Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice
RATIONALE:Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis...
Saved in:
Published in | Circulation research Vol. 112; no. 11; pp. 1456 - 1465 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
24.05.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RATIONALE:Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking.
OBJECTIVE:To assess the role of macrophage cholesterol efflux pathways in atherogenesis.
METHODS AND RESULTS:We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC mice) but not in hematopoietic stem or progenitor populations. MAC-ABC bone marrow (BM) was transplanted into Ldlr recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC BM–transplanted Ldlr mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet–fed MAC-ABC BM–transplanted Ldlr mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production.
CONCLUSIONS:These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways. |
---|---|
AbstractList | RATIONALE:Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking.
OBJECTIVE:To assess the role of macrophage cholesterol efflux pathways in atherogenesis.
METHODS AND RESULTS:We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC mice) but not in hematopoietic stem or progenitor populations. MAC-ABC bone marrow (BM) was transplanted into Ldlr recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC BM–transplanted Ldlr mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet–fed MAC-ABC BM–transplanted Ldlr mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production.
CONCLUSIONS:These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways. Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking.RATIONALEPlasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking.To assess the role of macrophage cholesterol efflux pathways in atherogenesis.OBJECTIVETo assess the role of macrophage cholesterol efflux pathways in atherogenesis.We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC(DKO) mice) but not in hematopoietic stem or progenitor populations. MAC-ABC(DKO) bone marrow (BM) was transplanted into Ldlr(-/-) recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet-fed MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production.METHODS AND RESULTSWe developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC(DKO) mice) but not in hematopoietic stem or progenitor populations. MAC-ABC(DKO) bone marrow (BM) was transplanted into Ldlr(-/-) recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet-fed MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production.These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways.CONCLUSIONSThese studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways. Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. To assess the role of macrophage cholesterol efflux pathways in atherogenesis. We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC(DKO) mice) but not in hematopoietic stem or progenitor populations. MAC-ABC(DKO) bone marrow (BM) was transplanted into Ldlr(-/-) recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet-fed MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production. These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways. |
Author | Murphy, Andrew J. Nagareddy, Prabhakara R. Pagler, Tamara A. Parks, John S. Wang, Mi Wang, Nan Zhu, Xuewei Tall, Alan R. Vengrenyuk, Yuliya Abramowicz, Sandra Welch, Carrie Fisher, Edward A. Yvan-Charvet, Laurent Gorman, Darren J. Westerterp, Marit Kappus, Mojdeh S. |
AuthorAffiliation | From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.J.M., M.W., T.A.P., M.S.K., D.J.G., S.A., C.W., N.W., L.Y.-C., A.R.T.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.W.); Department of Medicine (Cardiology) and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY (Y.V., E.A.F.); Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University, New York, NY (P.R.N.); and Department of Pathology/Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC (X.Z., J.S.P.) |
AuthorAffiliation_xml | – name: From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.J.M., M.W., T.A.P., M.S.K., D.J.G., S.A., C.W., N.W., L.Y.-C., A.R.T.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.W.); Department of Medicine (Cardiology) and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY (Y.V., E.A.F.); Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University, New York, NY (P.R.N.); and Department of Pathology/Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC (X.Z., J.S.P.) |
Author_xml | – sequence: 1 givenname: Marit surname: Westerterp fullname: Westerterp, Marit organization: From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.J.M., M.W., T.A.P., M.S.K., D.J.G., S.A., C.W., N.W., L.Y.-C., A.R.T.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.W.); Department of Medicine (Cardiology) and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY (Y.V., E.A.F.); Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University, New York, NY (P.R.N.); and Department of Pathology/Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC (X.Z., J.S.P.) – sequence: 2 givenname: Andrew surname: Murphy middlename: J. fullname: Murphy, Andrew J. – sequence: 3 givenname: Mi surname: Wang fullname: Wang, Mi – sequence: 4 givenname: Tamara surname: Pagler middlename: A. fullname: Pagler, Tamara A. – sequence: 5 givenname: Yuliya surname: Vengrenyuk fullname: Vengrenyuk, Yuliya – sequence: 6 givenname: Mojdeh surname: Kappus middlename: S. fullname: Kappus, Mojdeh S. – sequence: 7 givenname: Darren surname: Gorman middlename: J. fullname: Gorman, Darren J. – sequence: 8 givenname: Prabhakara surname: Nagareddy middlename: R. fullname: Nagareddy, Prabhakara R. – sequence: 9 givenname: Xuewei surname: Zhu fullname: Zhu, Xuewei – sequence: 10 givenname: Sandra surname: Abramowicz fullname: Abramowicz, Sandra – sequence: 11 givenname: John surname: Parks middlename: S. fullname: Parks, John S. – sequence: 12 givenname: Carrie surname: Welch fullname: Welch, Carrie – sequence: 13 givenname: Edward surname: Fisher middlename: A. fullname: Fisher, Edward A. – sequence: 14 givenname: Nan surname: Wang fullname: Wang, Nan – sequence: 15 givenname: Laurent surname: Yvan-Charvet fullname: Yvan-Charvet, Laurent – sequence: 16 givenname: Alan surname: Tall middlename: R. fullname: Tall, Alan R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23572498$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1u1DAQhS1URLdbHgHkS25S_BPnR1yFUNqViqja7XXkOOOuwbG3tldVn4DXJpstIHHTG49Hc77R6JwTdOS8A4TeUXJGaUE_tqub9ub8trlspp6fcUJJVbxCCypYnuWipEdoQQips5JzcoxOYvxBCM05q9-gY8ZFyfK6WqBfX0AbZcCpJ-w1btbX2WfjBuPucStjhJQAr4N0cetDghBxQ7F0A76g2Dj8Targtxt5DxGvnAog4_zTVo6jTMa7WdwoBRaCTNOwSRsIPiq7f02ctxgFp-i1ljbC2-e6RHdfz9ftZXb1_WLVNleZyktWZKXmQotaQjXwvgAxVNAL6ImQfUmKglWkgBwEaF3qmrCq1lyTgdec90wxyvkSfTjs3Qb_sIOYutHE6TorHfhd7CgXIq9mp5bo_bN0148wdNtgRhmeuj_mTQJxEEwmxBhA_5VQ0u1D6v6FNPW8O4Q0cZ_-45RJs1spSGNfpOsD_ejtPpGfdvcIoduAtGnzAvsbKQCqvw |
CitedBy_id | crossref_primary_10_7554_eLife_08009 crossref_primary_10_1161_ATVBAHA_117_310507 crossref_primary_10_1016_j_atherosclerosis_2023_01_008 crossref_primary_10_1093_pnasnexus_pgae179 crossref_primary_10_1097_MOL_0000000000000108 crossref_primary_10_3390_cimb45090445 crossref_primary_10_1161_ATVBAHA_121_316235 crossref_primary_10_3390_ijms19082307 crossref_primary_10_1161_CIRCRESAHA_117_310750 crossref_primary_10_1093_clinchem_hvaa148 crossref_primary_10_1161_ATVBAHA_115_306376 crossref_primary_10_1097_MOL_0000000000000212 crossref_primary_10_1161_ATVBAHA_115_306132 crossref_primary_10_1161_ATVBAHA_118_311209 crossref_primary_10_1084_jem_20131335 crossref_primary_10_1172_JCI148559 crossref_primary_10_3390_cells10123598 crossref_primary_10_1371_journal_pone_0157085 crossref_primary_10_1097_MNH_0000000000000112 crossref_primary_10_1161_ATVBAHA_116_307285 crossref_primary_10_1172_jci_insight_120824 crossref_primary_10_1161_ATVBAHA_121_315930 crossref_primary_10_3390_biomedicines10010128 crossref_primary_10_1016_j_immuni_2022_08_002 crossref_primary_10_1160_TH15_07_0571 crossref_primary_10_1016_j_plipres_2014_07_003 crossref_primary_10_1016_j_apsb_2022_04_003 crossref_primary_10_3390_biom12050679 crossref_primary_10_1093_bioinformatics_bty980 crossref_primary_10_1161_ATVBAHA_119_313200 crossref_primary_10_1038_s41418_020_00623_9 crossref_primary_10_1016_j_celrep_2018_11_100 crossref_primary_10_2217_clp_14_50 crossref_primary_10_2217_clp_14_35 crossref_primary_10_1016_j_ijcard_2019_07_094 crossref_primary_10_1093_cvr_cvac189 crossref_primary_10_1016_j_biochi_2014_08_003 crossref_primary_10_3233_JAD_180088 crossref_primary_10_3390_ijms23063194 crossref_primary_10_1016_j_bbalip_2021_159106 crossref_primary_10_1002_jcp_27752 crossref_primary_10_3390_cells8091028 crossref_primary_10_1016_j_jacc_2016_10_029 crossref_primary_10_1016_j_numecd_2014_02_010 crossref_primary_10_1093_eurheartj_ehv718 crossref_primary_10_3389_fphys_2018_00654 crossref_primary_10_3390_cells12081186 crossref_primary_10_1515_hsz_2018_0461 crossref_primary_10_1007_s11033_021_07039_9 crossref_primary_10_1371_journal_pone_0073861 crossref_primary_10_1080_14728222_2022_2117610 crossref_primary_10_1161_ATVBAHA_118_311366 crossref_primary_10_1161_CIRCRESAHA_117_305860 crossref_primary_10_2337_dbi15_0015 crossref_primary_10_1097_MOL_0000000000000258 crossref_primary_10_1161_CIRCRESAHA_119_312617 crossref_primary_10_3390_jcdd8120170 crossref_primary_10_1161_ATVBAHA_117_310418 crossref_primary_10_1177_20406223221081605 crossref_primary_10_1172_jci_insight_174639 crossref_primary_10_1016_j_imlet_2015_08_003 crossref_primary_10_1161_JAHA_117_006297 crossref_primary_10_3390_ijms161024965 crossref_primary_10_1016_j_tem_2013_10_007 crossref_primary_10_3892_ijmm_2017_2949 crossref_primary_10_1371_journal_pone_0168828 crossref_primary_10_3390_ijms160817245 crossref_primary_10_1016_j_ccl_2017_12_013 crossref_primary_10_1165_rcmb_2013_0264OC crossref_primary_10_5551_jat_57125 crossref_primary_10_1007_s00424_017_1941_y crossref_primary_10_1161_ATVBAHA_119_313640 crossref_primary_10_1161_CIRCRESAHA_115_306256 crossref_primary_10_1002_1873_3468_12702 crossref_primary_10_12997_jla_2023_12_2_189 crossref_primary_10_1194_jlr_M084442 crossref_primary_10_1002_sctm_19_0390 crossref_primary_10_1016_j_ejphar_2017_10_005 crossref_primary_10_1055_a_1711_1055 crossref_primary_10_3390_ijms22168791 crossref_primary_10_1016_j_cmet_2017_04_005 crossref_primary_10_1073_pnas_2007836117 crossref_primary_10_1016_j_celrep_2015_08_068 crossref_primary_10_1038_s41569_021_00629_x crossref_primary_10_3390_ijms21165845 crossref_primary_10_1080_17425255_2018_1482276 crossref_primary_10_1158_0008_5472_CAN_20_4028 crossref_primary_10_1093_cvr_cvy308 crossref_primary_10_1093_cvr_cvz138 crossref_primary_10_1016_j_jbc_2024_107224 crossref_primary_10_1016_j_stem_2023_05_005 crossref_primary_10_3892_mmr_2016_5233 crossref_primary_10_1016_j_ijcard_2013_12_168 crossref_primary_10_1016_j_isci_2023_108337 crossref_primary_10_1074_jbc_M113_512244 crossref_primary_10_1093_eurheartj_ehy119 crossref_primary_10_1111_imr_12219 crossref_primary_10_1016_j_atherosclerosis_2016_04_030 crossref_primary_10_1016_j_atherosclerosis_2022_01_008 crossref_primary_10_5551_jat_46615 crossref_primary_10_1016_j_atherosclerosis_2018_07_004 crossref_primary_10_1016_j_phrs_2021_105747 crossref_primary_10_1093_nutrit_nuae106 crossref_primary_10_1186_s12967_023_03962_6 crossref_primary_10_1016_j_molmed_2014_12_008 crossref_primary_10_1038_s41580_019_0190_7 crossref_primary_10_1016_j_addr_2020_04_013 crossref_primary_10_1111_nyas_13462 crossref_primary_10_1111_cts_12186 crossref_primary_10_1016_j_immuni_2023_08_019 crossref_primary_10_1111_jcmm_13462 crossref_primary_10_1016_j_jphs_2021_11_005 crossref_primary_10_1016_j_it_2019_10_002 crossref_primary_10_1155_2018_8907143 crossref_primary_10_1161_ATVBAHA_118_310768 crossref_primary_10_1042_CS20190459 crossref_primary_10_1093_carcin_bgy088 crossref_primary_10_2174_1381612825666191010171819 crossref_primary_10_1016_j_jlr_2024_100534 crossref_primary_10_1152_ajprenal_00375_2015 crossref_primary_10_1186_s12944_024_02420_6 crossref_primary_10_1093_cvr_cvu140 crossref_primary_10_1002_biof_1187 crossref_primary_10_1016_j_bbalip_2020_158860 crossref_primary_10_1080_09168451_2018_1547105 crossref_primary_10_3390_ijms23094513 crossref_primary_10_1093_cvr_cvab027 crossref_primary_10_1161_ATVBAHA_114_304959 crossref_primary_10_1016_j_atherosclerosis_2018_04_018 crossref_primary_10_1213_ANE_0000000000002792 crossref_primary_10_3389_fphys_2018_00343 crossref_primary_10_1042_BSR20221394 crossref_primary_10_1093_ndt_gft370 crossref_primary_10_3389_fendo_2019_00204 crossref_primary_10_1038_s41598_021_84249_y crossref_primary_10_1016_j_phymed_2024_155864 crossref_primary_10_1016_j_bbalip_2017_12_011 crossref_primary_10_1002_cbin_12016 crossref_primary_10_1080_07853890_2019_1694695 crossref_primary_10_1111_bph_15286 crossref_primary_10_1161_ATVBAHA_115_305547 crossref_primary_10_1016_j_atherosclerosis_2025_119163 crossref_primary_10_1186_s12951_023_02040_9 crossref_primary_10_3390_jcm14051652 crossref_primary_10_3390_jcm8040495 crossref_primary_10_1016_j_jcjd_2013_07_062 crossref_primary_10_3390_ijms18112336 crossref_primary_10_18632_oncotarget_16223 crossref_primary_10_3389_fimmu_2014_00490 crossref_primary_10_1002_mnfr_201400925 crossref_primary_10_3389_fimmu_2022_972140 crossref_primary_10_1038_s41598_022_16017_5 crossref_primary_10_1016_j_jaut_2023_103029 crossref_primary_10_1038_nri3793 crossref_primary_10_1007_s11883_013_0354_4 crossref_primary_10_1089_jir_2013_0081 crossref_primary_10_1016_j_phrs_2021_105663 crossref_primary_10_1097_MOL_0b013e3283654ef9 crossref_primary_10_1007_s11892_019_1143_4 crossref_primary_10_3389_fphar_2018_01308 crossref_primary_10_1016_j_vetimm_2018_02_002 crossref_primary_10_1038_s44161_022_00022_y crossref_primary_10_1038_srep32105 crossref_primary_10_1016_j_jlr_2021_100167 crossref_primary_10_7554_eLife_45100 crossref_primary_10_1038_s41467_022_31135_4 crossref_primary_10_1074_jbc_M116_730564 crossref_primary_10_1016_j_thromres_2017_06_020 crossref_primary_10_1080_10409238_2021_1925217 crossref_primary_10_18632_oncotarget_18666 crossref_primary_10_1161_ATVBAHA_119_313253 crossref_primary_10_1016_j_atherosclerosis_2018_05_023 crossref_primary_10_1093_cvr_cvad082 crossref_primary_10_1074_jbc_M115_686865 crossref_primary_10_1093_abbs_gmaa071 crossref_primary_10_1097_MOL_0000000000000642 crossref_primary_10_1097_MOL_0000000000000088 crossref_primary_10_1016_j_molmet_2022_101514 crossref_primary_10_2147_DDDT_S249846 crossref_primary_10_3389_fimmu_2020_00024 crossref_primary_10_1161_CIRCULATIONAHA_117_032636 crossref_primary_10_3390_nu15092117 crossref_primary_10_1002_fsn3_3296 crossref_primary_10_4049_jimmunol_2100927 crossref_primary_10_3390_nu15051296 crossref_primary_10_1016_j_smim_2016_10_007 crossref_primary_10_1161_JAHA_117_008187 crossref_primary_10_1016_j_celrep_2024_114102 crossref_primary_10_1016_j_jaci_2020_08_013 crossref_primary_10_15252_emmm_202115344 crossref_primary_10_1016_j_jconrel_2016_12_032 crossref_primary_10_1093_cvr_cvz107 crossref_primary_10_1097_MOL_0000000000000511 crossref_primary_10_1161_CIRCRESAHA_118_313028 crossref_primary_10_1161_ATVBAHA_115_306670 crossref_primary_10_1016_j_cyto_2015_09_016 crossref_primary_10_1016_j_jlr_2022_100241 crossref_primary_10_1038_s41598_019_47610_w crossref_primary_10_1161_CIRCRESAHA_121_319120 crossref_primary_10_3390_ijerph13020220 crossref_primary_10_1016_j_biopha_2023_114309 crossref_primary_10_1096_fj_201701381 crossref_primary_10_1161_CIRCRESAHA_124_325103 crossref_primary_10_20900_immunometab20200028 crossref_primary_10_3390_ijms242417280 crossref_primary_10_1016_j_arr_2023_101993 crossref_primary_10_1038_srep20038 crossref_primary_10_1007_s11033_014_3823_0 crossref_primary_10_1371_journal_pone_0078241 crossref_primary_10_18632_oncotarget_19657 |
Cites_doi | 10.1161/CIRCULATIONAHA.107.745091 10.1056/NEJMoa1107579 10.1073/pnas.0403506101 10.1111/j.1365-2796.2007.01898.x 10.1161/circresaha.110.217281 10.1074/jbc.M006738200 10.1016/S1074-7613(03)00299-1 10.1172/JCI29919 10.1172/JCI6577 10.1161/01.res.0000146094.59640.13 10.1056/NEJMoa0706628 10.1161/circulationaha.108.793869 10.1172/JCI200523915 10.1016/0002-9343(77)90874-9 10.1161/circulationaha.105.560177 10.1056/NEJMoa1001689 10.1161/atvbaha.107.156935 10.1073/pnas.092327399 10.1161/circulationaha.110.961193 10.1126/science.1171461 10.1001/jama.297.15.jpc70004 10.1074/jbc.M005438200 10.1172/JCI57559 10.1038/11905 10.1126/science.1189731 10.1161/atvbaha.108.182303 10.1161/01.res.0000185320.82962.f7 10.1371/journal.pone.0031508 10.1016/j.cmet.2005.01.002 10.1084/jem.20081430 10.1038/11921 10.1038/11914 |
ContentType | Journal Article |
Copyright | 2013 American Heart Association, Inc. |
Copyright_xml | – notice: 2013 American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/CIRCRESAHA.113.301086 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4571 |
EndPage | 1465 |
ExternalDocumentID | 23572498 10_1161_CIRCRESAHA_113_301086 10.1161/CIRCRESAHA.113.301086 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL098055 – fundername: NHLBI NIH HHS grantid: T32 HL098129 – fundername: NHLBI NIH HHS grantid: R01 HL094525 – fundername: NHLBI NIH HHS grantid: T32HL098129 – fundername: NHLBI NIH HHS grantid: P01 HL098055 – fundername: NHLBI NIH HHS grantid: HL107653 – fundername: NHLBI NIH HHS grantid: R01 HL137799 – fundername: NHLBI NIH HHS grantid: R00 HL122505 – fundername: NHLBI NIH HHS grantid: R01 HL107653 – fundername: NHLBI NIH HHS grantid: HL094525 |
GroupedDBID | --- -~X .-D .3C .Z2 01R 0R~ 18M 1J1 29B 2WC 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AARTV AASOK AAXQO ABBUW ABDIG ABJNI ABOCM ABPXF ABQRW ABXVJ ABZAD ACCJW ACDDN ACEWG ACGFO ACGFS ACILI ACNWC ACPRK ACWDW ACWRI ACXNZ ACZKN ADBBV ADGGA ADHPY AE3 AE6 AEETU AENEX AFDTB AFUWQ AGINI AHMBA AHOMT AHQNM AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW ALKUP ALMA_UNASSIGNED_HOLDINGS AMJPA AMNEI BAWUL BOYCO BQLVK BYPQX C45 CS3 DIK DIWNM DU5 DUNZO E.X E3Z EBS EJD EX3 F2K F2L F2M F2N F5P FCALG FL- FRP FW0 GX1 H0~ H13 HZ~ IKREB IKYAY IN~ JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OB2 OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P2P PQQKQ RAH RLZ S4R S4S T8P TEORI TR2 UPT V2I VVN W3M W8F WH7 WOQ WOW X3V X3W YFH YOC ZFV ZZMQN AAYXX ADGHP CITATION ACIJW AWKKM CGR CUY CVF ECM EIF NPM ODA OLW RHF 7X8 |
ID | FETCH-LOGICAL-c4726-7f35f59ae8d3b6e5d8eb5eb05ab70662806e4e5eff7f90289f3f0d3933b2c2133 |
ISSN | 0009-7330 1524-4571 |
IngestDate | Fri Jul 11 04:02:23 EDT 2025 Wed Feb 19 02:27:07 EST 2025 Tue Jul 01 04:27:44 EDT 2025 Thu Apr 24 22:52:34 EDT 2025 Fri May 16 03:50:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | atherosclerosis monocytes macrophages inflammation high-density lipoprotein |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4726-7f35f59ae8d3b6e5d8eb5eb05ab70662806e4e5eff7f90289f3f0d3933b2c2133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.113.301086 |
PMID | 23572498 |
PQID | 1355480014 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1355480014 pubmed_primary_23572498 crossref_primary_10_1161_CIRCRESAHA_113_301086 crossref_citationtrail_10_1161_CIRCRESAHA_113_301086 wolterskluwer_health_10_1161_CIRCRESAHA_113_301086 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-May-24 2013-05-24 20130524 |
PublicationDateYYYYMMDD | 2013-05-24 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-May-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Circulation research |
PublicationTitleAlternate | Circ Res |
PublicationYear | 2013 |
Publisher | American Heart Association, Inc |
Publisher_xml | – name: American Heart Association, Inc |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_9_2 e_1_3_4_8_2 Yvan-Charvet L (e_1_3_4_19_2) 2007; 117 e_1_3_4_7_2 e_1_3_4_6_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_16_2 e_1_3_4_13_2 e_1_3_4_14_2 e_1_3_4_17_2 e_1_3_4_18_2 |
References_xml | – ident: e_1_3_4_27_2 doi: 10.1161/CIRCULATIONAHA.107.745091 – ident: e_1_3_4_4_2 doi: 10.1056/NEJMoa1107579 – ident: e_1_3_4_13_2 doi: 10.1073/pnas.0403506101 – ident: e_1_3_4_7_2 doi: 10.1111/j.1365-2796.2007.01898.x – ident: e_1_3_4_26_2 doi: 10.1161/circresaha.110.217281 – ident: e_1_3_4_10_2 doi: 10.1074/jbc.M006738200 – ident: e_1_3_4_23_2 doi: 10.1016/S1074-7613(03)00299-1 – ident: e_1_3_4_32_2 doi: 10.1172/JCI29919 – ident: e_1_3_4_5_2 doi: 10.1172/JCI6577 – ident: e_1_3_4_8_2 doi: 10.1161/01.res.0000146094.59640.13 – ident: e_1_3_4_3_2 doi: 10.1056/NEJMoa0706628 – ident: e_1_3_4_24_2 doi: 10.1161/circulationaha.108.793869 – ident: e_1_3_4_21_2 doi: 10.1172/JCI200523915 – volume: 117 start-page: 3900 year: 2007 ident: e_1_3_4_19_2 article-title: Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. publication-title: J Clin Invest – ident: e_1_3_4_2_2 doi: 10.1016/0002-9343(77)90874-9 – ident: e_1_3_4_29_2 doi: 10.1161/circulationaha.105.560177 – ident: e_1_3_4_31_2 doi: 10.1056/NEJMoa1001689 – ident: e_1_3_4_25_2 doi: 10.1161/atvbaha.107.156935 – ident: e_1_3_4_17_2 doi: 10.1073/pnas.092327399 – ident: e_1_3_4_9_2 doi: 10.1161/circulationaha.110.961193 – ident: e_1_3_4_33_2 doi: 10.1126/science.1171461 – ident: e_1_3_4_6_2 doi: 10.1001/jama.297.15.jpc70004 – ident: e_1_3_4_11_2 doi: 10.1074/jbc.M005438200 – ident: e_1_3_4_34_2 doi: 10.1172/JCI57559 – ident: e_1_3_4_16_2 doi: 10.1038/11905 – ident: e_1_3_4_20_2 doi: 10.1126/science.1189731 – ident: e_1_3_4_18_2 doi: 10.1161/atvbaha.108.182303 – ident: e_1_3_4_30_2 doi: 10.1161/01.res.0000185320.82962.f7 – ident: e_1_3_4_28_2 doi: 10.1371/journal.pone.0031508 – ident: e_1_3_4_12_2 doi: 10.1016/j.cmet.2005.01.002 – ident: e_1_3_4_22_2 doi: 10.1084/jem.20081430 – ident: e_1_3_4_14_2 doi: 10.1038/11921 – ident: e_1_3_4_15_2 doi: 10.1038/11914 |
SSID | ssj0014329 |
Score | 2.5345385 |
Snippet | RATIONALE:Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the... Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of... |
SourceID | proquest pubmed crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1456 |
SubjectTerms | Animal Feed Animals Atherosclerosis - genetics Atherosclerosis - immunology Atherosclerosis - pathology ATP Binding Cassette Transporter 1 ATP Binding Cassette Transporter, Subfamily G, Member 1 ATP-Binding Cassette Transporters - genetics ATP-Binding Cassette Transporters - immunology ATP-Binding Cassette Transporters - metabolism Bone Marrow Transplantation Cholesterol, Dietary - metabolism Foam Cells - immunology Foam Cells - metabolism Foam Cells - pathology Lipoproteins - genetics Lipoproteins - immunology Lipoproteins - metabolism Macrophages - immunology Macrophages - metabolism Macrophages - pathology Mice Mice, Knockout Monocytes - immunology Monocytes - metabolism Monocytes - pathology Neutrophils - immunology Neutrophils - metabolism Neutrophils - pathology Receptors, LDL - genetics Receptors, LDL - metabolism Spleen - pathology Vasculitis - genetics Vasculitis - immunology Vasculitis - pathology |
Title | Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23572498 https://www.proquest.com/docview/1355480014 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELXKIiEQQlyXcpOReKtS4jjO5TEUaFmpCKGu6FsUuw5ELC3qRUj8AF_GfzFju6l3t1pYXqw0iidu53Q8ts_MEPJC5qEEwwerk6SCBUoqw6BSqQw0-Pp1HoooU4Zt8T4ZHcdHUzHtdH57rKXNWvbVz71xJf-jVbgHesUo2UtothUKN-Aa9AstaBjaf9Lxa435H0zwJDqUkw_Bq8ZGqQzAJ0YSj5e8fLnqFcycFQwZ7nKMK6ze9aXCJA9gJZCcbq5qwIiNZzQPF0rBzIQJJaA_eouLFYwC2sYwaceOO9dmO2iWylUE67lEQu2G8yeTlQFJji5KqFmf17dlWPaO-rutfmuOxs3uuOuzi1-cVN-qZdUr-v7mBTNUQRsz3RrkPEi5O5rRzgZHcRALW5mlNdIs8tHIPJvLYpF48zeYfrF_bkhwbhi8-zgAbBejAsvZ9MG-hftycZ-ZI1vmolkzJazciYHPvLRirpCrEaxWsJDGcNoyjcAjjfJtQT_8ri6QDMS83Dua0y7SuXXPDXLzxwKpFKuvJpLC84cmt8ktt5ChhUXlHdLR87vk2thRNe6RXztw0kVNPXDSLTipD05aMAp4o0NGmzn1wElbcFIfnOZhD5z0DDiNFADnfXL89s1kMApc1Y9AxWmUBGnNRS3ySmczLhMtZpmWQstQVDLFcgVZmOhYC13XaY2ph_Ka1-GM55zLSEWM8wfkYL6Y64eEKq5rCUJlngowQ4nMmaqyONYJV5nmSZfE2x-6VC4lPlZmOSkvVHOX9Ntu321OmL91eL7VYgnWG4_kqrlebFYlQ3c_Q4x0yaFVbysSE1FFcZ51SXRK36WNkL74lY8uO8bH5PruD_qEHKyXG_0U_O21fGbQ_AeDFs9d |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deficiency+of+ATP-Binding+Cassette+Transporters+A1+and+G1+in+Macrophages+Increases+Inflammation+and+Accelerates+Atherosclerosis+in+Mice&rft.jtitle=Circulation+research&rft.au=Westerterp%2C+Marit&rft.au=Murphy%2C+Andrew+J.&rft.au=Wang%2C+Mi&rft.au=Pagler%2C+Tamara+A.&rft.date=2013-05-24&rft.issn=0009-7330&rft.eissn=1524-4571&rft.volume=112&rft.issue=11&rft.spage=1456&rft.epage=1465&rft_id=info:doi/10.1161%2FCIRCRESAHA.113.301086&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_CIRCRESAHA_113_301086 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon |