Salt‐enhanced cultivation as a morphology engineering tool for filamentous actinomycetes: Increased production of labyrinthopeptin A1 in Actinomadura namibiensis

Salt‐enhanced cultivation as a morphology engineering tool for the filamentous actinomycete Actinomadura namibiensis was evaluated in 500‐mL shaking flasks (working volume 100 mL) with the aim of increasing the concentration of the pharmaceutically interesting peptide labyrinthopeptin A1. Among the...

Full description

Saved in:
Bibliographic Details
Published inEngineering in life sciences Vol. 19; no. 11; pp. 781 - 794
Main Authors Tesche, Sebastian, Rösemeier‐Scheumann, René, Lohr, Jonas, Hanke, René, Büchs, Jochen, Krull, Rainer
Format Journal Article
LanguageEnglish
Published Germany John Wiley and Sons Inc 01.11.2019
Subjects
Online AccessGet full text
ISSN1618-0240
1618-2863
DOI10.1002/elsc.201900036

Cover

Abstract Salt‐enhanced cultivation as a morphology engineering tool for the filamentous actinomycete Actinomadura namibiensis was evaluated in 500‐mL shaking flasks (working volume 100 mL) with the aim of increasing the concentration of the pharmaceutically interesting peptide labyrinthopeptin A1. Among the inorganic salts added to a complex production medium, the addition of (NH4)2SO4 led to the highest amount of labyrinthopeptin A1 production. By using 50 mM (NH4)2SO4, the labyrinthopeptin A1 concentration increased up to sevenfold compared to the non‐supplemented control, resulting in 325 mg L−1 labyrinthopeptin A1 after 10 days of cultivation. The performance of other ammonium‐ and sulfate‐containing salts (e.g., NH4Cl, K2SO4) was much lower than the performance of (NH4)2SO4. A positive correlation between the uptake of glycerol as one of the main carbon sources and nongrowth‐associated labyrinthopeptin productivity was found. The change in the cell morphology of A. namibiensis in conjunction with increased osmolality by the addition of 50 mM (NH4)2SO4, was quantified by image analysis. A. namibiensis always developed a heterogeneous morphology with pellets and loose mycelia present simultaneously. In contrast to the non‐supplemented control, the morphology of (NH4)2SO4‐supplemented cultures was characterized by smaller and circular pellets that were more stable against disintegration in the stationary production phase.
AbstractList Salt‐enhanced cultivation as a morphology engineering tool for the filamentous actinomycete Actinomadura namibiensis was evaluated in 500‐mL shaking flasks (working volume 100 mL) with the aim of increasing the concentration of the pharmaceutically interesting peptide labyrinthopeptin A1. Among the inorganic salts added to a complex production medium, the addition of (NH 4 ) 2 SO 4 led to the highest amount of labyrinthopeptin A1 production. By using 50 mM (NH 4 ) 2 SO 4 , the labyrinthopeptin A1 concentration increased up to sevenfold compared to the non‐supplemented control, resulting in 325 mg L −1 labyrinthopeptin A1 after 10 days of cultivation. The performance of other ammonium‐ and sulfate‐containing salts (e.g., NH 4 Cl, K 2 SO 4 ) was much lower than the performance of (NH 4 ) 2 SO 4 . A positive correlation between the uptake of glycerol as one of the main carbon sources and nongrowth‐associated labyrinthopeptin productivity was found. The change in the cell morphology of A. namibiensis in conjunction with increased osmolality by the addition of 50 mM (NH 4 ) 2 SO 4 , was quantified by image analysis. A. namibiensis always developed a heterogeneous morphology with pellets and loose mycelia present simultaneously. In contrast to the non‐supplemented control, the morphology of (NH 4 ) 2 SO 4 ‐supplemented cultures was characterized by smaller and circular pellets that were more stable against disintegration in the stationary production phase.
Salt-enhanced cultivation as a morphology engineering tool for the filamentous actinomycete Actinomadura namibiensis was evaluated in 500-mL shaking flasks (working volume 100 mL) with the aim of increasing the concentration of the pharmaceutically interesting peptide labyrinthopeptin A1. Among the inorganic salts added to a complex production medium, the addition of (NH4)2SO4 led to the highest amount of labyrinthopeptin A1 production. By using 50 mM (NH4)2SO4, the labyrinthopeptin A1 concentration increased up to sevenfold compared to the non-supplemented control, resulting in 325 mg L-1 labyrinthopeptin A1 after 10 days of cultivation. The performance of other ammonium- and sulfate-containing salts (e.g., NH4Cl, K2SO4) was much lower than the performance of (NH4)2SO4. A positive correlation between the uptake of glycerol as one of the main carbon sources and nongrowth-associated labyrinthopeptin productivity was found. The change in the cell morphology of A. namibiensis in conjunction with increased osmolality by the addition of 50 mM (NH4)2SO4, was quantified by image analysis. A. namibiensis always developed a heterogeneous morphology with pellets and loose mycelia present simultaneously. In contrast to the non-supplemented control, the morphology of (NH4)2SO4-supplemented cultures was characterized by smaller and circular pellets that were more stable against disintegration in the stationary production phase.Salt-enhanced cultivation as a morphology engineering tool for the filamentous actinomycete Actinomadura namibiensis was evaluated in 500-mL shaking flasks (working volume 100 mL) with the aim of increasing the concentration of the pharmaceutically interesting peptide labyrinthopeptin A1. Among the inorganic salts added to a complex production medium, the addition of (NH4)2SO4 led to the highest amount of labyrinthopeptin A1 production. By using 50 mM (NH4)2SO4, the labyrinthopeptin A1 concentration increased up to sevenfold compared to the non-supplemented control, resulting in 325 mg L-1 labyrinthopeptin A1 after 10 days of cultivation. The performance of other ammonium- and sulfate-containing salts (e.g., NH4Cl, K2SO4) was much lower than the performance of (NH4)2SO4. A positive correlation between the uptake of glycerol as one of the main carbon sources and nongrowth-associated labyrinthopeptin productivity was found. The change in the cell morphology of A. namibiensis in conjunction with increased osmolality by the addition of 50 mM (NH4)2SO4, was quantified by image analysis. A. namibiensis always developed a heterogeneous morphology with pellets and loose mycelia present simultaneously. In contrast to the non-supplemented control, the morphology of (NH4)2SO4-supplemented cultures was characterized by smaller and circular pellets that were more stable against disintegration in the stationary production phase.
Salt-enhanced cultivation as a morphology engineering tool for the filamentous actinomycete was evaluated in 500-mL shaking flasks (working volume 100 mL) with the aim of increasing the concentration of the pharmaceutically interesting peptide labyrinthopeptin A1. Among the inorganic salts added to a complex production medium, the addition of (NH ) SO led to the highest amount of labyrinthopeptin A1 production. By using 50 mM (NH ) SO , the labyrinthopeptin A1 concentration increased up to sevenfold compared to the non-supplemented control, resulting in 325 mg L labyrinthopeptin A1 after 10 days of cultivation. The performance of other ammonium- and sulfate-containing salts (e.g., NH Cl, K SO ) was much lower than the performance of (NH ) SO . A positive correlation between the uptake of glycerol as one of the main carbon sources and nongrowth-associated labyrinthopeptin productivity was found. The change in the cell morphology of in conjunction with increased osmolality by the addition of 50 mM (NH ) SO , was quantified by image analysis. always developed a heterogeneous morphology with pellets and loose mycelia present simultaneously. In contrast to the non-supplemented control, the morphology of (NH ) SO -supplemented cultures was characterized by smaller and circular pellets that were more stable against disintegration in the stationary production phase.
Salt‐enhanced cultivation as a morphology engineering tool for the filamentous actinomycete Actinomadura namibiensis was evaluated in 500‐mL shaking flasks (working volume 100 mL) with the aim of increasing the concentration of the pharmaceutically interesting peptide labyrinthopeptin A1. Among the inorganic salts added to a complex production medium, the addition of (NH4)2SO4 led to the highest amount of labyrinthopeptin A1 production. By using 50 mM (NH4)2SO4, the labyrinthopeptin A1 concentration increased up to sevenfold compared to the non‐supplemented control, resulting in 325 mg L−1 labyrinthopeptin A1 after 10 days of cultivation. The performance of other ammonium‐ and sulfate‐containing salts (e.g., NH4Cl, K2SO4) was much lower than the performance of (NH4)2SO4. A positive correlation between the uptake of glycerol as one of the main carbon sources and nongrowth‐associated labyrinthopeptin productivity was found. The change in the cell morphology of A. namibiensis in conjunction with increased osmolality by the addition of 50 mM (NH4)2SO4, was quantified by image analysis. A. namibiensis always developed a heterogeneous morphology with pellets and loose mycelia present simultaneously. In contrast to the non‐supplemented control, the morphology of (NH4)2SO4‐supplemented cultures was characterized by smaller and circular pellets that were more stable against disintegration in the stationary production phase.
Author Büchs, Jochen
Krull, Rainer
Tesche, Sebastian
Rösemeier‐Scheumann, René
Lohr, Jonas
Hanke, René
AuthorAffiliation 2 Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany
1 Institute of Biochemical Engineering Technische Universität Braunschweig Braunschweig Germany
3 AVT ‐ Chair of Biochemical Engineering RWTH Aachen University Aachen Germany
AuthorAffiliation_xml – name: 1 Institute of Biochemical Engineering Technische Universität Braunschweig Braunschweig Germany
– name: 2 Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany
– name: 3 AVT ‐ Chair of Biochemical Engineering RWTH Aachen University Aachen Germany
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Tesche
  fullname: Tesche, Sebastian
  organization: Technische Universität Braunschweig
– sequence: 2
  givenname: René
  surname: Rösemeier‐Scheumann
  fullname: Rösemeier‐Scheumann, René
  organization: Technische Universität Braunschweig
– sequence: 3
  givenname: Jonas
  surname: Lohr
  fullname: Lohr, Jonas
  organization: Technische Universität Braunschweig
– sequence: 4
  givenname: René
  surname: Hanke
  fullname: Hanke, René
  organization: RWTH Aachen University
– sequence: 5
  givenname: Jochen
  surname: Büchs
  fullname: Büchs, Jochen
  organization: RWTH Aachen University
– sequence: 6
  givenname: Rainer
  surname: Krull
  fullname: Krull, Rainer
  email: r.krull@tu-braunschweig.de
  organization: Technische Universität Braunschweig
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32624971$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhSNURH9gyxJ5yWYG20mcmAVSNSpQaSQWhbXlONczRo4dbKdVdjwC78Cb9Unq6QwjYNONbcnnfOfa57w4cd5BUbwmeEkwpu_ARrWkmHCMccmeFWeEkXZBW1aeHM6YVvi0OI_xO8akaVvyojgtKaMVb8hZ8ftG2nT_8xe4rXQKeqQmm8ytTMY7JCOSaPBh3HrrNzMCtzEOIBi3Qcl7i7QPSBsrB3DJT1mtknF-mBUkiO_RtVMBZMzUMfh-Uo9Qr5GV3ZwhaetHGLMDXRK0W_du2U9BIicH0xlw0cSXxXMtbYRXh_2i-Pbx6uvq82L95dP16nK9UFVD2YI0slY1U23bAuMN1yXIigPt66qpWd81RKtOU9LWSjcAXNJSk7rpdasqwqQuL4oPe-44dQP0Kj8qSCvGYAYZZuGlEf_eOLMVG38rGOec8jID3h4Awf-YICYxmKjAWukgf4-gFcWsbGvOs_TN31nHkD_NZMFyL1DBxxhAHyUEi131Yle9OFafDdV_BmXSY495VmOftN0ZC_MTIeJqfbMitGblAzB5yfw
CitedBy_id crossref_primary_10_1016_j_chroma_2023_463792
crossref_primary_10_1007_s13205_020_02512_x
crossref_primary_10_1021_acs_orglett_5c00120
crossref_primary_10_1016_j_bej_2020_107746
crossref_primary_10_1016_j_bej_2020_107865
crossref_primary_10_1016_j_biortech_2023_128836
crossref_primary_10_1016_j_renene_2021_12_050
crossref_primary_10_1186_s12934_022_01827_z
crossref_primary_10_1016_j_copbio_2022_102762
crossref_primary_10_1002_elsc_202400078
crossref_primary_10_1002_elsc_202000060
crossref_primary_10_1002_pamm_202400089
crossref_primary_10_1016_j_powtec_2022_118067
crossref_primary_10_1515_psr_2022_0112
Cites_doi 10.1002/(SICI)1097-0290(19970120)53:2<191::AID-BIT9>3.0.CO;2-J
10.1007/s11274-016-2148-7
10.1016/0168-1656(94)90082-5
10.1128/MMBR.44.2.230-251.1980
10.1016/j.chembiol.2012.10.023
10.1002/(SICI)1097-0290(19981205)60:5<580::AID-BIT8>3.0.CO;2-D
10.1002/abio.370150305
10.1002/btpr.1901
10.1371/journal.pone.0064010
10.1039/C4NP00085D
10.1016/S0922-338X(98)80029-9
10.1007/978-3-319-60339-1_8
10.1038/sj.jim.2900434
10.1002/elsc.201300055
10.1016/S1369-703X(03)00181-5
10.1128/JB.00465-16
10.1016/S0141-0229(02)00172-2
10.1002/bit.260370507
10.1007/978-3-319-20511-3
10.1007/s00253-004-1672-9
10.1016/0167-7799(91)90020-I
10.1002/(SICI)1521-4028(199805)38:2<107::AID-JOBM107>3.0.CO;2-1
10.1002/jobm.3620280805
10.1016/j.biortech.2009.02.070
10.3390/bioengineering5020042
10.1128/AEM.02715-07
10.1007/s00253-010-2661-9
10.1007/s00253-008-1493-3
10.1002/anie.200905773
10.1186/1475-2859-10-58
10.1111/j.1365-2672.1992.tb01823.x
10.1111/j.1469-8137.1971.tb02552.x
10.1016/j.cclet.2010.02.019
10.1007/s00253-006-0572-6
10.1002/bit.21713
10.1146/annurev.mi.34.100180.001233
10.1016/S0065-2164(10)72004-9
10.1016/0167-7799(96)10055-X
10.1016/S0168-1656(02)00003-2
10.1002/bit.23313
10.1016/j.bej.2016.01.014
10.1016/j.jcice.2008.04.008
10.1023/A:1005495714248
10.7164/antibiotics.39.594
10.1099/ijs.0.02286-0
10.1016/j.procbio.2016.11.017
10.1016/j.procbio.2003.11.006
10.1016/0922-338X(96)83111-4
10.1016/S1369-703X(00)00116-9
10.1007/s00449-012-0794-1
10.1016/j.tibtech.2005.06.002
10.1007/s10295-011-1036-2
10.1186/1475-2859-5-3
10.1002/bit.260150503
10.1016/j.enzmictec.2006.05.011
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1002/elsc.201900036
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate TESCHE et al
EISSN 1618-2863
EndPage 794
ExternalDocumentID PMC6999293
32624971
10_1002_elsc_201900036
ELSC1256
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJCF
ABJNI
ACBWZ
ACCFJ
ACCMX
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPKN
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
EBD
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HHY
HVGLF
HZ~
IAO
IGS
ITC
IX1
J0M
JPC
KQQ
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
PTHSS
Q.N
Q11
QB0
R.K
ROL
RPM
RWI
RX1
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AGQPQ
CITATION
IEP
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
PQGLB
7X8
5PM
ID FETCH-LOGICAL-c4726-17a5c56c888e6979f3ea49e2d54756db71fcbf2185cf7ee9a23f157df8c416af3
IEDL.DBID DR2
ISSN 1618-0240
IngestDate Thu Aug 21 14:16:16 EDT 2025
Thu Sep 04 16:23:23 EDT 2025
Mon Jul 21 06:06:24 EDT 2025
Thu Apr 24 23:12:20 EDT 2025
Tue Jul 01 01:15:37 EDT 2025
Wed Jan 22 16:39:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords actinomycete
morphology engineering
labyrinthopeptin
salt‐enhanced cultivation
image analysis
ammonium sulfate
Language English
License 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4726-17a5c56c888e6979f3ea49e2d54756db71fcbf2185cf7ee9a23f157df8c416af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6999293
PMID 32624971
PQID 2420638599
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6999293
proquest_miscellaneous_2420638599
pubmed_primary_32624971
crossref_primary_10_1002_elsc_201900036
crossref_citationtrail_10_1002_elsc_201900036
wiley_primary_10_1002_elsc_201900036_ELSC1256
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2019
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Engineering in life sciences
PublicationTitleAlternate Eng Life Sci
PublicationYear 2019
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2016; 109
2002; 95
1973; 15
2013; 20
1980; 44
2015; 32
2008; 39
2016; 32
1986; 39
2011; 10
2008; 79
2008; 74
2007; 73
2017; 199
2013; 8
1998; 86
2003; 53
2005; 66
2005; 23
2010; 21
2018; 5
1997; 53
2004; 39
1980; 34
1997; 19
1994; 34
2014; 14
2004; 186
1991; 37
2012
2002; 31
2010
1995; 15
2009
2008
2006; 5
2007
1999; 21
2006; 6
2012; 39
2008; 99
1998; 60
1996; 14
1991; 9
1992; 72
2012; 109
1998; 38
2017; 50
2010; 87
2017; 53
2010; 49
2013; 36
1971; 70
2001; 7
2004; 17
1988; 28
2009; 100
2017
2015
1996; 81
2007; 40
2014; 30
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
Prosser J. I. (e_1_2_8_46_1) 2007
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
Papagianni M. (e_1_2_8_11_1) 2006; 5
Haid S. (e_1_2_8_6_1) 2017; 50
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_8_1
Bertram R. (e_1_2_8_47_1) 2004; 186
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Wucherpfennig T. (e_1_2_8_15_1) 2012
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 70
  start-page: 511
  year: 1971
  end-page: 518
  article-title: The effect of cations on glucose utilization by, and on the growth of, the fungus
  publication-title: New Phytol
– year: 2009
– volume: 66
  start-page: 551
  year: 2005
  end-page: 559
  article-title: Formation and analysis of mannosylerythritol lipids secreted by Pseudozyma aphidis
  publication-title: Appl. Microbiol. Biotechnol.
– start-page: 1
  year: 2012
  end-page: 6
  article-title: Customization of morphology through addition of talc micro particles
  publication-title: J. Vis. Exp.
– volume: 39
  start-page: 2249
  year: 2004
  end-page: 2255
  article-title: Production of the antitumoral retamycin during continuous fermentations of
  publication-title: Process Biochem.
– volume: 5
  start-page: 1
  year: 2006
  end-page: 12
  article-title: Morphological development of in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology
  publication-title: Microb. Cell Fact.
– volume: 81
  start-page: 7
  year: 1996
  end-page: 12
  article-title: Image analysis of mycelial morphology in virginiamycin production by batch culture of
  publication-title: J. Ferment. Bioeng.
– volume: 5
  start-page: E42
  year: 2018
  article-title: Large scale production and downstream processing of labyrinthopeptins from the actinobacterium
  publication-title: Bioengineering
– volume: 53
  start-page: 721
  year: 2003
  end-page: 724
  article-title: sp. nov
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 100
  start-page: 5979
  year: 2009
  end-page: 5987
  article-title: Effect of culture medium composition on ’s morphology and cellulase production
  publication-title: Bioresour. Technol.
– volume: 53
  start-page: 191
  year: 1997
  end-page: 201
  article-title: Morphological characterization of filamentous microorganisms in submerged cultures by on‐line digital image analysis and pattern recognition
  publication-title: Biotechnol. Bioeng.
– volume: 38
  start-page: 107
  year: 1998
  end-page: 112
  article-title: Effect of osmotic stress on glucose oxidase production and secretion by
  publication-title: J.Basic Microbiol.
– volume: 7
  start-page: 157
  year: 2001
  end-page: 162
  article-title: Device for sterile online measurement of the oxygen transfer rate in shaking flasks
  publication-title: Biochem. Eng. J.
– volume: 73
  start-page: 1031
  year: 2007
  end-page: 1038
  article-title: Regulation of avilamycin biosynthesis in : effects of glucose, ammonium ion, and inorganic phosphate
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 8
  year: 2013
  article-title: The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti‐HIV and anti‐HSV activity with potential for microbicidal applications
  publication-title: PLoS One
– volume: 34
  start-page: 209
  year: 1980
  end-page: 233
  article-title: Nitrogen metabolite regulation of antibiotic biosynthesis
  publication-title: Annu. Rev. Microbiol.
– volume: 99
  start-page: 491
  year: 2008
  end-page: 498
  article-title: Microparticle‐enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by as an example
  publication-title: Biotechnol. Bioeng.
– volume: 186
  start-page: 1362
  year: 2004
  end-page: 1373
  article-title: In silico and transcriptional analysis of carbohydrate uptake systems of A3(2)
  publication-title: Society
– volume: 15
  start-page: 277
  year: 1995
  end-page: 287
  article-title: Changes in protein secretion of Aspergillus niger caused by the reduction of the water activity by potassium chloride
  publication-title: Acta Biotechnol
– volume: 40
  start-page: 563
  year: 2007
  end-page: 568
  article-title: Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus (SCC 108)
  publication-title: Enzyme Microb. Technol.
– volume: 21
  start-page: 253
  year: 1999
  end-page: 257
  article-title: Production of statins by filamentous fungi
  publication-title: Biotechnol. Lett.
– volume: 39
  start-page: 449
  year: 2012
  end-page: 457
  article-title: Enhanced enzyme production with the pelleted form of in laboratory bioreactors using added natural lignin inducer
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 87
  start-page: 2011
  year: 2010
  end-page: 2024
  article-title: Optimized bioprocess for production of fructofuranosidase by recombinant Aspergillus niger
  publication-title: Appl. Microbiol. Biotechnol.
– year: 2008
– volume: 32
  start-page: 29
  year: 2015
  end-page: 48
  article-title: Antiviral drug discovery: broad‐spectrum drugs from nature
  publication-title: Nat. Prod. Rep.
– start-page: 319
  year: 2007
  end-page: 335
  article-title: Mathematical modelling of fungal growth
  publication-title: Grow. Fungus
– volume: 28
  start-page: 491
  year: 1988
  end-page: 499
  article-title: Nitrogen regulation of avermectins biosynthesis in in a chemically defined medium
  publication-title: J. Basic Microbiol.
– volume: 74
  start-page: 3877
  year: 2008
  end-page: 3886
  article-title: Mycelium differentiation and antibiotic production in submerged cultures of
  publication-title: Appl. Environ. Microbiol.
– start-page: 181
  year: 2017
  end-page: 232
– volume: 109
  start-page: 228
  year: 2016
  end-page: 235
  article-title: Correlation for the maximum oxygen transfer capacity in shake flasks for a wide range of operating conditions and for different culture media
  publication-title: Biochem. Eng. J.
– volume: 50
  start-page: 4124
  year: 2017
  article-title: Labyrinthopeptin A1 and A2 efficiently inhibit cell entry of hRSV isolates
  publication-title: Eur. Respir. J.
– volume: 32
  start-page: 193
  year: 2016
  article-title: Modern morphological engineering techniques for improving productivity of filamentous fungi in submerged cultures
  publication-title: World J. Microbiol. Biotechnol.
– volume: 86
  start-page: 28
  year: 1998
  end-page: 33
  article-title: Effects of bacitracin and excess Mg on submerged mycelial growth of
  publication-title: J. Ferment. Bioeng.
– volume: 31
  start-page: 895
  year: 2002
  end-page: 906
  article-title: Metabolic regulation of fermentation processes
  publication-title: Enzyme Microb. Technol.
– volume: 34
  start-page: 119
  year: 1994
  end-page: 131
  article-title: Segregated mathematical model for the fed‐batch cultivation of a high‐producing strain of
  publication-title: J. Biotechnol.
– start-page: 149
  year: 2015
– volume: 36
  start-page: 259
  year: 2013
  end-page: 272
  article-title: Effects of bioreactor hydrodynamics on the physiology of Streptomyces
  publication-title: Bioprocess Biosyst. Eng.
– volume: 14
  start-page: 190
  year: 2014
  end-page: 200
  article-title: Adding talc microparticles to Aspergillus terreus ATCC 20542 preculture decreases fungal pellet size and improves lovastatin production
  publication-title: Eng. Life Sci.
– volume: 23
  start-page: 468
  year: 2005
  end-page: 474
  article-title: Heterologous protein expression in filamentous fungi
  publication-title: Trends Biotechnol
– volume: 49
  start-page: 1151
  year: 2010
  end-page: 1154
  article-title: Labyrinthopeptins: A new class of carbacyclic lantibiotics
  publication-title: Angew. Chemie Int. Ed.
– volume: 6
  start-page: 991
  year: 2006
  end-page: 925
– volume: 39
  start-page: 609
  year: 2008
  end-page: 615
  article-title: Effect of mycelial morphology on bioreactor performance and avermectin production of in submerged cultivations
  publication-title: J. Chinese Inst. Chem. Eng.
– volume: 19
  start-page: 83
  year: 1997
  end-page: 86
  article-title: Effect of nitrogen source on biosynthesis of rapamycin by
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 20
  start-page: 111
  year: 2013
  end-page: 122
  article-title: Heterologous expression and engineering studies of labyrinthopeptins, class III lantibiotics from
  publication-title: Chem. Biol.
– volume: 53
  start-page: 1
  year: 2017
  end-page: 9
  article-title: Particle‐based production of antibiotic rebeccamycin with
  publication-title: Process Biochem.
– volume: 79
  start-page: 859
  year: 2008
  end-page: 866
  article-title: The influence of morphology on geldanamycin production in submerged fermentations of var. geldanus
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 10
  start-page: 1
  year: 2011
  end-page: 15
  article-title: Morphology engineering ‐ Osmolality and its effect on morphology and productivity
  publication-title: Microb. Cell Fact.
– volume: 44
  start-page: 230
  year: 1980
  end-page: 251
  article-title: Control of antibiotic biosynthesis
  publication-title: Microbiol. Rev.
– volume: 17
  start-page: 187
  year: 2004
  end-page: 194
  article-title: Online respiration activity measurement (OTR, CTR, RQ) in shake flasks
  publication-title: Biochem. Eng. J.
– volume: 109
  start-page: 462
  year: 2012
  end-page: 471
  article-title: Improved enzyme production by bio‐pellets of : targeted morphology engineering using titanate microparticles
  publication-title: Biotechnol. Bioeng.
– volume: 72
  start-page: 195
  year: 1992
  end-page: 200
  article-title: Nikkomycin production in pellets of
  publication-title: J. Appl. Bacteriol.
– year: 2010
– volume: 9
  start-page: 63
  year: 1991
  end-page: 68
  article-title: Mycelial morphology and metabolite production
  publication-title: Trends Biotechnol
– volume: 15
  start-page: 845
  year: 1973
  end-page: 859
  article-title: Effects of polymer additives on fermentation parameters in a culture of
  publication-title: Biotechnol. Bioeng.
– volume: 39
  start-page: 594
  year: 1986
  end-page: 600
  article-title: Nitrogen repression of gilvocarcin V production in 2064
  publication-title: J. Antibiot. (Tokyo)
– volume: 95
  start-page: 133
  year: 2002
  end-page: 144
  article-title: The influence of carbon sources and morphology on nystatin production by
  publication-title: J. Biotechnol.
– volume: 37
  start-page: 456
  year: 1991
  end-page: 462
  article-title: Morphology and clavulanic acid production of : effect of stirrer speed in batch fermentations
  publication-title: Biotechnol. Bioeng.
– volume: 14
  start-page: 438
  year: 1996
  end-page: 443
  article-title: Modelling the morphology of filamentous microorganisms
  publication-title: Trends Biotechnol.
– volume: 60
  start-page: 580
  year: 1998
  end-page: 588
  article-title: Use of soybean oil and ammonium sulfate additions to optimize secondary metabolite production
  publication-title: Biotechnol. Bioeng.
– volume: 21
  start-page: 824
  year: 2010
  end-page: 826
  article-title: Three new aspochalasin derivatives from the marine‐derived fungus Spicaria elegans
  publication-title: Chinese Chem. Lett.
– volume: 199
  year: 2017
  article-title: Cell‐biological studies of osmotic shock response in spp
  publication-title: J. Bacteriol.
– volume: 30
  start-page: 689
  year: 2014
  end-page: 699
  article-title: Physiological description of multivariate interdependencies between process parameters, morphology and physiology during fed‐batch penicillin production
  publication-title: Biotechnol. Prog.
– ident: e_1_2_8_30_1
  doi: 10.1002/(SICI)1097-0290(19970120)53:2<191::AID-BIT9>3.0.CO;2-J
– ident: e_1_2_8_31_1
  doi: 10.1007/s11274-016-2148-7
– start-page: 319
  year: 2007
  ident: e_1_2_8_46_1
  article-title: Mathematical modelling of fungal growth
  publication-title: Grow. Fungus
– ident: e_1_2_8_59_1
  doi: 10.1016/0168-1656(94)90082-5
– ident: e_1_2_8_49_1
  doi: 10.1128/MMBR.44.2.230-251.1980
– ident: e_1_2_8_8_1
  doi: 10.1016/j.chembiol.2012.10.023
– ident: e_1_2_8_3_1
– ident: e_1_2_8_57_1
  doi: 10.1002/(SICI)1097-0290(19981205)60:5<580::AID-BIT8>3.0.CO;2-D
– ident: e_1_2_8_36_1
  doi: 10.1002/abio.370150305
– volume: 50
  start-page: 4124
  year: 2017
  ident: e_1_2_8_6_1
  article-title: Labyrinthopeptin A1 and A2 efficiently inhibit cell entry of hRSV isolates
  publication-title: Eur. Respir. J.
– ident: e_1_2_8_40_1
– ident: e_1_2_8_58_1
  doi: 10.1002/btpr.1901
– ident: e_1_2_8_5_1
  doi: 10.1371/journal.pone.0064010
– ident: e_1_2_8_7_1
  doi: 10.1039/C4NP00085D
– ident: e_1_2_8_38_1
  doi: 10.1016/S0922-338X(98)80029-9
– ident: e_1_2_8_51_1
  doi: 10.1007/978-3-319-60339-1_8
– ident: e_1_2_8_56_1
  doi: 10.1038/sj.jim.2900434
– ident: e_1_2_8_32_1
  doi: 10.1002/elsc.201300055
– ident: e_1_2_8_61_1
  doi: 10.1016/S1369-703X(03)00181-5
– ident: e_1_2_8_39_1
  doi: 10.1128/JB.00465-16
– start-page: 1
  year: 2012
  ident: e_1_2_8_15_1
  article-title: Customization of Aspergillus niger morphology through addition of talc micro particles
  publication-title: J. Vis. Exp.
– ident: e_1_2_8_50_1
  doi: 10.1016/S0141-0229(02)00172-2
– ident: e_1_2_8_27_1
  doi: 10.1002/bit.260370507
– ident: e_1_2_8_63_1
  doi: 10.1007/978-3-319-20511-3
– ident: e_1_2_8_44_1
  doi: 10.1007/s00253-004-1672-9
– ident: e_1_2_8_28_1
  doi: 10.1016/0167-7799(91)90020-I
– ident: e_1_2_8_37_1
  doi: 10.1002/(SICI)1521-4028(199805)38:2<107::AID-JOBM107>3.0.CO;2-1
– ident: e_1_2_8_55_1
  doi: 10.1002/jobm.3620280805
– ident: e_1_2_8_12_1
  doi: 10.1016/j.biortech.2009.02.070
– ident: e_1_2_8_9_1
  doi: 10.3390/bioengineering5020042
– ident: e_1_2_8_29_1
  doi: 10.1128/AEM.02715-07
– ident: e_1_2_8_13_1
  doi: 10.1007/s00253-010-2661-9
– ident: e_1_2_8_22_1
  doi: 10.1007/s00253-008-1493-3
– ident: e_1_2_8_2_1
  doi: 10.1002/anie.200905773
– ident: e_1_2_8_19_1
  doi: 10.1186/1475-2859-10-58
– ident: e_1_2_8_24_1
  doi: 10.1111/j.1365-2672.1992.tb01823.x
– ident: e_1_2_8_35_1
  doi: 10.1111/j.1469-8137.1971.tb02552.x
– ident: e_1_2_8_45_1
  doi: 10.1016/j.cclet.2010.02.019
– ident: e_1_2_8_54_1
  doi: 10.1007/s00253-006-0572-6
– ident: e_1_2_8_33_1
  doi: 10.1002/bit.21713
– ident: e_1_2_8_48_1
  doi: 10.1146/annurev.mi.34.100180.001233
– ident: e_1_2_8_16_1
  doi: 10.1016/S0065-2164(10)72004-9
– ident: e_1_2_8_18_1
  doi: 10.1016/0167-7799(96)10055-X
– ident: e_1_2_8_21_1
  doi: 10.1016/S0168-1656(02)00003-2
– ident: e_1_2_8_10_1
  doi: 10.1002/bit.23313
– ident: e_1_2_8_62_1
  doi: 10.1016/j.bej.2016.01.014
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jcice.2008.04.008
– ident: e_1_2_8_42_1
  doi: 10.1023/A:1005495714248
– ident: e_1_2_8_53_1
  doi: 10.7164/antibiotics.39.594
– ident: e_1_2_8_4_1
  doi: 10.1099/ijs.0.02286-0
– volume: 186
  start-page: 1362
  year: 2004
  ident: e_1_2_8_47_1
  article-title: In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2)
  publication-title: Society
– ident: e_1_2_8_52_1
– ident: e_1_2_8_23_1
  doi: 10.1016/j.procbio.2016.11.017
– ident: e_1_2_8_20_1
  doi: 10.1016/j.procbio.2003.11.006
– ident: e_1_2_8_26_1
  doi: 10.1016/0922-338X(96)83111-4
– ident: e_1_2_8_60_1
  doi: 10.1016/S1369-703X(00)00116-9
– ident: e_1_2_8_17_1
  doi: 10.1007/s00449-012-0794-1
– ident: e_1_2_8_41_1
  doi: 10.1016/j.tibtech.2005.06.002
– ident: e_1_2_8_14_1
  doi: 10.1007/s10295-011-1036-2
– volume: 5
  start-page: 1
  year: 2006
  ident: e_1_2_8_11_1
  article-title: Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-5-3
– ident: e_1_2_8_34_1
  doi: 10.1002/bit.260150503
– ident: e_1_2_8_43_1
  doi: 10.1016/j.enzmictec.2006.05.011
SSID ssj0017881
Score 2.2754185
Snippet Salt‐enhanced cultivation as a morphology engineering tool for the filamentous actinomycete Actinomadura namibiensis was evaluated in 500‐mL shaking flasks...
Salt‐enhanced cultivation as a morphology engineering tool for the filamentous actinomycete Actinomadura namibiensis was evaluated in 500‐mL shaking flasks...
Salt-enhanced cultivation as a morphology engineering tool for the filamentous actinomycete was evaluated in 500-mL shaking flasks (working volume 100 mL) with...
Salt-enhanced cultivation as a morphology engineering tool for the filamentous actinomycete Actinomadura namibiensis was evaluated in 500-mL shaking flasks...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 781
SubjectTerms actinomycete
ammonium sulfate
image analysis
labyrinthopeptin
morphology engineering
salt‐enhanced cultivation
Title Salt‐enhanced cultivation as a morphology engineering tool for filamentous actinomycetes: Increased production of labyrinthopeptin A1 in Actinomadura namibiensis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felsc.201900036
https://www.ncbi.nlm.nih.gov/pubmed/32624971
https://www.proquest.com/docview/2420638599
https://pubmed.ncbi.nlm.nih.gov/PMC6999293
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NThsxELYQJziUAqVNC8hISD0txJtde80N8SOEgAM_EreV7bWVqGE3IptDe-IReAfejCdhxk6WBFRVFZcckplR7P1sf_bOfCZk2zDVLphhEc9MGzYoQkY60SxiotBA5oRjFouTzy_4yU1yepveTlXxB32I5sANR4afr3GAKz3cfRUNhaUDJQiZ9JoqMAmzDkfx_MPLRj-KoVY67rg4yyIU85qoNrbj3Vn32VXpHdV8nzE5zWT9UnS8RNSkESED5dfOqNY75s8bfcePtPIz-TTmqXQ_AGuZzNlyhSxOqReukqcr1a-fHx5t2fVpBBRVPMaXpVE1pIreVfAU_bk9ta-etK6qPgWyTF0P8AhtrUZgDRMv1lcYPAneozBvYbo8RB0ETVoMWjkKoP0NQepuNcB8nJLuM4qfwVsVo3tFS3XX0z3MzB9-ITfHR9cHJ9H4zofIJCLmgBGVmpQb2JhbLoV0HasSaeMiTUTKAT_MGe2Al6TGCWulijuOpaJwmQFqqVxnjcyXVWm_EWoTcM6UMOCVGCm1kL5qJWsXENzZFokmzzw3Y0F0vJejnwcp5zjHzs-bzm-Rn439IEiB_NVyawKhHEYrvoJRpYW-zIEQIUdMpWyRrwFSTSwg0rAXFqxFxAzYGgNUAp_9pex1vSI4B5oPvA1a5LH0j7-XH51dHQCx5d__0_4HWcAvQynmOpmv70d2AzhZrTf9uHsBObY3OA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOUAP_Jcuv0ZC4pR2nU3iuLeqtFpg2wNtJW6R7djaFdtk1WYPcOIReIe-WZ-kM_Ym7VIhhLjkkplRbI_tb5yZzwDvDFf9khseZbnpY4AiZKQTzSMuSo1gTjhuqTh5_yAbHiefvqZtNiHVwgR-iO7AjWaGX69pgtOB9OYVayjuHcRByKUnVbkNdxJEGxR_ffjSMUhxYkunmCvjeUR0Xi1vYz_eXNZf3pdugM2bOZPXsazfjPYegG6bEXJQvm3MG71hfvzG8Phf7XwI9xdQlW0H33oEt2z1GFavERg-gfNDNW0ufv6y1dhnEjAi8ljcl8bUGVPspMaB9Ef3zF5psqaupwzxMnMTdElsbD1HaVx7qcTC0GHwFsOlizLm0eos0NKS0dox9NvvaKQZ1zNKyanYNmf0DNqqnJ8qVqmTiZ5Qcv7ZUzje2z3aGUaLax8ik4g4QzdRqUkzg7G5zaSQbmBVIm1cpolIM3Qh7ox2CE1S44S1UsUDx1NRutwgulRusAYrVV3ZdWA2QeVcCYNaiZFSC-kLV_J-icad7UHUDnphFpzodDXHtAhsznFBnV90nd-D9538LLCB_FHybetDBU5Y-gujKot9WSAmIpiYStmDZ8GnOluIpTEcFrwHYsnbOgEiA19-U03GnhQ8Q6SP0A1b5J3pL59X7I4OdxDbZs__Uf4N3B0e7Y-K0ceDzy_gHgmEysyXsNKczu0rhGiNfu0n4SWBqjtX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwEB1BkRA9QAuUbqGtkZA4pV1nEzvmVpWuCpQKUSr1FjmOrV2xTVZt9gAnPqH_wJ_xJczYu-luK4QQl71kZrR2nu1nZ-YZ4JXhultywyORmS5uUKSKiqTgEZdlgWROOm6pOPnjsTg8Td6fpWdzVfxBH6I9cKOR4edrGuDj0u1ei4bi0kEShFx5TZW7cC8RSCeIFn1uBaQ4iaXTlkvwLCI1r5lsYzfeXfRfXJZucc3bKZPzVNavRf1HoGetCCkoX3cmTbFjvt8QePyfZq7AwylRZXsBWatwx1aPYXlOvvAJ_DzRo-bXjytbDXweASMZj-ltaUxfMs3Oa3yN_uCe2WtP1tT1iCFbZm6IgMS21hO0xpmXCiwMHQW_YThxUb48Rh0HUVoKWjuGqP2GQZpBPaaEnIrtcUa_wVuXkwvNKn0-LIaUmn_5FE77B1_2D6PppQ-RSWQsECQ6NakwuDO3QknlelYnysZlmshUIIC4M4VDYpIaJ61VOu45nsrSZQa5pXa9NViq6squA7MJOmdaGvRKjFKFVL5sJeuWGNzZDkSzd56bqSI6XcwxyoOWc5xT5-dt53fgdWs_Dlogf7R8OYNQjsOVvsHoymJf5siIiCSmSnXgWYBUGwuZNG6GJe-AXABba0BS4ItPquHAS4IL5PlI3LBFHkt_-Xv5wdHJPjJbsfGP9ttw_9Pbfn707vjDc3hAz0NZ5gtYai4mdhP5WVNs-SH4G7TrOgY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Salt%E2%80%90enhanced+cultivation+as+a+morphology+engineering+tool+for+filamentous+actinomycetes%3A+Increased+production+of+labyrinthopeptin+A1+in+Actinomadura+namibiensis&rft.jtitle=Engineering+in+life+sciences&rft.au=Tesche%2C+Sebastian&rft.au=R%C3%B6semeier%E2%80%90Scheumann%2C+Ren%C3%A9&rft.au=Lohr%2C+Jonas&rft.au=Hanke%2C+Ren%C3%A9&rft.date=2019-11-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1618-0240&rft.eissn=1618-2863&rft.volume=19&rft.issue=11&rft.spage=781&rft.epage=794&rft_id=info:doi/10.1002%2Felsc.201900036&rft_id=info%3Apmid%2F32624971&rft.externalDocID=PMC6999293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1618-0240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1618-0240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1618-0240&client=summon