky et al., Summary of experiments with the neutral detector at the e+e−storage ring VEPP-2M, Phys. Rept.202 (1991) 99 [INSPIRE]. M.V. Terent’ev, Process π±→ π0π±in Coulomb field and anomalous divergence of neutral axial vector current, Phys. Lett. B38 (1972) 419 [INSPIRE]. A. Hoefer, J. Gluza and F. Jegerlehner, Pion pair production with higher order radiative corrections in low energy e+e−collisions, Eur. Phys. J. C24 (2002) 51 [hep-ph/0107154] [INSPIRE]. S. Bakmaev, Y.M. Bystritskiy and E.A. Kuraev, Process e+e−→ 3π(γ) with final state radiative corrections, Phys. Rev. D73 (2006) 034010 [hep-ph/0507219] [INSPIRE]. A. Keshavarzi, D. Nomura and T. Teubner, Muon g – 2 andαMZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({M}_Z^2\right) $$\end{document}: a new data-based analysis, Phys. Rev. D97 (2018) 114025 [arXiv:1802.02995] [INSPIRE]. J.J. Sakurai, Currents and Mesons, University of Chicago Press (1969). M.N. Achasov et al., Study of the process e+e−→ π+π−π0in the energy regions\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \use I Danilkin (21657_CR44) 2021; 820 G Colangelo (21657_CR79) 2022; 08 G Colangelo (21657_CR45) 2021; 81 G Colangelo (21657_CR13) 2019; 02 G Colangelo (21657_CR77) 2021; 814 21657_CR36 T Blum (21657_CR32) 2020; 124 21657_CR37 G Colangelo (21657_CR22) 2015; 09 21657_CR38 21657_CR111 L von Detten (21657_CR125) 2021; 81 21657_CR113 21657_CR114 21657_CR104 21657_CR105 G Colangelo (21657_CR30) 2020; 101 T Aoyama (21657_CR7) 2012; 109 D Boito (21657_CR87) 2022; 105 M Niehus (21657_CR116) 2021; 12 M Hoferichter (21657_CR54) 2022; 128 CL James (21657_CR85) 2022; 105 J Bijnens (21657_CR41) 2020; 10 21657_CR46 G Colangelo (21657_CR81) 2022; 10 F Campanario (21657_CR118) 2019; 100 21657_CR100 G Colangelo (21657_CR20) 2014; 09 G Colangelo (21657_CR24) 2017; 118 21657_CR102 21657_CR103 P Masjuan (21657_CR23) 2017; 95 F Ignatov (21657_CR119) 2022; 833 G Colangelo (21657_CR21) 2014; 738 C Hanhart (21657_CR123) 2012; 715 21657_CR94 21657_CR95 21657_CR96 21657_CR97 21657_CR98 21657_CR11 21657_CR12 L Di Luzio (21657_CR69) 2022; 829 21657_CR15 21657_CR130 21657_CR16 21657_CR131 21657_CR132 21657_CR133 21657_CR19 21657_CR134 F Niecknig (21657_CR106) 2012; 72 21657_CR135 21657_CR136 J Leutgeb (21657_CR47) 2023; 107 21657_CR126 21657_CR127 21657_CR128 21657_CR129 A Gérardin (21657_CR28) 2019; 100 21657_CR90 21657_CR91 M Hoferichter (21657_CR39) 2020; 05 21657_CR92 21657_CR93 M Hoferichter (21657_CR108) 2012; 86 J Bijnens (21657_CR48) 2023; 02 J Bijnens (21657_CR29) 2019; 798 21657_CR120 21657_CR121 J Bijnens (21657_CR42) 2021; 04 21657_CR122 SP Schneider (21657_CR107) 2012; 86 21657_CR115 21657_CR117 M Hoferichter (21657_CR112) 2017; 96 A Keshavarzi (21657_CR75) 2020; 102 D Boito (21657_CR88) 2023; 107 A Crivellin (21657_CR74) 2020; 125 IV Danilkin (21657_CR109) 2015; 91 B Moussallam (21657_CR99) 2013; 73 21657_CR72 M Dax (21657_CR110) 2018; 78 M Hoferichter (21657_CR26) 2018; 121 G Colangelo (21657_CR25) 2017; 04 S Borsanyi (21657_CR55) 2021; 593 G Colangelo (21657_CR31) 2020; 03 21657_CR8 S Ropertz (21657_CR124) 2018; 78 21657_CR5 21657_CR9 M Hoferichter (21657_CR101) 2014; 74 E-H Chao (21657_CR34) 2021; 81 D Stamen (21657_CR82) 2022; 82 M Cè (21657_CR78) 2022; 08 21657_CR83 21657_CR84 21657_CR86 21657_CR89 21657_CR140 21657_CR141 21657_CR142 21657_CR143 21657_CR144 21657_CR145 21657_CR146 21657_CR147 21657_CR137 21657_CR138 21657_CR139 21657_CR4 21657_CR3 21657_CR2 21657_CR1 M Hoferichter (21657_CR14) 2019; 08 J Lüdtke (21657_CR40) 2020; 80 A Kurz (21657_CR18) 2014; 734 M Hoferichter (21657_CR27) 2018; 10 21657_CR80 M Passera (21657_CR73) 2008; 78 21657_CR50 21657_CR51 21657_CR52 21657_CR53 21657_CR56 21657_CR58 21657_CR59 E-H Chao (21657_CR35) 2022; 82 C Gnendiger (21657_CR10) 2013; 88 G Colangelo (21657_CR33) 2014; 735 J Lüdtke (21657_CR49) 2023; 04 21657_CR62 21657_CR63 21657_CR64 21657_CR65 21657_CR66 21657_CR67 21657_CR68 A Crivellin (21657_CR71) 2023; 108 M Zanke (21657_CR43) 2021; 07 T Aoyama (21657_CR6) 2020; 887 G Colangelo (21657_CR61) 2022; 833 B Malaescu (21657_CR76) 2021; 81 M Cè (21657_CR57) 2022; 106 B-L Hoid (21657_CR17) 2020; 80 L Darmé (21657_CR70) 2022; 06 21657_CR60 |
References_xml | – reference: I.J.R. Aitchison and R.J.A. Golding, Relativistic Three Pion Dynamics in the omega Channel, J. Phys. G4 (1978) 43 [INSPIRE]. – reference: V.M. Aul’chenko et al., Study of the e+e−→ π+π−π0process in the energy range 1.05–2.00 GeV, J. Exp. Theor. Phys.121 (2015) 27 [INSPIRE]. – reference: ColangeloGLongitudinal short-distance constraints for the hadronic light-by-light contribution to (g – 2)μwith large-NcRegge modelsJHEP2020031012020JHEP...03..101C[arXiv:1910.13432] [INSPIRE] – reference: G. Abbiendi et al., Mini-Proceedings of the STRONG2020 Virtual Workshop on “Space-like and Time-like determination of the Hadronic Leading Order contribution to the Muon g – 2”, (2022) [arXiv:2201.12102] [INSPIRE]. – reference: LüdtkeJProcuraMStofferPDispersion relations for hadronic light-by-light scattering in triangle kinematicsJHEP2023041252023JHEP...04..125L07694013[arXiv:2302.12264] [INSPIRE] – reference: J. Calmet, S. Narison, M. Perrottet and E. de Rafael, Higher Order Hadronic Corrections to the Anomalous Magnetic Moment of the Muon, Phys. Lett. B61 (1976) 283 [INSPIRE]. – reference: HoferichterMHoidB-LKubisBThree-pion contribution to hadronic vacuum polarizationJHEP2019081372019JHEP...08..137H[arXiv:1907.01556] [INSPIRE] – reference: S. Bakmaev, Y.M. Bystritskiy and E.A. Kuraev, Process e+e−→ 3π(γ) with final state radiative corrections, Phys. Rev. D73 (2006) 034010 [hep-ph/0507219] [INSPIRE]. – reference: ColangeloGHoferichterMProcuraMStofferPDispersion relation for hadronic light-by-light scattering: theoretical foundationsJHEP20150907434294131388.81508[arXiv:1506.01386] [INSPIRE] – reference: MoussallamBUnified dispersive approach to real and virtual photon-photon scattering at low energyEur. Phys. J. C20137325392013EPJC...73.2539M[arXiv:1305.3143] [INSPIRE] – reference: ETMC collaboration, Probing the Energy-Smeared R Ratio Using Lattice QCD, Phys. Rev. Lett.130 (2023) 241901 [arXiv:2212.08467] [INSPIRE]. – reference: M.N. Achasov et al., Measurements of the parameters of the ϕ(1020) resonance through studies of the processes e+e−→ K+K−, KSKL, and π+π−π0, Phys. Rev. D63 (2001) 072002 [hep-ex/0009036] [INSPIRE]. – reference: Muong – 2 collaboration, Muon (g – 2) Technical Design Report, arXiv:1501.06858 [INSPIRE]. – reference: CèMThe hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCDJHEP2022082202022JHEP...08..220C[arXiv:2203.08676] [INSPIRE] – reference: ColangeloGHoferichterMKubisBStofferPIsospin-breaking effects in the two-pion contribution to hadronic vacuum polarizationJHEP2022100322022JHEP...10..032C[arXiv:2208.08993] [INSPIRE] – reference: SND collaboration, Study of dynamics of the process e+e−→ π+π−π0in the energy range 1.15–2.00 GeV, Eur. Phys. J. C80 (2020) 993 [arXiv:2007.14595] [INSPIRE]. – reference: ColangeloGRemarks on higher-order hadronic corrections to the muon g – 2Phys. Lett. B2014735902014PhLB..735...90C[arXiv:1403.7512] [INSPIRE] – reference: SchneiderSPKubisBNiecknigFThe ω → π0γ∗and ϕ → π0γ∗transition form factors in dispersion theoryPhys. Rev. D2012862012PhRvD..86e4013S[arXiv:1206.3098] [INSPIRE] – reference: GérardinAMeyerHBNyffelerALattice calculation of the pion transition form factor with Nf = 2 + 1 Wilson quarksPhys. Rev. D20191002019PhRvD.100c4520G[arXiv:1903.09471] [INSPIRE] – reference: RopertzSHanhartCKubisBA new parametrization for the scalar pion form factorsEur. Phys. J. C20187810002018EPJC...78.1000R[arXiv:1809.06867] [INSPIRE] – reference: BoitoDGoltermanMMaltmanKPerisSData-based determination of the isospin-limit light-quark-connected contribution to the anomalous magnetic moment of the muonPhys. Rev. D20231072023PhRvD.107g4001B[arXiv:2211.11055] [INSPIRE] – reference: MalaescuBSchottMImpact of correlations between aμand αQEDon the EW fitEur. Phys. J. C202181462021EPJC...81...46M[arXiv:2008.08107] [INSPIRE] – reference: T. Blum et al., Hadronic light-by-light contribution to the muon anomaly from lattice QCD with infinite volume QED at physical pion mass, arXiv:2304.04423 [INSPIRE]. – reference: A. Cordier et al., Cross-section of the Reaction e+e−→ π+π−π0for Center-of-mass Energies From 750 to 1100 MeV, Nucl. Phys. B172 (1980) 13 [INSPIRE]. – reference: PasseraMMarcianoWJSirlinAThe Muon g – 2 and the bounds on the Higgs boson massPhys. Rev. D2008782008PhRvD..78a3009P[arXiv:0804.1142] [INSPIRE] – reference: DanilkinIVDispersive analysis of ω/ϕ → 3π, πγ∗Phys. Rev. D2015912015PhRvD..91i4029D[arXiv:1409.7708] [INSPIRE] – reference: A. Keshavarzi, D. Nomura and T. Teubner, g – 2 of charged leptons,αMZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({M}_Z^2\right) $$\end{document}, and the hyperfine splitting of muonium, Phys. Rev. D101 (2020) 014029 [arXiv:1911.00367] [INSPIRE]. – reference: ColangeloGHoferichterMProcuraMStofferPDispersive approach to hadronic light-by-light scatteringJHEP2014090912014JHEP...09..091C1388.81508[arXiv:1402.7081] [INSPIRE] – reference: ColangeloGHoferichterMProcuraMStofferPRescattering effects in the hadronic-light-by-light contribution to the anomalous magnetic moment of the muonPhys. Rev. Lett.20171182017PhRvL.118w2001C[arXiv:1701.06554] [INSPIRE] – reference: A. Keshavarzi, D. Nomura and T. Teubner, Muon g – 2 andαMZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({M}_Z^2\right) $$\end{document}: a new data-based analysis, Phys. Rev. D97 (2018) 114025 [arXiv:1802.02995] [INSPIRE]. – reference: JamesCLLewisRMaltmanKChPT estimate of the strong-isospin-breaking contribution to the anomalous magnetic moment of the muonPhys. Rev. D20221052022PhRvD.105e3010J[arXiv:2109.13729] [INSPIRE] – reference: J.J. Sakurai, Currents and Mesons, University of Chicago Press (1969). – reference: CMD-2 collaboration, Reanalysis of hadronic cross-section measurements at CMD-2, Phys. Lett. B578 (2004) 285 [hep-ex/0308008] [INSPIRE]. – reference: Crystal Barrel collaboration, Antiproton-proton annihilation at rest into ωπ0π0, Phys. Lett. B311 (1993) 362 [INSPIRE]. – reference: A. Hoefer, J. Gluza and F. Jegerlehner, Pion pair production with higher order radiative corrections in low energy e+e−collisions, Eur. Phys. J. C24 (2002) 51 [hep-ph/0107154] [INSPIRE]. – reference: S.L. Adler, B.W. Lee, S.B. Treiman and A. Zee, Low Energy Theorem for γ + γ → π + π + π, Phys. Rev. D4 (1971) 3497 [INSPIRE]. – reference: R.R. Akhmetshin et al., Study of dynamics of ϕ → π+π−π0decay with CMD-2 detector, Phys. Lett. B434 (1998) 426 [INSPIRE]. – reference: AoyamaTThe anomalous magnetic moment of the muon in the Standard ModelPhys. Rept.202088712020PhR...887....1A[arXiv:2006.04822] [INSPIRE] – reference: DanilkinIHoferichterMStofferPA dispersive estimate of scalar contributions to hadronic light-by-light scatteringPhys. Lett. B2021820[arXiv:2105.01666] [INSPIRE] – reference: MasjuanPSánchez-PuertasPPseudoscalar-pole contribution to the (gμ– 2): a rational approachPhys. Rev. D2017952017PhRvD..95e4026M[arXiv:1701.05829] [INSPIRE] – reference: ChaoE-HHadronic light-by-light contribution to (g – 2)μfrom lattice QCD: a complete