Isospin-breaking effects in the three-pion contribution to hadronic vacuum polarization

A bstract Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise from the e + e − → π + π − channel, also IB in the subleading channels can become relevant for a detailed understanding, e.g., of the...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2023; no. 8; pp. 208 - 31
Main Authors Hoferichter, Martin, Hoid, Bai-Long, Kubis, Bastian, Schuh, Dominic
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 30.08.2023
Springer Nature B.V
Springer Nature
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise from the e + e − → π + π − channel, also IB in the subleading channels can become relevant for a detailed understanding, e.g., of the comparison to lattice QCD. Here, we provide such an analysis for e + e − → 3 π by extending our dispersive description of the process, including estimates of final-state radiation (FSR) and ρ – ω mixing. In particular, we develop a formalism to capture the leading infrared-enhanced effects in terms of a correction factor η 3 π that generalizes the analog treatment of virtual and final-state photons in the 2 π case. The global fit to the e + e − → 3 π data base, subject to constraints from analyticity, unitarity, and the chiral anomaly, gives a μ 3 π ≤ 1.8 GeV = 45.91 53 × 10 − 10 for the total 3 π contribution to the anomalous magnetic moment of the muon, of which a μ FSR 3 π = 0.51 1 × 10 − 10 and a μ ρ − ω 3 π = − 2.68 70 × 10 − 10 can be ascribed to IB. We argue that the resulting cancellation with ρ – ω mixing in e + e − → 2 π can be understood from a narrow-resonance picture, and provide updated values for the vacuum-polarization-subtracted vector-meson parameters M ω = 782 . 70(3) MeV, M ϕ = 1019 . 21(2) MeV, Γ ω = 8 . 71(3) MeV, and Γ ϕ = 4 . 27(1) MeV.
AbstractList Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise from the e+e−→ π+π− channel, also IB in the subleading channels can become relevant for a detailed understanding, e.g., of the comparison to lattice QCD. Here, we provide such an analysis for e+e−→ 3π by extending our dispersive description of the process, including estimates of final-state radiation (FSR) and ρ–ω mixing. In particular, we develop a formalism to capture the leading infrared-enhanced effects in terms of a correction factor η3π that generalizes the analog treatment of virtual and final-state photons in the 2π case. The global fit to the e+e−→ 3π data base, subject to constraints from analyticity, unitarity, and the chiral anomaly, gives aμ3π≤1.8GeV=45.9153×10−10 for the total 3π contribution to the anomalous magnetic moment of the muon, of which aμFSR3π=0.511×10−10 and aμρ−ω3π=−2.6870×10−10 can be ascribed to IB. We argue that the resulting cancellation with ρ–ω mixing in e+e−→ 2π can be understood from a narrow-resonance picture, and provide updated values for the vacuum-polarization-subtracted vector-meson parameters Mω = 782.70(3) MeV, Mϕ = 1019.21(2) MeV, Γω = 8.71(3) MeV, and Γϕ = 4.27(1) MeV.
Abstract Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise from the e + e − → π + π − channel, also IB in the subleading channels can become relevant for a detailed understanding, e.g., of the comparison to lattice QCD. Here, we provide such an analysis for e + e − → 3π by extending our dispersive description of the process, including estimates of final-state radiation (FSR) and ρ–ω mixing. In particular, we develop a formalism to capture the leading infrared-enhanced effects in terms of a correction factor η 3π that generalizes the analog treatment of virtual and final-state photons in the 2π case. The global fit to the e + e − → 3π data base, subject to constraints from analyticity, unitarity, and the chiral anomaly, gives a μ 3 π ≤ 1.8 GeV = 45.91 53 × 10 − 10 $$ {\left.{a}_{\mu}^{3\pi}\right|}_{\le 1.8\ \textrm{GeV}}=45.91(53)\times {10}^{-10} $$ for the total 3π contribution to the anomalous magnetic moment of the muon, of which a μ FSR 3 π = 0.51 1 × 10 − 10 $$ {a}_{\mu}^{\textrm{FSR}}\left[3\pi \right]=0.51(1)\times {10}^{-10} $$ and a μ ρ − ω 3 π = − 2.68 70 × 10 − 10 $$ {a}_{\mu}^{\rho -\omega}\left[3\pi \right]=-2.68(70)\times {10}^{-10} $$ can be ascribed to IB. We argue that the resulting cancellation with ρ–ω mixing in e + e − → 2π can be understood from a narrow-resonance picture, and provide updated values for the vacuum-polarization-subtracted vector-meson parameters M ω = 782.70(3) MeV, M ϕ = 1019.21(2) MeV, Γ ω = 8.71(3) MeV, and Γ ϕ = 4.27(1) MeV.
Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise from the e+e- → π+π- channel, also IB in the subleading channels can become relevant for a detailed understanding, e.g., of the comparison to lattice QCD. Here, we provide such an analysis for e+e- → 3π by extending our dispersive description of the process, including estimates of final-state radiation (FSR) and ρ–ω mixing. In particular, we develop a formalism to capture the leading infrared-enhanced effects in terms of a correction factor η3π that generalizes the analog treatment of virtual and final-state photons in the 2π case. The global fit to the e+e- → 3π data base, subject to constraints from analyticity, unitarity, and the chiral anomaly, gives for the total 3π contribution to the anomalous magnetic moment of the muon, of which ${a}^{FSR}_\mu [3\pi]$ = 0.51(1) x 10-10 and ${a}^{\rho - \omega}_\mu [3\pi]$ = -2.68(70) x 10-10 can be ascribed to IB. We argue that the resulting cancellation with ρ–ω mixing in e+e- → 2π can be understood from a narrow-resonance picture, and provide updated values for the vacuum-polarization-subtracted vector-meson parameters Mω = 782.70(3) MeV, MΦ = 1019.21(2) MeV, Γω = 8.71(3) MeV, and ΓΦ = 4.27(1) MeV.
A bstract Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise from the e + e − → π + π − channel, also IB in the subleading channels can become relevant for a detailed understanding, e.g., of the comparison to lattice QCD. Here, we provide such an analysis for e + e − → 3 π by extending our dispersive description of the process, including estimates of final-state radiation (FSR) and ρ – ω mixing. In particular, we develop a formalism to capture the leading infrared-enhanced effects in terms of a correction factor η 3 π that generalizes the analog treatment of virtual and final-state photons in the 2 π case. The global fit to the e + e − → 3 π data base, subject to constraints from analyticity, unitarity, and the chiral anomaly, gives a μ 3 π ≤ 1.8 GeV = 45.91 53 × 10 − 10 for the total 3 π contribution to the anomalous magnetic moment of the muon, of which a μ FSR 3 π = 0.51 1 × 10 − 10 and a μ ρ − ω 3 π = − 2.68 70 × 10 − 10 can be ascribed to IB. We argue that the resulting cancellation with ρ – ω mixing in e + e − → 2 π can be understood from a narrow-resonance picture, and provide updated values for the vacuum-polarization-subtracted vector-meson parameters M ω = 782 . 70(3) MeV, M ϕ = 1019 . 21(2) MeV, Γ ω = 8 . 71(3) MeV, and Γ ϕ = 4 . 27(1) MeV.
Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise from the e + e − → π + π − channel, also IB in the subleading channels can become relevant for a detailed understanding, e.g., of the comparison to lattice QCD. Here, we provide such an analysis for e + e − → 3 π by extending our dispersive description of the process, including estimates of final-state radiation (FSR) and ρ – ω mixing. In particular, we develop a formalism to capture the leading infrared-enhanced effects in terms of a correction factor η 3 π that generalizes the analog treatment of virtual and final-state photons in the 2 π case. The global fit to the e + e − → 3 π data base, subject to constraints from analyticity, unitarity, and the chiral anomaly, gives $$ {\left.{a}_{\mu}^{3\pi}\right|}_{\le 1.8\ \textrm{GeV}}=45.91(53)\times {10}^{-10} $$ a μ 3 π ≤ 1.8 GeV = 45.91 53 × 10 − 10 for the total 3 π contribution to the anomalous magnetic moment of the muon, of which $$ {a}_{\mu}^{\textrm{FSR}}\left[3\pi \right]=0.51(1)\times {10}^{-10} $$ a μ FSR 3 π = 0.51 1 × 10 − 10 and $$ {a}_{\mu}^{\rho -\omega}\left[3\pi \right]=-2.68(70)\times {10}^{-10} $$ a μ ρ − ω 3 π = − 2.68 70 × 10 − 10 can be ascribed to IB. We argue that the resulting cancellation with ρ – ω mixing in e + e − → 2 π can be understood from a narrow-resonance picture, and provide updated values for the vacuum-polarization-subtracted vector-meson parameters M ω = 782 . 70(3) MeV, M ϕ = 1019 . 21(2) MeV, Γ ω = 8 . 71(3) MeV, and Γ ϕ = 4 . 27(1) MeV.
ArticleNumber 208
Author Hoid, Bai-Long
Hoferichter, Martin
Schuh, Dominic
Kubis, Bastian
Author_xml – sequence: 1
  givenname: Martin
  orcidid: 0000-0003-1113-9377
  surname: Hoferichter
  fullname: Hoferichter, Martin
  email: hoferichter@itp.unibe.ch
  organization: Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern
– sequence: 2
  givenname: Bai-Long
  orcidid: 0000-0001-9471-1740
  surname: Hoid
  fullname: Hoid, Bai-Long
  organization: Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern
– sequence: 3
  givenname: Bastian
  orcidid: 0000-0002-1541-6581
  surname: Kubis
  fullname: Kubis, Bastian
  organization: Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn
– sequence: 4
  givenname: Dominic
  surname: Schuh
  fullname: Schuh, Dominic
  organization: Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn
BackLink https://www.osti.gov/servlets/purl/2418910$$D View this record in Osti.gov
BookMark eNp9UU1v1DAUtFCRaBfOXCO4wCHUH_mwj6gqdFElOIA4Wi_O866XrR1sB4n--joNAoRED_6eGb95c0ZOfPBIyHNG3zBK-_MPV5efqHzFKRevOZWPyCmjXNWy6dXJX_sn5CylA6WsZYqekq_bFNLkfD1EhG_O7yq0Fk1OlfNV3mMZEbGeXPCVCT5HN8x5OeRQ7WGMwTtT_QAzzzfVFI4Q3S0s70_JYwvHhM9-rRvy5d3l54ur-vrj--3F2-vaND3PNQNjbCc6YRVI2tIRoGmHZjQKRmY4jI0V3cjRtrTrEJB1A-9VN_ZSDbJDKzZku-qOAQ56iu4G4k8dwOn7ixB3GmJ25ogae2MkZQIsqMaaQVlUQK0dBEI_UlG0XqxaIWWnk3EZzb6Y9qUfmjdMKkYL6OUKmmL4PmPK-hDm6ItHzaUUrO87xR5GtUoUqQLekPMVZWJIKaL9bYBRvYSq11D1EmqZFkb7D6NUed_wHMEdH-DRlZfKD36H8U89_6PcAYKBt7s
CitedBy_id crossref_primary_10_1016_j_nuclphysbps_2024_10_002
crossref_primary_10_1103_PhysRevLett_131_161905
crossref_primary_10_1007_JHEP07_2024_276
crossref_primary_10_1103_PhysRevD_109_036010
crossref_primary_10_1103_PhysRevD_110_112005
crossref_primary_10_1103_PhysRevD_109_096007
crossref_primary_10_1140_epjc_s10052_024_12608_w
crossref_primary_10_1103_PhysRevLett_133_211906
crossref_primary_10_1007_JHEP04_2024_092
crossref_primary_10_1007_JHEP04_2024_071
crossref_primary_10_1007_JHEP02_2025_121
crossref_primary_10_1007_JHEP08_2024_052
Cites_doi 10.1007/JHEP04(2017)161
10.1016/j.physrep.2020.07.006
10.1103/PhysRevD.4.3497
10.1007/BF02747746
10.1103/PhysRevD.100.076004
10.1103/PhysRevD.96.114016
10.1016/0550-3213(80)90157-1
10.1103/PhysRevD.97.114025
10.1140/epjc/s10052-020-08611-6
10.1007/JHEP02(2019)006
10.1016/j.physletb.2022.137313
10.1140/epjc/s2004-02103-1
10.22323/1.430.0316
10.1103/PhysRevLett.121.112002
10.1016/j.physletb.2021.136502
10.1007/JHEP03(2020)101
10.1016/j.physletb.2014.05.043
10.1140/epjc/s10052-012-2014-1
10.1007/JHEP12(2021)038
10.1016/j.physletb.2012.07.038
10.22323/1.412.0030
10.1016/0370-2693(71)90582-X
10.1103/PhysRevD.107.054021
10.1007/JHEP10(2020)203
10.1140/epjc/s10052-020-08550-2
10.1103/PhysRevD.64.094009
10.1007/JHEP08(2019)137
10.1140/epjc/s10052-014-3180-0
10.1007/JHEP05(2020)159
10.1140/epjc/s10052-018-6416-6
10.1140/epjc/s10052-022-10589-2
10.1038/s41586-021-03418-1
10.1140/epjc/s10052-020-7857-2
10.1103/PhysRevD.78.013009
10.1007/JHEP09(2015)074
10.1140/epjc/s10052-022-11094-2
10.1016/j.physletb.2022.137283
10.1103/PhysRevD.5.2372
10.1103/PhysRevD.108.013005
10.1016/0168-9002(94)90719-6
10.1007/JHEP08(2022)295
10.1103/PhysRevD.86.054013
10.1016/j.physletb.2019.134994
10.1007/JHEP08(2022)220
10.1007/JHEP05(2010)075
10.1140/epjc/s10052-022-10348-3
10.1140/epjc/s10052-021-09455-4
10.1103/PhysRevD.102.033002
10.1088/0305-4616/4/1/007
10.1007/JHEP09(2014)091
10.1103/PhysRevD.91.094029
10.1140/epjc/s10052-021-09169-7
10.1088/1126-6708/2002/09/008
10.1007/JHEP06(2022)122
10.1007/JHEP04(2021)240
10.1140/epjc/s10052-021-08848-9
10.1016/j.physletb.2021.136073
10.1103/PhysRevD.86.116009
10.1103/PhysRevD.105.093003
10.1016/j.physletb.2014.06.012
10.1140/epjc/s10052-013-2539-y
10.1103/PhysRevD.88.053005
10.1103/PhysRevD.101.014029
10.1103/PhysRevD.95.054026
10.1103/PhysRevLett.121.022003
10.1007/s002180050167
10.1140/epjc/s10052-017-5161-6
10.1103/PhysRevD.70.113006
10.1007/JHEP10(2018)141
10.1103/PhysRevD.101.051501
10.1007/BF01589702
10.1016/0370-2693(76)90150-7
10.1016/0550-3213(83)90063-9
10.1103/PhysRevD.73.034010
10.1007/s100520200916
10.1140/epjc/s10052-018-6346-3
10.1051/jphysrad:01961002202012101
10.1140/epjc/s10052-023-11749-8
10.1007/JHEP07(2021)106
10.1103/PhysRevD.72.114019
10.1103/PhysRevD.67.073006
10.1016/j.physletb.2022.137037
10.1103/PhysRev.168.1620
10.1140/epjc/s2003-01146-0
10.1016/0370-2693(72)90171-2
10.1016/0370-1573(91)90127-8
10.1103/PhysRevLett.124.132002
10.1103/PhysRevD.107.074506
10.1007/JHEP02(2023)167
10.1016/S0370-2693(98)00826-0
10.1016/0370-2693(90)91212-T
10.1103/PhysRev.119.1115
10.1016/0003-4916(59)90051-X
10.1016/j.physletb.2014.09.021
10.1140/epjc/s10052-021-09513-x
10.1007/JHEP04(2023)125
10.1134/S106377610609007X
10.1007/JHEP10(2022)032
10.3390/atoms7010028
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Univ. of Washington, Seattle, WA (United States)
CorporateAuthor_xml – name: Univ. of Washington, Seattle, WA (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
OIOZB
OTOTI
DOA
DOI 10.1007/JHEP08(2023)208
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 31
ExternalDocumentID oai_doaj_org_article_e7cc8013afa94fcb9fe9a0ffb3ea7d03
2418910
10_1007_JHEP08_2023_208
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
OIOZB
OTOTI
PUEGO
ID FETCH-LOGICAL-c472t-1accf6363f9a8050daa45b4dc9ad1c2ad4f36d2ef5066eae16b2796d789b86ef3
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Wed Aug 27 01:32:18 EDT 2025
Mon Mar 24 04:18:05 EDT 2025
Sat Jul 26 00:04:05 EDT 2025
Sat Jul 26 00:12:45 EDT 2025
Tue Jul 01 01:01:42 EDT 2025
Thu Apr 24 22:50:31 EDT 2025
Fri Feb 21 02:42:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Chiral Lagrangian
Precision QED
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-1accf6363f9a8050daa45b4dc9ad1c2ad4f36d2ef5066eae16b2796d789b86ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
German Research Foundation (DFG)
USDOE Office of Science (SC)
FG02-00ER41132
ORCID 0000-0001-9471-1740
0000-0002-1541-6581
0000-0003-1113-9377
0000000311139377
0000000215416581
0000000194711740
OpenAccessLink https://www.proquest.com/docview/2859389188?pq-origsite=%requestingapplication%
PQID 2859389188
PQPubID 2034718
PageCount 31
ParticipantIDs doaj_primary_oai_doaj_org_article_e7cc8013afa94fcb9fe9a0ffb3ea7d03
osti_scitechconnect_2418910
proquest_journals_2883177691
proquest_journals_2859389188
crossref_primary_10_1007_JHEP08_2023_208
crossref_citationtrail_10_1007_JHEP08_2023_208
springer_journals_10_1007_JHEP08_2023_208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-30
PublicationDateYYYYMMDD 2023-08-30
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-30
  day: 30
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Nature
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Nature
– name: SpringerOpen
References Muong – 2 collaboration, Muon (g – 2) Technical Design Report, arXiv:1501.06858 [INSPIRE].
T. Aoyama, T. Kinoshita and M. Nio, Theory of the Anomalous Magnetic Moment of the Electron, Atoms7 (2019) 28 [INSPIRE].
KeshavarziAMarcianoWJPasseraMSirlinAMuon g – 2 and ∆α connectionPhys. Rev. D20201022020PhRvD.102c3002K[arXiv:2006.12666] [INSPIRE]
R. Omnès, On the Solution of certain singular integral equations of quantum field theory, Nuovo Cim.8 (1958) 316 [INSPIRE].
Muong – 2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
ColangeloGHoferichterMProcuraMStofferPDispersive approach to hadronic light-by-light scatteringJHEP2014090912014JHEP...09..091C1388.81508[arXiv:1402.7081] [INSPIRE]
N.M. Coyle and C.E.M. Wagner, Resolving the muon g – 2 tension through Z′-induced modifications to σhad, arXiv:2305.02354 [INSPIRE].
BijnensJHermansson-TruedssonNRodríguez-SánchezAShort-distance constraints for the HLbL contribution to the muon anomalous magnetic momentPhys. Lett. B2019798[arXiv:1908.03331] [INSPIRE]
G. Chanturia, A two-potential formalism for the pion vector form factor, PoSRegio2021 (2022) 030 [INSPIRE].
BABAR collaboration, Study of the process e+e−→ π+π−π0using initial state radiation with BABAR, Phys. Rev. D104 (2021) 112003 [arXiv:2110.00520] [INSPIRE].
ColangeloGHoferichterMProcuraMStofferPRescattering effects in the hadronic-light-by-light contribution to the anomalous magnetic moment of the muonPhys. Rev. Lett.20171182017PhRvL.118w2001C[arXiv:1701.06554] [INSPIRE]
BESIII collaboration, Measurement of the e+e−→ π+π−cross section between 600 and 900 MeV using initial state radiation, Phys. Lett. B753 (2016) 629 [Erratum ibid.812 (2021) 135982] [arXiv:1507.08188] [INSPIRE].
R.A. Briceño et al., The ππ → πγ⋆amplitude and the resonant ρ → πγ⋆transition from lattice QCD, Phys. Rev. D93 (2016) 114508 [Erratum ibid.105 (2022) 079902] [arXiv:1604.03530] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to αmZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({m}_Z^2\right) $$\end{document}, Eur. Phys. J. C80 (2020) 241 [Erratum ibid.80 (2020) 410] [arXiv:1908.00921] [INSPIRE].
J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B37 (1971) 95 [INSPIRE].
HoferichterMKubisBSakkasDExtracting the chiral anomaly from γπ → ππPhys. Rev. D2012862012PhRvD..86k6009H[arXiv:1210.6793] [INSPIRE]
Crystal Barrel collaboration, Antiproton-proton annihilation at rest into ωπ0π0, Phys. Lett. B311 (1993) 362 [INSPIRE].
HoferichterMTeubnerTMixed Leptonic and Hadronic Corrections to the Anomalous Magnetic Moment of the MuonPhys. Rev. Lett.20221282022PhRvL.128k2002H[arXiv:2112.06929] [INSPIRE]
I.J.R. Aitchison and R.J.A. Golding, Relativistic Three Pion Dynamics in the omega Channel, J. Phys. G4 (1978) 43 [INSPIRE].
DaxMIskenTKubisBQuark-mass dependence in ω → 3π decaysEur. Phys. J. C2018788592018EPJC...78..859D[arXiv:1808.08957] [INSPIRE]
KLOE-2 collaboration, Combination of KLOE σ (e+e−→ π+π−γ(γ)) measurements and determination ofaμπ+π−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {a}_{\mu}^{\pi^{+}{\pi}^{-}} $$\end{document}in the energy range 0.10 < s < 0.95 GeV2, JHEP03 (2018) 173 [arXiv:1711.03085] [INSPIRE].
BijnensJHermansson-TruedssonNLaubLRodríguez-SánchezAThe two-loop perturbative correction to the (g – 2)μHLbL at short distancesJHEP2021042402021JHEP...04..240B[arXiv:2101.09169] [INSPIRE]
BoitoDGoltermanMMaltmanKPerisSData-based determination of the isospin-limit light-quark-connected contribution to the anomalous magnetic moment of the muonPhys. Rev. D20231072023PhRvD.107g4001B[arXiv:2211.11055] [INSPIRE]
SND collaboration, Study of dynamics of the process e+e−→ π+π−π0in the energy range 1.15–2.00 GeV, Eur. Phys. J. C80 (2020) 993 [arXiv:2007.14595] [INSPIRE].
SND collaboration, Measurement of the e+e−→ π+π−process cross section with the SND detector at the VEPP-2000 collider in the energy region 0.525 < s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} < 0.883 GeV, JHEP01 (2021) 113 [arXiv:2004.00263] [INSPIRE].
BoitoDGoltermanMMaltmanKPerisSEvaluation of the three-flavor quark-disconnected contribution to the muon anomalous magnetic moment from experimental dataPhys. Rev. D20221052022PhRvD.105i3003B[arXiv:2203.05070] [INSPIRE]
M. Hoferichter et al., Chiral extrapolation of hadronic vacuum polarization and isospin-breaking corrections, PoSLATTICE2022 (2022) 316 [arXiv:2210.11904] [INSPIRE].
SchneiderSPKubisBNiecknigFThe ω → π0γ∗and ϕ → π0γ∗transition form factors in dispersion theoryPhys. Rev. D2012862012PhRvD..86e4013S[arXiv:1206.3098] [INSPIRE]
BijnensJHermansson-TruedssonNLaubLRodríguez-SánchezAShort-distance HLbL contributions to the muon anomalous magnetic moment beyond perturbation theoryJHEP2020102032020JHEP...10..203B[arXiv:2008.13487] [INSPIRE]
IgnatovFLeeRNCharge asymmetry in e+e−→ π+π−processPhys. Lett. B2022833[arXiv:2204.12235] [INSPIRE]
CèMWindow observable for the hadronic vacuum polarization contribution to the muon g – 2 from lattice QCDPhys. Rev. D20221062022PhRvD.106k4502C[arXiv:2206.06582] [INSPIRE]
A. Keshavarzi, D. Nomura and T. Teubner, g – 2 of charged leptons,αMZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({M}_Z^2\right) $$\end{document}, and the hyperfine splitting of muonium, Phys. Rev. D101 (2020) 014029 [arXiv:1911.00367] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP2022 (2022) 083C01 [INSPIRE].
CrivellinAHoferichterMWidth effects of broad new resonances in loop observables and application to (g − 2)μPhys. Rev. D20231082023PhRvD.108a3005C[arXiv:2211.12516] [INSPIRE]
R. Aviv and A. Zee, Low-energy theorem for γ → 3π, Phys. Rev. D5 (1972) 2372 [INSPIRE].
S.J. Brodsky and E. de Rafael, Suggested boson-lepton pair couplings and the anomalous magnetic moment of the muon, Phys. Rev.168 (1968) 1620 [INSPIRE].
L. Ametller, M. Knecht and P. Talavera, Electromagnetic corrections to γπ±→ π0π±, Phys. Rev. D64 (2001) 094009 [hep-ph/0107127] [INSPIRE].
CrivellinAHoferichterMManzariCAMontullMHadronic Vacuum Polarization: (g – 2)μversus Global Electroweak FitsPhys. Rev. Lett.20201252020PhRvL.125i1801C[arXiv:2003.04886] [INSPIRE]
MasjuanPSánchez-PuertasPPseudoscalar-pole contribution to the (gμ– 2): a rational approachPhys. Rev. D2017952017PhRvD..95e4026M[arXiv:1701.05829] [INSPIRE]
AoyamaTThe anomalous magnetic moment of the muon in the Standard ModelPhys. Rept.202088712020PhR...887....1A[arXiv:2006.04822] [INSPIRE]
CèMThe hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCDJHEP2022082202022JHEP...08..220C[arXiv:2203.08676] [INSPIRE]
J. Gluza, A. Hoefer, S. Jadach and F. Jegerlehner, Measuring the FSR inclusive π+π−cross-section, Eur. Phys. J. C28 (2003) 261 [hep-ph/0212386] [INSPIRE].
Muong – 2 collaboration, Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab, Phys. Rev. Accel. Beams24 (2021) 044002 [arXiv:2104.03240] [INSPIRE].
C. Bouchiat and L. Michel, La résonance dans la diffusion méson π-méson π et le moment magnétique anormal du méson μ, J. Phys. Radium22 (1961) 121 [INSPIRE].
MoussallamBUnified dispersive approach to real and virtual photon-photon scattering at low energyEur. Phys. J. C20137325392013EPJC...73.2539M[arXiv:1305.3143] [INSPIRE]
GérardinAMeyerHBNyffelerALattice calculation of the pion transition form factor with Nf = 2 + 1 Wilson quarksPhys. Rev. D20191002019PhRvD.100c4520G[arXiv:1903.09471] [INSPIRE]
LeutgebJMagerJRebhanAHadronic light-by-light contribution to the muon g – 2 from holographic QCD with solved U(1)AproblemPhys. Rev. D20231072023PhRvD.107e4021L[arXiv:2211.16562] [INSPIRE]
A.I. Ahmedov, G.V. Fedotovich, E.A. Kuraev and Z.K. Silagadze, Near threshold radiative 3π production in e+e−annihilation, JHEP09 (2002) 008 [hep-ph/0201157] [INSPIRE].
S.I. Dolinsky et al., Summary of experiments with the neutral detector at the e+e−storage ring VEPP-2M, Phys. Rept.202 (1991) 99 [INSPIRE].
M.V. Terent’ev, Process π±→ π0π±in Coulomb field and anomalous divergence of neutral axial vector current, Phys. Lett. B38 (1972) 419 [INSPIRE].
A. Hoefer, J. Gluza and F. Jegerlehner, Pion pair production with higher order radiative corrections in low energy e+e−collisions, Eur. Phys. J. C24 (2002) 51 [hep-ph/0107154] [INSPIRE].
S. Bakmaev, Y.M. Bystritskiy and E.A. Kuraev, Process e+e−→ 3π(γ) with final state radiative corrections, Phys. Rev. D73 (2006) 034010 [hep-ph/0507219] [INSPIRE].
A. Keshavarzi, D. Nomura and T. Teubner, Muon g – 2 andαMZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({M}_Z^2\right) $$\end{document}: a new data-based analysis, Phys. Rev. D97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].
J.J. Sakurai, Currents and Mesons, University of Chicago Press (1969).
M.N. Achasov et al., Study of the process e+e−→ π+π−π0in the energy regions\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \use
I Danilkin (21657_CR44) 2021; 820
G Colangelo (21657_CR79) 2022; 08
G Colangelo (21657_CR45) 2021; 81
G Colangelo (21657_CR13) 2019; 02
G Colangelo (21657_CR77) 2021; 814
21657_CR36
T Blum (21657_CR32) 2020; 124
21657_CR37
G Colangelo (21657_CR22) 2015; 09
21657_CR38
21657_CR111
L von Detten (21657_CR125) 2021; 81
21657_CR113
21657_CR114
21657_CR104
21657_CR105
G Colangelo (21657_CR30) 2020; 101
T Aoyama (21657_CR7) 2012; 109
D Boito (21657_CR87) 2022; 105
M Niehus (21657_CR116) 2021; 12
M Hoferichter (21657_CR54) 2022; 128
CL James (21657_CR85) 2022; 105
J Bijnens (21657_CR41) 2020; 10
21657_CR46
G Colangelo (21657_CR81) 2022; 10
F Campanario (21657_CR118) 2019; 100
21657_CR100
G Colangelo (21657_CR20) 2014; 09
G Colangelo (21657_CR24) 2017; 118
21657_CR102
21657_CR103
P Masjuan (21657_CR23) 2017; 95
F Ignatov (21657_CR119) 2022; 833
G Colangelo (21657_CR21) 2014; 738
C Hanhart (21657_CR123) 2012; 715
21657_CR94
21657_CR95
21657_CR96
21657_CR97
21657_CR98
21657_CR11
21657_CR12
L Di Luzio (21657_CR69) 2022; 829
21657_CR15
21657_CR130
21657_CR16
21657_CR131
21657_CR132
21657_CR133
21657_CR19
21657_CR134
F Niecknig (21657_CR106) 2012; 72
21657_CR135
21657_CR136
J Leutgeb (21657_CR47) 2023; 107
21657_CR126
21657_CR127
21657_CR128
21657_CR129
A Gérardin (21657_CR28) 2019; 100
21657_CR90
21657_CR91
M Hoferichter (21657_CR39) 2020; 05
21657_CR92
21657_CR93
M Hoferichter (21657_CR108) 2012; 86
J Bijnens (21657_CR48) 2023; 02
J Bijnens (21657_CR29) 2019; 798
21657_CR120
21657_CR121
J Bijnens (21657_CR42) 2021; 04
21657_CR122
SP Schneider (21657_CR107) 2012; 86
21657_CR115
21657_CR117
M Hoferichter (21657_CR112) 2017; 96
A Keshavarzi (21657_CR75) 2020; 102
D Boito (21657_CR88) 2023; 107
A Crivellin (21657_CR74) 2020; 125
IV Danilkin (21657_CR109) 2015; 91
B Moussallam (21657_CR99) 2013; 73
21657_CR72
M Dax (21657_CR110) 2018; 78
M Hoferichter (21657_CR26) 2018; 121
G Colangelo (21657_CR25) 2017; 04
S Borsanyi (21657_CR55) 2021; 593
G Colangelo (21657_CR31) 2020; 03
21657_CR8
S Ropertz (21657_CR124) 2018; 78
21657_CR5
21657_CR9
M Hoferichter (21657_CR101) 2014; 74
E-H Chao (21657_CR34) 2021; 81
D Stamen (21657_CR82) 2022; 82
M Cè (21657_CR78) 2022; 08
21657_CR83
21657_CR84
21657_CR86
21657_CR89
21657_CR140
21657_CR141
21657_CR142
21657_CR143
21657_CR144
21657_CR145
21657_CR146
21657_CR147
21657_CR137
21657_CR138
21657_CR139
21657_CR4
21657_CR3
21657_CR2
21657_CR1
M Hoferichter (21657_CR14) 2019; 08
J Lüdtke (21657_CR40) 2020; 80
A Kurz (21657_CR18) 2014; 734
M Hoferichter (21657_CR27) 2018; 10
21657_CR80
M Passera (21657_CR73) 2008; 78
21657_CR50
21657_CR51
21657_CR52
21657_CR53
21657_CR56
21657_CR58
21657_CR59
E-H Chao (21657_CR35) 2022; 82
C Gnendiger (21657_CR10) 2013; 88
G Colangelo (21657_CR33) 2014; 735
J Lüdtke (21657_CR49) 2023; 04
21657_CR62
21657_CR63
21657_CR64
21657_CR65
21657_CR66
21657_CR67
21657_CR68
A Crivellin (21657_CR71) 2023; 108
M Zanke (21657_CR43) 2021; 07
T Aoyama (21657_CR6) 2020; 887
G Colangelo (21657_CR61) 2022; 833
B Malaescu (21657_CR76) 2021; 81
M Cè (21657_CR57) 2022; 106
B-L Hoid (21657_CR17) 2020; 80
L Darmé (21657_CR70) 2022; 06
21657_CR60
References_xml – reference: I.J.R. Aitchison and R.J.A. Golding, Relativistic Three Pion Dynamics in the omega Channel, J. Phys. G4 (1978) 43 [INSPIRE].
– reference: V.M. Aul’chenko et al., Study of the e+e−→ π+π−π0process in the energy range 1.05–2.00 GeV, J. Exp. Theor. Phys.121 (2015) 27 [INSPIRE].
– reference: ColangeloGLongitudinal short-distance constraints for the hadronic light-by-light contribution to (g – 2)μwith large-NcRegge modelsJHEP2020031012020JHEP...03..101C[arXiv:1910.13432] [INSPIRE]
– reference: G. Abbiendi et al., Mini-Proceedings of the STRONG2020 Virtual Workshop on “Space-like and Time-like determination of the Hadronic Leading Order contribution to the Muon g – 2”, (2022) [arXiv:2201.12102] [INSPIRE].
– reference: LüdtkeJProcuraMStofferPDispersion relations for hadronic light-by-light scattering in triangle kinematicsJHEP2023041252023JHEP...04..125L07694013[arXiv:2302.12264] [INSPIRE]
– reference: J. Calmet, S. Narison, M. Perrottet and E. de Rafael, Higher Order Hadronic Corrections to the Anomalous Magnetic Moment of the Muon, Phys. Lett. B61 (1976) 283 [INSPIRE].
– reference: HoferichterMHoidB-LKubisBThree-pion contribution to hadronic vacuum polarizationJHEP2019081372019JHEP...08..137H[arXiv:1907.01556] [INSPIRE]
– reference: S. Bakmaev, Y.M. Bystritskiy and E.A. Kuraev, Process e+e−→ 3π(γ) with final state radiative corrections, Phys. Rev. D73 (2006) 034010 [hep-ph/0507219] [INSPIRE].
– reference: ColangeloGHoferichterMProcuraMStofferPDispersion relation for hadronic light-by-light scattering: theoretical foundationsJHEP20150907434294131388.81508[arXiv:1506.01386] [INSPIRE]
– reference: MoussallamBUnified dispersive approach to real and virtual photon-photon scattering at low energyEur. Phys. J. C20137325392013EPJC...73.2539M[arXiv:1305.3143] [INSPIRE]
– reference: ETMC collaboration, Probing the Energy-Smeared R Ratio Using Lattice QCD, Phys. Rev. Lett.130 (2023) 241901 [arXiv:2212.08467] [INSPIRE].
– reference: M.N. Achasov et al., Measurements of the parameters of the ϕ(1020) resonance through studies of the processes e+e−→ K+K−, KSKL, and π+π−π0, Phys. Rev. D63 (2001) 072002 [hep-ex/0009036] [INSPIRE].
– reference: Muong – 2 collaboration, Muon (g – 2) Technical Design Report, arXiv:1501.06858 [INSPIRE].
– reference: CèMThe hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCDJHEP2022082202022JHEP...08..220C[arXiv:2203.08676] [INSPIRE]
– reference: ColangeloGHoferichterMKubisBStofferPIsospin-breaking effects in the two-pion contribution to hadronic vacuum polarizationJHEP2022100322022JHEP...10..032C[arXiv:2208.08993] [INSPIRE]
– reference: SND collaboration, Study of dynamics of the process e+e−→ π+π−π0in the energy range 1.15–2.00 GeV, Eur. Phys. J. C80 (2020) 993 [arXiv:2007.14595] [INSPIRE].
– reference: ColangeloGRemarks on higher-order hadronic corrections to the muon g – 2Phys. Lett. B2014735902014PhLB..735...90C[arXiv:1403.7512] [INSPIRE]
– reference: SchneiderSPKubisBNiecknigFThe ω → π0γ∗and ϕ → π0γ∗transition form factors in dispersion theoryPhys. Rev. D2012862012PhRvD..86e4013S[arXiv:1206.3098] [INSPIRE]
– reference: GérardinAMeyerHBNyffelerALattice calculation of the pion transition form factor with Nf = 2 + 1 Wilson quarksPhys. Rev. D20191002019PhRvD.100c4520G[arXiv:1903.09471] [INSPIRE]
– reference: RopertzSHanhartCKubisBA new parametrization for the scalar pion form factorsEur. Phys. J. C20187810002018EPJC...78.1000R[arXiv:1809.06867] [INSPIRE]
– reference: BoitoDGoltermanMMaltmanKPerisSData-based determination of the isospin-limit light-quark-connected contribution to the anomalous magnetic moment of the muonPhys. Rev. D20231072023PhRvD.107g4001B[arXiv:2211.11055] [INSPIRE]
– reference: MalaescuBSchottMImpact of correlations between aμand αQEDon the EW fitEur. Phys. J. C202181462021EPJC...81...46M[arXiv:2008.08107] [INSPIRE]
– reference: T. Blum et al., Hadronic light-by-light contribution to the muon anomaly from lattice QCD with infinite volume QED at physical pion mass, arXiv:2304.04423 [INSPIRE].
– reference: A. Cordier et al., Cross-section of the Reaction e+e−→ π+π−π0for Center-of-mass Energies From 750 to 1100 MeV, Nucl. Phys. B172 (1980) 13 [INSPIRE].
– reference: PasseraMMarcianoWJSirlinAThe Muon g – 2 and the bounds on the Higgs boson massPhys. Rev. D2008782008PhRvD..78a3009P[arXiv:0804.1142] [INSPIRE]
– reference: DanilkinIVDispersive analysis of ω/ϕ → 3π, πγ∗Phys. Rev. D2015912015PhRvD..91i4029D[arXiv:1409.7708] [INSPIRE]
– reference: A. Keshavarzi, D. Nomura and T. Teubner, g – 2 of charged leptons,αMZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({M}_Z^2\right) $$\end{document}, and the hyperfine splitting of muonium, Phys. Rev. D101 (2020) 014029 [arXiv:1911.00367] [INSPIRE].
– reference: ColangeloGHoferichterMProcuraMStofferPDispersive approach to hadronic light-by-light scatteringJHEP2014090912014JHEP...09..091C1388.81508[arXiv:1402.7081] [INSPIRE]
– reference: ColangeloGHoferichterMProcuraMStofferPRescattering effects in the hadronic-light-by-light contribution to the anomalous magnetic moment of the muonPhys. Rev. Lett.20171182017PhRvL.118w2001C[arXiv:1701.06554] [INSPIRE]
– reference: A. Keshavarzi, D. Nomura and T. Teubner, Muon g – 2 andαMZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({M}_Z^2\right) $$\end{document}: a new data-based analysis, Phys. Rev. D97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].
– reference: JamesCLLewisRMaltmanKChPT estimate of the strong-isospin-breaking contribution to the anomalous magnetic moment of the muonPhys. Rev. D20221052022PhRvD.105e3010J[arXiv:2109.13729] [INSPIRE]
– reference: J.J. Sakurai, Currents and Mesons, University of Chicago Press (1969).
– reference: CMD-2 collaboration, Reanalysis of hadronic cross-section measurements at CMD-2, Phys. Lett. B578 (2004) 285 [hep-ex/0308008] [INSPIRE].
– reference: Crystal Barrel collaboration, Antiproton-proton annihilation at rest into ωπ0π0, Phys. Lett. B311 (1993) 362 [INSPIRE].
– reference: A. Hoefer, J. Gluza and F. Jegerlehner, Pion pair production with higher order radiative corrections in low energy e+e−collisions, Eur. Phys. J. C24 (2002) 51 [hep-ph/0107154] [INSPIRE].
– reference: S.L. Adler, B.W. Lee, S.B. Treiman and A. Zee, Low Energy Theorem for γ + γ → π + π + π, Phys. Rev. D4 (1971) 3497 [INSPIRE].
– reference: R.R. Akhmetshin et al., Study of dynamics of ϕ → π+π−π0decay with CMD-2 detector, Phys. Lett. B434 (1998) 426 [INSPIRE].
– reference: AoyamaTThe anomalous magnetic moment of the muon in the Standard ModelPhys. Rept.202088712020PhR...887....1A[arXiv:2006.04822] [INSPIRE]
– reference: DanilkinIHoferichterMStofferPA dispersive estimate of scalar contributions to hadronic light-by-light scatteringPhys. Lett. B2021820[arXiv:2105.01666] [INSPIRE]
– reference: MasjuanPSánchez-PuertasPPseudoscalar-pole contribution to the (gμ– 2): a rational approachPhys. Rev. D2017952017PhRvD..95e4026M[arXiv:1701.05829] [INSPIRE]
– reference: ChaoE-HHadronic light-by-light contribution to (g – 2)μfrom lattice QCD: a complete calculationEur. Phys. J. C2021816512021EPJC...81..651C[arXiv:2104.02632] [INSPIRE]
– reference: CMD-2 collaboration, High-statistics measurement of the pion form factor in the ρ-meson energy range with the CMD-2 detector, Phys. Lett. B648 (2007) 28 [hep-ex/0610021] [INSPIRE].
– reference: Muong – 2 collaboration, Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g – 2 Experiment, Phys. Rev. D103 (2021) 072002 [arXiv:2104.03247] [INSPIRE].
– reference: SND collaboration, Measurement of the e+e−→ π+π−process cross section with the SND detector at the VEPP-2000 collider in the energy region 0.525 < s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} < 0.883 GeV, JHEP01 (2021) 113 [arXiv:2004.00263] [INSPIRE].
– reference: M.N. Achasov et al., Update of the e+e−→ π+π−cross-section measured by SND detector in the energy region 400 <s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document}< 1000 MeV, J. Exp. Theor. Phys.103 (2006) 380 [hep-ex/0605013] [INSPIRE].
– reference: HoferichterMTeubnerTMixed Leptonic and Hadronic Corrections to the Anomalous Magnetic Moment of the MuonPhys. Rev. Lett.20221282022PhRvL.128k2002H[arXiv:2112.06929] [INSPIRE]
– reference: HoferichterMKubisBSakkasDExtracting the chiral anomaly from γπ → ππPhys. Rev. D2012862012PhRvD..86k6009H[arXiv:1210.6793] [INSPIRE]
– reference: A.I. Ahmedov, G.V. Fedotovich, E.A. Kuraev and Z.K. Silagadze, Near threshold radiative 3π production in e+e−annihilation, JHEP09 (2002) 008 [hep-ph/0201157] [INSPIRE].
– reference: M.N. Achasov et al., Study of the process e+e−→ π+π−π0in the energy regions\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document}below 0.98 GeV, Phys. Rev. D68 (2003) 052006 [hep-ex/0305049] [INSPIRE].
– reference: ColangeloGData-driven evaluations of Euclidean windows to scrutinize hadronic vacuum polarizationPhys. Lett. B20228334379363[arXiv:2205.12963] [INSPIRE]
– reference: R. Aviv and A. Zee, Low-energy theorem for γ → 3π, Phys. Rev. D5 (1972) 2372 [INSPIRE].
– reference: S.I. Dolinsky et al., Summary of experiments with the neutral detector at the e+e−storage ring VEPP-2M, Phys. Rept.202 (1991) 99 [INSPIRE].
– reference: ZankeMHoferichterMKubisBOn the transition form factors of the axial-vector resonance f1(1285) and its decay into e+e−JHEP2021071062021JHEP...07..106Z[arXiv:2103.09829] [INSPIRE]
– reference: F. Klingl, N. Kaiser and W. Weise, Effective Lagrangian approach to vector mesons, their structure and decays, Z. Phys. A356 (1996) 193 [hep-ph/9607431] [INSPIRE].
– reference: C. Alexandrou et al., The η → γ∗γ∗transition form factor and the hadronic light-by-light η-pole contribution to the muon g − 2 from lattice QCD, arXiv:2212.06704 [INSPIRE].
– reference: R.A. Briceño et al., The ππ → πγ⋆amplitude and the resonant ρ → πγ⋆transition from lattice QCD, Phys. Rev. D93 (2016) 114508 [Erratum ibid.105 (2022) 079902] [arXiv:1604.03530] [INSPIRE].
– reference: CrivellinAHoferichterMWidth effects of broad new resonances in loop observables and application to (g − 2)μPhys. Rev. D20231082023PhRvD.108a3005C[arXiv:2211.12516] [INSPIRE]
– reference: G. D’Agostini, On the use of the covariance matrix to fit correlated data, Nucl. Instrum. Meth. A346 (1994) 306 [INSPIRE].
– reference: DM2 collaboration, Measurement of the e+e−→ π+π−π0and e+e−→ ωπ+π−reactions in the energy interval 1350–2400 MeV, Z. Phys. C56 (1992) 15 [INSPIRE].
– reference: Extended Twisted Mass collaboration, Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions, Phys. Rev. D107 (2023) 074506 [arXiv:2206.15084] [INSPIRE].
– reference: ColangeloGHoferichterMStofferPConstraints on the two-pion contribution to hadronic vacuum polarizationPhys. Lett. B2021814[arXiv:2010.07943] [INSPIRE]
– reference: E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B223 (1983) 422 [INSPIRE].
– reference: ColangeloGHoferichterMProcuraMStofferPDispersion relation for hadronic light-by-light scattering: two-pion contributionsJHEP2017041612017JHEP...04..161C1388.81508[arXiv:1702.07347] [INSPIRE]
– reference: HanhartCA New Parameterization for the Pion Vector Form FactorPhys. Lett. B20127151702012PhLB..715..170H[arXiv:1203.6839] [INSPIRE]
– reference: HoferichterMPion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muonPhys. Rev. Lett.20181212018PhRvL.121k2002H[arXiv:1805.01471] [INSPIRE]
– reference: IgnatovFLeeRNCharge asymmetry in e+e−→ π+π−processPhys. Lett. B2022833[arXiv:2204.12235] [INSPIRE]
– reference: CMD-3 collaboration, Measurement of the e+e−→ π+π−cross section from threshold to 1.2 GeV with the CMD-3 detector, arXiv:2302.08834 [INSPIRE].
– reference: M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and αmZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({m}_Z^2\right) $$\end{document}using newest hadronic cross-section data, Eur. Phys. J. C77 (2017) 827 [arXiv:1706.09436] [INSPIRE].
– reference: BaBar collaboration, Precise Measurement of the e+e−→ π+π−(γ) Cross Section with the Initial-State Radiation Method at BABAR, Phys. Rev. D86 (2012) 032013 [arXiv:1205.2228] [INSPIRE].
– reference: A. Gérardin et al., Lattice calculation of the π0, η and η′transition form factors and the hadronic light-by-light contribution to the muon g − 2, arXiv:2305.04570 [INSPIRE].
– reference: BABAR collaboration, Study of the process e+e−→ π+π−π0using initial state radiation with BABAR, Phys. Rev. D104 (2021) 112003 [arXiv:2110.00520] [INSPIRE].
– reference: CampanarioFStandard model radiative corrections in the pion form factor measurements do not explain the aμanomalyPhys. Rev. D20191002019PhRvD.100g6004C[arXiv:1903.10197] [INSPIRE]
– reference: KurzALiuTMarquardPSteinhauserMHadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading orderPhys. Lett. B20147341442014PhLB..734..144K[arXiv:1403.6400] [INSPIRE]
– reference: J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B37 (1971) 95 [INSPIRE].
– reference: C. Alexandrou et al., πγ → ππ transition and the ρ radiative decay width from lattice QCD, Phys. Rev. D98 (2018) 074502 [Erratum ibid.105 (2022) 019902] [arXiv:1807.08357] [INSPIRE].
– reference: M. Hoferichter et al., A phenomenological estimate of isospin breaking in hadronic vacuum polarization, arXiv:2307.02532 [INSPIRE].
– reference: Y.M. Bystritskiy, E.A. Kuraev, G.V. Fedotovich and F.V. Ignatov, The Cross sections of the muons and charged pions pairs production at electron-positron annihilation near the threshold, Phys. Rev. D72 (2005) 114019 [hep-ph/0505236] [INSPIRE].
– reference: Di LuzioLMasieroAParadisiPPasseraMNew physics behind the new muon g – 2 puzzle?Phys. Lett. B2022829[arXiv:2112.08312] [INSPIRE]
– reference: Muong – 2 collaboration, Magnetic-field measurement and analysis for the Muon g2 Experiment at Fermilab, Phys. Rev. A103 (2021) 042208 [arXiv:2104.03201] [INSPIRE].
– reference: M.V. Terent’ev, Process π±→ π0π±in Coulomb field and anomalous divergence of neutral axial vector current, Phys. Lett. B38 (1972) 419 [INSPIRE].
– reference: R.R. Akhmetshin et al., Measurement of ϕ meson parameters with CMD-2 detector at VEPP-2M collider, Phys. Lett. B364 (1995) 199 [INSPIRE].
– reference: BorsanyiSLeading hadronic contribution to the muon magnetic moment from lattice QCDNature2021593512021Natur.593...51B[arXiv:2002.12347] [INSPIRE]
– reference: DarméLGrilli di CortonaGNardiEThe muon g – 2 anomaly confronts new physics in e±and μ±final states scatteringJHEP2022061222022JHEP...06..122D[arXiv:2112.09139] [INSPIRE]
– reference: J. Monnard, Radiative corrections for the two-pion contribution to the hadronic vacuum polarization contribution to the muon g – 2, Ph.D. Thesis, Bern University (2020) [https://boristheses.unibe.ch/2825/].
– reference: KeshavarziAMarcianoWJPasseraMSirlinAMuon g – 2 and ∆α connectionPhys. Rev. D20201022020PhRvD.102c3002K[arXiv:2006.12666] [INSPIRE]
– reference: G. Colangelo et al., Prospects for precise predictions of aμin the Standard Model, arXiv:2203.15810 [INSPIRE].
– reference: D. Stamen et al., Analysis of rescattering effects in 3π final states, Eur. Phys. J. C83 (2023) 510 [Erratum ibid.83 (2023) 586] [arXiv:2212.11767] [INSPIRE].
– reference: NNPDF collaboration, Fitting Parton Distribution Data with Multiplicative Normalization Uncertainties, JHEP05 (2010) 075 [arXiv:0912.2276] [INSPIRE].
– reference: HoferichterMStofferPAsymptotic behavior of meson transition form factorsJHEP2020051592020JHEP...05..159H4112284[arXiv:2004.06127] [INSPIRE]
– reference: ColangeloGShort-distance constraints for the longitudinal component of the hadronic light-by-light amplitude: an updateEur. Phys. J. C2021817022021EPJC...81..702C[arXiv:2106.13222] [INSPIRE]
– reference: KLOE-2 collaboration, Combination of KLOE σ (e+e−→ π+π−γ(γ)) measurements and determination ofaμπ+π−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {a}_{\mu}^{\pi^{+}{\pi}^{-}} $$\end{document}in the energy range 0.10 < s < 0.95 GeV2, JHEP03 (2018) 173 [arXiv:1711.03085] [INSPIRE].
– reference: C. Bouchiat and L. Michel, La résonance dans la diffusion méson π-méson π et le moment magnétique anormal du méson μ, J. Phys. Radium22 (1961) 121 [INSPIRE].
– reference: BijnensJHermansson-TruedssonNLaubLRodríguez-SánchezAShort-distance HLbL contributions to the muon anomalous magnetic moment beyond perturbation theoryJHEP2020102032020JHEP...10..203B[arXiv:2008.13487] [INSPIRE]
– reference: DaxMIskenTKubisBQuark-mass dependence in ω → 3π decaysEur. Phys. J. C2018788592018EPJC...78..859D[arXiv:1808.08957] [INSPIRE]
– reference: BaBar collaboration, Study of e+e−→ π+π−π0process using initial state radiation with BaBar, Phys. Rev. D70 (2004) 072004 [hep-ex/0408078] [INSPIRE].
– reference: G. Benton et al., Data-driven determination of the light-quark connected component of the intermediate-window contribution to the muon g − 2, arXiv:2306.16808 [INSPIRE].
– reference: N.N. Khuri and S.B. Treiman, Pion-Pion Scattering and K±→ 3π Decay, Phys. Rev.119 (1960) 1115 [INSPIRE].
– reference: M. Jacob and G.C. Wick, On the General Theory of Collisions for Particles with Spin, Annals Phys.7 (1959) 404 [INSPIRE].
– reference: ColangeloGHoferichterMStofferPTwo-pion contribution to hadronic vacuum polarizationJHEP2019020062019JHEP...02..006C[arXiv:1810.00007] [INSPIRE]
– reference: StamenDKaon electromagnetic form factors in dispersion theoryEur. Phys. J. C2022824322022EPJC...82..432S[arXiv:2202.11106] [INSPIRE]
– reference: Particle Data Group collaboration, Review of Particle Physics, PTEP2022 (2022) 083C01 [INSPIRE].
– reference: CrivellinAHoferichterMManzariCAMontullMHadronic Vacuum Polarization: (g – 2)μversus Global Electroweak FitsPhys. Rev. Lett.20201252020PhRvL.125i1801C[arXiv:2003.04886] [INSPIRE]
– reference: J. Gluza, A. Hoefer, S. Jadach and F. Jegerlehner, Measuring the FSR inclusive π+π−cross-section, Eur. Phys. J. C28 (2003) 261 [hep-ph/0212386] [INSPIRE].
– reference: BijnensJHermansson-TruedssonNRodríguez-SánchezAShort-distance constraints for the HLbL contribution to the muon anomalous magnetic momentPhys. Lett. B2019798[arXiv:1908.03331] [INSPIRE]
– reference: S.J. Brodsky and E. de Rafael, Suggested boson-lepton pair couplings and the anomalous magnetic moment of the muon, Phys. Rev.168 (1968) 1620 [INSPIRE].
– reference: H. Czyż, A. Grzelińska, J.H. Kühn and G. Rodrigo, The Radiative return at Φ and B factories: FSR for muon pair production at next-to-leading order, Eur. Phys. J. C39 (2005) 411 [hep-ph/0404078] [INSPIRE].
– reference: NiecknigFKubisBSchneiderSPDispersive analysis of ω → 3π and ϕ → 3π decaysEur. Phys. J. C20127220142012EPJC...72.2014N[arXiv:1203.2501] [INSPIRE]
– reference: M. Hoferichter et al., Chiral extrapolation of hadronic vacuum polarization and isospin-breaking corrections, PoSLATTICE2022 (2022) 316 [arXiv:2210.11904] [INSPIRE].
– reference: Muong – 2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett.126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].
– reference: Muong – 2 collaboration, Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab, Phys. Rev. Accel. Beams24 (2021) 044002 [arXiv:2104.03240] [INSPIRE].
– reference: R. Omnès, On the Solution of certain singular integral equations of quantum field theory, Nuovo Cim.8 (1958) 316 [INSPIRE].
– reference: ChaoE-HThe charm-quark contribution to light-by-light scattering in the muon (g − 2) from lattice QCDEur. Phys. J. C2022826642022EPJC...82..664C[arXiv:2204.08844] [INSPIRE]
– reference: S. Holz, C. Hanhart, M. Hoferichter and B. Kubis, A dispersive analysis of η′→ π+π−γ and η′→ ℓ+ℓ−γ, Eur. Phys. J. C82 (2022) 434 [Addendum ibid.82 (2022) 1159] [arXiv:2202.05846] [INSPIRE].
– reference: LeutgebJMagerJRebhanAHadronic light-by-light contribution to the muon g – 2 from holographic QCD with solved U(1)AproblemPhys. Rev. D20231072023PhRvD.107e4021L[arXiv:2211.16562] [INSPIRE]
– reference: L. Ametller, M. Knecht and P. Talavera, Electromagnetic corrections to γπ±→ π0π±, Phys. Rev. D64 (2001) 094009 [hep-ph/0107127] [INSPIRE].
– reference: J. Bijnens, A. Bramon and F. Cornet, Three Pseudoscalar Photon Interactions in Chiral Perturbation Theory, Phys. Lett. B237 (1990) 488 [INSPIRE].
– reference: BijnensJHermansson-TruedssonNLaubLRodríguez-SánchezAThe two-loop perturbative correction to the (g – 2)μHLbL at short distancesJHEP2021042402021JHEP...04..240B[arXiv:2101.09169] [INSPIRE]
– reference: BoitoDGoltermanMMaltmanKPerisSEvaluation of the three-flavor quark-disconnected contribution to the muon anomalous magnetic moment from experimental dataPhys. Rev. D20221052022PhRvD.105i3003B[arXiv:2203.05070] [INSPIRE]
– reference: NiehusMHoferichterMKubisBThe γπ → ππ anomaly from lattice QCD and dispersion relationsJHEP2021120382021JHEP...12..038N[arXiv:2110.11372] [INSPIRE]
– reference: T. Aoyama, T. Kinoshita and M. Nio, Theory of the Anomalous Magnetic Moment of the Electron, Atoms7 (2019) 28 [INSPIRE].
– reference: BESIII collaboration, Measurement of the e+e−→ π+π−cross section between 600 and 900 MeV using initial state radiation, Phys. Lett. B753 (2016) 629 [Erratum ibid.812 (2021) 135982] [arXiv:1507.08188] [INSPIRE].
– reference: M. Hoferichter, B. Kubis and M. Zanke, Axial-vector transition form factors and e+e−→ f1π+π−, arXiv:2307.14413 [INSPIRE].
– reference: HoferichterMKubisBZankeMRadiative resonance couplings in γπ → ππPhys. Rev. D2017962017PhRvD..96k4016H[arXiv:1710.00824] [INSPIRE]
– reference: Fermilab Lattice et al. collaborations, Light-quark connected intermediate-window contributions to the muon g – 2 hadronic vacuum polarization from lattice QCD, Phys. Rev. D107 (2023) 114514 [arXiv:2301.08274] [INSPIRE].
– reference: M.N. Achasov et al., Study of the process e+e−→ π+π−π0in the energy regions\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document}from 0.98 to 1.38 GeV, Phys. Rev. D66 (2002) 032001 [hep-ex/0201040] [INSPIRE].
– reference: K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D70 (2004) 113006 [hep-ph/0312226] [INSPIRE].
– reference: RBC and UKQCD collaborations, Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, Phys. Rev. Lett.121 (2018) 022003 [arXiv:1801.07224] [INSPIRE].
– reference: BlumTHadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment from Lattice QCDPhys. Rev. Lett.20201242020PhRvL.124m2002B[arXiv:1911.08123] [INSPIRE]
– reference: ColangeloGTowards a data-driven analysis of hadronic light-by-light scatteringPhys. Lett. B201473862014PhLB..738....6C[arXiv:1408.2517] [INSPIRE]
– reference: T. Blum et al., An update of Euclidean windows of the hadronic vacuum polarization, arXiv:2301.08696 [INSPIRE].
– reference: M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to αmZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({m}_Z^2\right) $$\end{document}, Eur. Phys. J. C80 (2020) 241 [Erratum ibid.80 (2020) 410] [arXiv:1908.00921] [INSPIRE].
– reference: ColangeloGShort-distance constraints on hadronic light-by-light scattering in the anomalous magnetic moment of the muonPhys. Rev. D20201012020PhRvD.101e1501C4177660[arXiv:1910.11881] [INSPIRE]
– reference: LüdtkeJProcuraMEffects of longitudinal short-distance constraints on the hadronic light-by-light contribution to the muon g – 2Eur. Phys. J. C20208011082020EPJC...80.1108L[arXiv:2006.00007] [INSPIRE]
– reference: ColangeloGHoferichterMMonnardJRuiz de ElviraJRadiative corrections to the forward-backward asymmetry in e+e−→ π+π−JHEP2022082952022JHEP...08..295C[arXiv:2207.03495] [INSPIRE]
– reference: von DettenLOn the scalar πK form factor beyond the elastic regionEur. Phys. J. C2021814202021EPJC...81..420V[arXiv:2103.01966] [INSPIRE]
– reference: BijnensJHermansson-TruedssonNRodríguez-SánchezAConstraints on the hadronic light-by-light in the Melnikov-Vainshtein regimeJHEP2023021672023JHEP...02..167B07685590[arXiv:2211.17183] [INSPIRE]
– reference: G. Chanturia, A two-potential formalism for the pion vector form factor, PoSRegio2021 (2022) 030 [INSPIRE].
– reference: R.R. Akhmetshin et al., Study of ϕ → π+π−π0with CMD-2 detector, Phys. Lett. B642 (2006) 203 [INSPIRE].
– reference: GnendigerCStöckingerDStöckinger-KimHThe electroweak contributions to (g – 2)μafter the Higgs boson mass measurementPhys. Rev. D2013882013PhRvD..88e3005G[arXiv:1306.5546] [INSPIRE]
– reference: Muong – 2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
– reference: HoferichterMDispersion relation for hadronic light-by-light scattering: pion poleJHEP2018101412018JHEP...10..141H[arXiv:1808.04823] [INSPIRE]
– reference: A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D67 (2003) 073006 [Erratum ibid.73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
– reference: CèMWindow observable for the hadronic vacuum polarization contribution to the muon g – 2 from lattice QCDPhys. Rev. D20221062022PhRvD.106k4502C[arXiv:2206.06582] [INSPIRE]
– reference: HoferichterMDispersive analysis of the pion transition form factorEur. Phys. J. C20147431802014EPJC...74.3180H[arXiv:1410.4691] [INSPIRE]
– reference: N.M. Coyle and C.E.M. Wagner, Resolving the muon g – 2 tension through Z′-induced modifications to σhad, arXiv:2305.02354 [INSPIRE].
– reference: HoidB-LHoferichterMKubisBHadronic vacuum polarization and vector-meson resonance parameters from e+e−→ π0γEur. Phys. J. C2020809882020EPJC...80..988H[arXiv:2007.12696] [INSPIRE]
– reference: AoyamaTHayakawaMKinoshitaTNioMComplete Tenth-Order QED Contribution to the Muon g – 2Phys. Rev. Lett.20121092012PhRvL.109k1808A[arXiv:1205.5370] [INSPIRE]
– volume: 04
  start-page: 161
  year: 2017
  ident: 21657_CR25
  publication-title: JHEP
  doi: 10.1007/JHEP04(2017)161
– ident: 21657_CR135
– volume: 887
  start-page: 1
  year: 2020
  ident: 21657_CR6
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2020.07.006
– ident: 21657_CR102
  doi: 10.1103/PhysRevD.4.3497
– ident: 21657_CR126
  doi: 10.1007/BF02747746
– volume: 100
  year: 2019
  ident: 21657_CR118
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.076004
– volume: 96
  year: 2017
  ident: 21657_CR112
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.114016
– ident: 21657_CR63
– ident: 21657_CR86
– ident: 21657_CR141
  doi: 10.1016/0550-3213(80)90157-1
– ident: 21657_CR12
  doi: 10.1103/PhysRevD.97.114025
– volume: 80
  start-page: 1108
  year: 2020
  ident: 21657_CR40
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08611-6
– volume: 02
  start-page: 006
  year: 2019
  ident: 21657_CR13
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)006
– volume: 833
  year: 2022
  ident: 21657_CR61
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2022.137313
– ident: 21657_CR121
– ident: 21657_CR91
  doi: 10.1140/epjc/s2004-02103-1
– ident: 21657_CR115
– ident: 21657_CR84
  doi: 10.22323/1.430.0316
– ident: 21657_CR146
– volume: 121
  year: 2018
  ident: 21657_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.112002
– ident: 21657_CR132
– volume: 106
  year: 2022
  ident: 21657_CR57
  publication-title: Phys. Rev. D
– volume: 820
  year: 2021
  ident: 21657_CR44
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2021.136502
– volume: 03
  start-page: 101
  year: 2020
  ident: 21657_CR31
  publication-title: JHEP
  doi: 10.1007/JHEP03(2020)101
– volume: 734
  start-page: 144
  year: 2014
  ident: 21657_CR18
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2014.05.043
– ident: 21657_CR5
– volume: 72
  start-page: 2014
  year: 2012
  ident: 21657_CR106
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-012-2014-1
– ident: 21657_CR37
– volume: 12
  start-page: 038
  year: 2021
  ident: 21657_CR116
  publication-title: JHEP
  doi: 10.1007/JHEP12(2021)038
– ident: 21657_CR147
– ident: 21657_CR60
– volume: 715
  start-page: 170
  year: 2012
  ident: 21657_CR123
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.07.038
– ident: 21657_CR80
  doi: 10.22323/1.412.0030
– ident: 21657_CR94
  doi: 10.1016/0370-2693(71)90582-X
– volume: 107
  year: 2023
  ident: 21657_CR47
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.054021
– volume: 10
  start-page: 203
  year: 2020
  ident: 21657_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP10(2020)203
– ident: 21657_CR68
– volume: 80
  start-page: 988
  year: 2020
  ident: 21657_CR17
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08550-2
– volume: 105
  year: 2022
  ident: 21657_CR85
  publication-title: Phys. Rev. D
– ident: 21657_CR96
  doi: 10.1103/PhysRevD.64.094009
– volume: 08
  start-page: 137
  year: 2019
  ident: 21657_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)137
– volume: 74
  start-page: 3180
  year: 2014
  ident: 21657_CR101
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-014-3180-0
– ident: 21657_CR89
– volume: 05
  start-page: 159
  year: 2020
  ident: 21657_CR39
  publication-title: JHEP
  doi: 10.1007/JHEP05(2020)159
– volume: 78
  start-page: 1000
  year: 2018
  ident: 21657_CR124
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-6416-6
– volume: 82
  start-page: 664
  year: 2022
  ident: 21657_CR35
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-10589-2
– volume: 593
  start-page: 51
  year: 2021
  ident: 21657_CR55
  publication-title: Nature
  doi: 10.1038/s41586-021-03418-1
– volume: 109
  year: 2012
  ident: 21657_CR7
  publication-title: Phys. Rev. Lett.
– ident: 21657_CR15
  doi: 10.1140/epjc/s10052-020-7857-2
– ident: 21657_CR52
– ident: 21657_CR133
– volume: 78
  year: 2008
  ident: 21657_CR73
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.013009
– volume: 09
  start-page: 074
  year: 2015
  ident: 21657_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP09(2015)074
– ident: 21657_CR127
– ident: 21657_CR46
  doi: 10.1140/epjc/s10052-022-11094-2
– volume: 833
  year: 2022
  ident: 21657_CR119
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2022.137283
– ident: 21657_CR2
– ident: 21657_CR104
  doi: 10.1103/PhysRevD.5.2372
– ident: 21657_CR72
– volume: 108
  year: 2023
  ident: 21657_CR71
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.013005
– ident: 21657_CR144
  doi: 10.1016/0168-9002(94)90719-6
– volume: 08
  start-page: 295
  year: 2022
  ident: 21657_CR79
  publication-title: JHEP
  doi: 10.1007/JHEP08(2022)295
– volume: 86
  year: 2012
  ident: 21657_CR107
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.054013
– volume: 798
  year: 2019
  ident: 21657_CR29
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2019.134994
– volume: 08
  start-page: 220
  year: 2022
  ident: 21657_CR78
  publication-title: JHEP
  doi: 10.1007/JHEP08(2022)220
– ident: 21657_CR145
  doi: 10.1007/JHEP05(2010)075
– ident: 21657_CR66
– volume: 82
  start-page: 432
  year: 2022
  ident: 21657_CR82
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-10348-3
– volume: 81
  start-page: 651
  year: 2021
  ident: 21657_CR34
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09455-4
– volume: 102
  year: 2020
  ident: 21657_CR75
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.033002
– ident: 21657_CR105
  doi: 10.1088/0305-4616/4/1/007
– volume: 09
  start-page: 091
  year: 2014
  ident: 21657_CR20
  publication-title: JHEP
  doi: 10.1007/JHEP09(2014)091
– ident: 21657_CR83
– volume: 125
  year: 2020
  ident: 21657_CR74
  publication-title: Phys. Rev. Lett.
– volume: 91
  year: 2015
  ident: 21657_CR109
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.094029
– volume: 81
  start-page: 420
  year: 2021
  ident: 21657_CR125
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09169-7
– ident: 21657_CR97
  doi: 10.1088/1126-6708/2002/09/008
– ident: 21657_CR139
– volume: 128
  year: 2022
  ident: 21657_CR54
  publication-title: Phys. Rev. Lett.
– ident: 21657_CR50
– volume: 06
  start-page: 122
  year: 2022
  ident: 21657_CR70
  publication-title: JHEP
  doi: 10.1007/JHEP06(2022)122
– volume: 04
  start-page: 240
  year: 2021
  ident: 21657_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)240
– volume: 81
  start-page: 46
  year: 2021
  ident: 21657_CR76
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-08848-9
– ident: 21657_CR4
– ident: 21657_CR38
– ident: 21657_CR131
– volume: 814
  year: 2021
  ident: 21657_CR77
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2021.136073
– volume: 86
  year: 2012
  ident: 21657_CR108
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.116009
– volume: 100
  year: 2019
  ident: 21657_CR28
  publication-title: Phys. Rev. D
– volume: 105
  year: 2022
  ident: 21657_CR87
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.093003
– ident: 21657_CR67
– volume: 735
  start-page: 90
  year: 2014
  ident: 21657_CR33
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2014.06.012
– volume: 73
  start-page: 2539
  year: 2013
  ident: 21657_CR99
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-013-2539-y
– ident: 21657_CR136
– volume: 88
  year: 2013
  ident: 21657_CR10
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.053005
– ident: 21657_CR16
  doi: 10.1103/PhysRevD.101.014029
– volume: 95
  year: 2017
  ident: 21657_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.054026
– ident: 21657_CR64
– ident: 21657_CR56
  doi: 10.1103/PhysRevLett.121.022003
– volume: 118
  year: 2017
  ident: 21657_CR24
  publication-title: Phys. Rev. Lett.
– ident: 21657_CR128
  doi: 10.1007/s002180050167
– ident: 21657_CR11
  doi: 10.1140/epjc/s10052-017-5161-6
– ident: 21657_CR1
– ident: 21657_CR19
  doi: 10.1103/PhysRevD.70.113006
– volume: 10
  start-page: 141
  year: 2018
  ident: 21657_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP10(2018)141
– volume: 101
  year: 2020
  ident: 21657_CR30
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.051501
– ident: 21657_CR114
– ident: 21657_CR142
  doi: 10.1007/BF01589702
– ident: 21657_CR53
  doi: 10.1016/0370-2693(76)90150-7
– ident: 21657_CR137
– ident: 21657_CR95
  doi: 10.1016/0550-3213(83)90063-9
– ident: 21657_CR98
  doi: 10.1103/PhysRevD.73.034010
– ident: 21657_CR90
  doi: 10.1007/s100520200916
– volume: 78
  start-page: 859
  year: 2018
  ident: 21657_CR110
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-6346-3
– ident: 21657_CR129
  doi: 10.1051/jphysrad:01961002202012101
– ident: 21657_CR36
– ident: 21657_CR122
  doi: 10.1140/epjc/s10052-023-11749-8
– volume: 07
  start-page: 106
  year: 2021
  ident: 21657_CR43
  publication-title: JHEP
  doi: 10.1007/JHEP07(2021)106
– ident: 21657_CR93
  doi: 10.1103/PhysRevD.72.114019
– ident: 21657_CR140
– ident: 21657_CR9
  doi: 10.1103/PhysRevD.67.073006
– ident: 21657_CR117
– volume: 829
  year: 2022
  ident: 21657_CR69
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2022.137037
– ident: 21657_CR51
– ident: 21657_CR130
  doi: 10.1103/PhysRev.168.1620
– ident: 21657_CR134
– ident: 21657_CR92
  doi: 10.1140/epjc/s2003-01146-0
– ident: 21657_CR103
  doi: 10.1016/0370-2693(72)90171-2
– ident: 21657_CR59
– volume: 107
  year: 2023
  ident: 21657_CR88
  publication-title: Phys. Rev. D
– ident: 21657_CR143
  doi: 10.1016/0370-1573(91)90127-8
– volume: 124
  year: 2020
  ident: 21657_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.132002
– ident: 21657_CR3
– ident: 21657_CR58
  doi: 10.1103/PhysRevD.107.074506
– volume: 02
  start-page: 167
  year: 2023
  ident: 21657_CR48
  publication-title: JHEP
  doi: 10.1007/JHEP02(2023)167
– ident: 21657_CR138
  doi: 10.1016/S0370-2693(98)00826-0
– ident: 21657_CR113
  doi: 10.1016/0370-2693(90)91212-T
– ident: 21657_CR100
  doi: 10.1103/PhysRev.119.1115
– ident: 21657_CR111
  doi: 10.1016/0003-4916(59)90051-X
– ident: 21657_CR62
– volume: 738
  start-page: 6
  year: 2014
  ident: 21657_CR21
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2014.09.021
– volume: 81
  start-page: 702
  year: 2021
  ident: 21657_CR45
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09513-x
– volume: 04
  start-page: 125
  year: 2023
  ident: 21657_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP04(2023)125
– ident: 21657_CR65
  doi: 10.1134/S106377610609007X
– volume: 10
  start-page: 032
  year: 2022
  ident: 21657_CR81
  publication-title: JHEP
  doi: 10.1007/JHEP10(2022)032
– ident: 21657_CR120
– ident: 21657_CR8
  doi: 10.3390/atoms7010028
SSID ssj0015190
Score 2.519791
Snippet A bstract Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant...
Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions arise...
Abstract Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum polarization at subpercent precision. While the dominant contributions...
SourceID doaj
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 208
SubjectTerms Chiral Lagrangian
Classical and Quantum Gravitation
Elementary Particles
High energy physics
Magnetic moments
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Pions
Polarization
Precision QED
Quantum chromodynamics
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quarks
Radiation
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Theoretical physics
Vector mesons
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilJG1DnEfRoYfNwYkfsiwdk5KwXWjpoSG5CXkk0UDqXbLe_v7OyHKaFpZeerANlmys0Uj6xjP6hrEPpfQ2dBTcilgiF-BcrpWC3MsAqrKoIS3tRv78Rc5vxOKuuXuW6otiwkZ64FFw574FwFm0tsFqEaDTwWtbhNDV3rZu5PnENW8yppL_AHFJMRH5FO35Yn71tVAzShV-WlEmyWdrUKTqx8sSh9QfMPMvz2hccK532euEFPnF-IV77IXv37CXMWIT1m_Z7ac1pfzoc7RpY0YpnkIz-H3PEdXh8eh9vkK58xiPnhJb8WHJv1sXKXH5TwubzQ--Ivs2bch8x26ur759nOcpS0IOoq2GvLQAQdayDtqqoimctaLphANtXQmVdSLU0lU-NIguvPWl7KpWS9cq3SnpQ73Pdvpl7w8YF478grYMtWvQbNaq9IWvqtAFgfOigoydTXIzkCjEKZPFg5nIj0dBGxI0nlTGZk8PrEb2jO1VL6kjnqoR7XW8gcpgkjKYfylDxo6oGw2iB6LABYoVgsEgSlEIizJ2PPWuSSN1bYjAj3y1Sm0pVoiwWqnLjJ1OCvG7eEtjDv9HY47YK3pf_IFdHLOd4XHjTxABDd37qOy_AB1tBO4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRUhcEE-RtiAfOLSHoDwcxz5C1WqpBOJARW-WM7YBCbKr3Sy_nxmvU1TQHjgksWL7kBk_PmdmvgF4Xavg4sDOrYQlSonel0ZrLIOKqBtHI6TnaOQPH9XiWl7ddDcHUM-xMMnbfTZJppV6Dna7Wlx8qvQpp_s-azi8915HZR7U5xzgkA0HBEiqmcHn3053Np_E0U-PJc2lO_jyL5No2mkuH8HDDBHF251OH8NBGJ_A_eSqiZun8OX9hnN9jCUdZlMqKZF9MsT3URCco2sdQrkigYvkiJ4zWolpKb45n7hwxS-H2-1PseKDbY7EfAbXlxefzxdlTo9QouybqawdYlStaqNxuuoq75zsBunROF9j47yMrfJNiB3BiuBCrYamN8r32gxahdg-h8NxOYYXIKRng6CrY-s7Oi8bXYcqNE0coqQFUWMBb2a5Wczc4ZzC4oedWY93grYsaLrpAk5vO6x2tBn7m75jRdw2Y77r9GK5_mrz9LGhR6S9tHXRGRlxMDEYV8U4tMH1vmoLOGY1WoINzH2L7CSEkyV4ogkPFXAya9fmKbqxzNzHRlqt91Rrgla9MnUBZ_OA-FO952OO_qPtMTzgYvpBXZ3A4bTehpeEcKbhVRrTvwEWYPV5
  priority: 102
  providerName: Springer Nature
Title Isospin-breaking effects in the three-pion contribution to hadronic vacuum polarization
URI https://link.springer.com/article/10.1007/JHEP08(2023)208
https://www.proquest.com/docview/2859389188
https://www.proquest.com/docview/2883177691
https://www.osti.gov/servlets/purl/2418910
https://doaj.org/article/e7cc8013afa94fcb9fe9a0ffb3ea7d03
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLbYJiQuiJ-ibFQ-cNgOYY7jOPYJbVVLmcQ0ISp2ixz_ACRISpvy9_Oe63SAVA5xlMRRFPvZ_uz3_H2EvM6lN6HB4FbAEpmwzmVaKZt5GaziBiykwt3IH67lfCGubsvbtOC2TmGVQ58YO2rXWVwjP0eiNfSpKfV2-TND1Sj0riYJjQNyBF2wgsnX0eX0-ubjzo8A-IQNhD6sOr-aT2-YOkXJ8DOOipJ_jEWRsh9OHTStv-DmPx7SOPDMHpGHCTHSi20VPyb3fPuE3I-Rm3b9lHx-v0bpjzaDuW1UlqIpRIN-aymgOzhW3mdLKH8a49KTwBXtO_rVuEiNS38Zu9n8oEuc56aNmc_IYjb9NJlnSS0hs6LifZYba4MsZBG0UaxkzhhRNsJZbVxuuXEiFNJxH0pAGd74XDa80tJVSjdK-lA8J4dt1_oXhAqH_kGTh8KVMH3WKvfMcx6aIKB_VHZE3gzlVttEJY6KFt_rgQR5W9A1FjQkakROdy8stywa-7NeYkXssiH9dbzRrb7UqTXVvrIWhtbCBKNFsI0OXhsWQlN4UzlWjMgxVmMNKAKpcC3GDNm-BrQCFsRG5GSo3Tq12HV9Z197HitAWpXU-YicDQZx93jPz7z8_5eOyQPMGZeo2Qk57Fcb_wowTt-MyYGavRsnc4arCReYysk4rhpAuuAXvwEDqQAO
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ilCC_gAUnsIdRzHsQ8I8eiy25c4tKK31PEDKpXNspsF8af4jcx4ky0gLbcekkixkyieseezZzwfIc8z6U2oMbgVsEQqrHOpVsqmXgaruAENKXE38uGRHJ6IvdPidI386vfCYFhlPybGgdo1FtfIdzDRGvrUlHo9-ZYiaxR6V3sKjYVa7PufP2DKNns1eg_yfcH5YPf43TDtWAVSK0reppmxNshc5kEbxQrmjBFFLZzVxmWWGydCLh33oQBr7I3PZM1LLV2pdK2kDzm89xq5LvJcY49Sgw9LrwWgIdanD2Llzt5w9yNTW0hQvs2Rv_IPyxcJAuDSQEf-C9z-44-NZm5wh9zu8Cl9s1Cou2TNj--RGzFO1M7uk0-jGRKNjFOYSUceK9oFhNDzMQUsCcfU-3QC0qYxCr6j06JtQ78YFxPx0u_Gzudf6QRn1d020Afk5Epa8SFZHzdj_4hQ4dAbabKQuwIm61plnnnOQx0EjMbKJuRl326V7RKXI3_GRdWnXF40dIUNDSeVkK3lA5NFzo7VVd-iIJbVMNl2vNFMP1dd3618aS0Y8twEo0WwtQ5eGxZCnXtTOpYnZAPFWAFmwcS7FiOUbFsBNgJ9ZQnZ7KVbdePDrLrU5hXFCnBdKXWWkO1eIS6LV_zM4_9_6Rm5OTw-PKgORkf7G-QWPhUXx9kmWW-nc_8E0FVbP40qTcnZVfeh36IOONU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEJ8ibIAfQNoewpxv5wEhxlq1G1QVYmJvxvEHmwRNaVMQ_xp_HXep0wFSedtDEil2EsV3tn_nO98P4FmUW-UqCm5FLBGm2piwFEKHNndaxAo1pKDdyO_G-fA0PT7LzrbgV7cXhsIquzGxHahNrWmN_IASrZFPDQ0258MiJkeDV7NvITFIkae1o9NYqciJ_fkDzbfFy9ERyvp5HA_6H94MQ88wEOq0iJswUlq7PMkTVyrBM26USrMqNbpUJtKxMqlLchNbl-HMbJWN8iouytwUoqxEbl2C770G2wVaRbwH24f98eT92oeB2Ih3yYR4cXA87E-42CO68v2Y2Cz_mAdbugC81Nit_4K6_3hn20lvcBtuebTKXq_U6w5s2elduN5GjerFPfg4WhDtyDREu7pltWI-PIRdTBkiSzzm1oYzlD1rY-I9uRZranauTJuWl31Xern8ymZkY_tNoffh9Era8QH0pvXUPgSWGvJNqsglJkPTvRSR5TaOXeVSHJuFDuBF125S-zTmxKbxRXYJmFcNLamh8SQC2Fs_MFtl8Nhc9ZAEsa5GqbfbG_X8s_Q9WdpCa5zWE-VUmTpdlc6WijtXJVYVhicB7JAYJSIYSsOrKV5JNxKREmovD2C3k670o8VCXur2hmKBKK_IyyiA_U4hLos3_Myj_3_pKdzA_iPfjsYnO3CTHmpXyvku9Jr50j5GqNVUT7xOM_h01d3oN0fHPmc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isospin-breaking+effects+in+the+three-pion+contribution+to+hadronic+vacuum+polarization&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Hoferichter%2C+Martin&rft.au=Hoid%2C+Bai-Long&rft.au=Kubis%2C+Bastian&rft.au=Schuh%2C+Dominic&rft.date=2023-08-30&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2023&rft.issue=8&rft.spage=208&rft_id=info:doi/10.1007%2FJHEP08%282023%29208&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon