AOP report: Development of an adverse outcome pathway for oxidative DNA damage leading to mutations and chromosomal aberrations

The Genetic Toxicology Technical Committee (GTTC) of the Health and Environmental Sciences Institute (HESI) is developing adverse outcome pathways (AOPs) that describe modes of action leading to potentially heritable genomic damage. The goal was to enhance the use of mechanistic information in genot...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental and molecular mutagenesis Vol. 63; no. 3; pp. 118 - 134
Main Authors Cho, Eunnara, Allemang, Ashley, Audebert, Marc, Chauhan, Vinita, Dertinger, Stephen, Hendriks, Giel, Luijten, Mirjam, Marchetti, Francesco, Minocherhomji, Sheroy, Pfuhler, Stefan, Roberts, Daniel J., Trenz, Kristina, Yauk, Carole L.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.03.2022
Wiley Subscription Services, Inc
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Genetic Toxicology Technical Committee (GTTC) of the Health and Environmental Sciences Institute (HESI) is developing adverse outcome pathways (AOPs) that describe modes of action leading to potentially heritable genomic damage. The goal was to enhance the use of mechanistic information in genotoxicity assessment by building empirical support for the relationships between relevant molecular initiating events (MIEs) and regulatory endpoints in genetic toxicology. Herein, we present an AOP network that links oxidative DNA damage to two adverse outcomes (AOs): mutations and chromosomal aberrations. We collected empirical evidence from the literature to evaluate the key event relationships between the MIE and the AOs, and assessed the weight of evidence using the modified Bradford‐Hill criteria for causality. Oxidative DNA damage is constantly induced and repaired in cells given the ubiquitous presence of reactive oxygen species and free radicals. However, xenobiotic exposures may increase damage above baseline levels through a variety of mechanisms and overwhelm DNA repair and endogenous antioxidant capacity. Unrepaired oxidative DNA base damage can lead to base substitutions during replication and, along with repair intermediates, can also cause DNA strand breaks that can lead to mutations and chromosomal aberrations if not repaired adequately. This AOP network identifies knowledge gaps that could be filled by targeted studies designed to better define the quantitative relationships between key events, which could be leveraged for quantitative chemical safety assessment. We anticipate that this AOP network will provide the building blocks for additional genotoxicity‐associated AOPs and aid in designing novel integrated testing approaches for genotoxicity.
AbstractList he Genetic Toxicology Technical Committee (GTTC) of the Health and Environmental Sciences Institute (HESI) is developing adverse outcome pathways (AOPs) that describe modes of action leading to potentially heritable genomic damage. The goal is to enhance the use of mechanistic information in genotoxicity assessment by building empirical support for the relationships between relevant molecular initiating events (MIEs) and regulatory endpoints in genetic toxicology. Herein, we present an AOP network that links oxidative DNA damage to two adverse outcomes (AOs): mutations and chromosomal aberrations. We collected empirical evidence from the literature to evaluate the key event relationships between the MIE and the AOs, and assessed the weight of evidence using the modified Bradford-Hill criteria for causality. Oxidative DNA damage is constantly induced and repaired in cells given the ubiquitous presence of reactive oxygen species and free radicals. However, xenobiotic exposures may increase damage above baseline levels through a variety of mechanisms and overwhelm DNA repair and endogenous antioxidant capacity. Unrepaired oxidative DNA base damage can lead to base substitutions during replication and, along with repair intermediates, can also cause DNA strand breaks that can lead to mutations and chromosomal aberrations if not repaired adequately. This AOP network identifies knowledge gaps that could be filled by targeted studies designed to better define the quantitative relationships between key events, which could be leveraged for quantitative chemical safety assessment. We anticipate that this AOP network will provide the building blocks for additional genotoxicity-associated AOPs and aid in designing novel integrated testing approaches for genotoxicity.
The Genetic Toxicology Technical Committee (GTTC) of the Health and Environmental Sciences Institute (HESI) is developing adverse outcome pathways (AOPs) that describe modes of action leading to potentially heritable genomic damage. The goal was to enhance the use of mechanistic information in genotoxicity assessment by building empirical support for the relationships between relevant molecular initiating events (MIEs) and regulatory endpoints in genetic toxicology. Herein, we present an AOP network that links oxidative DNA damage to two adverse outcomes (AOs): mutations and chromosomal aberrations. We collected empirical evidence from the literature to evaluate the key event relationships between the MIE and the AOs, and assessed the weight of evidence using the modified Bradford-Hill criteria for causality. Oxidative DNA damage is constantly induced and repaired in cells given the ubiquitous presence of reactive oxygen species and free radicals. However, xenobiotic exposures may increase damage above baseline levels through a variety of mechanisms and overwhelm DNA repair and endogenous antioxidant capacity. Unrepaired oxidative DNA base damage can lead to base substitutions during replication and, along with repair intermediates, can also cause DNA strand breaks that can lead to mutations and chromosomal aberrations if not repaired adequately. This AOP network identifies knowledge gaps that could be filled by targeted studies designed to better define the quantitative relationships between key events, which could be leveraged for quantitative chemical safety assessment. We anticipate that this AOP network will provide the building blocks for additional genotoxicity-associated AOPs and aid in designing novel integrated testing approaches for genotoxicity.The Genetic Toxicology Technical Committee (GTTC) of the Health and Environmental Sciences Institute (HESI) is developing adverse outcome pathways (AOPs) that describe modes of action leading to potentially heritable genomic damage. The goal was to enhance the use of mechanistic information in genotoxicity assessment by building empirical support for the relationships between relevant molecular initiating events (MIEs) and regulatory endpoints in genetic toxicology. Herein, we present an AOP network that links oxidative DNA damage to two adverse outcomes (AOs): mutations and chromosomal aberrations. We collected empirical evidence from the literature to evaluate the key event relationships between the MIE and the AOs, and assessed the weight of evidence using the modified Bradford-Hill criteria for causality. Oxidative DNA damage is constantly induced and repaired in cells given the ubiquitous presence of reactive oxygen species and free radicals. However, xenobiotic exposures may increase damage above baseline levels through a variety of mechanisms and overwhelm DNA repair and endogenous antioxidant capacity. Unrepaired oxidative DNA base damage can lead to base substitutions during replication and, along with repair intermediates, can also cause DNA strand breaks that can lead to mutations and chromosomal aberrations if not repaired adequately. This AOP network identifies knowledge gaps that could be filled by targeted studies designed to better define the quantitative relationships between key events, which could be leveraged for quantitative chemical safety assessment. We anticipate that this AOP network will provide the building blocks for additional genotoxicity-associated AOPs and aid in designing novel integrated testing approaches for genotoxicity.
The Genetic Toxicology Technical Committee (GTTC) of the Health and Environmental Sciences Institute (HESI) is developing adverse outcome pathways (AOPs) that describe modes of action leading to potentially heritable genomic damage. The goal was to enhance the use of mechanistic information in genotoxicity assessment by building empirical support for the relationships between relevant molecular initiating events (MIEs) and regulatory endpoints in genetic toxicology. Herein, we present an AOP network that links oxidative DNA damage to two adverse outcomes (AOs): mutations and chromosomal aberrations. We collected empirical evidence from the literature to evaluate the key event relationships between the MIE and the AOs, and assessed the weight of evidence using the modified Bradford-Hill criteria for causality. Oxidative DNA damage is constantly induced and repaired in cells given the ubiquitous presence of reactive oxygen species and free radicals. However, xenobiotic exposures may increase damage above baseline levels through a variety of mechanisms and overwhelm DNA repair and endogenous antioxidant capacity. Unrepaired oxidative DNA base damage can lead to base substitutions during replication and, along with repair intermediates, can also cause DNA strand breaks that can lead to mutations and chromosomal aberrations if not repaired adequately. This AOP network identifies knowledge gaps that could be filled by targeted studies designed to better define the quantitative relationships between key events, which could be leveraged for quantitative chemical safety assessment. We anticipate that this AOP network will provide the building blocks for additional genotoxicity-associated AOPs and aid in designing novel integrated testing approaches for genotoxicity.
Author Allemang, Ashley
Yauk, Carole L.
Hendriks, Giel
Pfuhler, Stefan
Trenz, Kristina
Luijten, Mirjam
Audebert, Marc
Roberts, Daniel J.
Chauhan, Vinita
Dertinger, Stephen
Minocherhomji, Sheroy
Marchetti, Francesco
Cho, Eunnara
AuthorAffiliation 6 Litron Laboratories Rochester New York USA
11 Ingelheim Pharma GmbH & Co.KG Biberach Germany
2 Department of Biology Carleton University Ottawa Ontario Canada
9 Amgen Research, Translational Safety and Bioanalytical Sciences Amgen Inc. Thousand Oaks California USA
10 Charles River Laboratories Skokie Illinois USA
5 Consumer and Clinical Radiation Protection Bureau Health Canada Ottawa Ontario Canada
4 Toxalim, UMR1331 INRAE Toulouse France
8 Centre for Health Protection National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands
12 Department of Biology University of Ottawa Ottawa Ontario Canada
1 Environmental Health Science and Research Bureau Health Canada Ottawa Ontario Canada
3 The Procter & Gamble Company Mason Ohio USA
7 Toxys Leiden The Netherlands
AuthorAffiliation_xml – name: 3 The Procter & Gamble Company Mason Ohio USA
– name: 4 Toxalim, UMR1331 INRAE Toulouse France
– name: 7 Toxys Leiden The Netherlands
– name: 2 Department of Biology Carleton University Ottawa Ontario Canada
– name: 1 Environmental Health Science and Research Bureau Health Canada Ottawa Ontario Canada
– name: 8 Centre for Health Protection National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands
– name: 10 Charles River Laboratories Skokie Illinois USA
– name: 11 Ingelheim Pharma GmbH & Co.KG Biberach Germany
– name: 9 Amgen Research, Translational Safety and Bioanalytical Sciences Amgen Inc. Thousand Oaks California USA
– name: 5 Consumer and Clinical Radiation Protection Bureau Health Canada Ottawa Ontario Canada
– name: 6 Litron Laboratories Rochester New York USA
– name: 12 Department of Biology University of Ottawa Ottawa Ontario Canada
Author_xml – sequence: 1
  givenname: Eunnara
  orcidid: 0000-0001-9942-0053
  surname: Cho
  fullname: Cho, Eunnara
  organization: Carleton University
– sequence: 2
  givenname: Ashley
  orcidid: 0000-0002-6799-8675
  surname: Allemang
  fullname: Allemang, Ashley
  organization: The Procter & Gamble Company
– sequence: 3
  givenname: Marc
  orcidid: 0000-0001-7898-6912
  surname: Audebert
  fullname: Audebert, Marc
  organization: INRAE
– sequence: 4
  givenname: Vinita
  surname: Chauhan
  fullname: Chauhan, Vinita
  organization: Health Canada
– sequence: 5
  givenname: Stephen
  surname: Dertinger
  fullname: Dertinger, Stephen
  organization: Litron Laboratories
– sequence: 6
  givenname: Giel
  surname: Hendriks
  fullname: Hendriks, Giel
  organization: Toxys
– sequence: 7
  givenname: Mirjam
  orcidid: 0000-0002-5277-1443
  surname: Luijten
  fullname: Luijten, Mirjam
  organization: National Institute for Public Health and the Environment (RIVM)
– sequence: 8
  givenname: Francesco
  orcidid: 0000-0002-9435-4867
  surname: Marchetti
  fullname: Marchetti, Francesco
  organization: Carleton University
– sequence: 9
  givenname: Sheroy
  surname: Minocherhomji
  fullname: Minocherhomji, Sheroy
  organization: Amgen Inc
– sequence: 10
  givenname: Stefan
  surname: Pfuhler
  fullname: Pfuhler, Stefan
  organization: The Procter & Gamble Company
– sequence: 11
  givenname: Daniel J.
  surname: Roberts
  fullname: Roberts, Daniel J.
  organization: Charles River Laboratories
– sequence: 12
  givenname: Kristina
  surname: Trenz
  fullname: Trenz, Kristina
  organization: Ingelheim Pharma GmbH & Co.KG
– sequence: 13
  givenname: Carole L.
  orcidid: 0000-0002-6725-3454
  surname: Yauk
  fullname: Yauk, Carole L.
  email: carole.yauk@uottawa.ca
  organization: University of Ottawa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35315142$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-03624340$$DView record in HAL
BookMark eNp1kstu1DAUQC1URKcFiS9AltjAIoOfebBAGrWFIg2UBawtj3Mz4yqOUztJmVV_vQlpC1SwsuR77rkP-wgdNL4BhF5SsqSEsHfgloyJrHiCFpQUecJYTg7QguQFT9K0YIfoKMZLQigVBXuGDrnkVFLBFuhmdfENB2h96N7jUxig9q2DpsO-wrrBuhwgRMC-74x3gFvd7a71Hlc-YP_TlrqzA-DTrytcaqe3gGvQpW22uPPY9d0Y9k0cRSU2u-Cdj97pGusNhDDHnqOnla4jvLg7j9GPj2ffT86T9cWnzyerdWJExoqEMymASlmVeUUyoEwSQymnldiUKTPClFRTXXKZmnRjdK5lQaASBowRlOaUH6MPs7ftNw5KM44YdK3aYJ0Oe-W1VX9HGrtTWz-ogo-bFXIUvJ0Fu0dp56u1mu4IT5ngggxTsTd3xYK_6iF2ytlooK51A76PiqWC5qnI0kn7-hF66fvQjKsYqZRJnuXZJHz1Z_cP9e_fcQSWM2CCjzFApYydtz8OY2tFiZo-igKnfn2U3y0-JNw7_4EmM3pta9j_l1NnX2b-FnqizAo
CitedBy_id crossref_primary_10_1186_s41021_024_00319_3
crossref_primary_10_1016_j_cbi_2023_110382
crossref_primary_10_1016_j_yrtph_2024_105672
crossref_primary_10_1007_s00204_023_03553_w
crossref_primary_10_2903_sp_efsa_2024_EN_9099
crossref_primary_10_1016_j_cotox_2023_100444
crossref_primary_10_2903_j_efsa_2024_8844
crossref_primary_10_1016_j_yrtph_2023_105428
crossref_primary_10_1038_s41559_024_02401_z
crossref_primary_10_1093_mutage_gead012
crossref_primary_10_1021_acs_est_4c07236
crossref_primary_10_2903_j_efsa_2024_8488
crossref_primary_10_1093_etojnl_vgae088
crossref_primary_10_3390_toxics12120849
crossref_primary_10_1016_j_cotox_2025_100517
crossref_primary_10_1016_j_jhazmat_2023_131674
crossref_primary_10_3389_fonc_2024_1394584
crossref_primary_10_1016_j_scitotenv_2024_170968
crossref_primary_10_3390_pharmaceutics17030331
Cites_doi 10.1128/MCB.24.1.465-474.2004
10.1016/j.mrgentox.2013.08.002
10.1073/pnas.1714109114
10.1002/em.22342
10.1016/j.dnarep.2021.103176
10.1093/nar/gkx723
10.1002/em.22274
10.1093/nar/gkh909
10.1172/JCI65053
10.1080/09553000050050909
10.1002/em.21817
10.1016/j.mrfmmm.2017.07.002
10.4161/cc.7.18.6679
10.1016/j.freeradbiomed.2021.07.033
10.1101/gr.4769606
10.1089/ars.2013.5529
10.1016/j.taap.2007.12.020
10.1158/1055-9965.EPI-07-0751
10.1253/circj.CJ-13-1194
10.1136/bmjopen-2014-005979
10.1371/journal.pone.0208341
10.1378/chest.11-1653
10.1021/tx050146h
10.1038/cddis.2016.105
10.1038/ncomms14045
10.1016/j.celrep.2021.108864
10.1007/s00412-011-0347-4
10.1081/AL-120017267
10.1016/j.mrgentox.2011.09.003
10.1038/srep33290
10.1080/09553000050028922
10.1093/nar/gkp422
10.1093/nar/gkl099
10.1021/tx000209q
10.1038/nrm2256
10.1002/em.21996
10.1016/j.cell.2011.02.013
10.1016/j.celrep.2021.109478
10.1002/em.21808
10.1016/j.foodchem.2013.12.087
10.1155/2015/217670
10.3934/genet.2017.2.103
10.1080/09553002.2019.1704913
10.1002/jcp.25048
10.1016/j.cell.2020.05.040
10.1016/j.mrgentox.2014.09.007
10.1080/17435390.2017.1388863
10.1093/toxsci/kfr281
10.12659/MSM.881805
10.1038/oncsis.2014.42
10.1093/carcin/bgu225
10.1016/j.freeradbiomed.2017.01.008
10.1016/S0027-5107(99)00005-6
10.1007/s00411-017-0711-8
10.3390/ijerph13010088
10.1093/nar/gkt731
10.1080/10715760000300331
10.1016/j.fct.2013.11.036
10.3390/ijerph6020643
10.1038/emm.2014.122
10.3390/biom5020472
10.1093/nar/gkt556
10.1159/000077461
10.1093/toxsci/kfu199
10.1002/em.21954
10.1038/nrm.2017.48
10.1074/jbc.271.44.27601
10.1164/rccm.201411-2128OC
10.1016/j.freeradbiomed.2016.11.050
10.1016/j.yrtph.2015.04.004
10.1667/RR3461.1
10.1016/j.mrgentox.2015.10.002
10.1016/j.canlet.2012.02.001
10.1073/pnas.96.23.13300
10.1080/10937404.2019.1643536
10.1089/ars.2012.5036
10.1016/0921-8777(93)90014-8
10.1023/A:1022157528247
10.1016/j.tox.2013.02.001
10.1093/toxsci/kfq371
10.1111/gtc.12457
10.1038/s41588-020-0692-4
10.1002/em.21868
10.1073/pnas.1205759109
10.1016/j.mrrev.2005.04.002
10.1089/ars.2012.4994
10.1073/pnas.1306752110
10.1093/nar/gkh150
10.1038/srep28894
10.1385/MB:26:3:249
10.1083/jcb.201102095
10.1016/j.dnarep.2005.07.003
10.1158/0008-5472.CAN-04-0442
10.1007/s12199-009-0118-5
10.1002/tox.20395
10.1093/toxsci/kfs138
10.1002/jcp.25053
10.1074/jbc.M503079200
10.1016/j.dnarep.2018.04.008
10.1667/rr1680.1
10.3109/10715761003667554
10.1155/2012/623019
10.1016/j.dnarep.2015.09.010
10.1021/ar400229d
10.1007/978-90-481-3471-7_14
10.1667/RR3346
10.1093/mutage/geu041
10.1186/2041-9414-3-9
10.1021/tx500088e
10.1016/j.mrfmmm.2014.11.010
10.1007/978-1-62703-739-6_20
10.1096/fj.02-0752rev
10.1038/s41419-018-0680-0
10.1016/j.mrgentox.2009.06.006
10.1016/j.gde.2012.01.009
10.1074/jbc.M405185200
10.1016/j.dnarep.2017.09.007
10.1016/j.freeradbiomed.2012.04.008
10.1016/S0300-483X(03)00058-1
10.1074/jbc.M508772200
10.2741/4555
10.1093/mutage/gex015
10.1093/nar/gky1152
10.1289/ehp.1509912
10.3123/jemsge.2013.006
10.1021/j100277a053
10.1073/pnas.131009198
10.1002/em.22339
10.1016/j.dnarep.2010.02.004
10.1016/j.dnarep.2003.11.006
10.1016/j.canlet.2008.03.002
10.1016/S0960-9822(02)00863-1
10.2307/3579766
10.1039/C7TX00223H
10.1161/CIRCULATIONAHA.117.033249
10.1093/mutage/geaa019
10.3390/cancers6031597
10.1016/j.tig.2018.04.002
10.1093/carcin/23.12.2005
10.1016/j.toxlet.2006.01.003
10.1101/cshperspect.a012559
10.1038/sj.onc.1204767
10.1016/j.dnarep.2015.03.002
10.1667/RR13860.1
10.1002/em.22338
10.1126/science.1202723
10.1016/j.dnarep.2004.04.014
10.1038/cr.2016.25
10.1093/nar/gku913
10.1016/j.molcel.2015.10.041
10.1073/pnas.050404497
10.1074/jbc.M115.693218
10.1002/(SICI)1098-2264(200001)27:1<59::AID-GCC8>3.0.CO;2-9
10.1016/j.freeradbiomed.2016.12.049
10.1002/etc.34
10.1083/jcb.201312078
10.1016/S0027-5107(02)00076-3
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC on behalf of Environmental Mutagen Society.
2022 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals LLC on behalf of Environmental Mutagen Society.
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of Environmental Mutagen Society.
– notice: 2022 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals LLC on behalf of Environmental Mutagen Society.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution - NonCommercial - NoDerivatives
DBID 24P
AAYXX
CITATION
NPM
7ST
7TM
7U7
8FD
C1K
FR3
P64
RC3
SOI
7X8
1XC
VOOES
5PM
DOI 10.1002/em.22479
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Environment Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
Engineering Research Database
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed


CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Cho et al
EISSN 1098-2280
EndPage 134
ExternalDocumentID PMC9322445
oai_HAL_hal_03624340v1
35315142
10_1002_em_22479
EM22479
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Health Canada's Genomics Research and Development Initiative
– fundername: Natural Science and Engineering Council of Canada (NSERC)’s Collaborative Research and Training (CREATE) Program
– fundername: Natural Science and Engineering Council of Canada (NSERC)'s Collaborative Research and Training (CREATE) Program
– fundername: ;
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHHS
AAHQN
AAIKC
AAIPD
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EDH
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIJ
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WWO
WXI
WXSBR
WYISQ
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7ST
7TM
7U7
8FD
C1K
FR3
P64
RC3
SOI
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c4729-3254e155fd8f07e1250c1131f4bd62c4cd1a1ad356c6bca8a590ef4cecc411813
IEDL.DBID DR2
ISSN 0893-6692
1098-2280
IngestDate Thu Aug 21 18:36:35 EDT 2025
Fri May 09 12:24:23 EDT 2025
Fri Jul 11 02:22:37 EDT 2025
Fri Jul 25 19:20:18 EDT 2025
Mon Jul 21 06:00:36 EDT 2025
Tue Jul 01 00:43:35 EDT 2025
Thu Apr 24 23:12:20 EDT 2025
Wed Jan 22 16:24:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial
2022 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals LLC on behalf of Environmental Mutagen Society.
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4729-3254e155fd8f07e1250c1131f4bd62c4cd1a1ad356c6bca8a590ef4cecc411813
Notes Funding information
Natural Science and Engineering Council of Canada (NSERC)’s Collaborative Research and Training (CREATE) Program; Health Canada's Genomics Research and Development Initiative
J. OBrien
Accepted by
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Natural Science and Engineering Council of Canada (NSERC)’s Collaborative Research and Training (CREATE) Program; Health Canada's Genomics Research and Development Initiative
Accepted by: J. OBrien
ORCID 0000-0002-9435-4867
0000-0001-9942-0053
0000-0002-5277-1443
0000-0001-7898-6912
0000-0002-6799-8675
0000-0002-6725-3454
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fem.22479
PMID 35315142
PQID 2662537871
PQPubID 105685
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9322445
hal_primary_oai_HAL_hal_03624340v1
proquest_miscellaneous_2641864765
proquest_journals_2662537871
pubmed_primary_35315142
crossref_citationtrail_10_1002_em_22479
crossref_primary_10_1002_em_22479
wiley_primary_10_1002_em_22479_EM22479
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Reston
PublicationTitle Environmental and molecular mutagenesis
PublicationTitleAlternate Environ Mol Mutagen
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Wiley-Blackwell
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
– name: Wiley-Blackwell
References 2012; 121
2010; 15
2012; 122
2006; 34
2016b
2016a
2015; 72
2002; 12
2015; 783
2004; 26
2019; 14
2004; 24
2014; 27
2004; 3
2008; 228
2012; 18
2014; 29
2012; 125
2013; 5
2011; 194
2012; 128
2014; 20
2004; 32
2018; 9
2020; 97
2015; 776
2013; 54
2013; 757
2010; 29
2019; 22
2000; 97
2007; 8
2020b
2020a
2006; 164
2013; 110
2012; 27
2016c
2018; 34
2018; 33
2012; 22
2010; 9
2011; 120
2015; 56
1986; 90
2005; 590
2003; 36
2014; 47
2020; 35
2014; 153
2016; 13
2001; 20
2012; 109
2014; 42
2010; 44
2016; 6
2016; 7
2015; 192
2004; 279
2017; 59
2015; 60
2002; 62
2000; 76
2019; 47
2017; 56
2015; 2015
2014; 35
2014b
2014a
2016; 291
2016; 26
2014; 142
2005; 18
2003; 187
2011; 144
2010; 50
2015; 35
2017; 6
2017; 8
2004; 64
2015; 183
2012; 2012
2017; 4
2009a; 6
2015; 102
2020; 61
2015; 30
2017; 45
2008; 7
2018; 809
2003; 17
2008; 267
2011; 17
2014; 1105
2017; 114
2012; 327
2012; 53
2014; 64
2009; 678
2014; 206
2021; 36
2013; 18
2015; 47
2019; 60
2014; 4
2021; 34
2014; 3
2020; 52
2018; 138
2009; 171
2011; 726
2016; 231
1993; 294
1999; 96
2002; 504
2014; 6
2001; 14
2001; 95
2014; 55
2012; 141
2004; 104
2015; 5
2000; 27
2009b; 24
2013; 306
2021; 106
2017; 22
2006; 16
2020; 182
2008; 17
2013; 41
2016; 124
2006; 5
1999; 424
2011; 332
2016; 57
2018; 68
2003; 78
2005; 280
2012; 3
2005; 163
2005; 164
2013; 35
2002; 23
2000; 32
2017; 11
2015; 794
1996; 271
1999; 151
2018
2017; 18
2021; 174
2015
2014; 78
2007; 46
2009; 37
2012; 8
2017; 107
e_1_2_14_137_1
e_1_2_14_73_1
e_1_2_14_96_1
e_1_2_14_110_1
e_1_2_14_50_1
e_1_2_14_92_1
OECD (e_1_2_14_117_1) 2016
e_1_2_14_35_1
e_1_2_14_12_1
e_1_2_14_54_1
e_1_2_14_39_1
e_1_2_14_77_1
e_1_2_14_16_1
e_1_2_14_58_1
OECD (e_1_2_14_113_1) 2014
e_1_2_14_6_1
e_1_2_14_140_1
e_1_2_14_107_1
Unfried K. (e_1_2_14_163_1) 2002; 62
e_1_2_14_144_1
e_1_2_14_125_1
e_1_2_14_167_1
e_1_2_14_103_1
e_1_2_14_148_1
e_1_2_14_85_1
e_1_2_14_129_1
e_1_2_14_2_1
e_1_2_14_20_1
e_1_2_14_62_1
e_1_2_14_81_1
e_1_2_14_24_1
e_1_2_14_43_1
e_1_2_14_66_1
e_1_2_14_89_1
e_1_2_14_47_1
e_1_2_14_170_1
e_1_2_14_151_1
Markkanen E. (e_1_2_14_100_1) 2012; 27
e_1_2_14_132_1
e_1_2_14_174_1
e_1_2_14_155_1
e_1_2_14_136_1
e_1_2_14_72_1
e_1_2_14_95_1
e_1_2_14_159_1
e_1_2_14_111_1
e_1_2_14_30_1
e_1_2_14_53_1
e_1_2_14_91_1
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_57_1
Shimizu M. (e_1_2_14_152_1) 2007; 46
OECD (e_1_2_14_118_1) 2016
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_76_1
e_1_2_14_99_1
OECD (e_1_2_14_114_1) 2014
Ramadan A.M. (e_1_2_14_133_1) 2012; 8
e_1_2_14_143_1
e_1_2_14_162_1
e_1_2_14_7_1
e_1_2_14_108_1
e_1_2_14_124_1
e_1_2_14_147_1
e_1_2_14_166_1
e_1_2_14_104_1
e_1_2_14_84_1
e_1_2_14_128_1
e_1_2_14_42_1
e_1_2_14_80_1
e_1_2_14_3_1
e_1_2_14_61_1
e_1_2_14_23_1
e_1_2_14_46_1
e_1_2_14_65_1
e_1_2_14_27_1
e_1_2_14_88_1
e_1_2_14_69_1
e_1_2_14_150_1
Chepelev N. (e_1_2_14_31_1) 2015; 102
e_1_2_14_131_1
e_1_2_14_154_1
e_1_2_14_173_1
e_1_2_14_135_1
e_1_2_14_158_1
e_1_2_14_94_1
e_1_2_14_112_1
e_1_2_14_139_1
e_1_2_14_75_1
OECD (e_1_2_14_119_1) 2018
e_1_2_14_52_1
e_1_2_14_90_1
e_1_2_14_71_1
e_1_2_14_10_1
e_1_2_14_56_1
e_1_2_14_33_1
e_1_2_14_14_1
e_1_2_14_98_1
e_1_2_14_37_1
e_1_2_14_79_1
OECD (e_1_2_14_121_1) 2020
OECD (e_1_2_14_115_1) 2015
e_1_2_14_161_1
e_1_2_14_165_1
e_1_2_14_8_1
e_1_2_14_109_1
e_1_2_14_142_1
e_1_2_14_123_1
e_1_2_14_169_1
e_1_2_14_105_1
e_1_2_14_146_1
e_1_2_14_60_1
e_1_2_14_83_1
e_1_2_14_127_1
e_1_2_14_101_1
e_1_2_14_41_1
e_1_2_14_64_1
e_1_2_14_4_1
e_1_2_14_45_1
e_1_2_14_68_1
e_1_2_14_22_1
e_1_2_14_87_1
e_1_2_14_49_1
e_1_2_14_26_1
e_1_2_14_19_1
e_1_2_14_172_1
e_1_2_14_130_1
e_1_2_14_153_1
e_1_2_14_134_1
e_1_2_14_157_1
e_1_2_14_138_1
e_1_2_14_74_1
e_1_2_14_97_1
e_1_2_14_51_1
e_1_2_14_70_1
e_1_2_14_93_1
e_1_2_14_13_1
e_1_2_14_32_1
e_1_2_14_55_1
e_1_2_14_17_1
e_1_2_14_36_1
e_1_2_14_59_1
e_1_2_14_78_1
e_1_2_14_29_1
e_1_2_14_160_1
OECD (e_1_2_14_116_1) 2016
e_1_2_14_141_1
e_1_2_14_164_1
e_1_2_14_5_1
e_1_2_14_122_1
e_1_2_14_145_1
e_1_2_14_168_1
e_1_2_14_9_1
e_1_2_14_106_1
e_1_2_14_126_1
e_1_2_14_149_1
e_1_2_14_102_1
e_1_2_14_86_1
e_1_2_14_63_1
e_1_2_14_40_1
e_1_2_14_82_1
e_1_2_14_67_1
e_1_2_14_21_1
e_1_2_14_44_1
e_1_2_14_25_1
e_1_2_14_48_1
e_1_2_14_18_1
OECD (e_1_2_14_120_1) 2020
e_1_2_14_171_1
Chaim I.A. (e_1_2_14_28_1) 2017; 114
e_1_2_14_156_1
References_xml – volume: 35
  start-page: 415
  year: 2020
  end-page: 424
  article-title: Synergic toxic effects of food contaminant mixtures in human cells
  publication-title: Mutagenesis
– volume: 153
  start-page: 315
  year: 2014
  end-page: 320
  article-title: Cytotoxicity and DNA damage properties of tert‐butylhydroquinone (TBHQ) food additive
  publication-title: Food Chemistry
– volume: 726
  start-page: 151
  year: 2011
  end-page: 159
  article-title: Study of oxidative DNA damage in TK6 human lymphoblastoid cells by use of the thymidine kinase gene‐mutation assay and the modified comet assay: determination of no‐observed‐genotoxic‐effect‐levels
  publication-title: Mutation Research
– volume: 332
  start-page: 1443
  year: 2011
  end-page: 1446
  article-title: SIRT6 promotes DNA repair under stress by activating PARP1
  publication-title: Science
– volume: 107
  start-page: 13
  year: 2017
  end-page: 34
  article-title: Formation and repair of oxidatively generated damage in cellular DNA
  publication-title: Free Radical Biology & Medicine
– volume: 32
  start-page: 263
  year: 2004
  end-page: 270
  article-title: Enhanced mutagenic potential of 8‐oxo‐7,8‐dihydroguanine when present within a clustered DNA damage site
  publication-title: Nucleic Acids Research
– volume: 18
  start-page: 495
  year: 2017
  end-page: 506
  article-title: Non‐homologous DNA end joining and alternative pathways to double‐strand break repair
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 194
  start-page: 7
  year: 2011
  end-page: 15
  article-title: Signal transduction by reactive oxygen species
  publication-title: The Journal of Cell Biology
– volume: 22
  start-page: 244
  year: 2019
  end-page: 263
  article-title: Key characteristics of 86 agents known to cause cancer in humans
  publication-title: Journal of Toxicology and Environmental Health
– volume: 6
  start-page: 740
  year: 2017
  end-page: 754
  article-title: Genotoxicity of ortho‐quinones: reactive oxygen species versus covalent modification
  publication-title: Toxicology Research
– volume: 17
  start-page: 3
  year: 2008
  end-page: 14
  article-title: Measurement and meaning of oxidatively modified DNA lesions in urine
  publication-title: Cancer Epidemiology, Biomarkers & Prevention
– volume: 757
  start-page: 158
  year: 2013
  end-page: 166
  article-title: Assessment of the in vitro p‐H2AX assay by high content screening asa novel genotoxicity test
  publication-title: Mutation Research
– volume: 4
  start-page: 103
  year: 2017
  end-page: 137
  article-title: DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity
  publication-title: AIMS Genetics
– volume: 72
  start-page: 514
  year: 2015
  end-page: 537
  article-title: Increasing scientific confidence in adverse outcome pathways:application of tailored Bradford‐Hill considerations for EvaluatingWeight of evidence
  publication-title: Regulatory Toxicology and Pharmacology
– volume: 78
  start-page: 69
  year: 2003
  end-page: 79
  article-title: Mutagen sensitivity of human lymphoblastoid cells with a BRCA1 mutation
  publication-title: Breast Cancer Research and Treatment
– volume: 18
  start-page: 1849
  year: 2005
  end-page: 1857
  article-title: Quantitation of four guanine oxidation products from reaction of DNA with varying doses of Peroxynitrite
  publication-title: Chemical Research in Toxicology
– volume: 41
  start-page: 9339
  year: 2013
  end-page: 9348
  article-title: Replication fork collapse is a major cause of the high mutation frequency at three‐base lesion clusters
  publication-title: Nucleic Acids Research
– volume: 52
  start-page: 1189
  year: 2020
  end-page: 1197
  article-title: The mutational signature profile of known and suspected human carcinogens in mice
  publication-title: Nature Genetics
– volume: 35
  start-page: 85
  year: 2015
  end-page: 89
  article-title: Oxidant and environmental toxicant‐induced effects compromise DNA ligation during base excision DNA repair
  publication-title: DNA Repair
– volume: 47
  year: 2015
  article-title: The role of mitochondrial DNA mutation on neurodegenerative diseases
  publication-title: Experimental & Molecular Medicine
– volume: 2012
  year: 2012
  article-title: Role of Nitrative and oxidative DNA damage in inflammation‐related carcinogenesis
  publication-title: Journal of Biomedicine & Biotechnology
– volume: 54
  start-page: 659
  year: 2013
  end-page: 667
  article-title: ACB‐PCR measurement of spontaneous and furan‐induced H‐ras codon 61 CAA to CTA and CAA to AAA mutation in B6C3F1 mouse liver
  publication-title: Environmental and Molecular Mutagenesis
– volume: 50
  start-page: 279
  year: 2010
  end-page: 296
  article-title: Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans
  publication-title: Sub‐Cellular Biochemistry
– volume: 107
  start-page: 202
  year: 2017
  end-page: 215
  article-title: Repair of 8‐oxoG:a mismatches by the MUTYH glycosylase: mechanism, Metals & Medicine
  publication-title: Free Radical Biology & Medicine
– year: 2016a
– volume: 187
  start-page: 101
  year: 2003
  end-page: 115
  article-title: Chloroform, carbon tetrachloride and glutathione depletion induce secondary genotoxicity in liver cells via oxidative stress
  publication-title: Toxicology
– volume: 2015
  year: 2015
  article-title: Mitochondrial respiratory chain inhibitors involved in ROS production induced by acute high concentrations of iodide and the effects of SOD as a protective factor
  publication-title: Oxidative Medicine and Cellular Longevity
– volume: 57
  start-page: 171
  year: 2016
  end-page: 189
  article-title: Genotoxic mode of action predictions from a multiplexed flow cytometric assay and a machine learning approach
  publication-title: Environmental and Molecular Mutagenesis
– volume: 32
  start-page: 5928
  year: 2004
  end-page: 5934
  article-title: Futile short‐patch DNA base excision repair of adenine:8‐oxoguanine mispair
  publication-title: Nucleic Acids Research
– volume: 291
  start-page: 5309
  year: 2016
  end-page: 5319
  article-title: Base and nucleotide excision repair of Oxidatively generated guanine lesions in DNA
  publication-title: The Journal of Biological Chemistry
– volume: 22
  start-page: 1493
  year: 2017
  end-page: 1522
  article-title: Base excision repair of oxidative DNA damage: from mechanism to disease
  publication-title: Frontiers in Bioscience
– volume: 64
  start-page: 291
  year: 2014
  end-page: 297
  article-title: Evaluation of N‐acetyl‐cysteine against tetrachlorobenzoquinoneinduced genotoxicity and oxidative stress in HepG2 cells
  publication-title: Food and Chemical Toxicology
– volume: 20
  start-page: 5572
  year: 2001
  end-page: 5579
  article-title: DNA double strand break repair and chromosomal translocation: lessons from animal models
  publication-title: Oncogene
– volume: 114
  start-page: E10881
  issue: 51
  year: 2017
  end-page: E10889
  article-title: Development and validation of a high‐throughput transcriptomic biomarker to address 21st century genetic toxicology needs
  publication-title: Proceedings of the National Academy of Sciences
– volume: 138
  start-page: 1446
  year: 2018
  end-page: 1462
  article-title: Defective Base excision repair of oxidative DNA damage in vascular smooth muscle cells promotes atherosclerosis
  publication-title: Circulation
– volume: 5
  start-page: 471
  year: 2015
  end-page: 484
  article-title: Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction
  publication-title: Biomolecules
– volume: 3
  start-page: 9
  year: 2012
  article-title: Pathway choice in DNA double strand break repair: observations of a balancing act
  publication-title: Genome Integrity
– volume: 47
  start-page: 646
  year: 2014
  end-page: 655
  article-title: Abasic and oxidized abasic site reactivity in DNA: enzyme inhibition, cross‐linking, and nucleosome catalyzed reactions
  publication-title: Accounts of Chemical Research
– volume: 61
  start-page: 114
  year: 2020
  end-page: 134
  article-title: Application of the adverse outcome pathway framework to genotoxic modes of action
  publication-title: Environmental and Molecular Mutagenesis
– volume: 29
  start-page: 447
  year: 2014
  end-page: 455
  article-title: Multicolour FISH analysis of ionising radiation induced micronucleus formation in human lymphocytes
  publication-title: Mutagenesis
– volume: 5
  start-page: 43
  year: 2006
  end-page: 51
  article-title: Base excision repair by hNTH1 and hOGG1: a two edged sword in the processing of DNA damage in gamma‐irradiated human cells
  publication-title: DNA Repair
– volume: 32
  start-page: 333
  year: 2000
  end-page: 341
  article-title: Comparison of different methods of measuring 8‐oxoguanine as a marker of oxidative DNA damage
  publication-title: Free Radical Research
– volume: 18
  start-page: 2420
  year: 2013
  end-page: 2428
  article-title: Oxidative stress and the DNA mismatch repair pathway
  publication-title: Antioxidants & Redox Signaling
– volume: 96
  start-page: 13300
  year: 1999
  end-page: 13305
  article-title: Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  year: 2013
  article-title: DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation
  publication-title: Cold Spring Harbor Perspectives in Biology
– volume: 34
  start-page: 2305
  year: 2006
  end-page: 2315
  article-title: Genetic effects of oxidative DNA damages: comparative mutagenesis of the imidazole ring‐opened formamidopyrimidines (Fapy lesions) and 8‐oxo‐purines in simian kidney cells
  publication-title: Nucleic Acids Research
– volume: 809
  start-page: 81
  year: 2018
  end-page: 87
  article-title: Microhomology‐mediated end joining: good, bad and ugly
  publication-title: Mutation Research
– volume: 6
  start-page: 1597
  year: 2014
  end-page: 1614
  article-title: DNA mismatch repair and oxidative DNA damage: implications for cancer biology and treatment
  publication-title: Cancers
– volume: 8
  start-page: 813
  year: 2007
  end-page: 824
  article-title: ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 231
  start-page: 15
  year: 2016
  end-page: 24
  article-title: Error‐prone repair of DNA double‐strand breaks
  publication-title: Journal of Cellular Physiology
– volume: 109
  start-page: 9454
  year: 2012
  end-page: 9459
  article-title: Homologous chromosomes make contact at the sites of double‐strand breaks in genes in somatic G0/G1‐phase human cells
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 6
  start-page: 33290
  year: 2016
  article-title: Mechanistic modelling of DNA repair and cellular survival following radiation‐induced DNA damage
  publication-title: Scientific Reports
– volume: 42
  start-page: 12027
  year: 2014
  end-page: 12040
  article-title: The Werner syndrome protein limits the error‐prone 8‐oxo‐dG lesion bypass activity of human DNA polymerase kappa
  publication-title: Nucleic Acids Research
– volume: 3
  start-page: 289
  year: 2004
  end-page: 299
  article-title: 8‐OxoG retards the activity of the ligase III/XRCC1 complex during the repair of a single‐strand break, whne present within a clustered DNA damage site
  publication-title: DNA Repair
– volume: 62
  start-page: 104
  year: 2002
  article-title: Distinct Spectrum of mutations induced by crocidolite Asbestos: clue for 8‐Hydroxydeoxyguanosine‐dependent mutagenesis in vivo
  publication-title: Cancer Research
– volume: 280
  start-page: 25377
  year: 2005
  end-page: 25382
  article-title: Chemical and biological evidence for base Propenals as the major source of the endogenous M1dG adduct in cellular DNA
  publication-title: The Journal of Biological Chemistry
– volume: 47
  start-page: 221
  year: 2019
  end-page: 236
  article-title: Genome‐wide mapping of 8‐oxo‐7,8‐dihydro‐2 ‐deoxyguanosine reveals accumulation of oxidatively‐generated damage at DNA replication origins within transcribed long genes of mammalian cells
  publication-title: Nucleic Acids Research
– volume: 12
  start-page: 912
  year: 2002
  end-page: 918
  article-title: The mammalian mismatch repair pathway removes DNA 8‐oxodGMP incorporated from the oxidized dNTP Pool
  publication-title: Current Biology
– volume: 27
  start-page: 59
  year: 2000
  end-page: 68
  article-title: Joining of correct and incorrect DNA double‐Strand break ends in Normal human and ataxia telangiectasia fibroblasts
  publication-title: Genes, Chromosomes & Cancer
– volume: 30
  start-page: 11
  year: 2015
  end-page: 20
  article-title: BRCA1 and BRCA2 protect against oxidative DNA damage converted into double‐strand breaks during DNA replication
  publication-title: DNA Repair
– volume: 61
  start-page: 135
  year: 2020
  end-page: 151
  article-title: Next‐generation genotoxicity: using modern sequencing technologies to assess somatic mutagenesis and cancer risk
  publication-title: Environmental and Molecular Mutagenesis
– volume: 424
  start-page: 23
  year: 1999
  end-page: 36
  article-title: Oxidative DNA damage mediated by copper(II), iron(II) and nickel(II) Fenton reactions: evidence for site‐specific mechanisms in the formation of double‐strand breaks, 8‐hydroxydeoxyguanosine and putative intrastrand cross‐links
  publication-title: Mutation Research, Fundamental and Molecular Mechanisms of Mutagenesis
– volume: 18
  start-page: 2409
  year: 2013
  end-page: 2419
  article-title: Oxidative DNA damage and nucleotide excision repair
  publication-title: Antioxidants & Redox Signaling
– volume: 55
  start-page: 542
  year: 2014
  end-page: 555
  article-title: Interpreting in vitro micronucleus positive results: simple biomarker matrix discriminates clastogens, aneugens, and misleading positive agents
  publication-title: Environmental and Molecular Mutagenesis
– volume: 104
  start-page: 14
  year: 2004
  end-page: 20
  article-title: Mechanisms of DNA double strand break repair and chromosome aberration formation
  publication-title: Cytogenetic and Genome Research
– volume: 128
  start-page: 272
  year: 2012
  end-page: 283
  article-title: Oxoguanine glycosylase 1 (OGG1) protects cells from DNA double‐Strand break damage following methylmercury (MeHg) exposure
  publication-title: Toxicological Sciences
– volume: 29
  start-page: 730
  year: 2010
  end-page: 741
  article-title: Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment
  publication-title: Environmental Toxicology and Chemistry
– volume: 97
  start-page: 68
  year: 2020
  end-page: 84
  article-title: A case example of a radiation‐relevant adverse outcome pathway to lung cancer
  publication-title: International Journal of Radiation Biology
– volume: 17
  start-page: 329
  year: 2011
  end-page: 333
  article-title: Oxidative damage DNA: 8‐oxoGua and 8‐oxodG as molecular markers of cancer
  publication-title: Medical Science Monitor
– volume: 107
  start-page: 216
  year: 2017
  end-page: 227
  article-title: DNA damage related crosstalk between the nucleus and mitochondria
  publication-title: Free Radical Biology & Medicine
– volume: 794
  start-page: 32
  year: 2015
  end-page: 38
  article-title: Construction of a cytogenetic dose – response curve for low‐dose range gamma‐irradiation in human peripheral blood lymphocytes using three‐color FISH
  publication-title: Mutation Research ‐ Genetic Toxicology and Environmental Mutagenesis
– volume: 68
  start-page: 25
  year: 2018
  end-page: 33
  article-title: Nitric oxide induced S‐nitrosation causes base excision repair imbalance
  publication-title: DNA Repair
– volume: 327
  start-page: 61
  year: 2012
  end-page: 72
  article-title: Pathways for repairing and tolerating the Spectrum of oxidative DNA lesions
  publication-title: Cancer Letters
– volume: 37
  start-page: 4430
  year: 2009
  end-page: 4440
  article-title: Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic
  publication-title: Nucleic Acids Research
– volume: 121
  start-page: 1
  year: 2012
  end-page: 20
  article-title: DNA glycosylases: in DNA repair and beyond
  publication-title: Chromosoma
– volume: 54
  start-page: 737
  issue: 9
  year: 2013
  end-page: 746
  article-title: Validation of high‐throughput genotoxicity assay screening using γH2AX in‐cell western assay on HepG2 cells
  publication-title: Environmental and Molecular Mutagenesis
– volume: 8
  start-page: 14045
  year: 2017
  article-title: Oxidized nucleotide insertion by pol β confounds ligation during base excision repair
  publication-title: Nature Communications
– volume: 590
  start-page: 1
  year: 2005
  end-page: 280
  article-title: Detailed review of transgenic rodent mutation assays
  publication-title: Mutation Research
– year: 2014b
– volume: 24
  start-page: 66
  year: 2009b
  end-page: 73
  article-title: Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague‐Dawley rats
  publication-title: Environmental Toxicology
– volume: 8
  start-page: 722
  year: 2012
  end-page: 727
  article-title: Detection of Genotoxicity of phenolic antioxidants, butylated hydroxyanisole and tert‐Butylhydroquinone in multiple mouse organs by the alkaline comet assay
  publication-title: Journal of American Science
– volume: 26
  start-page: 397
  year: 2016
  end-page: 398
  article-title: Keeping homologous recombination in check
  publication-title: Cell Research
– volume: 164
  start-page: 669
  year: 2005
  end-page: 676
  article-title: DNA double‐strand break misrejoining after exposure of primary human fibroblasts to CK characteristic X rays, 29 kVp X rays and 60Co gamma rays
  publication-title: Radiation Research
– volume: 164
  start-page: 239
  year: 2006
  end-page: 248
  article-title: Nodularin‐induced genotoxicity following oxidative DNA damage and aneuploidy in HepG2 cells
  publication-title: Toxicology Letters
– volume: 27
  start-page: 931
  year: 2012
  end-page: 940
  article-title: A switch between DNA polymerases δ and λ promotes error‐free bypass of 8‐oxo‐G lesions
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 2020b
– volume: 124
  start-page: 713
  year: 2016
  end-page: 721
  article-title: Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis
  publication-title: Environmental Health Perspectives
– volume: 206
  start-page: 29
  year: 2014
  end-page: 43
  article-title: DNA breaks and chromosomal aberrations arise when replication meets base excision repair
  publication-title: The Journal of Cell Biology
– volume: 46
  start-page: 5512
  year: 2007
  end-page: 5522
  article-title: Efficient and erroneous incorporation of oxidized DNA precursors by human DNA polymerase η
  publication-title: The Biochemist
– volume: 34
  start-page: 518
  year: 2018
  end-page: 531
  article-title: Break‐induced replication: the where, the why, and the how
  publication-title: Trends in Genetics
– volume: 151
  start-page: 159
  year: 1999
  end-page: 166
  article-title: Wortmannin sensitizes mammalian cells to radiation by inhibiting the DNA‐dependent protein kinase‐mediated rejoining of double‐Strand breaks
  publication-title: Radiation Research
– volume: 24
  start-page: 465
  year: 2004
  end-page: 474
  article-title: The oxidized Deoxynucleoside triphosphate Pool is a significant contributor to genetic instability in mismatch repair‐deficient cells
  publication-title: Molecular and Cellular Biology
– volume: 60
  start-page: 860
  year: 2015
  end-page: 872
  article-title: Translesion polymerases drive microhomology‐mediated break‐induced replication leading to complex chromosomal rearrangements
  publication-title: Molecular Cell
– year: 2016b
– volume: 22
  start-page: 204
  year: 2012
  end-page: 210
  article-title: Replication stress and mechanisms of CNV formation
  publication-title: Current Opinion in Genetics & Development
– volume: 144
  start-page: 646
  year: 2011
  end-page: 674
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
– volume: 280
  start-page: 40544
  year: 2005
  end-page: 40551
  article-title: Repair of formamidopyrimidines in DNA involves different glycosylases: role of the OGG1, NTH1, and NEIL1 enzymes
  publication-title: The Journal of Biological Chemistry
– volume: 64
  start-page: 5148
  year: 2004
  end-page: 5153
  article-title: Effect of N‐acetyl cysteine on oxidative DNA damage and the frequency of DNA deletions in Atm‐deficient mice
  publication-title: Cancer Research
– volume: 15
  start-page: 63
  year: 2010
  end-page: 72
  article-title: Formation of 8‐nitroguanine, a nitrative DNA lesion, in inflammation‐related carcinogenesis and its significance
  publication-title: Environmental Health and Preventive Medicine
– volume: 504
  start-page: 17
  year: 2002
  end-page: 36
  article-title: Chromosomal aberrations: formation, identification and distribution
  publication-title: Mutation Research, Fundamental and Molecular Mechanisms of Mutagenesis
– volume: 4
  year: 2014
  article-title: Assessing the suitability of 8‐OHdG and micronuclei as genotoxic biomarkers in chromate‐exposed workers: a cross‐sectional study
  publication-title: BMJ Open
– volume: 23
  start-page: 2005
  year: 2002
  end-page: 2010
  article-title: High accumulation of oxidative DNA damage, 8‐hydroxyguanine, in Mmh/Ogg1 deficient mice by chronic oxidative stress
  publication-title: Carcinogenesis
– volume: 9
  start-page: 542
  year: 2010
  end-page: 550
  article-title: Effects of base excision repair proteins on mutagenesis by 8‐oxo‐7,8‐dihydroguanine (8‐hydroxyguanine) paired with cytosine and adenine
  publication-title: DNA Repair
– volume: 1105
  start-page: 255
  year: 2014
  end-page: 270
  article-title: Analysis of in vivo mutation in the Hprt and Tk genes of mouse lymphocytes
  publication-title: Methods in Molecular Biology
– volume: 61
  start-page: 34
  year: 2020
  end-page: 41
  article-title: Mutation as a toxicological endpoint for regulatory decision‐making
  publication-title: Environmental and Molecular Mutagenesis
– year: 2018
– volume: 171
  start-page: 752
  issue: 6
  year: 2009
  end-page: 763
  article-title: Dose response of γ rays and iron nuclei for induction of chromosomal aberrations in normal and repair‐deficient cell lines
  publication-title: Radiation Research
– volume: 7
  year: 2016
  article-title: ROS homeostasis and metabolism: a dangerous liason in cancer cells
  publication-title: Cell Death & Disease
– volume: 294
  start-page: 317
  year: 1993
  end-page: 323
  article-title: Analysis of mutations caused by DNA double‐strand breaks produced by a restriction enzyme in shuttle vector plasmids propagated in ataxia telangiectasia cells
  publication-title: Mutation Research
– volume: 14
  start-page: 678
  year: 2001
  end-page: 685
  article-title: Requirement of glutathione and cysteine in guanine‐specific oxidation of DNA by carcinogenic potassium bromate
  publication-title: Chemical Research in Toxicology
– volume: 3
  year: 2014
  article-title: Accumulation of abasic sites induces genomic instability in normal human gastric epithelial cells during helicobacter pylori infection
  publication-title: Oncogene
– volume: 110
  start-page: 14314
  year: 2013
  end-page: 14319
  article-title: Germ‐line variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 678
  start-page: 30
  year: 2009
  end-page: 37
  article-title: Study of oxidative DNA damage in TK6 human lymphoblastoid cells by use of the micronucleus test: determination of no‐observed‐effect levels
  publication-title: Mutation Research
– volume: 125
  start-page: 285
  issue: 1
  year: 2012
  end-page: 298
  article-title: The toxtracker assay: novel GFP reporter systems that provide mechanistic insight into the genotoxic properties of chemicals
  publication-title: Toxicological Sciences
– volume: 34
  start-page: 108864
  issue: 11
  year: 2021
  article-title: Excision of mutagenic replication‐blocking lesions suppresses cancer but promotes cytotoxicity and lethality in nitrosamine‐exposed mice
  publication-title: Cell Reports
– volume: 271
  start-page: 27601
  year: 1996
  end-page: 27607
  article-title: Double strand breaks in DNA inhibit nucleotide excision repair in vitro
  publication-title: The Journal of Biological Chemistry
– volume: 306
  start-page: 24
  year: 2013
  end-page: 34
  article-title: Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach
  publication-title: Toxicology
– volume: 182
  start-page: 481
  issue: 2
  year: 2020
  end-page: 496.e21
  article-title: A genetic map of the response to DNA damage in human cells
  publication-title: Cell
– volume: 13
  start-page: 88
  year: 2016
  article-title: Cadmium chloride induces DNA damage and apoptosis of human liver carcinoma cells via oxidative stress
  publication-title: International Journal of Environmental Research and Public Health
– volume: 7
  start-page: 2902
  year: 2008
  end-page: 2906
  article-title: DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells
  publication-title: Cell Cycle
– volume: 97
  start-page: 4156
  year: 2000
  end-page: 4161
  article-title: Mmh/Ogg1 gene inactivation results in accumulation of 8‐hydroxyguanine in mice
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 192
  start-page: 219
  year: 2015
  end-page: 228
  article-title: Increased mutagen sensitivity and DNA damage in pulmonary arterial hypertension
  publication-title: American Journal of Respiratory and Critical Care Medicine
– volume: 14
  year: 2019
  article-title: Fluorescent reporter assays provide direct, accurate, quantitative measurements of MGMT status in human cells
  publication-title: PLoS ONE
– volume: 3
  start-page: 1323
  year: 2004
  end-page: 1334
  article-title: Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks
  publication-title: DNA Repair
– volume: 76
  start-page: 773
  year: 2000
  end-page: 781
  article-title: Relationship between cellular radiosensitivity and non‐repaired double‐strand breaks studied for different growth states, dose rates and plating conditions in a normal human fibroblast line
  publication-title: International Journal of Radiation Biology
– year: 2015
– volume: 76
  start-page: 891
  year: 2000
  end-page: 900
  article-title: No dose‐dependence of DNA double‐strand break misrejoining following a‐particle irradiation
  publication-title: International Journal of Radiation Biology
– volume: 6
  start-page: 643
  year: 2009a
  end-page: 653
  article-title: Potassium dichromate induced cytotoxicity, genotoxicity and oxidative stress in human liver carcinoma (HepG2) cells
  publication-title: International Journal of Environmental Research and Public Health
– volume: 163
  start-page: 526
  year: 2005
  end-page: 534
  article-title: Dose‐dependent Misrejoining of radiation‐induced DNA double‐Strand breaks in human fibroblasts: experimental and theoretical study for high‐ and low‐LET radiation
  publication-title: Radiation Research
– volume: 142
  start-page: 312
  year: 2014
  end-page: 320
  article-title: Adverse outcome pathway (AOP) development I: strategies and principles
  publication-title: Toxicological Sciences
– volume: 36
  year: 2021
  article-title: BRCA2 deficiency reveals that oxidative stress impairs RNaseH1 function to cripple mitochondrial DNA maintenance
  publication-title: Cell Reports
– volume: 174
  start-page: 89
  year: 2021
  end-page: 99
  article-title: CometChip analysis of human primary lymphocytes enables quantification of inter‐individual differences in the kinetics of repair of oxidative DNA damage
  publication-title: Free Radical Biology & Medicine
– volume: 114
  start-page: E10379
  year: 2017
  end-page: E10388
  article-title: In vivo measurements of interindividual differences in DNA glycosylases and APE1 activities
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 90
  start-page: 974
  year: 1986
  end-page: 978
  article-title: One‐electron redox potential of purines and pyrimidines
  publication-title: The Journal of Physical Chemistry
– volume: 9
  start-page: 628
  year: 2018
  article-title: OGG1‐initiated base excision repair exacerbates oxidative stress‐induced parthanatos
  publication-title: Cell Death and Disease
– volume: 141
  start-page: 1243
  year: 2012
  end-page: 1250
  article-title: Oxidative DNA damage and somatic mutations
  publication-title: Chest
– year: 2014a
– volume: 44
  start-page: 479
  year: 2010
  end-page: 496
  article-title: Reactive oxygen species in cancer
  publication-title: Free Radical Research
– volume: 106
  year: 2021
  article-title: CometChip enables parallel analysis of multiple DNA repair activities
  publication-title: DNA Repair
– volume: 33
  start-page: 9
  issue: 1
  year: 2018
  end-page: 19
  article-title: Searching for assay controls for the Fpg‐ and hOGG1‐modified comet assay
  publication-title: Mutagenesis
– volume: 17
  start-page: 1195
  year: 2003
  end-page: 1214
  article-title: Oxidative DNA damage: mechanisms, mutation, and disease
  publication-title: The FASEB Journal
– volume: 36
  start-page: 123
  year: 2003
  end-page: 134
  article-title: Measurement of 8‐Hydroxy‐2′‐Deoxyguanosine by a commercially available ELISA test: comparison with HPLC/electrochemical detection in calf thymus DNA and determination in human serum
  publication-title: Analytical Letters
– volume: 11
  start-page: 996
  year: 2017
  end-page: 1011
  article-title: Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1‐deficient and wild type mice
  publication-title: Nanotoxicology
– year: 2020a
– volume: 78
  start-page: 42
  year: 2014
  end-page: 50
  article-title: Role of DNA damage in cardiovascular disease
  publication-title: Circulation Journal
– volume: 102
  year: 2015
  article-title: HPLC measurement of the DNA oxidation biomarker, 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine, in cultured cells and animal tissues
  publication-title: Journal of Visualized Experiments
– volume: 183
  start-page: 315
  year: 2015
  end-page: 324
  article-title: Effect of dose rate on residual c‐H2AX levels and frequency of micronuclei in X‐irradiated mouse lymphocytes
  publication-title: Radiation Research
– volume: 18
  start-page: 2409
  year: 2012
  end-page: 2419
  article-title: Role of nucleotide excision repair proteins in oxidative DNA damage repair: an updating
  publication-title: Antioxidants & Redox Signaling
– volume: 776
  start-page: 84
  year: 2015
  end-page: 97
  article-title: DNA damage in neurodegenerative diseases
  publication-title: Mutation Research ‐ Fundamental and Molecular Mechanisms of Mutagenesis
– volume: 45
  start-page: 11193
  year: 2017
  end-page: 11212
  article-title: Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2
  publication-title: Nucleic Acids Research
– volume: 783
  start-page: 23
  year: 2015
  end-page: 35
  article-title: The in vivo pig‐a assay: a report of the international workshop on Genotoxicity testing (IWGT) workgroup
  publication-title: Mutation Research
– volume: 53
  start-page: 81
  year: 2012
  end-page: 94
  article-title: Formation of ring‐opened and rearranged products of guanine: mechanisms and biological significance
  publication-title: Free Radical Biology and Medicine
– year: 2016c
– volume: 56
  start-page: 724
  year: 2015
  end-page: 750
  article-title: Development of the adverse outcome pathway "alkylation of DNA in male premeiotic germ cells leading to heritable mutations" using the OECD's users' handbook supplement
  publication-title: Environmental and Molecular Mutagenesis
– volume: 35
  start-page: 2643
  year: 2014
  end-page: 2652
  article-title: Base excision repair capacity in informing healthspan
  publication-title: Carcinogenesis
– volume: 56
  start-page: 405
  year: 2017
  end-page: 412
  article-title: N‐acetyl‐l‐cysteine protects thyroid cells against DNA damage induced by external and internal irradiation
  publication-title: Radiation and Environmental Biophysics
– volume: 41
  start-page: 7589
  year: 2013
  end-page: 7605
  article-title: DNA double‐strand–break complexity levels and their possible contributions to the probability for error‐prone processing and repair pathway choice
  publication-title: Nucleic Acids Research
– volume: 60
  start-page: 513
  year: 2019
  end-page: 533
  article-title: Predictions of genotoxic potential, mode of action, molecular targets, and potency via a tiered multiflow® assay data analysis strategy
  publication-title: Environmental and Molecular Mutagenesis
– volume: 27
  start-page: 931
  year: 2014
  end-page: 940
  article-title: Mutagenic potential of 8‐Oxo‐7,8‐dihydro‐2′‐deoxyguanosine bypass catalyzed by human Y‐family DNA polymerases
  publication-title: Chemical Research in Toxicology
– volume: 279
  start-page: 36504
  year: 2004
  end-page: 36513
  article-title: Imbalanced Base excision repair in response to folate deficiency is accelerated by polymerase β Haploinsufficiency
  publication-title: The Journal of Biological Chemistry
– volume: 122
  start-page: 4344
  year: 2012
  end-page: 4361
  article-title: 8‐Oxoguanine causes neurodegeneration during MUTYH‐mediated DNA base excision repair
  publication-title: The Journal of Clinical Investigation
– volume: 35
  start-page: 88
  year: 2013
  end-page: 92
  article-title: Generation and threshold level of 8‐OHdG as oxidative DNA damage elicited by low dose ionizing radiation
  publication-title: Genes Environ
– volume: 26
  start-page: 249
  year: 2004
  end-page: 262
  article-title: The comet assay for DNA damage and repair
  publication-title: Molecular Biotechnology
– volume: 20
  start-page: 708
  year: 2014
  end-page: 726
  article-title: Repair of oxidative DNA damage and cancer: recent progress in DNA base excision repair
  publication-title: Antioxidants & Redox Signaling
– volume: 95
  start-page: 8241
  year: 2001
  end-page: 8246
  article-title: Single‐strand interruptions in replicating chromosomes cause double‐strand breaks
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  year: 2016
  article-title: Catalysts of DNA Strand cleavage at Apurinic/Apyrimidinic sites
  publication-title: Scientific Reports
– volume: 120
  start-page: S130
  year: 2011
  end-page: S145
  article-title: Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment
  publication-title: Toxicological Sciences
– volume: 59
  start-page: 82
  year: 2017
  end-page: 105
  article-title: Not breathing is not an option: how to deal with oxidative DNA damage
  publication-title: DNA Repair
– volume: 231
  start-page: 3
  year: 2016
  end-page: 14
  article-title: Mechanisms and consequences of double‐Strand DNA break formation in chromatin
  publication-title: Journal of Cellular Physiology
– volume: 267
  start-page: 18
  year: 2008
  end-page: 25
  article-title: Overexpression of human OGG1 in mammalian cells decreases ultraviolet a induced mutagenesis
  publication-title: Cancer Letters
– volume: 228
  start-page: 395
  year: 2008
  end-page: 402
  article-title: Suppression of a DNA base excision repair gene, hOGG1, increases bleomycin sensitivity of human lung cancer cell line
  publication-title: Toxicology and Applied Pharmacology
– volume: 22
  start-page: 84
  year: 2017
  end-page: 93
  article-title: Detection of DNA double‐strand breaks by pulsed‐field gel electrophoresis
  publication-title: Genes to Cells
– volume: 16
  start-page: 567
  year: 2006
  end-page: 575
  article-title: A genome‐wide distribution of 8‐oxoguanine correlates with the preferred regions for recombination and single nucleotide polymorphism in the human genome
  publication-title: Genome Research
– ident: e_1_2_14_139_1
  doi: 10.1128/MCB.24.1.465-474.2004
– volume-title: Test no. 487: in vitro mammalian cell micronucleus Test OECD guideline for the testing of chemicals, section 4
  year: 2014
  ident: e_1_2_14_113_1
– ident: e_1_2_14_55_1
  doi: 10.1016/j.mrgentox.2013.08.002
– ident: e_1_2_14_87_1
  doi: 10.1073/pnas.1714109114
– ident: e_1_2_14_143_1
  doi: 10.1002/em.22342
– ident: e_1_2_14_56_1
  doi: 10.1016/j.dnarep.2021.103176
– ident: e_1_2_14_96_1
  doi: 10.1093/nar/gkx723
– ident: e_1_2_14_42_1
  doi: 10.1002/em.22274
– ident: e_1_2_14_62_1
  doi: 10.1093/nar/gkh909
– volume-title: Users' handbook supplement to the guidance document for developing and assessing AOPs,OECD series on adverse outcome pathways, no. 1
  year: 2018
  ident: e_1_2_14_119_1
– ident: e_1_2_14_151_1
  doi: 10.1172/JCI65053
– ident: e_1_2_14_81_1
  doi: 10.1080/09553000050050909
– ident: e_1_2_14_75_1
  doi: 10.1002/em.21817
– ident: e_1_2_14_148_1
  doi: 10.1016/j.mrfmmm.2017.07.002
– ident: e_1_2_14_97_1
  doi: 10.4161/cc.7.18.6679
– ident: e_1_2_14_111_1
  doi: 10.1016/j.freeradbiomed.2021.07.033
– ident: e_1_2_14_122_1
  doi: 10.1101/gr.4769606
– ident: e_1_2_14_146_1
  doi: 10.1089/ars.2013.5529
– ident: e_1_2_14_169_1
  doi: 10.1016/j.taap.2007.12.020
– ident: e_1_2_14_37_1
  doi: 10.1158/1055-9965.EPI-07-0751
– ident: e_1_2_14_68_1
  doi: 10.1253/circj.CJ-13-1194
– ident: e_1_2_14_88_1
  doi: 10.1136/bmjopen-2014-005979
– volume-title: Test no. 474: mammalian erythrocyte micronucleus test OECD guideline for the testing of chemicals, section 4
  year: 2016
  ident: e_1_2_14_117_1
– ident: e_1_2_14_109_1
  doi: 10.1371/journal.pone.0208341
– ident: e_1_2_14_162_1
  doi: 10.1378/chest.11-1653
– ident: e_1_2_14_173_1
  doi: 10.1021/tx050146h
– ident: e_1_2_14_125_1
  doi: 10.1038/cddis.2016.105
– ident: e_1_2_14_23_1
  doi: 10.1038/ncomms14045
– ident: e_1_2_14_74_1
  doi: 10.1016/j.celrep.2021.108864
– ident: e_1_2_14_69_1
  doi: 10.1007/s00412-011-0347-4
– ident: e_1_2_14_15_1
  doi: 10.1081/AL-120017267
– ident: e_1_2_14_131_1
  doi: 10.1016/j.mrgentox.2011.09.003
– ident: e_1_2_14_101_1
  doi: 10.1038/srep33290
– ident: e_1_2_14_43_1
  doi: 10.1080/09553000050028922
– ident: e_1_2_14_11_1
  doi: 10.1093/nar/gkp422
– ident: e_1_2_14_72_1
  doi: 10.1093/nar/gkl099
– ident: e_1_2_14_107_1
  doi: 10.1021/tx000209q
– ident: e_1_2_14_40_1
  doi: 10.1038/nrm2256
– ident: e_1_2_14_19_1
  doi: 10.1002/em.21996
– ident: e_1_2_14_61_1
  doi: 10.1016/j.cell.2011.02.013
– ident: e_1_2_14_135_1
  doi: 10.1016/j.celrep.2021.109478
– ident: e_1_2_14_8_1
  doi: 10.1002/em.21808
– ident: e_1_2_14_47_1
  doi: 10.1016/j.foodchem.2013.12.087
– ident: e_1_2_14_165_1
  doi: 10.1155/2015/217670
– ident: e_1_2_14_57_1
  doi: 10.3934/genet.2017.2.103
– ident: e_1_2_14_30_1
  doi: 10.1080/09553002.2019.1704913
– ident: e_1_2_14_26_1
  doi: 10.1002/jcp.25048
– ident: e_1_2_14_123_1
  doi: 10.1016/j.cell.2020.05.040
– ident: e_1_2_14_59_1
  doi: 10.1016/j.mrgentox.2014.09.007
– ident: e_1_2_14_110_1
  doi: 10.1080/17435390.2017.1388863
– ident: e_1_2_14_64_1
  doi: 10.1093/toxsci/kfr281
– ident: e_1_2_14_138_1
  doi: 10.12659/MSM.881805
– ident: e_1_2_14_76_1
  doi: 10.1038/oncsis.2014.42
– ident: e_1_2_14_14_1
  doi: 10.1093/carcin/bgu225
– ident: e_1_2_14_7_1
  doi: 10.1016/j.freeradbiomed.2017.01.008
– ident: e_1_2_14_92_1
  doi: 10.1016/S0027-5107(99)00005-6
– volume-title: Overview of concepts and available guidance related to integrated approaches to testing and assessment (IATA),OECD series on testing and assessment, no. 329
  year: 2020
  ident: e_1_2_14_120_1
– ident: e_1_2_14_83_1
  doi: 10.1007/s00411-017-0711-8
– ident: e_1_2_14_153_1
  doi: 10.3390/ijerph13010088
– ident: e_1_2_14_147_1
  doi: 10.1093/nar/gkt731
– ident: e_1_2_14_33_1
  doi: 10.1080/10715760000300331
– ident: e_1_2_14_45_1
  doi: 10.1016/j.fct.2013.11.036
– ident: e_1_2_14_127_1
  doi: 10.3390/ijerph6020643
– ident: e_1_2_14_27_1
  doi: 10.1038/emm.2014.122
– ident: e_1_2_14_167_1
  doi: 10.3390/biom5020472
– ident: e_1_2_14_145_1
  doi: 10.1093/nar/gkt556
– ident: e_1_2_14_67_1
  doi: 10.1159/000077461
– ident: e_1_2_14_164_1
  doi: 10.1093/toxsci/kfu199
– ident: e_1_2_14_172_1
  doi: 10.1002/em.21954
– ident: e_1_2_14_29_1
  doi: 10.1038/nrm.2017.48
– ident: e_1_2_14_25_1
  doi: 10.1074/jbc.271.44.27601
– ident: e_1_2_14_48_1
  doi: 10.1164/rccm.201411-2128OC
– ident: e_1_2_14_141_1
  doi: 10.1016/j.freeradbiomed.2016.11.050
– ident: e_1_2_14_9_1
  doi: 10.1016/j.yrtph.2015.04.004
– ident: e_1_2_14_82_1
  doi: 10.1667/RR3461.1
– ident: e_1_2_14_156_1
  doi: 10.1016/j.mrgentox.2015.10.002
– ident: e_1_2_14_12_1
  doi: 10.1016/j.canlet.2012.02.001
– ident: e_1_2_14_77_1
  doi: 10.1073/pnas.96.23.13300
– ident: e_1_2_14_80_1
  doi: 10.1080/10937404.2019.1643536
– ident: e_1_2_14_103_1
  doi: 10.1089/ars.2012.5036
– ident: e_1_2_14_159_1
  doi: 10.1016/0921-8777(93)90014-8
– ident: e_1_2_14_160_1
  doi: 10.1023/A:1022157528247
– volume: 46
  start-page: 5512
  year: 2007
  ident: e_1_2_14_152_1
  article-title: Efficient and erroneous incorporation of oxidized DNA precursors by human DNA polymerase η
  publication-title: The Biochemist
– ident: e_1_2_14_41_1
  doi: 10.1016/j.tox.2013.02.001
– ident: e_1_2_14_157_1
  doi: 10.1093/toxsci/kfq371
– ident: e_1_2_14_73_1
  doi: 10.1111/gtc.12457
– ident: e_1_2_14_136_1
  doi: 10.1038/s41588-020-0692-4
– ident: e_1_2_14_18_1
  doi: 10.1002/em.21868
– volume-title: Test no. 475: mammalian bone marrow chromosomal aberration Test OECD guideline for the testing of chemicals, section 4
  year: 2016
  ident: e_1_2_14_118_1
– ident: e_1_2_14_54_1
  doi: 10.1073/pnas.1205759109
– ident: e_1_2_14_85_1
  doi: 10.1016/j.mrrev.2005.04.002
– ident: e_1_2_14_17_1
  doi: 10.1089/ars.2012.4994
– ident: e_1_2_14_53_1
  doi: 10.1073/pnas.1306752110
– ident: e_1_2_14_129_1
  doi: 10.1093/nar/gkh150
– ident: e_1_2_14_104_1
  doi: 10.1038/srep28894
– ident: e_1_2_14_34_1
  doi: 10.1385/MB:26:3:249
– ident: e_1_2_14_50_1
  doi: 10.1083/jcb.201102095
– ident: e_1_2_14_170_1
  doi: 10.1016/j.dnarep.2005.07.003
– ident: e_1_2_14_134_1
  doi: 10.1158/0008-5472.CAN-04-0442
– volume-title: Test no. 488: transgenic rodent somatic and germ cell mutation assays OECD guideline for the testing of chemicals, section 4
  year: 2020
  ident: e_1_2_14_121_1
– ident: e_1_2_14_65_1
  doi: 10.1007/s12199-009-0118-5
– ident: e_1_2_14_128_1
  doi: 10.1002/tox.20395
– ident: e_1_2_14_124_1
  doi: 10.1093/toxsci/kfs138
– volume: 102
  year: 2015
  ident: e_1_2_14_31_1
  article-title: HPLC measurement of the DNA oxidation biomarker, 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine, in cultured cells and animal tissues
  publication-title: Journal of Visualized Experiments
– ident: e_1_2_14_137_1
  doi: 10.1002/jcp.25053
– ident: e_1_2_14_102_1
  doi: 10.1089/ars.2012.5036
– ident: e_1_2_14_174_1
  doi: 10.1074/jbc.M503079200
– ident: e_1_2_14_126_1
  doi: 10.1016/j.dnarep.2018.04.008
– ident: e_1_2_14_58_1
  doi: 10.1667/rr1680.1
– ident: e_1_2_14_91_1
  doi: 10.3109/10715761003667554
– ident: e_1_2_14_108_1
  doi: 10.1155/2012/623019
– volume-title: Test no. 483: mammalian Spermatogonial chromosomal aberration Test OECD guideline for the testing of chemicals, section 4
  year: 2015
  ident: e_1_2_14_115_1
– ident: e_1_2_14_24_1
  doi: 10.1016/j.dnarep.2015.09.010
– volume-title: Test no. 489: in vivo mammalian alkaline comet assay OECD guideline for the testing of chemicals, section 4
  year: 2014
  ident: e_1_2_14_114_1
– ident: e_1_2_14_60_1
  doi: 10.1021/ar400229d
– ident: e_1_2_14_90_1
  doi: 10.1007/978-90-481-3471-7_14
– ident: e_1_2_14_140_1
  doi: 10.1667/RR3346
– ident: e_1_2_14_6_1
  doi: 10.1093/mutage/geu041
– ident: e_1_2_14_13_1
  doi: 10.1186/2041-9414-3-9
– ident: e_1_2_14_158_1
  doi: 10.1021/tx500088e
– ident: e_1_2_14_38_1
  doi: 10.1016/j.mrfmmm.2014.11.010
– ident: e_1_2_14_44_1
  doi: 10.1007/978-1-62703-739-6_20
– ident: e_1_2_14_36_1
  doi: 10.1096/fj.02-0752rev
– ident: e_1_2_14_166_1
  doi: 10.1038/s41419-018-0680-0
– ident: e_1_2_14_132_1
  doi: 10.1016/j.mrgentox.2009.06.006
– ident: e_1_2_14_5_1
  doi: 10.1016/j.gde.2012.01.009
– ident: e_1_2_14_20_1
  doi: 10.1074/jbc.M405185200
– ident: e_1_2_14_99_1
  doi: 10.1016/j.dnarep.2017.09.007
– ident: e_1_2_14_70_1
  doi: 10.1016/j.freeradbiomed.2012.04.008
– ident: e_1_2_14_10_1
  doi: 10.1016/S0300-483X(03)00058-1
– ident: e_1_2_14_66_1
  doi: 10.1074/jbc.M508772200
– ident: e_1_2_14_168_1
  doi: 10.2741/4555
– ident: e_1_2_14_106_1
  doi: 10.1093/mutage/gex015
– volume: 8
  start-page: 722
  year: 2012
  ident: e_1_2_14_133_1
  article-title: Detection of Genotoxicity of phenolic antioxidants, butylated hydroxyanisole and tert‐Butylhydroquinone in multiple mouse organs by the alkaline comet assay
  publication-title: Journal of American Science
– volume: 114
  start-page: E10379
  year: 2017
  ident: e_1_2_14_28_1
  article-title: In vivo measurements of interindividual differences in DNA glycosylases and APE1 activities
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– ident: e_1_2_14_2_1
  doi: 10.1093/nar/gky1152
– ident: e_1_2_14_154_1
  doi: 10.1289/ehp.1509912
– ident: e_1_2_14_89_1
  doi: 10.3123/jemsge.2013.006
– ident: e_1_2_14_71_1
  doi: 10.1021/j100277a053
– ident: e_1_2_14_84_1
  doi: 10.1073/pnas.131009198
– ident: e_1_2_14_144_1
  doi: 10.1002/em.22339
– ident: e_1_2_14_155_1
  doi: 10.1016/j.dnarep.2010.02.004
– ident: e_1_2_14_94_1
  doi: 10.1016/j.dnarep.2003.11.006
– volume-title: Test no. 473: in vitro mammalian chromosomal aberration Test OECD guideline for the testing of chemicals, section 4
  year: 2016
  ident: e_1_2_14_116_1
– ident: e_1_2_14_39_1
  doi: 10.1016/j.canlet.2008.03.002
– ident: e_1_2_14_35_1
  doi: 10.1016/S0960-9822(02)00863-1
– volume: 62
  start-page: 104
  year: 2002
  ident: e_1_2_14_163_1
  article-title: Distinct Spectrum of mutations induced by crocidolite Asbestos: clue for 8‐Hydroxydeoxyguanosine‐dependent mutagenesis in vivo
  publication-title: Cancer Research
– ident: e_1_2_14_32_1
  doi: 10.2307/3579766
– ident: e_1_2_14_130_1
  doi: 10.1039/C7TX00223H
– ident: e_1_2_14_150_1
  doi: 10.1161/CIRCULATIONAHA.117.033249
– ident: e_1_2_14_78_1
  doi: 10.1093/mutage/geaa019
– ident: e_1_2_14_16_1
  doi: 10.3390/cancers6031597
– ident: e_1_2_14_79_1
  doi: 10.1016/j.tig.2018.04.002
– ident: e_1_2_14_4_1
  doi: 10.1093/carcin/23.12.2005
– ident: e_1_2_14_86_1
  doi: 10.1016/j.toxlet.2006.01.003
– ident: e_1_2_14_22_1
  doi: 10.1101/cshperspect.a012559
– ident: e_1_2_14_49_1
  doi: 10.1038/sj.onc.1204767
– ident: e_1_2_14_51_1
  doi: 10.1016/j.dnarep.2015.03.002
– ident: e_1_2_14_161_1
  doi: 10.1667/RR13860.1
– ident: e_1_2_14_63_1
  doi: 10.1002/em.22338
– ident: e_1_2_14_98_1
  doi: 10.1126/science.1202723
– ident: e_1_2_14_171_1
  doi: 10.1016/j.dnarep.2004.04.014
– ident: e_1_2_14_52_1
  doi: 10.1038/cr.2016.25
– ident: e_1_2_14_95_1
  doi: 10.1093/nar/gku913
– ident: e_1_2_14_142_1
  doi: 10.1016/j.molcel.2015.10.041
– ident: e_1_2_14_105_1
  doi: 10.1073/pnas.050404497
– ident: e_1_2_14_149_1
  doi: 10.1074/jbc.M115.693218
– ident: e_1_2_14_93_1
  doi: 10.1002/(SICI)1098-2264(200001)27:1<59::AID-GCC8>3.0.CO;2-9
– volume: 27
  start-page: 931
  year: 2012
  ident: e_1_2_14_100_1
  article-title: A switch between DNA polymerases δ and λ promotes error‐free bypass of 8‐oxo‐G lesions
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– ident: e_1_2_14_21_1
  doi: 10.1016/j.freeradbiomed.2016.12.049
– ident: e_1_2_14_3_1
  doi: 10.1002/etc.34
– ident: e_1_2_14_46_1
  doi: 10.1083/jcb.201312078
– ident: e_1_2_14_112_1
  doi: 10.1016/S0027-5107(02)00076-3
SSID ssj0011492
Score 2.4562674
Snippet The Genetic Toxicology Technical Committee (GTTC) of the Health and Environmental Sciences Institute (HESI) is developing adverse outcome pathways (AOPs) that...
he Genetic Toxicology Technical Committee (GTTC) of the Health and Environmental Sciences Institute (HESI) is developing adverse outcome pathways (AOPs) that...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118
SubjectTerms Antioxidants
Aop Report
Chromosome aberrations
Damage
Deoxyribonucleic acid
DNA
DNA damage
DNA repair
Environmental science
Free radicals
Genotoxicity
Intermediates
Life Sciences
Mutation
Reactive oxygen species
Repair
Toxicology
Title AOP report: Development of an adverse outcome pathway for oxidative DNA damage leading to mutations and chromosomal aberrations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fem.22479
https://www.ncbi.nlm.nih.gov/pubmed/35315142
https://www.proquest.com/docview/2662537871
https://www.proquest.com/docview/2641864765
https://hal.inrae.fr/hal-03624340
https://pubmed.ncbi.nlm.nih.gov/PMC9322445
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1db9MwFIYtNgmJG75hGWPyEIKrdIntOC13FWyqEBsTYtIkLiJ_qhNLMi0JMG746xzbSVgZSIirSrWbOO2xz5Pm9XsQep5Nc6MotTExchYzK2Uss4TG3BADCdPKzBebODjki2P29iQ76VWVbi9M8IcY_3BzM8Ov126CC9ns_jINNeUE0k_u9u45qZbjoQ-jcxRQvq-HnEA6jjmfkcF3NiG7wwdXMtHa0ukgr0Pmda3kVYb1SWj_Dvo0DD9oTz5PulZO1PffnB3_7_ruots9m-J5CKZ76Iap7qOboVrl5QP0Y_7-CIdnDK_wFbERri0WFRautHNjcN21cCqDXa3jr-ISAxXj-tup9g7j-M3hHGtRwiqGz4J-H7c1LrugCGjgQBqrpdMINnUJgxHSXIQgbR6i4_29j68XcV-_IVYMmD2mcPNpgFesntokN4BSiUpTmlomNSeKKZ2KVGiaccWlElORzRJjmYKoYm4_LH2E1qu6MhsIq0RTBuQnZpkBxNQAOZZrobQCHEqIjdDL4bcsVG9u7mpsnBXBlpkUpiz81xmhnbHneTD0-EOfZxAOY7Nz4F7M3xXuPZfwGWXJlzRCW0O0FP28bwrAHZJRWASheWdshhnrHsOIytSd68PSKWc5zyL0OATXeCoKSyIgLIlQvhJ2K2NZbalOl94VHEAcUA2O-cJH1V8vrtg78K-b_9rxCbpF3J4PL7zbQuvtRWeeAom1chutEXa07WfeTwCnMQU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bb9MwFIetbQjBC3dYYICHEDylS2LHaeCpgk0F2oLQJu0BKfJVnbYkaE2A8cK_zrHdhJWBhHiqVDsXJ-f4fEmOfwehp-kw05IQEyZa5CE1QoQijUjIdKIhYBqRumIT0xkbH9C3h-nhGnrZrYXx-hD9CzfrGW6-tg5uX0jv_FIN1eUA4k-Wr6NLtqC3e5762GtHAee7isgRBOSQsTzplGejZKfbciUWrc9tJuRFzLyYLXmeYl0Y2ruOPnUD8Nknx4O2EQP5_Tdtx_8c4Q10bYmneOTt6SZa09UtdNkXrDy7jX6M3n_A_jPDC3wu3wjXBvMKc1vdeaFx3TZwLI1tueOv_AwDGOP625FyIuP49WyEFS9hIsMnPoUfNzUuW58UsIAdKSznNk1wUZdwMlzoU2-nizvoYG93_9U4XJZwCCUFbA8JPH9qQBajhibKNNBUJOOYxIYKxRJJpYp5zBVJmWRC8iFP80gbKsGwqF0SS-6ijaqu9CbCMlKEAvzxPNVAmQo4xzDFpZJARFFiAvS8u5mFXOqb2zIbJ4VXZk4KXRbucgZou-_52Wt6_KHPE7CHvtmKcI9Hk8L-Z2M-JTT6EgdoqzOXYun6iwKIJ0kJzIPQvN03g9PaLzG80nVr-9B4yGjG0gDd89bVH4rArAgUmwQoW7G7lXNZbamO5k4YHFgcaA32-cyZ1V8HV-xO3e_9f-34GF0Z708nxeTN7N0DdDWxS0BcHt4W2mhOW_0QwKwRj5wD_gS45DRJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoEYgLb2iggIsQnLJNYufFbcV2tUC7VIhKlThEfmqrNknVJEC58NcZ25vQpSAhTpEyTuwk33i-JONvEHoRZ6kShGg_Ujz3qebc53FA_ERFCgKm5rEtNrE3T2YH9N1hfLjMqjRrYZw-xPDBzXiGna-Ng59Kvf1LNFSVIwg_ab6GrtIkyAyiJx8H6Sig-bYgMhig4ySPeuHZINruj1wJRWsLkwh5mWVeTpa8SGJtFJreQp_78bvkk-NR1_KR-P6btOP_XeBtdHNJTvHYoekOuqKqu-iaK1d5fg_9GH_Yx-4nw2t8IdsI1xqzCjNT27lRuO5a6EphU-z4KzvHQItx_e1IWolxPJmPsWQlTGP4xCXw47bGZedSAho4kcRiYZIEm7qEwTCuzhxKm_voYLrz6c3MXxZw8AUF0u4TePtUQFi0zHSQKuBSgQhDEmrKZRIJKmTIQiZJnIiEC5axOA-UpgJgRc2CWPIArVd1pTYQFoEkFKgfy2MFHFMCy9GJZEIK4ENBpD30qn-WhViqm5siGyeF02WOClUW9nZ6aGtoeeoUPf7Q5jnAYTAbCe7ZeLcw-0zEp4QGX0IPbfZoKZaO3xTAd6KYwCwI5q3BDC5r_sOwStWdaUPDLKFpEnvooQPX0BWBORE4bOShdAV2K2NZtVRHCysLDkwcuBqc86VF1V8vrtjZs9tH_9rwGbq-P5kWu2_n7x-jG5FZ_2GT8DbRenvWqSfAylr-1LrfTxsPMwE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AOP+report%3A+Development+of+an+adverse+outcome+pathway+for+oxidative+DNA+damage+leading+to+mutations+and+chromosomal+aberrations&rft.jtitle=Environmental+and+molecular+mutagenesis&rft.au=Cho%2C+Eunnara&rft.au=Allemang%2C+Ashley&rft.au=Audebert%2C+Marc&rft.au=Chauhan%2C+Vinita&rft.date=2022-03-01&rft.issn=0893-6692&rft.eissn=1098-2280&rft.volume=63&rft.issue=3&rft.spage=118&rft.epage=134&rft_id=info:doi/10.1002%2Fem.22479&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_em_22479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6692&client=summon