calculationEur. Phys. J. C2021816512021EPJC...81..651C[arXiv:2104.02632] [INSPIRE] – reference: CMD-2 collaboration, High-statistics measurement of the pion form factor in the ρ-meson energy range with the CMD-2 detector, Phys. Lett. B648 (2007) 28 [hep-ex/0610021] [INSPIRE]. – reference: Muong – 2 collaboration, Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g – 2 Experiment, Phys. Rev. D103 (2021) 072002 [arXiv:2104.03247] [INSPIRE]. – reference: SND collaboration, Measurement of the e+e−→ π+π−process cross section with the SND detector at the VEPP-2000 collider in the energy region 0.525 < s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} < 0.883 GeV, JHEP01 (2021) 113 [arXiv:2004.00263] [INSPIRE]. – reference: M.N. Achasov et al., Update of the e+e−→ π+π−cross-section measured by SND detector in the energy region 400 <s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document}< 1000 MeV, J. Exp. Theor. Phys.103 (2006) 380 [hep-ex/0605013] [INSPIRE]. – reference: HoferichterMTeubnerTMixed Leptonic and Hadronic Corrections to the Anomalous Magnetic Moment of the MuonPhys. Rev. Lett.20221282022PhRvL.128k2002H[arXiv:2112.06929] [INSPIRE] – reference: HoferichterMKubisBSakkasDExtracting the chiral anomaly from γπ → ππPhys. Rev. D2012862012PhRvD..86k6009H[arXiv:1210.6793] [INSPIRE] – reference: A.I. Ahmedov, G.V. Fedotovich, E.A. Kuraev and Z.K. Silagadze, Near threshold radiative 3π production in e+e−annihilation, JHEP09 (2002) 008 [hep-ph/0201157] [INSPIRE]. – reference: M.N. Achasov et al., Study of the process e+e−→ π+π−π0in the energy regions\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document}below 0.98 GeV, Phys. Rev. D68 (2003) 052006 [hep-ex/0305049] [INSPIRE]. – reference: ColangeloGData-driven evaluations of Euclidean windows to scrutinize hadronic vacuum polarizationPhys. Lett. B20228334379363[arXiv:2205.12963] [INSPIRE] – reference: R. Aviv and A. Zee, Low-energy theorem for γ → 3π, Phys. Rev. D5 (1972) 2372 [INSPIRE]. – reference: S.I. Dolinsky et al., Summary of experiments with the neutral detector at the e+e−storage ring VEPP-2M, Phys. Rept.202 (1991) 99 [INSPIRE]. – reference: ZankeMHoferichterMKubisBOn the transition form factors of the axial-vector resonance f1(1285) and its decay into e+e−JHEP2021071062021JHEP...07..106Z[arXiv:2103.09829] [INSPIRE] – reference: F. Klingl, N. Kaiser and W. Weise, Effective Lagrangian approach to vector mesons, their structure and decays, Z. Phys. A356 (1996) 193 [hep-ph/9607431] [INSPIRE]. – reference: C. Alexandrou et al., The η → γ∗γ∗transition form factor and the hadronic light-by-light η-pole contribution to the muon g − 2 from lattice QCD, arXiv:2212.06704 [INSPIRE]. – reference: R.A. Briceño et al., The ππ → πγ⋆amplitude and the resonant ρ → πγ⋆transition from lattice QCD, Phys. Rev. D93 (2016) 114508 [Erratum ibid.105 (2022) 079902] [arXiv:1604.03530] [INSPIRE]. – reference: CrivellinAHoferichterMWidth effects of broad new resonances in loop observables and application to (g − 2)μPhys. Rev. D20231082023PhRvD.108a3005C[arXiv:2211.12516] [INSPIRE] – reference: G. D’Agostini, On the use of the covariance matrix to fit correlated data, Nucl. Instrum. Meth. A346 (1994) 306 [INSPIRE]. – reference: DM2 collaboration, Measurement of the e+e−→ π+π−π0and e+e−→ ωπ+π−reactions in the energy interval 1350–2400 MeV, Z. Phys. C56 (1992) 15 [INSPIRE]. – reference: Extended Twisted Mass collaboration, Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions, Phys. Rev. D107 (2023) 074506 [arXiv:2206.15084] [INSPIRE]. – reference: ColangeloGHoferichterMStofferPConstraints on the two-pion contribution to hadronic vacuum polarizationPhys. Lett. B2021814[arXiv:2010.07943] [INSPIRE] – reference: E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B223 (1983) 422 [INSPIRE]. – reference: ColangeloGHoferichterMProcuraMStofferPDispersion relation for hadronic light-by-light scattering: two-pion contributionsJHEP2017041612017JHEP...04..161C1388.81508[arXiv:1702.07347] [INSPIRE] – reference: HanhartCA New Parameterization for the Pion Vector Form FactorPhys. Lett. B20127151702012PhLB..715..170H[arXiv:1203.6839] [INSPIRE] – reference: HoferichterMPion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muonPhys. Rev. Lett.20181212018PhRvL.121k2002H[arXiv:1805.01471] [INSPIRE] – reference: IgnatovFLeeRNCharge asymmetry in e+e−→ π+π−processPhys. Lett. B2022833[arXiv:2204.12235] [INSPIRE] – reference: CMD-3 collaboration, Measurement of the e+e−→ π+π−cross section from threshold to 1.2 GeV with the CMD-3 detector, arXiv:2302.08834 [INSPIRE]. – reference: M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and αmZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({m}_Z^2\right) $$\end{document}using newest hadronic cross-section data, Eur. Phys. J. C77 (2017) 827 [arXiv:1706.09436] [INSPIRE]. – reference: BaBar collaboration, Precise Measurement of the e+e−→ π+π−(γ) Cross Section with the Initial-State Radiation Method at BABAR, Phys. Rev. D86 (2012) 032013 [arXiv:1205.2228] [INSPIRE]. – reference: A. Gérardin et al., Lattice calculation of the π0, η and η′transition form factors and the hadronic light-by-light contribution to the muon g − 2, arXiv:2305.04570 [INSPIRE]. – reference: BABAR collaboration, Study of the process e+e−→ π+π−π0using initial state radiation with BABAR, Phys. Rev. D104 (2021) 112003 [arXiv:2110.00520] [INSPIRE]. – reference: CampanarioFStandard model radiative corrections in the pion form factor measurements do not explain the aμanomalyPhys. Rev. D20191002019PhRvD.100g6004C[arXiv:1903.10197] [INSPIRE] – reference: KurzALiuTMarquardPSteinhauserMHadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading orderPhys. Lett. B20147341442014PhLB..734..144K[arXiv:1403.6400] [INSPIRE] – reference: J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B37 (1971) 95 [INSPIRE]. – reference: C. Alexandrou et al., πγ → ππ transition and the ρ radiative decay width from lattice QCD, Phys. Rev. D98 (2018) 074502 [Erratum ibid.105 (2022) 019902] [arXiv:1807.08357] [INSPIRE]. – reference: M. Hoferichter et al., A phenomenological estimate of isospin breaking in hadronic vacuum polarization, arXiv:2307.02532 [INSPIRE]. – reference: Y.M. Bystritskiy, E.A. Kuraev, G.V. Fedotovich and F.V. Ignatov, The Cross sections of the muons and charged pions pairs production at electron-positron annihilation near the threshold, Phys. Rev. D72 (2005) 114019 [hep-ph/0505236] [INSPIRE]. – reference: Di LuzioLMasieroAParadisiPPasseraMNew physics behind the new muon g – 2 puzzle?Phys. Lett. B2022829[arXiv:2112.08312] [INSPIRE] – reference: Muong – 2 collaboration, Magnetic-field measurement and analysis for the Muon g2 Experiment at Fermilab, Phys. Rev. A103 (2021) 042208 [arXiv:2104.03201] [INSPIRE]. – reference: M.V. Terent’ev, Process π±→ π0π±in Coulomb field and anomalous divergence of neutral axial vector current, Phys. Lett. B38 (1972) 419 [INSPIRE]. – reference: R.R. Akhmetshin et al., Measurement of ϕ meson parameters with CMD-2 detector at VEPP-2M collider, Phys. Lett. B364 (1995) 199 [INSPIRE]. – reference: BorsanyiSLeading hadronic contribution to the muon magnetic moment from lattice QCDNature2021593512021Natur.593...51B[arXiv:2002.12347] [INSPIRE] – reference: DarméLGrilli di CortonaGNardiEThe muon g – 2 anomaly confronts new physics in e±and μ±final states scatteringJHEP2022061222022JHEP...06..122D[arXiv:2112.09139] [INSPIRE] – reference: J. Monnard, Radiative corrections for the two-pion contribution to the hadronic vacuum polarization contribution to the muon g – 2, Ph.D. Thesis, Bern University (2020) [https://boristheses.unibe.ch/2825/]. – reference: KeshavarziAMarcianoWJPasseraMSirlinAMuon g – 2 and ∆α connectionPhys. Rev. D20201022020PhRvD.102c3002K[arXiv:2006.12666] [INSPIRE] – reference: G. Colangelo et al., Prospects for precise predictions of aμin the Standard Model, arXiv:2203.15810 [INSPIRE]. – reference: D. Stamen et al., Analysis of rescattering effects in 3π final states, Eur. Phys. J. C83 (2023) 510 [Erratum ibid.83 (2023) 586] [arXiv:2212.11767] [INSPIRE]. – reference: NNPDF collaboration, Fitting Parton Distribution Data with Multiplicative Normalization Uncertainties, JHEP05 (2010) 075 [arXiv:0912.2276] [INSPIRE]. – reference: HoferichterMStofferPAsymptotic behavior of meson transition form factorsJHEP2020051592020JHEP...05..159H4112284[arXiv:2004.06127] [INSPIRE] – reference: ColangeloGShort-distance constraints for the longitudinal component of the hadronic light-by-light amplitude: an updateEur. Phys. J. C2021817022021EPJC...81..702C[arXiv:2106.13222] [INSPIRE] – reference: KLOE-2 collaboration, Combination of KLOE σ (e+e−→ π+π−γ(γ)) measurements and determination ofaμπ+π−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {a}_{\mu}^{\pi^{+}{\pi}^{-}} $$\end{document}in the energy range 0.10 < s < 0.95 GeV2, JHEP03 (2018) 173 [arXiv:1711.03085] [INSPIRE]. – reference: C. Bouchiat and L. Michel, La résonance dans la diffusion méson π-méson π et le moment magnétique anormal du méson μ, J. Phys. Radium22 (1961) 121 [INSPIRE]. – reference: BijnensJHermansson-TruedssonNLaubLRodríguez-SánchezAShort-distance HLbL contributions to the muon anomalous magnetic moment beyond perturbation theoryJHEP2020102032020JHEP...10..203B[arXiv:2008.13487] [INSPIRE] – reference: DaxMIskenTKubisBQuark-mass dependence in ω → 3π decaysEur. Phys. J. C2018788592018EPJC...78..859D[arXiv:1808.08957] [INSPIRE] – reference: BaBar collaboration, Study of e+e−→ π+π−π0process using initial state radiation with BaBar, Phys. Rev. D70 (2004) 072004 [hep-ex/0408078] [INSPIRE]. – reference: G. Benton et al., Data-driven determination of the light-quark connected component of the intermediate-window contribution to the muon g − 2, arXiv:2306.16808 [INSPIRE]. – reference: N.N. Khuri and S.B. Treiman, Pion-Pion Scattering and K±→ 3π Decay, Phys. Rev.119 (1960) 1115 [INSPIRE]. – reference: M. Jacob and G.C. Wick, On the General Theory of Collisions for Particles with Spin, Annals Phys.7 (1959) 404 [INSPIRE]. – reference: ColangeloGHoferichterMStofferPTwo-pion contribution to hadronic vacuum polarizationJHEP2019020062019JHEP...02..006C[arXiv:1810.00007] [INSPIRE] – reference: StamenDKaon electromagnetic form factors in dispersion theoryEur. Phys. J. C2022824322022EPJC...82..432S[arXiv:2202.11106] [INSPIRE] – reference: Particle Data Group collaboration, Review of Particle Physics, PTEP2022 (2022) 083C01 [INSPIRE]. – reference: CrivellinAHoferichterMManzariCAMontullMHadronic Vacuum Polarization: (g – 2)μversus Global Electroweak FitsPhys. Rev. Lett.20201252020PhRvL.125i1801C[arXiv:2003.04886] [INSPIRE] – reference: J. Gluza, A. Hoefer, S. Jadach and F. Jegerlehner, Measuring the FSR inclusive π+π−cross-section, Eur. Phys. J. C28 (2003) 261 [hep-ph/0212386] [INSPIRE]. – reference: BijnensJHermansson-TruedssonNRodríguez-SánchezAShort-distance constraints for the HLbL contribution to the muon anomalous magnetic momentPhys. Lett. B2019798[arXiv:1908.03331] [INSPIRE] – reference: S.J. Brodsky and E. de Rafael, Suggested boson-lepton pair couplings and the anomalous magnetic moment of the muon, Phys. Rev.168 (1968) 1620 [INSPIRE]. – reference: H. Czyż, A. Grzelińska, J.H. Kühn and G. Rodrigo, The Radiative return at Φ and B factories: FSR for muon pair production at next-to-leading order, Eur. Phys. J. C39 (2005) 411 [hep-ph/0404078] [INSPIRE]. – reference: NiecknigFKubisBSchneiderSPDispersive analysis of ω → 3π and ϕ → 3π decaysEur. Phys. J. C20127220142012EPJC...72.2014N[arXiv:1203.2501] [INSPIRE] – reference: M. Hoferichter et al., Chiral extrapolation of hadronic vacuum polarization and isospin-breaking corrections, PoSLATTICE2022 (2022) 316 [arXiv:2210.11904] [INSPIRE]. – reference: Muong – 2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett.126 (2021) 141801 [arXiv:2104.03281] [INSPIRE]. – reference: Muong – 2 collaboration, Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab, Phys. Rev. Accel. Beams24 (2021) 044002 [arXiv:2104.03240] [INSPIRE]. – reference: R. Omnès, On the Solution of certain singular integral equations of quantum field theory, Nuovo Cim.8 (1958) 316 [INSPIRE]. – reference: ChaoE-HThe charm-quark contribution to light-by-light scattering in the muon (g − 2) from lattice QCDEur. Phys. J. C2022826642022EPJC...82..664C[arXiv:2204.08844] [INSPIRE] – reference: S. Holz, C. Hanhart, M. Hoferichter and B. Kubis, A dispersive analysis of η′→ π+π−γ and η′→ ℓ+ℓ−γ, Eur. Phys. J. C82 (2022) 434 [Addendum ibid.82 (2022) 1159] [arXiv:2202.05846] [INSPIRE]. – reference: LeutgebJMagerJRebhanAHadronic light-by-light contribution to the muon g – 2 from holographic QCD with solved U(1)AproblemPhys. Rev. D20231072023PhRvD.107e4021L[arXiv:2211.16562] [INSPIRE] – reference: L. Ametller, M. Knecht and P. Talavera, Electromagnetic corrections to γπ±→ π0π±, Phys. Rev. D64 (2001) 094009 [hep-ph/0107127] [INSPIRE]. – reference: J. Bijnens, A. Bramon and F. Cornet, Three Pseudoscalar Photon Interactions in Chiral Perturbation Theory, Phys. Lett. B237 (1990) 488 [INSPIRE]. – reference: BijnensJHermansson-TruedssonNLaubLRodríguez-SánchezAThe two-loop perturbative correction to the (g – 2)μHLbL at short distancesJHEP2021042402021JHEP...04..240B[arXiv:2101.09169] [INSPIRE] – reference: BoitoDGoltermanMMaltmanKPerisSEvaluation of the three-flavor quark-disconnected contribution to the muon anomalous magnetic moment from experimental dataPhys. Rev. D20221052022PhRvD.105i3003B[arXiv:2203.05070] [INSPIRE] – reference: NiehusMHoferichterMKubisBThe γπ → ππ anomaly from lattice QCD and dispersion relationsJHEP2021120382021JHEP...12..038N[arXiv:2110.11372] [INSPIRE] – reference: T. Aoyama, T. Kinoshita and M. Nio, Theory of the Anomalous Magnetic Moment of the Electron, Atoms7 (2019) 28 [INSPIRE]. – reference: BESIII collaboration, Measurement of the e+e−→ π+π−cross section between 600 and 900 MeV using initial state radiation, Phys. Lett. B753 (2016) 629 [Erratum ibid.812 (2021) 135982] [arXiv:1507.08188] [INSPIRE]. – reference: M. Hoferichter, B. Kubis and M. Zanke, Axial-vector transition form factors and e+e−→ f1π+π−, arXiv:2307.14413 [INSPIRE]. – reference: HoferichterMKubisBZankeMRadiative resonance couplings in γπ → ππPhys. Rev. D2017962017PhRvD..96k4016H[arXiv:1710.00824] [INSPIRE] – reference: Fermilab Lattice et al. collaborations, Light-quark connected intermediate-window contributions to the muon g – 2 hadronic vacuum polarization from lattice QCD, Phys. Rev. D107 (2023) 114514 [arXiv:2301.08274] [INSPIRE]. – reference: M.N. Achasov et al., Study of the process e+e−→ π+π−π0in the energy regions\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document}from 0.98 to 1.38 GeV, Phys. Rev. D66 (2002) 032001 [hep-ex/0201040] [INSPIRE]. – reference: K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D70 (2004) 113006 [hep-ph/0312226] [INSPIRE]. – reference: RBC and UKQCD collaborations, Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, Phys. Rev. Lett.121 (2018) 022003 [arXiv:1801.07224] [INSPIRE]. – reference: BlumTHadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment from Lattice QCDPhys. Rev. Lett.20201242020PhRvL.124m2002B[arXiv:1911.08123] [INSPIRE] – reference: ColangeloGTowards a data-driven analysis of hadronic light-by-light scatteringPhys. Lett. B201473862014PhLB..738....6C[arXiv:1408.2517] [INSPIRE] – reference: T. Blum et al., An update of Euclidean windows of the hadronic vacuum polarization, arXiv:2301.08696 [INSPIRE]. – reference: M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to αmZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({m}_Z^2\right) $$\end{document}, Eur. Phys. J. C80 (2020) 241 [Erratum ibid.80 (2020) 410] [arXiv:1908.00921] [INSPIRE]. – reference: ColangeloGShort-distance constraints on hadronic light-by-light scattering in the anomalous magnetic moment of the muonPhys. Rev. D20201012020PhRvD.101e1501C4177660[arXiv:1910.11881] [INSPIRE] – reference: LüdtkeJProcuraMEffects of longitudinal short-distance constraints on the hadronic light-by-light contribution to the muon g – 2Eur. Phys. J. C20208011082020EPJC...80.1108L[arXiv:2006.00007] [INSPIRE] – reference: ColangeloGHoferichterMMonnardJRuiz de ElviraJRadiative corrections to the forward-backward asymmetry in e+e−→ π+π−JHEP2022082952022JHEP...08..295C[arXiv:2207.03495] [INSPIRE] – reference: von DettenLOn the scalar πK form factor beyond the elastic regionEur. Phys. J. C2021814202021EPJC...81..420V[arXiv:2103.01966] [INSPIRE] – reference: BijnensJHermansson-TruedssonNRodríguez-SánchezAConstraints on the hadronic light-by-light in the Melnikov-Vainshtein regimeJHEP2023021672023JHEP...02..167B07685590[arXiv:2211.17183] [INSPIRE] – reference: G. Chanturia, A two-potential formalism for the pion vector form factor, PoSRegio2021 (2022) 030 [INSPIRE]. – reference: R.R. Akhmetshin et al., Study of ϕ → π+π−π0with CMD-2 detector, Phys. Lett. B642 (2006) 203 [INSPIRE]. – reference: GnendigerCStöckingerDStöckinger-KimHThe electroweak contributions to (g – 2)μafter the Higgs boson mass measurementPhys. Rev. D2013882013PhRvD..88e3005G[arXiv:1306.5546] [INSPIRE] – reference: Muong – 2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D73 (2006) 072003 [hep-ex/0602035] [INSPIRE]. – reference: HoferichterMDispersion relation for hadronic light-by-light scattering: pion poleJHEP2018101412018JHEP...10..141H[arXiv:1808.04823] [INSPIRE] – reference: A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D67 (2003) 073006 [Erratum ibid.73 (2006) 119901] [hep-ph/0212229] [INSPIRE]. – reference: CèMWindow observable for the hadronic vacuum polarization contribution to the muon g – 2 from lattice QCDPhys. Rev. D20221062022PhRvD.106k4502C[arXiv:2206.06582] [INSPIRE] – reference: HoferichterMDispersive analysis of the pion transition form factorEur. Phys. J. C20147431802014EPJC...74.3180H[arXiv:1410.4691] [INSPIRE] – reference: N.M. Coyle and C.E.M. Wagner, Resolving the muon g – 2 tension through Z′-induced modifications to σhad, arXiv:2305.02354 [INSPIRE]. – reference: HoidB-LHoferichterMKubisBHadronic vacuum polarization and vector-meson resonance parameters from e+e−→ π0γEur. Phys. J. C2020809882020EPJC...80..988H[arXiv:2007.12696] [INSPIRE] – reference: AoyamaTHayakawaMKinoshitaTNioMComplete Tenth-Order QED Contribution to the Muon g – 2Phys. Rev. Lett.20121092012PhRvL.109k1808A[arXiv:1205.5370] [INSPIRE] – volume: 04 start-page: 161 year: 2017 ident: 21657_CR25 publication-title: JHEP doi: 10.1007/JHEP04(2017)161 – ident: 21657_CR135 – volume: 887 start-page: 1 year: 2020 ident: 21657_CR6 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2020.07.006 – ident: 21657_CR102 doi: 10.1103/PhysRevD.4.3497 – ident: 21657_CR126 doi: 10.1007/BF02747746 – volume: 100 year: 2019 ident: 21657_CR118 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.076004 – volume: 96 year: 2017 ident: 21657_CR112 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.114016 – ident: 21657_CR63 – ident: 21657_CR86 – ident: 21657_CR141 doi: 10.1016/0550-3213(80)90157-1 – ident: 21657_CR12 doi: 10.1103/PhysRevD.97.114025 – volume: 80 start-page: 1108 year: 2020 ident: 21657_CR40 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-08611-6 – volume: 02 start-page: 006 year: 2019 ident: 21657_CR13 publication-title: JHEP doi: 10.1007/JHEP02(2019)006 – volume: 833 year: 2022 ident: 21657_CR61 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2022.137313 – ident: 21657_CR121 – ident: 21657_CR91 doi: 10.1140/epjc/s2004-02103-1 – ident: 21657_CR115 – ident: 21657_CR84 doi: 10.22323/1.430.0316 – ident: 21657_CR146 – volume: 121 year: 2018 ident: 21657_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.112002 – ident: 21657_CR132 – volume: 106 year: 2022 ident: 21657_CR57 publication-title: Phys. Rev. D – volume: 820 year: 2021 ident: 21657_CR44 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2021.136502 – volume: 03 start-page: 101 year: 2020 ident: 21657_CR31 publication-title: JHEP doi: 10.1007/JHEP03(2020)101 – volume: 734 start-page: 144 year: 2014 ident: 21657_CR18 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2014.05.043 – ident: 21657_CR5 – volume: 72 start-page: 2014 year: 2012 ident: 21657_CR106 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-012-2014-1 – ident: 21657_CR37 – volume: 12 start-page: 038 year: 2021 ident: 21657_CR116 publication-title: JHEP doi: 10.1007/JHEP12(2021)038 – ident: 21657_CR147 – ident: 21657_CR60 – volume: 715 start-page: 170 year: 2012 ident: 21657_CR123 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2012.07.038 – ident: 21657_CR80 doi: 10.22323/1.412.0030 – ident: 21657_CR94 doi: 10.1016/0370-2693(71)90582-X – volume: 107 year: 2023 ident: 21657_CR47 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.054021 – volume: 10 start-page: 203 year: 2020 ident: 21657_CR41 publication-title: JHEP doi: 10.1007/JHEP10(2020)203 – ident: 21657_CR68 – volume: 80 start-page: 988 year: 2020 ident: 21657_CR17 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-08550-2 – volume: 105 year: 2022 ident: 21657_CR85 publication-title: Phys. Rev. D – ident: 21657_CR96 doi: 10.1103/PhysRevD.64.094009 – volume: 08 start-page: 137 year: 2019 ident: 21657_CR14 publication-title: JHEP doi: 10.1007/JHEP08(2019)137 – volume: 74 start-page: 3180 year: 2014 ident: 21657_CR101 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-014-3180-0 – ident: 21657_CR89 – volume: 05 start-page: 159 year: 2020 ident: 21657_CR39 publication-title: JHEP doi: 10.1007/JHEP05(2020)159 – volume: 78 start-page: 1000 year: 2018 ident: 21657_CR124 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-6416-6 – volume: 82 start-page: 664 year: 2022 ident: 21657_CR35 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-022-10589-2 – volume: 593 start-page: 51 year: 2021 ident: 21657_CR55 publication-title: Nature doi: 10.1038/s41586-021-03418-1 – volume: 109 year: 2012 ident: 21657_CR7 publication-title: Phys. Rev. Lett. – ident: 21657_CR15 doi: 10.1140/epjc/s10052-020-7857-2 – ident: 21657_CR52 – ident: 21657_CR133 – volume: 78 year: 2008 ident: 21657_CR73 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.013009 – volume: 09 start-page: 074 year: 2015 ident: 21657_CR22 publication-title: JHEP doi: 10.1007/JHEP09(2015)074 – ident: 21657_CR127 – ident: 21657_CR46 doi: 10.1140/epjc/s10052-022-11094-2 – volume: 833 year: 2022 ident: 21657_CR119 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2022.137283 – ident: 21657_CR2 – ident: 21657_CR104 doi: 10.1103/PhysRevD.5.2372 – ident: 21657_CR72 – volume: 108 year: 2023 ident: 21657_CR71 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.013005 – ident: 21657_CR144 doi: 10.1016/0168-9002(94)90719-6 – volume: 08 start-page: 295 year: 2022 ident: 21657_CR79 publication-title: JHEP doi: 10.1007/JHEP08(2022)295 – volume: 86 year: 2012 ident: 21657_CR107 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.86.054013 – volume: 798 year: 2019 ident: 21657_CR29 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.134994 – volume: 08 start-page: 220 year: 2022 ident: 21657_CR78 publication-title: JHEP doi: 10.1007/JHEP08(2022)220 – ident: 21657_CR145 doi: 10.1007/JHEP05(2010)075 – ident: 21657_CR66 – volume: 82 start-page: 432 year: 2022 ident: 21657_CR82 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-022-10348-3 – volume: 81 start-page: 651 year: 2021 ident: 21657_CR34 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09455-4 – volume: 102 year: 2020 ident: 21657_CR75 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.033002 – ident: 21657_CR105 doi: 10.1088/0305-4616/4/1/007 – volume: 09 start-page: 091 year: 2014 ident: 21657_CR20 publication-title: JHEP doi: 10.1007/JHEP09(2014)091 – ident: 21657_CR83 – volume: 125 year: 2020 ident: 21657_CR74 publication-title: Phys. Rev. Lett. – volume: 91 year: 2015 ident: 21657_CR109 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.094029 – volume: 81 start-page: 420 year: 2021 ident: 21657_CR125 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09169-7 – ident: 21657_CR97 doi: 10.1088/1126-6708/2002/09/008 – ident: 21657_CR139 – volume: 128 year: 2022 ident: 21657_CR54 publication-title: Phys. Rev. Lett. – ident: 21657_CR50 – volume: 06 start-page: 122 year: 2022 ident: 21657_CR70 publication-title: JHEP doi: 10.1007/JHEP06(2022)122 – volume: 04 start-page: 240 year: 2021 ident: 21657_CR42 publication-title: JHEP doi: 10.1007/JHEP04(2021)240 – volume: 81 start-page: 46 year: 2021 ident: 21657_CR76 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-08848-9 – ident: 21657_CR4 – ident: 21657_CR38 – ident: 21657_CR131 – volume: 814 year: 2021 ident: 21657_CR77 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2021.136073 – volume: 86 year: 2012 ident: 21657_CR108 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.86.116009 – volume: 100 year: 2019 ident: 21657_CR28 publication-title: Phys. Rev. D – volume: 105 year: 2022 ident: 21657_CR87 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.093003 – ident: 21657_CR67 – volume: 735 start-page: 90 year: 2014 ident: 21657_CR33 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2014.06.012 – volume: 73 start-page: 2539 year: 2013 ident: 21657_CR99 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-013-2539-y – ident: 21657_CR136 – volume: 88 year: 2013 ident: 21657_CR10 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.053005 – ident: 21657_CR16 doi: 10.1103/PhysRevD.101.014029 – volume: 95 year: 2017 ident: 21657_CR23 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.054026 – ident: 21657_CR64 – ident: 21657_CR56 doi: 10.1103/PhysRevLett.121.022003 – volume: 118 year: 2017 ident: 21657_CR24 publication-title: Phys. Rev. Lett. – ident: 21657_CR128 doi: 10.1007/s002180050167 – ident: 21657_CR11 doi: 10.1140/epjc/s10052-017-5161-6 – ident: 21657_CR1 – ident: 21657_CR19 doi: 10.1103/PhysRevD.70.113006 – volume: 10 start-page: 141 year: 2018 ident: 21657_CR27 publication-title: JHEP doi: 10.1007/JHEP10(2018)141 – volume: 101 year: 2020 ident: 21657_CR30 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.051501 – ident: 21657_CR114 – ident: 21657_CR142 doi: 10.1007/BF01589702 – ident: 21657_CR53 doi: 10.1016/0370-2693(76)90150-7 – ident: 21657_CR137 – ident: 21657_CR95 doi: 10.1016/0550-3213(83)90063-9 – ident: 21657_CR98 doi: 10.1103/PhysRevD.73.034010 – ident: 21657_CR90 doi: 10.1007/s100520200916 – volume: 78 start-page: 859 year: 2018 ident: 21657_CR110 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-6346-3 – ident: 21657_CR129 doi: 10.1051/jphysrad:01961002202012101 – ident: 21657_CR36 – ident: 21657_CR122 doi: 10.1140/epjc/s10052-023-11749-8 – volume: 07 start-page: 106 year: 2021 ident: 21657_CR43 publication-title: JHEP doi: 10.1007/JHEP07(2021)106 – ident: 21657_CR93 doi: 10.1103/PhysRevD.72.114019 – ident: 21657_CR140 – ident: 21657_CR9 doi: 10.1103/PhysRevD.67.073006 – ident: 21657_CR117 – volume: 829 year: 2022 ident: 21657_CR69 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2022.137037 – ident: 21657_CR51 – ident: 21657_CR130 doi: 10.1103/PhysRev.168.1620 – ident: 21657_CR134 – ident: 21657_CR92 doi: 10.1140/epjc/s2003-01146-0 – ident: 21657_CR103 doi: 10.1016/0370-2693(72)90171-2 – ident: 21657_CR59 – volume: 107 year: 2023 ident: 21657_CR88 publication-title: Phys. Rev. D – ident: 21657_CR143 doi: 10.1016/0370-1573(91)90127-8 – volume: 124 year: 2020 ident: 21657_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.132002 – ident: 21657_CR3 – ident: 21657_CR58 doi: 10.1103/PhysRevD.107.074506 – volume: 02 start-page: 167 year: 2023 ident: 21657_CR48 publication-title: JHEP doi: 10.1007/JHEP02(2023)167 – ident: 21657_CR138 doi: 10.1016/S0370-2693(98)00826-0 – ident: 21657_CR113 doi: 10.1016/0370-2693(90)91212-T – ident: 21657_CR100 doi: 10.1103/PhysRev.119.1115 – ident: 21657_CR111 doi: 10.1016/0003-4916(59)90051-X – ident: 21657_CR62 – volume: 738 start-page: 6 year: 2014 ident: 21657_CR21 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2014.09.021 – volume: 81 start-page: 702 year: 2021 ident: 21657_CR45 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09513-x – volume: 04 start-page: 125 year: 2023 ident: 21657_CR49 publication-title: JHEP doi: 10.1007/JHEP04(2023)125 – ident: 21657_CR65 doi: 10.1134/S106377610609007X – volume: 10 start-page: 032 year: 2022 ident: 21657_CR81 publication-title: JHEP doi: 10.1007/JHEP10(2022)032 – ident: 21657_CR120 – ident: 21657_CR8 doi: 10.3390/atoms7010028 |
SSID | ssj0015190 |
Score | 2.519791 |
Snippet | A
bstract
Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant... Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise... Abstract Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions... |
SourceID | doaj osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 208 |
SubjectTerms | Chiral Lagrangian Classical and Quantum Gravitation Elementary Particles High energy physics Magnetic moments Physics Physics and Astronomy PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Pions Polarization Precision QED Quantum chromodynamics Quantum Field Theories Quantum Field Theory Quantum Physics Quarks Radiation Regular Article - Theoretical Physics Relativity Theory String Theory Theoretical physics Vector mesons |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilJG1DnEfRoYfNwYkfsiwdk5KwXWjpoSG5CXkk0UDqXbLe_v7OyHKaFpZeerANlmys0Uj6xjP6hrEPpfQ2dBTcilgiF-BcrpWC3MsAqrKoIS3tRv78Rc5vxOKuuXuW6otiwkZ64FFw574FwFm0tsFqEaDTwWtbhNDV3rZu5PnENW8yppL_AHFJMRH5FO35Yn71tVAzShV-WlEmyWdrUKTqx8sSh9QfMPMvz2hccK532euEFPnF-IV77IXv37CXMWIT1m_Z7ac1pfzoc7RpY0YpnkIz-H3PEdXh8eh9vkK58xiPnhJb8WHJv1sXKXH5TwubzQ--Ivs2bch8x26ur759nOcpS0IOoq2GvLQAQdayDtqqoimctaLphANtXQmVdSLU0lU-NIguvPWl7KpWS9cq3SnpQ73Pdvpl7w8YF478grYMtWvQbNaq9IWvqtAFgfOigoydTXIzkCjEKZPFg5nIj0dBGxI0nlTGZk8PrEb2jO1VL6kjnqoR7XW8gcpgkjKYfylDxo6oGw2iB6LABYoVgsEgSlEIizJ2PPWuSSN1bYjAj3y1Sm0pVoiwWqnLjJ1OCvG7eEtjDv9HY47YK3pf_IFdHLOd4XHjTxABDd37qOy_AB1tBO4 priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRUhcEE-RtiAfOLSHoDwcxz5C1WqpBOJARW-WM7YBCbKr3Sy_nxmvU1TQHjgksWL7kBk_PmdmvgF4Xavg4sDOrYQlSonel0ZrLIOKqBtHI6TnaOQPH9XiWl7ddDcHUM-xMMnbfTZJppV6Dna7Wlx8qvQpp_s-azi8915HZR7U5xzgkA0HBEiqmcHn3053Np_E0U-PJc2lO_jyL5No2mkuH8HDDBHF251OH8NBGJ_A_eSqiZun8OX9hnN9jCUdZlMqKZF9MsT3URCco2sdQrkigYvkiJ4zWolpKb45n7hwxS-H2-1PseKDbY7EfAbXlxefzxdlTo9QouybqawdYlStaqNxuuoq75zsBunROF9j47yMrfJNiB3BiuBCrYamN8r32gxahdg-h8NxOYYXIKRng6CrY-s7Oi8bXYcqNE0coqQFUWMBb2a5Wczc4ZzC4oedWY93grYsaLrpAk5vO6x2tBn7m75jRdw2Y77r9GK5_mrz9LGhR6S9tHXRGRlxMDEYV8U4tMH1vmoLOGY1WoINzH2L7CSEkyV4ogkPFXAya9fmKbqxzNzHRlqt91Rrgla9MnUBZ_OA-FO952OO_qPtMTzgYvpBXZ3A4bTehpeEcKbhVRrTvwEWYPV5 priority: 102 providerName: Springer Nature |
Title | Isospin-breaking effects in the three-pion contribution to hadronic vacuum polarization |
URI | https://link.springer.com/article/10.1007/JHEP08(2023)208 https://www.proquest.com/docview/2859389188 https://www.proquest.com/docview/2883177691 https://www.osti.gov/servlets/purl/2418910 https://doaj.org/article/e7cc8013afa94fcb9fe9a0ffb3ea7d03 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLbYJiQuiJ-ibFQ-cNgOYY7jOPYJbVVLmcQ0ISp2ixz_ACRISpvy9_Oe63SAVA5xlMRRFPvZ_uz3_H2EvM6lN6HB4FbAEpmwzmVaKZt5GaziBiykwt3IH67lfCGubsvbtOC2TmGVQ58YO2rXWVwjP0eiNfSpKfV2-TND1Sj0riYJjQNyBF2wgsnX0eX0-ubjzo8A-IQNhD6sOr-aT2-YOkXJ8DOOipJ_jEWRsh9OHTStv-DmPx7SOPDMHpGHCTHSi20VPyb3fPuE3I-Rm3b9lHx-v0bpjzaDuW1UlqIpRIN-aymgOzhW3mdLKH8a49KTwBXtO_rVuEiNS38Zu9n8oEuc56aNmc_IYjb9NJlnSS0hs6LifZYba4MsZBG0UaxkzhhRNsJZbVxuuXEiFNJxH0pAGd74XDa80tJVSjdK-lA8J4dt1_oXhAqH_kGTh8KVMH3WKvfMcx6aIKB_VHZE3gzlVttEJY6KFt_rgQR5W9A1FjQkakROdy8stywa-7NeYkXssiH9dbzRrb7UqTXVvrIWhtbCBKNFsI0OXhsWQlN4UzlWjMgxVmMNKAKpcC3GDNm-BrQCFsRG5GSo3Tq12HV9Z197HitAWpXU-YicDQZx93jPz7z8_5eOyQPMGZeo2Qk57Fcb_wowTt-MyYGavRsnc4arCReYysk4rhpAuuAXvwEDqQAO |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ilCC_gAUnsIdRzHsQ8I8eiy25c4tKK31PEDKpXNspsF8af4jcx4ky0gLbcekkixkyieseezZzwfIc8z6U2oMbgVsEQqrHOpVsqmXgaruAENKXE38uGRHJ6IvdPidI386vfCYFhlPybGgdo1FtfIdzDRGvrUlHo9-ZYiaxR6V3sKjYVa7PufP2DKNns1eg_yfcH5YPf43TDtWAVSK0reppmxNshc5kEbxQrmjBFFLZzVxmWWGydCLh33oQBr7I3PZM1LLV2pdK2kDzm89xq5LvJcY49Sgw9LrwWgIdanD2Llzt5w9yNTW0hQvs2Rv_IPyxcJAuDSQEf-C9z-44-NZm5wh9zu8Cl9s1Cou2TNj--RGzFO1M7uk0-jGRKNjFOYSUceK9oFhNDzMQUsCcfU-3QC0qYxCr6j06JtQ78YFxPx0u_Gzudf6QRn1d020Afk5Epa8SFZHzdj_4hQ4dAbabKQuwIm61plnnnOQx0EjMbKJuRl326V7RKXI3_GRdWnXF40dIUNDSeVkK3lA5NFzo7VVd-iIJbVMNl2vNFMP1dd3618aS0Y8twEo0WwtQ5eGxZCnXtTOpYnZAPFWAFmwcS7FiOUbFsBNgJ9ZQnZ7KVbdePDrLrU5hXFCnBdKXWWkO1eIS6LV_zM4_9_6Rm5OTw-PKgORkf7G-QWPhUXx9kmWW-nc_8E0FVbP40qTcnZVfeh36IOONU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEJ8ibIAfQNoewpxv5wEhxlq1G1QVYmJvxvEHmwRNaVMQ_xp_HXep0wFSedtDEil2EsV3tn_nO98P4FmUW-UqCm5FLBGm2piwFEKHNndaxAo1pKDdyO_G-fA0PT7LzrbgV7cXhsIquzGxHahNrWmN_IASrZFPDQ0258MiJkeDV7NvITFIkae1o9NYqciJ_fkDzbfFy9ERyvp5HA_6H94MQ88wEOq0iJswUlq7PMkTVyrBM26USrMqNbpUJtKxMqlLchNbl-HMbJWN8iouytwUoqxEbl2C770G2wVaRbwH24f98eT92oeB2Ih3yYR4cXA87E-42CO68v2Y2Cz_mAdbugC81Nit_4K6_3hn20lvcBtuebTKXq_U6w5s2elduN5GjerFPfg4WhDtyDREu7pltWI-PIRdTBkiSzzm1oYzlD1rY-I9uRZranauTJuWl31Xern8ymZkY_tNoffh9Era8QH0pvXUPgSWGvJNqsglJkPTvRSR5TaOXeVSHJuFDuBF125S-zTmxKbxRXYJmFcNLamh8SQC2Fs_MFtl8Nhc9ZAEsa5GqbfbG_X8s_Q9WdpCa5zWE-VUmTpdlc6WijtXJVYVhicB7JAYJSIYSsOrKV5JNxKREmovD2C3k670o8VCXur2hmKBKK_IyyiA_U4hLos3_Myj_3_pKdzA_iPfjsYnO3CTHmpXyvku9Jr50j5GqNVUT7xOM_h01d3oN0fHPmc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isospin-breaking+effects+in+the+three-pion+contribution+to+hadronic+vacuum+polarization&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Hoferichter%2C+Martin&rft.au=Hoid%2C+Bai-Long&rft.au=Kubis%2C+Bastian&rft.au=Schuh%2C+Dominic&rft.date=2023-08-30&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2023&rft.issue=8&rft.spage=208&rft_id=info:doi/10.1007%2FJHEP08%282023%29208&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |