Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice

RATIONALE:Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis...

Full description

Saved in:
Bibliographic Details
Published inCirculation research Vol. 112; no. 11; pp. 1456 - 1465
Main Authors Westerterp, Marit, Murphy, Andrew J., Wang, Mi, Pagler, Tamara A., Vengrenyuk, Yuliya, Kappus, Mojdeh S., Gorman, Darren J., Nagareddy, Prabhakara R., Zhu, Xuewei, Abramowicz, Sandra, Parks, John S., Welch, Carrie, Fisher, Edward A., Wang, Nan, Yvan-Charvet, Laurent, Tall, Alan R.
Format Journal Article
LanguageEnglish
Published United States American Heart Association, Inc 24.05.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RATIONALE:Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. OBJECTIVE:To assess the role of macrophage cholesterol efflux pathways in atherogenesis. METHODS AND RESULTS:We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC mice) but not in hematopoietic stem or progenitor populations. MAC-ABC bone marrow (BM) was transplanted into Ldlr recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC BM–transplanted Ldlr mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet–fed MAC-ABC BM–transplanted Ldlr mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production. CONCLUSIONS:These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways.
AbstractList RATIONALE:Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. OBJECTIVE:To assess the role of macrophage cholesterol efflux pathways in atherogenesis. METHODS AND RESULTS:We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC mice) but not in hematopoietic stem or progenitor populations. MAC-ABC bone marrow (BM) was transplanted into Ldlr recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC BM–transplanted Ldlr mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet–fed MAC-ABC BM–transplanted Ldlr mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production. CONCLUSIONS:These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways.
Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking.RATIONALEPlasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking.To assess the role of macrophage cholesterol efflux pathways in atherogenesis.OBJECTIVETo assess the role of macrophage cholesterol efflux pathways in atherogenesis.We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC(DKO) mice) but not in hematopoietic stem or progenitor populations. MAC-ABC(DKO) bone marrow (BM) was transplanted into Ldlr(-/-) recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet-fed MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production.METHODS AND RESULTSWe developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC(DKO) mice) but not in hematopoietic stem or progenitor populations. MAC-ABC(DKO) bone marrow (BM) was transplanted into Ldlr(-/-) recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet-fed MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production.These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways.CONCLUSIONSThese studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways.
Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. To assess the role of macrophage cholesterol efflux pathways in atherogenesis. We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC(DKO) mice) but not in hematopoietic stem or progenitor populations. MAC-ABC(DKO) bone marrow (BM) was transplanted into Ldlr(-/-) recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet-fed MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production. These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways.
Author Murphy, Andrew J.
Nagareddy, Prabhakara R.
Pagler, Tamara A.
Parks, John S.
Wang, Mi
Wang, Nan
Zhu, Xuewei
Tall, Alan R.
Vengrenyuk, Yuliya
Abramowicz, Sandra
Welch, Carrie
Fisher, Edward A.
Yvan-Charvet, Laurent
Gorman, Darren J.
Westerterp, Marit
Kappus, Mojdeh S.
AuthorAffiliation From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.J.M., M.W., T.A.P., M.S.K., D.J.G., S.A., C.W., N.W., L.Y.-C., A.R.T.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.W.); Department of Medicine (Cardiology) and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY (Y.V., E.A.F.); Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University, New York, NY (P.R.N.); and Department of Pathology/Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC (X.Z., J.S.P.)
AuthorAffiliation_xml – name: From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.J.M., M.W., T.A.P., M.S.K., D.J.G., S.A., C.W., N.W., L.Y.-C., A.R.T.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.W.); Department of Medicine (Cardiology) and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY (Y.V., E.A.F.); Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University, New York, NY (P.R.N.); and Department of Pathology/Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC (X.Z., J.S.P.)
Author_xml – sequence: 1
  givenname: Marit
  surname: Westerterp
  fullname: Westerterp, Marit
  organization: From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.J.M., M.W., T.A.P., M.S.K., D.J.G., S.A., C.W., N.W., L.Y.-C., A.R.T.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.W.); Department of Medicine (Cardiology) and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY (Y.V., E.A.F.); Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University, New York, NY (P.R.N.); and Department of Pathology/Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC (X.Z., J.S.P.)
– sequence: 2
  givenname: Andrew
  surname: Murphy
  middlename: J.
  fullname: Murphy, Andrew J.
– sequence: 3
  givenname: Mi
  surname: Wang
  fullname: Wang, Mi
– sequence: 4
  givenname: Tamara
  surname: Pagler
  middlename: A.
  fullname: Pagler, Tamara A.
– sequence: 5
  givenname: Yuliya
  surname: Vengrenyuk
  fullname: Vengrenyuk, Yuliya
– sequence: 6
  givenname: Mojdeh
  surname: Kappus
  middlename: S.
  fullname: Kappus, Mojdeh S.
– sequence: 7
  givenname: Darren
  surname: Gorman
  middlename: J.
  fullname: Gorman, Darren J.
– sequence: 8
  givenname: Prabhakara
  surname: Nagareddy
  middlename: R.
  fullname: Nagareddy, Prabhakara R.
– sequence: 9
  givenname: Xuewei
  surname: Zhu
  fullname: Zhu, Xuewei
– sequence: 10
  givenname: Sandra
  surname: Abramowicz
  fullname: Abramowicz, Sandra
– sequence: 11
  givenname: John
  surname: Parks
  middlename: S.
  fullname: Parks, John S.
– sequence: 12
  givenname: Carrie
  surname: Welch
  fullname: Welch, Carrie
– sequence: 13
  givenname: Edward
  surname: Fisher
  middlename: A.
  fullname: Fisher, Edward A.
– sequence: 14
  givenname: Nan
  surname: Wang
  fullname: Wang, Nan
– sequence: 15
  givenname: Laurent
  surname: Yvan-Charvet
  fullname: Yvan-Charvet, Laurent
– sequence: 16
  givenname: Alan
  surname: Tall
  middlename: R.
  fullname: Tall, Alan R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23572498$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1u1DAQhS1URLdbHgHkS25S_BPnR1yFUNqViqja7XXkOOOuwbG3tldVn4DXJpstIHHTG49Hc77R6JwTdOS8A4TeUXJGaUE_tqub9ub8trlspp6fcUJJVbxCCypYnuWipEdoQQips5JzcoxOYvxBCM05q9-gY8ZFyfK6WqBfX0AbZcCpJ-w1btbX2WfjBuPucStjhJQAr4N0cetDghBxQ7F0A76g2Dj8Targtxt5DxGvnAog4_zTVo6jTMa7WdwoBRaCTNOwSRsIPiq7f02ctxgFp-i1ljbC2-e6RHdfz9ftZXb1_WLVNleZyktWZKXmQotaQjXwvgAxVNAL6ImQfUmKglWkgBwEaF3qmrCq1lyTgdec90wxyvkSfTjs3Qb_sIOYutHE6TorHfhd7CgXIq9mp5bo_bN0148wdNtgRhmeuj_mTQJxEEwmxBhA_5VQ0u1D6v6FNPW8O4Q0cZ_-45RJs1spSGNfpOsD_ejtPpGfdvcIoduAtGnzAvsbKQCqvw
CitedBy_id crossref_primary_10_7554_eLife_08009
crossref_primary_10_1161_ATVBAHA_117_310507
crossref_primary_10_1016_j_atherosclerosis_2023_01_008
crossref_primary_10_1093_pnasnexus_pgae179
crossref_primary_10_1097_MOL_0000000000000108
crossref_primary_10_3390_cimb45090445
crossref_primary_10_1161_ATVBAHA_121_316235
crossref_primary_10_3390_ijms19082307
crossref_primary_10_1161_CIRCRESAHA_117_310750
crossref_primary_10_1093_clinchem_hvaa148
crossref_primary_10_1161_ATVBAHA_115_306376
crossref_primary_10_1097_MOL_0000000000000212
crossref_primary_10_1161_ATVBAHA_115_306132
crossref_primary_10_1161_ATVBAHA_118_311209
crossref_primary_10_1084_jem_20131335
crossref_primary_10_1172_JCI148559
crossref_primary_10_3390_cells10123598
crossref_primary_10_1371_journal_pone_0157085
crossref_primary_10_1097_MNH_0000000000000112
crossref_primary_10_1161_ATVBAHA_116_307285
crossref_primary_10_1172_jci_insight_120824
crossref_primary_10_1161_ATVBAHA_121_315930
crossref_primary_10_3390_biomedicines10010128
crossref_primary_10_1016_j_immuni_2022_08_002
crossref_primary_10_1160_TH15_07_0571
crossref_primary_10_1016_j_plipres_2014_07_003
crossref_primary_10_1016_j_apsb_2022_04_003
crossref_primary_10_3390_biom12050679
crossref_primary_10_1093_bioinformatics_bty980
crossref_primary_10_1161_ATVBAHA_119_313200
crossref_primary_10_1038_s41418_020_00623_9
crossref_primary_10_1016_j_celrep_2018_11_100
crossref_primary_10_2217_clp_14_50
crossref_primary_10_2217_clp_14_35
crossref_primary_10_1016_j_ijcard_2019_07_094
crossref_primary_10_1093_cvr_cvac189
crossref_primary_10_1016_j_biochi_2014_08_003
crossref_primary_10_3233_JAD_180088
crossref_primary_10_3390_ijms23063194
crossref_primary_10_1016_j_bbalip_2021_159106
crossref_primary_10_1002_jcp_27752
crossref_primary_10_3390_cells8091028
crossref_primary_10_1016_j_jacc_2016_10_029
crossref_primary_10_1016_j_numecd_2014_02_010
crossref_primary_10_1093_eurheartj_ehv718
crossref_primary_10_3389_fphys_2018_00654
crossref_primary_10_3390_cells12081186
crossref_primary_10_1515_hsz_2018_0461
crossref_primary_10_1007_s11033_021_07039_9
crossref_primary_10_1371_journal_pone_0073861
crossref_primary_10_1080_14728222_2022_2117610
crossref_primary_10_1161_ATVBAHA_118_311366
crossref_primary_10_1161_CIRCRESAHA_117_305860
crossref_primary_10_2337_dbi15_0015
crossref_primary_10_1097_MOL_0000000000000258
crossref_primary_10_1161_CIRCRESAHA_119_312617
crossref_primary_10_3390_jcdd8120170
crossref_primary_10_1161_ATVBAHA_117_310418
crossref_primary_10_1177_20406223221081605
crossref_primary_10_1172_jci_insight_174639
crossref_primary_10_1016_j_imlet_2015_08_003
crossref_primary_10_1161_JAHA_117_006297
crossref_primary_10_3390_ijms161024965
crossref_primary_10_1016_j_tem_2013_10_007
crossref_primary_10_3892_ijmm_2017_2949
crossref_primary_10_1371_journal_pone_0168828
crossref_primary_10_3390_ijms160817245
crossref_primary_10_1016_j_ccl_2017_12_013
crossref_primary_10_1165_rcmb_2013_0264OC
crossref_primary_10_5551_jat_57125
crossref_primary_10_1007_s00424_017_1941_y
crossref_primary_10_1161_ATVBAHA_119_313640
crossref_primary_10_1161_CIRCRESAHA_115_306256
crossref_primary_10_1002_1873_3468_12702
crossref_primary_10_12997_jla_2023_12_2_189
crossref_primary_10_1194_jlr_M084442
crossref_primary_10_1002_sctm_19_0390
crossref_primary_10_1016_j_ejphar_2017_10_005
crossref_primary_10_1055_a_1711_1055
crossref_primary_10_3390_ijms22168791
crossref_primary_10_1016_j_cmet_2017_04_005
crossref_primary_10_1073_pnas_2007836117
crossref_primary_10_1016_j_celrep_2015_08_068
crossref_primary_10_1038_s41569_021_00629_x
crossref_primary_10_3390_ijms21165845
crossref_primary_10_1080_17425255_2018_1482276
crossref_primary_10_1158_0008_5472_CAN_20_4028
crossref_primary_10_1093_cvr_cvy308
crossref_primary_10_1093_cvr_cvz138
crossref_primary_10_1016_j_jbc_2024_107224
crossref_primary_10_1016_j_stem_2023_05_005
crossref_primary_10_3892_mmr_2016_5233
crossref_primary_10_1016_j_ijcard_2013_12_168
crossref_primary_10_1016_j_isci_2023_108337
crossref_primary_10_1074_jbc_M113_512244
crossref_primary_10_1093_eurheartj_ehy119
crossref_primary_10_1111_imr_12219
crossref_primary_10_1016_j_atherosclerosis_2016_04_030
crossref_primary_10_1016_j_atherosclerosis_2022_01_008
crossref_primary_10_5551_jat_46615
crossref_primary_10_1016_j_atherosclerosis_2018_07_004
crossref_primary_10_1016_j_phrs_2021_105747
crossref_primary_10_1093_nutrit_nuae106
crossref_primary_10_1186_s12967_023_03962_6
crossref_primary_10_1016_j_molmed_2014_12_008
crossref_primary_10_1038_s41580_019_0190_7
crossref_primary_10_1016_j_addr_2020_04_013
crossref_primary_10_1111_nyas_13462
crossref_primary_10_1111_cts_12186
crossref_primary_10_1016_j_immuni_2023_08_019
crossref_primary_10_1111_jcmm_13462
crossref_primary_10_1016_j_jphs_2021_11_005
crossref_primary_10_1016_j_it_2019_10_002
crossref_primary_10_1155_2018_8907143
crossref_primary_10_1161_ATVBAHA_118_310768
crossref_primary_10_1042_CS20190459
crossref_primary_10_1093_carcin_bgy088
crossref_primary_10_2174_1381612825666191010171819
crossref_primary_10_1016_j_jlr_2024_100534
crossref_primary_10_1152_ajprenal_00375_2015
crossref_primary_10_1186_s12944_024_02420_6
crossref_primary_10_1093_cvr_cvu140
crossref_primary_10_1002_biof_1187
crossref_primary_10_1016_j_bbalip_2020_158860
crossref_primary_10_1080_09168451_2018_1547105
crossref_primary_10_3390_ijms23094513
crossref_primary_10_1093_cvr_cvab027
crossref_primary_10_1161_ATVBAHA_114_304959
crossref_primary_10_1016_j_atherosclerosis_2018_04_018
crossref_primary_10_1213_ANE_0000000000002792
crossref_primary_10_3389_fphys_2018_00343
crossref_primary_10_1042_BSR20221394
crossref_primary_10_1093_ndt_gft370
crossref_primary_10_3389_fendo_2019_00204
crossref_primary_10_1038_s41598_021_84249_y
crossref_primary_10_1016_j_phymed_2024_155864
crossref_primary_10_1016_j_bbalip_2017_12_011
crossref_primary_10_1002_cbin_12016
crossref_primary_10_1080_07853890_2019_1694695
crossref_primary_10_1111_bph_15286
crossref_primary_10_1161_ATVBAHA_115_305547
crossref_primary_10_1016_j_atherosclerosis_2025_119163
crossref_primary_10_1186_s12951_023_02040_9
crossref_primary_10_3390_jcm14051652
crossref_primary_10_3390_jcm8040495
crossref_primary_10_1016_j_jcjd_2013_07_062
crossref_primary_10_3390_ijms18112336
crossref_primary_10_18632_oncotarget_16223
crossref_primary_10_3389_fimmu_2014_00490
crossref_primary_10_1002_mnfr_201400925
crossref_primary_10_3389_fimmu_2022_972140
crossref_primary_10_1038_s41598_022_16017_5
crossref_primary_10_1016_j_jaut_2023_103029
crossref_primary_10_1038_nri3793
crossref_primary_10_1007_s11883_013_0354_4
crossref_primary_10_1089_jir_2013_0081
crossref_primary_10_1016_j_phrs_2021_105663
crossref_primary_10_1097_MOL_0b013e3283654ef9
crossref_primary_10_1007_s11892_019_1143_4
crossref_primary_10_3389_fphar_2018_01308
crossref_primary_10_1016_j_vetimm_2018_02_002
crossref_primary_10_1038_s44161_022_00022_y
crossref_primary_10_1038_srep32105
crossref_primary_10_1016_j_jlr_2021_100167
crossref_primary_10_7554_eLife_45100
crossref_primary_10_1038_s41467_022_31135_4
crossref_primary_10_1074_jbc_M116_730564
crossref_primary_10_1016_j_thromres_2017_06_020
crossref_primary_10_1080_10409238_2021_1925217
crossref_primary_10_18632_oncotarget_18666
crossref_primary_10_1161_ATVBAHA_119_313253
crossref_primary_10_1016_j_atherosclerosis_2018_05_023
crossref_primary_10_1093_cvr_cvad082
crossref_primary_10_1074_jbc_M115_686865
crossref_primary_10_1093_abbs_gmaa071
crossref_primary_10_1097_MOL_0000000000000642
crossref_primary_10_1097_MOL_0000000000000088
crossref_primary_10_1016_j_molmet_2022_101514
crossref_primary_10_2147_DDDT_S249846
crossref_primary_10_3389_fimmu_2020_00024
crossref_primary_10_1161_CIRCULATIONAHA_117_032636
crossref_primary_10_3390_nu15092117
crossref_primary_10_1002_fsn3_3296
crossref_primary_10_4049_jimmunol_2100927
crossref_primary_10_3390_nu15051296
crossref_primary_10_1016_j_smim_2016_10_007
crossref_primary_10_1161_JAHA_117_008187
crossref_primary_10_1016_j_celrep_2024_114102
crossref_primary_10_1016_j_jaci_2020_08_013
crossref_primary_10_15252_emmm_202115344
crossref_primary_10_1016_j_jconrel_2016_12_032
crossref_primary_10_1093_cvr_cvz107
crossref_primary_10_1097_MOL_0000000000000511
crossref_primary_10_1161_CIRCRESAHA_118_313028
crossref_primary_10_1161_ATVBAHA_115_306670
crossref_primary_10_1016_j_cyto_2015_09_016
crossref_primary_10_1016_j_jlr_2022_100241
crossref_primary_10_1038_s41598_019_47610_w
crossref_primary_10_1161_CIRCRESAHA_121_319120
crossref_primary_10_3390_ijerph13020220
crossref_primary_10_1016_j_biopha_2023_114309
crossref_primary_10_1096_fj_201701381
crossref_primary_10_1161_CIRCRESAHA_124_325103
crossref_primary_10_20900_immunometab20200028
crossref_primary_10_3390_ijms242417280
crossref_primary_10_1016_j_arr_2023_101993
crossref_primary_10_1038_srep20038
crossref_primary_10_1007_s11033_014_3823_0
crossref_primary_10_1371_journal_pone_0078241
crossref_primary_10_18632_oncotarget_19657
Cites_doi 10.1161/CIRCULATIONAHA.107.745091
10.1056/NEJMoa1107579
10.1073/pnas.0403506101
10.1111/j.1365-2796.2007.01898.x
10.1161/circresaha.110.217281
10.1074/jbc.M006738200
10.1016/S1074-7613(03)00299-1
10.1172/JCI29919
10.1172/JCI6577
10.1161/01.res.0000146094.59640.13
10.1056/NEJMoa0706628
10.1161/circulationaha.108.793869
10.1172/JCI200523915
10.1016/0002-9343(77)90874-9
10.1161/circulationaha.105.560177
10.1056/NEJMoa1001689
10.1161/atvbaha.107.156935
10.1073/pnas.092327399
10.1161/circulationaha.110.961193
10.1126/science.1171461
10.1001/jama.297.15.jpc70004
10.1074/jbc.M005438200
10.1172/JCI57559
10.1038/11905
10.1126/science.1189731
10.1161/atvbaha.108.182303
10.1161/01.res.0000185320.82962.f7
10.1371/journal.pone.0031508
10.1016/j.cmet.2005.01.002
10.1084/jem.20081430
10.1038/11921
10.1038/11914
ContentType Journal Article
Copyright 2013 American Heart Association, Inc.
Copyright_xml – notice: 2013 American Heart Association, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/CIRCRESAHA.113.301086
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4571
EndPage 1465
ExternalDocumentID 23572498
10_1161_CIRCRESAHA_113_301086
10.1161/CIRCRESAHA.113.301086
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL098055
– fundername: NHLBI NIH HHS
  grantid: T32 HL098129
– fundername: NHLBI NIH HHS
  grantid: R01 HL094525
– fundername: NHLBI NIH HHS
  grantid: T32HL098129
– fundername: NHLBI NIH HHS
  grantid: P01 HL098055
– fundername: NHLBI NIH HHS
  grantid: HL107653
– fundername: NHLBI NIH HHS
  grantid: R01 HL137799
– fundername: NHLBI NIH HHS
  grantid: R00 HL122505
– fundername: NHLBI NIH HHS
  grantid: R01 HL107653
– fundername: NHLBI NIH HHS
  grantid: HL094525
GroupedDBID ---
-~X
.-D
.3C
.Z2
01R
0R~
18M
1J1
29B
2WC
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AARTV
AASOK
AAXQO
ABBUW
ABDIG
ABJNI
ABOCM
ABPXF
ABQRW
ABXVJ
ABZAD
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACNWC
ACPRK
ACWDW
ACWRI
ACXNZ
ACZKN
ADBBV
ADGGA
ADHPY
AE3
AE6
AEETU
AENEX
AFDTB
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
ALKUP
ALMA_UNASSIGNED_HOLDINGS
AMJPA
AMNEI
BAWUL
BOYCO
BQLVK
BYPQX
C45
CS3
DIK
DIWNM
DU5
DUNZO
E.X
E3Z
EBS
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
FW0
GX1
H0~
H13
HZ~
IKREB
IKYAY
IN~
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OB2
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OWW
OWY
OXXIT
P2P
PQQKQ
RAH
RLZ
S4R
S4S
T8P
TEORI
TR2
UPT
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
YFH
YOC
ZFV
ZZMQN
AAYXX
ADGHP
CITATION
ACIJW
AWKKM
CGR
CUY
CVF
ECM
EIF
NPM
ODA
OLW
RHF
7X8
ID FETCH-LOGICAL-c4726-7f35f59ae8d3b6e5d8eb5eb05ab70662806e4e5eff7f90289f3f0d3933b2c2133
ISSN 0009-7330
1524-4571
IngestDate Fri Jul 11 04:02:23 EDT 2025
Wed Feb 19 02:27:07 EST 2025
Tue Jul 01 04:27:44 EDT 2025
Thu Apr 24 22:52:34 EDT 2025
Fri May 16 03:50:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords atherosclerosis
monocytes
macrophages
inflammation
high-density lipoprotein
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4726-7f35f59ae8d3b6e5d8eb5eb05ab70662806e4e5eff7f90289f3f0d3933b2c2133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.113.301086
PMID 23572498
PQID 1355480014
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1355480014
pubmed_primary_23572498
crossref_primary_10_1161_CIRCRESAHA_113_301086
crossref_citationtrail_10_1161_CIRCRESAHA_113_301086
wolterskluwer_health_10_1161_CIRCRESAHA_113_301086
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-May-24
2013-05-24
20130524
PublicationDateYYYYMMDD 2013-05-24
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-May-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Circulation research
PublicationTitleAlternate Circ Res
PublicationYear 2013
Publisher American Heart Association, Inc
Publisher_xml – name: American Heart Association, Inc
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_9_2
e_1_3_4_8_2
Yvan-Charvet L (e_1_3_4_19_2) 2007; 117
e_1_3_4_7_2
e_1_3_4_6_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_16_2
e_1_3_4_13_2
e_1_3_4_14_2
e_1_3_4_17_2
e_1_3_4_18_2
References_xml – ident: e_1_3_4_27_2
  doi: 10.1161/CIRCULATIONAHA.107.745091
– ident: e_1_3_4_4_2
  doi: 10.1056/NEJMoa1107579
– ident: e_1_3_4_13_2
  doi: 10.1073/pnas.0403506101
– ident: e_1_3_4_7_2
  doi: 10.1111/j.1365-2796.2007.01898.x
– ident: e_1_3_4_26_2
  doi: 10.1161/circresaha.110.217281
– ident: e_1_3_4_10_2
  doi: 10.1074/jbc.M006738200
– ident: e_1_3_4_23_2
  doi: 10.1016/S1074-7613(03)00299-1
– ident: e_1_3_4_32_2
  doi: 10.1172/JCI29919
– ident: e_1_3_4_5_2
  doi: 10.1172/JCI6577
– ident: e_1_3_4_8_2
  doi: 10.1161/01.res.0000146094.59640.13
– ident: e_1_3_4_3_2
  doi: 10.1056/NEJMoa0706628
– ident: e_1_3_4_24_2
  doi: 10.1161/circulationaha.108.793869
– ident: e_1_3_4_21_2
  doi: 10.1172/JCI200523915
– volume: 117
  start-page: 3900
  year: 2007
  ident: e_1_3_4_19_2
  article-title: Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice.
  publication-title: J Clin Invest
– ident: e_1_3_4_2_2
  doi: 10.1016/0002-9343(77)90874-9
– ident: e_1_3_4_29_2
  doi: 10.1161/circulationaha.105.560177
– ident: e_1_3_4_31_2
  doi: 10.1056/NEJMoa1001689
– ident: e_1_3_4_25_2
  doi: 10.1161/atvbaha.107.156935
– ident: e_1_3_4_17_2
  doi: 10.1073/pnas.092327399
– ident: e_1_3_4_9_2
  doi: 10.1161/circulationaha.110.961193
– ident: e_1_3_4_33_2
  doi: 10.1126/science.1171461
– ident: e_1_3_4_6_2
  doi: 10.1001/jama.297.15.jpc70004
– ident: e_1_3_4_11_2
  doi: 10.1074/jbc.M005438200
– ident: e_1_3_4_34_2
  doi: 10.1172/JCI57559
– ident: e_1_3_4_16_2
  doi: 10.1038/11905
– ident: e_1_3_4_20_2
  doi: 10.1126/science.1189731
– ident: e_1_3_4_18_2
  doi: 10.1161/atvbaha.108.182303
– ident: e_1_3_4_30_2
  doi: 10.1161/01.res.0000185320.82962.f7
– ident: e_1_3_4_28_2
  doi: 10.1371/journal.pone.0031508
– ident: e_1_3_4_12_2
  doi: 10.1016/j.cmet.2005.01.002
– ident: e_1_3_4_22_2
  doi: 10.1084/jem.20081430
– ident: e_1_3_4_14_2
  doi: 10.1038/11921
– ident: e_1_3_4_15_2
  doi: 10.1038/11914
SSID ssj0014329
Score 2.5345385
Snippet RATIONALE:Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the...
Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of...
SourceID proquest
pubmed
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1456
SubjectTerms Animal Feed
Animals
Atherosclerosis - genetics
Atherosclerosis - immunology
Atherosclerosis - pathology
ATP Binding Cassette Transporter 1
ATP Binding Cassette Transporter, Subfamily G, Member 1
ATP-Binding Cassette Transporters - genetics
ATP-Binding Cassette Transporters - immunology
ATP-Binding Cassette Transporters - metabolism
Bone Marrow Transplantation
Cholesterol, Dietary - metabolism
Foam Cells - immunology
Foam Cells - metabolism
Foam Cells - pathology
Lipoproteins - genetics
Lipoproteins - immunology
Lipoproteins - metabolism
Macrophages - immunology
Macrophages - metabolism
Macrophages - pathology
Mice
Mice, Knockout
Monocytes - immunology
Monocytes - metabolism
Monocytes - pathology
Neutrophils - immunology
Neutrophils - metabolism
Neutrophils - pathology
Receptors, LDL - genetics
Receptors, LDL - metabolism
Spleen - pathology
Vasculitis - genetics
Vasculitis - immunology
Vasculitis - pathology
Title Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice
URI https://www.ncbi.nlm.nih.gov/pubmed/23572498
https://www.proquest.com/docview/1355480014
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELXKIiEQQlyXcpOReKtS4jjO5TEUaFmpCKGu6FsUuw5ELC3qRUj8AF_GfzFju6l3t1pYXqw0iidu53Q8ts_MEPJC5qEEwwerk6SCBUoqw6BSqQw0-Pp1HoooU4Zt8T4ZHcdHUzHtdH57rKXNWvbVz71xJf-jVbgHesUo2UtothUKN-Aa9AstaBjaf9Lxa435H0zwJDqUkw_Bq8ZGqQzAJ0YSj5e8fLnqFcycFQwZ7nKMK6ze9aXCJA9gJZCcbq5qwIiNZzQPF0rBzIQJJaA_eouLFYwC2sYwaceOO9dmO2iWylUE67lEQu2G8yeTlQFJji5KqFmf17dlWPaO-rutfmuOxs3uuOuzi1-cVN-qZdUr-v7mBTNUQRsz3RrkPEi5O5rRzgZHcRALW5mlNdIs8tHIPJvLYpF48zeYfrF_bkhwbhi8-zgAbBejAsvZ9MG-hftycZ-ZI1vmolkzJazciYHPvLRirpCrEaxWsJDGcNoyjcAjjfJtQT_8ri6QDMS83Dua0y7SuXXPDXLzxwKpFKuvJpLC84cmt8ktt5ChhUXlHdLR87vk2thRNe6RXztw0kVNPXDSLTipD05aMAp4o0NGmzn1wElbcFIfnOZhD5z0DDiNFADnfXL89s1kMApc1Y9AxWmUBGnNRS3ySmczLhMtZpmWQstQVDLFcgVZmOhYC13XaY2ph_Ka1-GM55zLSEWM8wfkYL6Y64eEKq5rCUJlngowQ4nMmaqyONYJV5nmSZfE2x-6VC4lPlZmOSkvVHOX9Ntu321OmL91eL7VYgnWG4_kqrlebFYlQ3c_Q4x0yaFVbysSE1FFcZ51SXRK36WNkL74lY8uO8bH5PruD_qEHKyXG_0U_O21fGbQ_AeDFs9d
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deficiency+of+ATP-Binding+Cassette+Transporters+A1+and+G1+in+Macrophages+Increases+Inflammation+and+Accelerates+Atherosclerosis+in+Mice&rft.jtitle=Circulation+research&rft.au=Westerterp%2C+Marit&rft.au=Murphy%2C+Andrew+J.&rft.au=Wang%2C+Mi&rft.au=Pagler%2C+Tamara+A.&rft.date=2013-05-24&rft.issn=0009-7330&rft.eissn=1524-4571&rft.volume=112&rft.issue=11&rft.spage=1456&rft.epage=1465&rft_id=info:doi/10.1161%2FCIRCRESAHA.113.301086&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_CIRCRESAHA_113_301086
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon