A Battery-Less Wireless Respiratory Sensor Using Micro-Machined Thin-Film Piezoelectric Resonators

In this work, we present a battery-less wireless Micro-Electro-Mechanical (MEMS)-based respiration sensor capable of measuring the respiration profile of a human subject from up to 2 m distance from the transceiver unit for a mean excitation power of 80 µW and a measured SNR of 124.8 dB at 0.5 m mea...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 12; no. 4; p. 363
Main Authors Moradian, Sina, Akhkandi, Parvin, Huang, Junyi, Gong, Xun, Abdolvand, Reza
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 27.03.2021
MDPI
Subjects
Online AccessGet full text
ISSN2072-666X
2072-666X
DOI10.3390/mi12040363

Cover

Abstract In this work, we present a battery-less wireless Micro-Electro-Mechanical (MEMS)-based respiration sensor capable of measuring the respiration profile of a human subject from up to 2 m distance from the transceiver unit for a mean excitation power of 80 µW and a measured SNR of 124.8 dB at 0.5 m measurement distance. The sensor with a footprint of ~10 cm2 is designed to be inexpensive, maximize user mobility, and cater to applications where disposability is desirable to minimize the sanitation burden. The sensing system is composed of a custom UHF RFID antenna, a low-loss piezoelectric MEMS resonator with two modes within the frequency range of interest, and a base transceiver unit. The difference in temperature and moisture content of inhaled and exhaled air modulates the resonance frequency of the MEMS resonator which in turn is used to monitor respiration. To detect changes in the resonance frequency of the MEMS devices, the sensor is excited by a pulsed sinusoidal signal received through an external antenna directly coupled to the device. The signal reflected from the device through the antenna is then analyzed via Fast Fourier Transform (FFT) to extract and monitor the resonance frequency of the resonator. By tracking the resonance frequency over time, the respiration profile of a patient is tracked. A compensation method for the removal of motion-induced artifacts and drift is proposed and implemented using the difference in the resonance frequency of two resonance modes of the same resonator.
AbstractList In this work, we present a battery-less wireless Micro-Electro-Mechanical (MEMS)-based respiration sensor capable of measuring the respiration profile of a human subject from up to 2 m distance from the transceiver unit for a mean excitation power of 80 µW and a measured SNR of 124.8 dB at 0.5 m measurement distance. The sensor with a footprint of ~10 cm2 is designed to be inexpensive, maximize user mobility, and cater to applications where disposability is desirable to minimize the sanitation burden. The sensing system is composed of a custom UHF RFID antenna, a low-loss piezoelectric MEMS resonator with two modes within the frequency range of interest, and a base transceiver unit. The difference in temperature and moisture content of inhaled and exhaled air modulates the resonance frequency of the MEMS resonator which in turn is used to monitor respiration. To detect changes in the resonance frequency of the MEMS devices, the sensor is excited by a pulsed sinusoidal signal received through an external antenna directly coupled to the device. The signal reflected from the device through the antenna is then analyzed via Fast Fourier Transform (FFT) to extract and monitor the resonance frequency of the resonator. By tracking the resonance frequency over time, the respiration profile of a patient is tracked. A compensation method for the removal of motion-induced artifacts and drift is proposed and implemented using the difference in the resonance frequency of two resonance modes of the same resonator.In this work, we present a battery-less wireless Micro-Electro-Mechanical (MEMS)-based respiration sensor capable of measuring the respiration profile of a human subject from up to 2 m distance from the transceiver unit for a mean excitation power of 80 µW and a measured SNR of 124.8 dB at 0.5 m measurement distance. The sensor with a footprint of ~10 cm2 is designed to be inexpensive, maximize user mobility, and cater to applications where disposability is desirable to minimize the sanitation burden. The sensing system is composed of a custom UHF RFID antenna, a low-loss piezoelectric MEMS resonator with two modes within the frequency range of interest, and a base transceiver unit. The difference in temperature and moisture content of inhaled and exhaled air modulates the resonance frequency of the MEMS resonator which in turn is used to monitor respiration. To detect changes in the resonance frequency of the MEMS devices, the sensor is excited by a pulsed sinusoidal signal received through an external antenna directly coupled to the device. The signal reflected from the device through the antenna is then analyzed via Fast Fourier Transform (FFT) to extract and monitor the resonance frequency of the resonator. By tracking the resonance frequency over time, the respiration profile of a patient is tracked. A compensation method for the removal of motion-induced artifacts and drift is proposed and implemented using the difference in the resonance frequency of two resonance modes of the same resonator.
In this work, we present a battery-less wireless Micro-Electro-Mechanical (MEMS)-based respiration sensor capable of measuring the respiration profile of a human subject from up to 2 m distance from the transceiver unit for a mean excitation power of 80 µW and a measured SNR of 124.8 dB at 0.5 m measurement distance. The sensor with a footprint of ~10 cm 2 is designed to be inexpensive, maximize user mobility, and cater to applications where disposability is desirable to minimize the sanitation burden. The sensing system is composed of a custom UHF RFID antenna, a low-loss piezoelectric MEMS resonator with two modes within the frequency range of interest, and a base transceiver unit. The difference in temperature and moisture content of inhaled and exhaled air modulates the resonance frequency of the MEMS resonator which in turn is used to monitor respiration. To detect changes in the resonance frequency of the MEMS devices, the sensor is excited by a pulsed sinusoidal signal received through an external antenna directly coupled to the device. The signal reflected from the device through the antenna is then analyzed via Fast Fourier Transform (FFT) to extract and monitor the resonance frequency of the resonator. By tracking the resonance frequency over time, the respiration profile of a patient is tracked. A compensation method for the removal of motion-induced artifacts and drift is proposed and implemented using the difference in the resonance frequency of two resonance modes of the same resonator.
In this work, we present a battery-less wireless Micro-Electro-Mechanical (MEMS)-based respiration sensor capable of measuring the respiration profile of a human subject from up to 2 m distance from the transceiver unit for a mean excitation power of 80 µW and a measured SNR of 124.8 dB at 0.5 m measurement distance. The sensor with a footprint of ~10 cm2 is designed to be inexpensive, maximize user mobility, and cater to applications where disposability is desirable to minimize the sanitation burden. The sensing system is composed of a custom UHF RFID antenna, a low-loss piezoelectric MEMS resonator with two modes within the frequency range of interest, and a base transceiver unit. The difference in temperature and moisture content of inhaled and exhaled air modulates the resonance frequency of the MEMS resonator which in turn is used to monitor respiration. To detect changes in the resonance frequency of the MEMS devices, the sensor is excited by a pulsed sinusoidal signal received through an external antenna directly coupled to the device. The signal reflected from the device through the antenna is then analyzed via Fast Fourier Transform (FFT) to extract and monitor the resonance frequency of the resonator. By tracking the resonance frequency over time, the respiration profile of a patient is tracked. A compensation method for the removal of motion-induced artifacts and drift is proposed and implemented using the difference in the resonance frequency of two resonance modes of the same resonator.
In this work, we present a battery-less wireless Micro-Electro-Mechanical (MEMS)-based respiration sensor capable of measuring the respiration profile of a human subject from up to 2 m distance from the transceiver unit for a mean excitation power of 80 µW and a measured SNR of 124.8 dB at 0.5 m measurement distance. The sensor with a footprint of ~10 cm is designed to be inexpensive, maximize user mobility, and cater to applications where disposability is desirable to minimize the sanitation burden. The sensing system is composed of a custom UHF RFID antenna, a low-loss piezoelectric MEMS resonator with two modes within the frequency range of interest, and a base transceiver unit. The difference in temperature and moisture content of inhaled and exhaled air modulates the resonance frequency of the MEMS resonator which in turn is used to monitor respiration. To detect changes in the resonance frequency of the MEMS devices, the sensor is excited by a pulsed sinusoidal signal received through an external antenna directly coupled to the device. The signal reflected from the device through the antenna is then analyzed via Fast Fourier Transform (FFT) to extract and monitor the resonance frequency of the resonator. By tracking the resonance frequency over time, the respiration profile of a patient is tracked. A compensation method for the removal of motion-induced artifacts and drift is proposed and implemented using the difference in the resonance frequency of two resonance modes of the same resonator.
Author Akhkandi, Parvin
Moradian, Sina
Abdolvand, Reza
Huang, Junyi
Gong, Xun
AuthorAffiliation Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32828, USA; parvin.akhkandi@knights.ucf.edu (P.A.); jensenhuang0@Knights.ucf.edu (J.H.); xun.gong@ucf.edu (X.G.); REZA.ABDOLVAND@ucf.edu (R.A.)
AuthorAffiliation_xml – name: Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32828, USA; parvin.akhkandi@knights.ucf.edu (P.A.); jensenhuang0@Knights.ucf.edu (J.H.); xun.gong@ucf.edu (X.G.); REZA.ABDOLVAND@ucf.edu (R.A.)
Author_xml – sequence: 1
  givenname: Sina
  surname: Moradian
  fullname: Moradian, Sina
– sequence: 2
  givenname: Parvin
  orcidid: 0000-0001-8599-0151
  surname: Akhkandi
  fullname: Akhkandi, Parvin
– sequence: 3
  givenname: Junyi
  orcidid: 0000-0002-7369-9401
  surname: Huang
  fullname: Huang, Junyi
– sequence: 4
  givenname: Xun
  surname: Gong
  fullname: Gong, Xun
– sequence: 5
  givenname: Reza
  surname: Abdolvand
  fullname: Abdolvand, Reza
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33801761$$D View this record in MEDLINE/PubMed
BookMark eNptkl1rFDEYhYNUbK298QfIgDcijOZjkszcCLVYLWxRtEXvQj63WWaSbZIV1l9vxq21LeYieUmeczhvkqdgL8RgAXiO4BtCBvh28gjDDhJGHoEDDDluGWM_9u7U--Ao5xWsg_OhTk_APiE9RJyhA6COm_eyFJu27cLm3Hz3yY5z8dXmtU-yxLRtvtmQY2ousw_L5tzrFNtzqa98sKa5qEt76sep-eLtr1jFuiSvZ30Mszw_A4-dHLM9ulkPweXph4uTT-3i88ezk-NFqzuOS4toT5mRyBrdD8xCApVlcugUdbJjPe744HrHDTKD6noHJRoM0Zi6zlBCGSaH4Gzna6JciXXyk0xbEaUXfzZiWgqZitejFQprrilBRjnaVXtlOCaYGepUvU3Iqte7ndd6o6aayIaS5HjP9P5J8FdiGX-KHrKaZTZ4dWOQ4vXG5iImn7UdRxls3GSBKaztQopRRV8-QFdxk0K9qkoRWIP1HFbqxd1Et1H-PmUFXu-A-jw5J-tuEQTF_FXEv69SYfgA1r7I4uPcjR__J_kNQX3AHg
CitedBy_id crossref_primary_10_3390_polym14142871
crossref_primary_10_3390_mi12091086
crossref_primary_10_3390_mi13020272
crossref_primary_10_1016_j_cej_2023_146737
crossref_primary_10_1097_ACO_0000000000001129
crossref_primary_10_3390_mi13060936
crossref_primary_10_1109_JSEN_2025_3529880
crossref_primary_10_1155_2021_3516745
Cites_doi 10.1063/1.3481361
10.1109/JMEMS.2016.2529296
10.1109/ULTSYM.2000.922679
10.1109/TUFFC.2013.2783
10.1109/TAP.2013.2278481
10.1046/j.1365-2044.2003.03258.x
10.3390/s17010171
10.1038/s41746-019-0083-3
10.1038/s41746-020-0270-2
10.1007/BF02644859
10.1007/BF02600071
10.1007/s00542-018-4239-x
10.5694/j.1326-5377.2008.tb01825.x
10.1021/acssensors.7b00199
10.1109/TUFFC.2008.976
10.14814/phy2.13752
10.1016/j.sna.2018.04.024
10.1007/BF02348078
10.1109/JMEMS.2013.2240259
10.1007/978-3-319-28688-4_5
10.1109/ICSENS.2016.7808422
10.1183/20734735.008417
10.1007/BF01617716
10.3390/s19040908
10.3390/s151229881
10.1513/AnnalsATS.201311-405PS
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/mi12040363
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID oai_doaj_org_article_b2c7c531dbf54fa4bd72326d5fb12006
PMC8065626
33801761
10_3390_mi12040363
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1711632
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
KQ8
L6V
M7S
MM.
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RPM
TR2
TUS
NPM
7SP
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c472t-15856da1edc896e030be6a94b5fa4682479f8f7d1d9b48f0a19d3c25f4d535623
IEDL.DBID 8FG
ISSN 2072-666X
IngestDate Wed Aug 27 01:30:32 EDT 2025
Thu Aug 21 18:11:44 EDT 2025
Thu Sep 04 19:15:10 EDT 2025
Fri Jul 25 12:08:49 EDT 2025
Thu Apr 03 07:05:47 EDT 2025
Tue Jul 01 03:41:09 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords wearable
RF MEMS
RFID
MEMS
wireless
respiratory
piezoelectric
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-15856da1edc896e030be6a94b5fa4682479f8f7d1d9b48f0a19d3c25f4d535623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7369-9401
0000-0001-8599-0151
OpenAccessLink https://www.proquest.com/docview/2530232870?pq-origsite=%requestingapplication%
PMID 33801761
PQID 2530232870
PQPubID 2032359
ParticipantIDs doaj_primary_oai_doaj_org_article_b2c7c531dbf54fa4bd72326d5fb12006
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8065626
proquest_miscellaneous_2508560521
proquest_journals_2530232870
pubmed_primary_33801761
crossref_primary_10_3390_mi12040363
crossref_citationtrail_10_3390_mi12040363
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210327
PublicationDateYYYYMMDD 2021-03-27
PublicationDate_xml – month: 3
  year: 2021
  text: 20210327
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Micromachines (Basel)
PublicationTitleAlternate Micromachines (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Aliverti (ref_5) 2017; 13
Carr (ref_16) 2020; 3
Cretikos (ref_8) 2008; 188
ref_14
ref_13
Fatemi (ref_19) 2013; 60
Kano (ref_11) 2017; 2
Farraro (ref_22) 1977; 8
Chen (ref_25) 2013; 61
Jiang (ref_12) 2015; 15
Hmeidi (ref_6) 2018; 6
Subbe (ref_4) 2003; 58
Polunin (ref_15) 2016; 25
ref_20
Lin (ref_21) 2010; 97
Abdolvand (ref_17) 2008; 55
Ferkol (ref_1) 2014; 11
ref_27
ref_26
Folke (ref_7) 2003; 41
ref_9
Fieselmann (ref_3) 1993; 8
Mahdavi (ref_23) 2018; 276
Fatemi (ref_18) 2013; 22
Chu (ref_2) 2019; 2
Nguyen (ref_24) 2018; 25
Marks (ref_10) 1995; 11
References_xml – volume: 97
  start-page: 083501
  year: 2010
  ident: ref_21
  article-title: Thermally compensated aluminum nitride Lamb wave resonators for high temperature applications
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3481361
– volume: 25
  start-page: 297
  year: 2016
  ident: ref_15
  article-title: Characterization of MEMS Resonator Nonlinearities Using the Ringdown Response
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2016.2529296
– ident: ref_20
  doi: 10.1109/ULTSYM.2000.922679
– volume: 60
  start-page: 1978
  year: 2013
  ident: ref_19
  article-title: Low-loss lateral-extensional piezoelectric filters on ultrananocrystalline diamond
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2013.2783
– ident: ref_26
– volume: 61
  start-page: 5372
  year: 2013
  ident: ref_25
  article-title: A Compact Strip Dipole Coupled Split-Ring Resonator Antenna for RFID Tags
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2013.2278481
– volume: 58
  start-page: 797
  year: 2003
  ident: ref_4
  article-title: Effect of introducing the Modified Early Warning score on clinical outcomes, cardio-pulmonary arrests and intensive care utilisation in acute medical admissions*
  publication-title: Anaesthesia
  doi: 10.1046/j.1365-2044.2003.03258.x
– ident: ref_13
  doi: 10.3390/s17010171
– volume: 2
  start-page: 1
  year: 2019
  ident: ref_2
  article-title: Respiration rate and volume measurements using wearable strain sensors
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0083-3
– volume: 3
  start-page: 1
  year: 2020
  ident: ref_16
  article-title: Sweat monitoring beneath garments using passive, wireless resonant sensors interfaced with laser-ablated microfluidics
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-020-0270-2
– volume: 8
  start-page: 1563
  year: 1977
  ident: ref_22
  article-title: Temperature dependence of the Young’s modulus and shear modulus of pure nickel, platinum, and molybdenum
  publication-title: Met. Mater. Trans. A
  doi: 10.1007/BF02644859
– volume: 8
  start-page: 354
  year: 1993
  ident: ref_3
  article-title: Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients
  publication-title: J. Gen. Intern. Med.
  doi: 10.1007/BF02600071
– volume: 25
  start-page: 2767
  year: 2018
  ident: ref_24
  article-title: Influences of relative humidity on the quality factors of MEMS cantilever resonators in gas rarefaction
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-018-4239-x
– volume: 188
  start-page: 657
  year: 2008
  ident: ref_8
  article-title: Respiratory rate: The neglected vital sign
  publication-title: Med. J. Aust.
  doi: 10.5694/j.1326-5377.2008.tb01825.x
– volume: 2
  start-page: 828
  year: 2017
  ident: ref_11
  article-title: Fast-Response and Flexible Nanocrystal-Based Humidity Sensor for Monitoring Human Respiration and Water Evaporation on Skin
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00199
– volume: 55
  start-page: 2596
  year: 2008
  ident: ref_17
  article-title: Thin-film piezoelectric-on-silicon resonators for high-frequency ref-erence oscillator applications
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2008.976
– volume: 6
  start-page: e13752
  year: 2018
  ident: ref_6
  article-title: Tidal breathing parameters measured by structured light plethysmography in children aged 2–12 years recovering from acute asthma/wheeze compared with healthy children
  publication-title: Physiol. Rep.
  doi: 10.14814/phy2.13752
– volume: 276
  start-page: 52
  year: 2018
  ident: ref_23
  article-title: Piezoelectric MEMS resonant dew point meters
  publication-title: Sensors Actuators A Phys.
  doi: 10.1016/j.sna.2018.04.024
– volume: 41
  start-page: 377
  year: 2003
  ident: ref_7
  article-title: Critical review of non-invasive respiratory monitoring in medical care
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02348078
– volume: 22
  start-page: 678
  year: 2013
  ident: ref_18
  article-title: High-frequency thin-film AlN-on-diamond lateral–extensional reso-nators
  publication-title: J. microelectromech. Syst.
  doi: 10.1109/JMEMS.2013.2240259
– ident: ref_27
  doi: 10.1007/978-3-319-28688-4_5
– ident: ref_14
  doi: 10.1109/ICSENS.2016.7808422
– volume: 13
  start-page: e27
  year: 2017
  ident: ref_5
  article-title: Wearable technology: Role in respiratory health and disease
  publication-title: Breathe
  doi: 10.1183/20734735.008417
– volume: 11
  start-page: 159
  year: 1995
  ident: ref_10
  article-title: Measurement of respiratory rate and timing using a nasal thermocouple
  publication-title: J. Clin. Monit.
  doi: 10.1007/BF01617716
– ident: ref_9
  doi: 10.3390/s19040908
– volume: 15
  start-page: 31738
  year: 2015
  ident: ref_12
  article-title: Smart Sensing Strip Using Monolithically Integrated Flexible Flow Sensor for Noninvasively Monitoring Respiratory Flow
  publication-title: Sensors
  doi: 10.3390/s151229881
– volume: 11
  start-page: 404
  year: 2014
  ident: ref_1
  article-title: The Global Burden of Respiratory Disease
  publication-title: Ann. Am. Thorac. Soc.
  doi: 10.1513/AnnalsATS.201311-405PS
SSID ssj0000779007
Score 2.2444425
Snippet In this work, we present a battery-less wireless Micro-Electro-Mechanical (MEMS)-based respiration sensor capable of measuring the respiration profile of a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 363
SubjectTerms Antennas
Design
Fast Fourier transformations
Frequency ranges
MEMS
Microelectromechanical systems
Micromachining
Moisture content
Monitoring systems
Patients
piezoelectric
Piezoelectricity
Receivers & amplifiers
Resonance
Resonators
Respiration
respiratory
RFID
Sanitation
Sensors
wearable
wireless
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEG7Ekx6W9bUbX7S4Fw-NSacfyVHFQcQRWRW8hfQjbGBMZBwP-uut6mTGGRG87C2kK1CprqquSlW-IuQP5NPcCWWZia1i4CUlK73IGEQGWSaFKvPQVTm8Vhf34vJBPsyN-sKesA4euBPcseFWW1AUZyopqlIYpyEIUE5WJpmCbcd5PJdMBR-MMHqx7vBIU8jrjx9rIBdYtlw4gQJQ_1fR5ecmyblTZ_CT_OjDRXrSsblGlnyzTlbnQAQ3iDmhHUjmK7sCt0Wxn3WEF38_quj0FrLVdkxDgwAdYhMeG4Y2Su8oju5kg3r0SG9q_9Z2g3Fqi8_jp_V2_LxJ7gfnd2cXrJ-cwKzQfMISSAKUKxPgPsuVB0M2HsQujAQJqowLnVdZpV3iciOyKi6T3KWWy0o4mWJEtEWWm7bxvwlNLRzgPAcxSC2yEiIGK1WVGMWFdYKLiBxNpVnYHlYcp1uMCkgvUPLFh-QjcjijferANL6kOsVNmVEgAHa4AWpR9GpRfKcWEdmdbmnRW-VzwcOIJCztRuRgtgz2hEWSsvHtC9JAEKrwl-aI_Oo0YMYJpPPgwBSs6AXdWGB1caWp_wXMbqxfQ-64_T_ebYescOysiVPG9S5Znoxf_B6ERhOzH6zgHRKNDH0
  priority: 102
  providerName: Directory of Open Access Journals
Title A Battery-Less Wireless Respiratory Sensor Using Micro-Machined Thin-Film Piezoelectric Resonators
URI https://www.ncbi.nlm.nih.gov/pubmed/33801761
https://www.proquest.com/docview/2530232870
https://www.proquest.com/docview/2508560521
https://pubmed.ncbi.nlm.nih.gov/PMC8065626
https://doaj.org/article/b2c7c531dbf54fa4bd72326d5fb12006
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5Be4ED4o2hRIvgwmFVe70vn1CLGipEqqpQqTfL-3CxlNolSQ_w65lZO06DKm5WdiONZ2fn7W8I-QDxNPdCOWZTpxhoScmqIAwDz8AYKVRVxK7K2Yk6PhdfL-TFkHBbDm2Va50YFbXvHObI93kcb4NluU_XvxhOjcLq6jBC4z7ZzcDSoJyb6Zcxx5IimF6qe1TSHKL7_asm4yC2ucq37FCE67_Lx_y3VfKW7Zk-Jo8Gp5Ee9Kf8hNwL7VPy8BaU4DNiD2gPlfmbfQPlRbGrdY4PZ5taOv0OMWu3oLFNgM6wFY_NYjNl8BQHeLJpM7-ip0340_XjcRqH_8cEe7dYPifn06Mfn4_ZMD-BOaH5imUQCihfZUC9KVSA62wDMF9YWVdCGS50UZta-8wXVpg6rbLC547LWniZo1_0guy0XRteEZo7MOO8ADZILUwFfoOTqs6s4sJ5wUVCPq65WboBXBxnXMxLCDKQ8-WG8wl5P-697iE17tx1iIcy7kAY7PhDt7gsh1tVWu60Ay3ibS0FvJT1GmREeVnbDHMlCdlbH2k53M1luZGkhLwbl-FWYamkakN3g3vAFVX4YXNCXvYSMFICQT2oMQUreks2tkjdXmmbnxG5G6vYEEG-_j9Zb8gDjp0zac643iM7q8VNeAuuz8pOonxPyO7h0cnp2SQmEP4CIQUGJA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEG9cChgBBw6r2uv12j4g1EKjlCZRVVqpN9f7MLWU2iVJhcqP4jcyYztOgypuvVnetTWenRl_szM7A_Ae_WluhNRMeVoytJIhy6yIGSKDOA6FzJI6q3I0loNj8e0kPFmDP4uzMJRWubCJtaE2laY98i1et7ehsNzni5-MukZRdHXRQqMRi3179Qtdttmnva-4vh847-8efRmwtqsA0yLic-YjQJYm863RcSItCrmySJJQYZ4JGXMRJXmcR8Y3iRJx7mV-YgLNw1yYMCC0gO-9A-uCTrT2YH1nd3xw2O3qeFS-z4uaOqhBkHhb54XPUVECGaz8-eoGATeh2n-TM6_97foP4UELU93tRq4ewZotH8P9a8ULn4DadpvinFdsiObSpTzaCV0cLqP37nf0kqupWycmuCNK_mOjOn3TGpdahrJ-MTl3Dwr7u2oa8hSanqct_Wo6ewrHt8LbZ9Arq9K-ADfQCBx4gmwIIxFniFR0KHNfSS60EVw48HHBzVS35cypq8YkRbeGOJ8uOe_Au27uRVPE48ZZO7Qo3QwqvF3fqKY_0laPU8V1pNFuGZWHAj9KmQilUpowVz7tzjiwuVjStLUGs3Qpuw687YZRjyk4k5W2uqQ5CH4lHaV24HkjAR0lQYA4IpI4Eq3IxgqpqyNlcVbXCqe4OfqsG_8n6w3cHRyNhulwb7z_Eu5xytvxAsajTejNp5f2FQKvuXrdSrsLp7etYH8BxNNBfA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBYyAAwdrE9uxkwNChRJa2q0qoFJvIX4EIm2TsrsVKj-NX8dMHrtdVHHrLVp7I2c8M_nG82WGkJcQT3MnlWUmtIqBl4xZ4WXCABkkSSxVkbasyvG-2j6Un47iozXyZ_gWBmmVg09sHbVrLJ6Rj3jb3gbTcqOyp0UcbGVvT34y7CCFmdahnUanIrv-7BeEb7M3O1uw1684zz58fb_N-g4DzErN5ywCsKxcEXlnk1R5UHjjYXnSxGUhVcKlTsuk1C5yqZFJGRZR6oTlcSldLBA5wH2vkKta6BQDvyT7uDjfCbGQX6i7iqhCpOHouIo4mIxQYuUd2LYKuAjf_kvTPPfey26Rmz1gpZudht0ma76-Q26cK2N4l5hN2pXpPGN74DgpMmonePF5mcenXyBebqa0pSjQMdIA2bglcnpHsXkoy6rJMT2o_O-ma81TWfw_Hu4309k9cngpkr1P1uum9g8JFRYgBE9BDLGWSQGYxcaqjIzi0jrJZUBeD9LMbV_YHPtrTHIIcFDy-VLyAXmxmHvSlfO4cNY73JTFDCzB3f7QTL_nvUXnhlttwYM5U8YSHso4DfqpXFyaCM9pArIxbGne-4VZvtTigDxfDINFY5qmqH1zinMABiv8qDogDzoNWKxECEAUWsGIXtGNlaWujtTVj7ZqOGbQIXp99P9lPSPXwKzyvZ393cfkOkcCTygY1xtkfT499U8Agc3N01bVKfl22bb1Fxz8REw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Battery-Less+Wireless+Respiratory+Sensor+Using+Micro-Machined+Thin-Film+Piezoelectric+Resonators&rft.jtitle=Micromachines+%28Basel%29&rft.au=Moradian%2C+Sina&rft.au=Akhkandi%2C+Parvin&rft.au=Huang%2C+Junyi&rft.au=Gong%2C+Xun&rft.date=2021-03-27&rft.pub=MDPI&rft.eissn=2072-666X&rft.volume=12&rft.issue=4&rft_id=info:doi/10.3390%2Fmi12040363&rft_id=info%3Apmid%2F33801761&rft.externalDocID=PMC8065626
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon