Monitoring of biofilms grown on differentially structured metallic surfaces using confocal laser scanning microscopy

Imaging of biofilms on opaque surfaces is a challenge presented to researchers especially considering pathogenic bacteria, as those typically grow on living tissue, such as mucosa and bone. However, they can also grow on surfaces used in industrial applications such as food production, acting as a h...

Full description

Saved in:
Bibliographic Details
Published inEngineering in life sciences Vol. 19; no. 7; pp. 513 - 521
Main Authors Kleine, Daniel, Chodorski, Jonas, Mitra, Sayani, Schlegel, Christin, Huttenlochner, Katharina, Müller‐Renno, Christine, Mukherjee, Joydeep, Ziegler, Christiane, Ulber, Roland
Format Journal Article
LanguageEnglish
Published Germany John Wiley and Sons Inc 01.07.2019
Subjects
Online AccessGet full text
ISSN1618-0240
1618-2863
DOI10.1002/elsc.201800176

Cover

Abstract Imaging of biofilms on opaque surfaces is a challenge presented to researchers especially considering pathogenic bacteria, as those typically grow on living tissue, such as mucosa and bone. However, they can also grow on surfaces used in industrial applications such as food production, acting as a hindrance to the process. Thus, it is important to understand bacteria better in the environment they actually have relevance in. Stainless steel and titanium substrata were line structured and dotted surface topographies for titanium substrata were prepared to analyze their effects on biofilm formation of a constitutively green fluorescent protein (GFP)‐expressing Escherichia coli strain. The strain was batch cultivated in a custom built flow cell initially for 18 h, followed by continuous cultivation for 6 h. Confocal laser scanning microscopy (CLSM) was used to determine the biofilm topography. Biofilm growth of E. coli GFPmut2 was not affected by the type of metal substrate used; rather, attachment and growth were influenced by variable shapes of the microstructured titanium surfaces. In this work, biofilm cultivation in flow cells was coupled with the most widely used biofilm analytical technique (CLSM) to study the time course of growth of a GFP‐expressing biofilm on metallic surfaces without intermittent sampling or disturbing the natural development of the biofilm.
AbstractList Imaging of biofilms on opaque surfaces is a challenge presented to researchers especially considering pathogenic bacteria, as those typically grow on living tissue, such as mucosa and bone. However, they can also grow on surfaces used in industrial applications such as food production, acting as a hindrance to the process. Thus, it is important to understand bacteria better in the environment they actually have relevance in. Stainless steel and titanium substrata were line structured and dotted surface topographies for titanium substrata were prepared to analyze their effects on biofilm formation of a constitutively green fluorescent protein (GFP)‐expressing Escherichia coli strain. The strain was batch cultivated in a custom built flow cell initially for 18 h, followed by continuous cultivation for 6 h. Confocal laser scanning microscopy (CLSM) was used to determine the biofilm topography. Biofilm growth of E. coli GFPmut2 was not affected by the type of metal substrate used; rather, attachment and growth were influenced by variable shapes of the microstructured titanium surfaces. In this work, biofilm cultivation in flow cells was coupled with the most widely used biofilm analytical technique (CLSM) to study the time course of growth of a GFP‐expressing biofilm on metallic surfaces without intermittent sampling or disturbing the natural development of the biofilm.
Imaging of biofilms on opaque surfaces is a challenge presented to researchers especially considering pathogenic bacteria, as those typically grow on living tissue, such as mucosa and bone. However, they can also grow on surfaces used in industrial applications such as food production, acting as a hindrance to the process. Thus, it is important to understand bacteria better in the environment they actually have relevance in. Stainless steel and titanium substrata were line structured and dotted surface topographies for titanium substrata were prepared to analyze their effects on biofilm formation of a constitutively green fluorescent protein (GFP)-expressing Escherichia coli strain. The strain was batch cultivated in a custom built flow cell initially for 18 h, followed by continuous cultivation for 6 h. Confocal laser scanning microscopy (CLSM) was used to determine the biofilm topography. Biofilm growth of E. coli GFPmut2 was not affected by the type of metal substrate used; rather, attachment and growth were influenced by variable shapes of the microstructured titanium surfaces. In this work, biofilm cultivation in flow cells was coupled with the most widely used biofilm analytical technique (CLSM) to study the time course of growth of a GFP-expressing biofilm on metallic surfaces without intermittent sampling or disturbing the natural development of the biofilm.Imaging of biofilms on opaque surfaces is a challenge presented to researchers especially considering pathogenic bacteria, as those typically grow on living tissue, such as mucosa and bone. However, they can also grow on surfaces used in industrial applications such as food production, acting as a hindrance to the process. Thus, it is important to understand bacteria better in the environment they actually have relevance in. Stainless steel and titanium substrata were line structured and dotted surface topographies for titanium substrata were prepared to analyze their effects on biofilm formation of a constitutively green fluorescent protein (GFP)-expressing Escherichia coli strain. The strain was batch cultivated in a custom built flow cell initially for 18 h, followed by continuous cultivation for 6 h. Confocal laser scanning microscopy (CLSM) was used to determine the biofilm topography. Biofilm growth of E. coli GFPmut2 was not affected by the type of metal substrate used; rather, attachment and growth were influenced by variable shapes of the microstructured titanium surfaces. In this work, biofilm cultivation in flow cells was coupled with the most widely used biofilm analytical technique (CLSM) to study the time course of growth of a GFP-expressing biofilm on metallic surfaces without intermittent sampling or disturbing the natural development of the biofilm.
Imaging of biofilms on opaque surfaces is a challenge presented to researchers especially considering pathogenic bacteria, as those typically grow on living tissue, such as mucosa and bone. However, they can also grow on surfaces used in industrial applications such as food production, acting as a hindrance to the process. Thus, it is important to understand bacteria better in the environment they actually have relevance in. Stainless steel and titanium substrata were line structured and dotted surface topographies for titanium substrata were prepared to analyze their effects on biofilm formation of a constitutively green fluorescent protein (GFP)-expressing strain. The strain was batch cultivated in a custom built flow cell initially for 18 h, followed by continuous cultivation for 6 h. Confocal laser scanning microscopy (CLSM) was used to determine the biofilm topography. Biofilm growth of GFPmut2 was not affected by the type of metal substrate used; rather, attachment and growth were influenced by variable shapes of the microstructured titanium surfaces. In this work, biofilm cultivation in flow cells was coupled with the most widely used biofilm analytical technique (CLSM) to study the time course of growth of a GFP-expressing biofilm on metallic surfaces without intermittent sampling or disturbing the natural development of the biofilm.
Imaging of biofilms on opaque surfaces is a challenge presented to researchers especially considering pathogenic bacteria, as those typically grow on living tissue, such as mucosa and bone. However, they can also grow on surfaces used in industrial applications such as food production, acting as a hindrance to the process. Thus, it is important to understand bacteria better in the environment they actually have relevance in. Stainless steel and titanium substrata were line structured and dotted surface topographies for titanium substrata were prepared to analyze their effects on biofilm formation of a constitutively green fluorescent protein (GFP)‐expressing Escherichia coli strain. The strain was batch cultivated in a custom built flow cell initially for 18 h, followed by continuous cultivation for 6 h. Confocal laser scanning microscopy (CLSM) was used to determine the biofilm topography. Biofilm growth of E. coli GFPmut2 was not affected by the type of metal substrate used; rather, attachment and growth were influenced by variable shapes of the microstructured titanium surfaces. In this work, biofilm cultivation in flow cells was coupled with the most widely used biofilm analytical technique (CLSM) to study the time course of growth of a GFP‐expressing biofilm on metallic surfaces without intermittent sampling or disturbing the natural development of the biofilm.
Author Müller‐Renno, Christine
Mukherjee, Joydeep
Schlegel, Christin
Mitra, Sayani
Chodorski, Jonas
Huttenlochner, Katharina
Ziegler, Christiane
Ulber, Roland
Kleine, Daniel
AuthorAffiliation 3 Department of Physics and Research Center OPTIMAS TU Kaiserslautern Kaiserslautern Germany
1 Institute of Bioprocess Engineering TU Kaiserslautern Kaiserslautern Germany
2 School of Environmental Studies Jadavpur University Kolkata India
AuthorAffiliation_xml – name: 2 School of Environmental Studies Jadavpur University Kolkata India
– name: 1 Institute of Bioprocess Engineering TU Kaiserslautern Kaiserslautern Germany
– name: 3 Department of Physics and Research Center OPTIMAS TU Kaiserslautern Kaiserslautern Germany
Author_xml – sequence: 1
  givenname: Daniel
  surname: Kleine
  fullname: Kleine, Daniel
  organization: TU Kaiserslautern
– sequence: 2
  givenname: Jonas
  surname: Chodorski
  fullname: Chodorski, Jonas
  organization: TU Kaiserslautern
– sequence: 3
  givenname: Sayani
  surname: Mitra
  fullname: Mitra, Sayani
  organization: Jadavpur University
– sequence: 4
  givenname: Christin
  surname: Schlegel
  fullname: Schlegel, Christin
  organization: TU Kaiserslautern
– sequence: 5
  givenname: Katharina
  surname: Huttenlochner
  fullname: Huttenlochner, Katharina
  organization: TU Kaiserslautern
– sequence: 6
  givenname: Christine
  surname: Müller‐Renno
  fullname: Müller‐Renno, Christine
  organization: TU Kaiserslautern
– sequence: 7
  givenname: Joydeep
  surname: Mukherjee
  fullname: Mukherjee, Joydeep
  organization: Jadavpur University
– sequence: 8
  givenname: Christiane
  surname: Ziegler
  fullname: Ziegler, Christiane
  organization: TU Kaiserslautern
– sequence: 9
  givenname: Roland
  orcidid: 0000-0002-7674-0967
  surname: Ulber
  fullname: Ulber, Roland
  email: ulber@mv.uni-kl.de
  organization: TU Kaiserslautern
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32625028$$D View this record in MEDLINE/PubMed
BookMark eNqFUUtv3CAQRlWi5tFee4w49rIbwBjjS6RqlbaRNsoh7RlhPGyJMGwAJ9p_X1vZrppccprR8D2G-c7QUYgBEPpCyZISwi7BZ7NkhEpCaCM-oFMqqFwwKaqjfU8YJyfoLOeHGSIl_YhOKiZYTZg8ReU2BldicmGDo8Wdi9b5IeNNis8Bx4B7Zy0kCMVp73c4lzSaMibo8QBlGjmD85isNpDxmGcZE4ONRnvsdYaEs9EhzPPBmRSzidvdJ3Rstc_weV_P0e_v179WPxfrux83q2_rheENEwtaNbzroW5NrbuOEl5BYzuQjaUWWs7AVoSIvhe6FpR3klpS6VZS0XHSg66rc3T1orsduwF6M_0iaa-2yQ067VTUTr1-Ce6P2sQnJdq25TWdBL7uBVJ8HCEXNbhswHsdII5ZMc6IYLylbIJe_O91MPl36gmwfAHMV8gJ7AFCiZqzVHOW6pDlROBvCMYVXVycd3X-Xdqz87B7x0Rdr-9XlDFR_QWG8rdE
CitedBy_id crossref_primary_10_1021_acsomega_2c07255
crossref_primary_10_1016_j_bioadv_2022_213251
crossref_primary_10_1016_j_eti_2020_101145
crossref_primary_10_1080_07388551_2021_1942779
crossref_primary_10_1016_j_cej_2021_129348
crossref_primary_10_1038_s41522_021_00214_7
crossref_primary_10_1039_D0RA08878A
crossref_primary_10_1016_j_chemosphere_2021_133005
crossref_primary_10_3390_molecules29050935
crossref_primary_10_1002_jctb_7208
crossref_primary_10_31083_j_fbl2904133
crossref_primary_10_1016_j_cocis_2021_101426
Cites_doi 10.1002/elsc.201700045
10.1080/08927014.2015.1038705
10.1016/j.mimet.2011.05.011
10.1002/jbm.b.31635
10.1021/am507148n
10.1080/08927014.2012.716044
10.1016/j.mimet.2010.04.006
10.1371/journal.pone.0025029
10.1186/1471-2180-10-98
10.1073/pnas.84.24.8814
10.1002/bit.260431118
10.1007/978-1-4939-0473-0_47
10.1002/elsc.201500032
10.1371/journal.pone.0107588
10.1016/j.mimet.2014.02.020
10.1016/S0009-2541(01)00303-5
10.1021/ac00049a013
10.1128/jb.176.8.2137-2142.1994
10.1128/MMBR.64.4.847-867.2000
10.1007/10_2014_271
10.1016/j.colsurfb.2004.11.010
10.1002/wat2.1144
10.1099/00221287-146-10-2395
10.1016/j.biomaterials.2010.01.071
10.1007/10_2014_272
10.1128/AEM.03436-12
10.1111/j.1600-0501.2011.02184.x
10.1128/AEM.02129-13
10.1371/journal.pone.0084837
10.1016/j.colsurfb.2006.05.003
10.1116/1.4907754
10.1186/1472-6785-6-1
10.1128/AEM.03001-13
10.1111/j.1349-7006.2000.tb00907.x
10.4028/www.scientific.net/AMR.769.53
10.1109/ICONN.2008.4639259
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1002/elsc.201800176
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate KLEINE et al
EISSN 1618-2863
EndPage 521
ExternalDocumentID PMC6999451
32625028
10_1002_elsc_201800176
ELSC1226
Genre article
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: UL 170/14‐1
– fundername: ;
  grantid: UL 170/14‐1
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJCF
ABJNI
ACBWZ
ACCFJ
ACCMX
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPKN
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
EBD
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HHY
HVGLF
HZ~
IAO
IGS
ITC
IX1
J0M
JPC
KQQ
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
PTHSS
Q.N
Q11
QB0
R.K
ROL
RPM
RWI
RX1
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AGQPQ
CITATION
IEP
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
PQGLB
7X8
5PM
ID FETCH-LOGICAL-c4726-1374bde59c5abb1043e7fbe87f1fe942ef3006dd6a5614b81f03a9816b40dea53
IEDL.DBID DR2
ISSN 1618-0240
IngestDate Thu Aug 21 14:03:58 EDT 2025
Fri Sep 05 12:03:15 EDT 2025
Mon Jul 21 06:06:24 EDT 2025
Thu Apr 24 23:00:05 EDT 2025
Tue Jul 01 01:15:36 EDT 2025
Wed Jan 22 16:39:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords microstructure
stainless steel
flow cell
titanium
biofilm
Language English
License 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4726-1374bde59c5abb1043e7fbe87f1fe942ef3006dd6a5614b81f03a9816b40dea53
Notes These authors contributed equally to the study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7674-0967
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/elsc.201800176
PMID 32625028
PQID 2420624912
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6999451
proquest_miscellaneous_2420624912
pubmed_primary_32625028
crossref_primary_10_1002_elsc_201800176
crossref_citationtrail_10_1002_elsc_201800176
wiley_primary_10_1002_elsc_201800176_ELSC1226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Engineering in life sciences
PublicationTitleAlternate Eng Life Sci
PublicationYear 2019
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 1994; 176
2010; 10
2010; 31
2006; 51
2001; 180
2010
2015; 31
1993; 65
2000; 64
2015; 10
2005; 41
2008
2006; 6
2014; 1149
2016; 16
2011; 6
2015; 7
1994; 43
2010; 82
2014; 80
2014; 769
1987; 84
2016; 3
2012; 1
2000; 146
2000
2013; 79
2017; 17
2011; 86
1996; 173
2016
2012; 28
2014; 9
2014; 100
2012; 23
2010; 94
2014; 146
e_1_2_8_28_1
AlAbbas F. M. (e_1_2_8_11_1) 2010
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Perera‐Costa D. (e_1_2_8_13_1) 2016; 16
e_1_2_8_3_1
Da Silva W. J. (e_1_2_8_29_1) 2010; 94
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_43_1
e_1_2_8_21_1
Lewandowski Z. (e_1_2_8_33_1) 2000
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
Oldani C. (e_1_2_8_12_1) 2010
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Sternberg C. (e_1_2_8_20_1) 2012; 1
Schlegel C. (e_1_2_8_15_1) 2016
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_30_1
References_xml – volume: 41
  start-page: 129
  year: 2005
  end-page: 138
  article-title: Retention of microbial cells in substratum surface features of micrometer and sub‐micrometer dimensions
  publication-title: Coll. Surf. B
– volume: 28
  start-page: 835
  year: 2012
  end-page: 842
  article-title: Bursting the bubble on bacterial biofilms: a flow cell methodology
  publication-title: Biofouling
– volume: 6
  start-page: 1
  year: 2006
  article-title: Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP
  publication-title: BMC Ecol
– volume: 100
  start-page: 111
  year: 2014
  end-page: 120
  article-title: Quantification of confocal images of biofilms grown on irregular surfaces
  publication-title: J. Microbiol. Meth
– volume: 10
  start-page: 98
  year: 2010
  article-title: Initial development and structure of biofilms on microbial fuel cell anodes
  publication-title: BMC Microbiol
– volume: 65
  start-page: 65
  year: 1993
  end-page: 69
  article-title: Longterm, online monitoring of microbial biofilms using a quartz crystal microbalance
  publication-title: Anal. Chem
– volume: 180
  start-page: 19
  year: 2001
  end-page: 32
  article-title: Microbial response to surface microtopography: the role of metabolism in localised mineral dissolution
  publication-title: Chem. Geol
– volume: 9
  start-page: e84837
  year: 2014
  article-title: Reproducible biofilm cultivation of chemostat‐grown and investigation of bacterial adhesion on biomaterials using a non‐constant‐depth film fermenter
  publication-title: PLOS One
– volume: 84
  start-page: 8814
  year: 1987
  end-page: 8818
  article-title: Arabinose‐induced binding of AraC protein to araI2 activates the araBAD operon promoter
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 019007
  year: 2015
  article-title: Cleaning of titanium substrates after application in a bioreactor
  publication-title: Biointerphases
– year: 2000
– volume: 79
  start-page: 7922
  year: 2013
  end-page: 7930
  article-title: Enhanced biotransformation of fluoranthene by intertidally derived under biofilm‐based and niche‐mimicking conditions
  publication-title: Appl. Environ. Microbiol
– volume: 51
  start-page: 44
  year: 2006
  end-page: 53
  article-title: Use of the atomic force microscope to determine the effect of substratum surface topography on the ease of bacterial removal
  publication-title: Coll. Surf. B
– volume: 43
  start-page: 1131
  year: 1994
  end-page: 1138
  article-title: Effects of biofilm structures on oxygen distribution and mass transport
  publication-title: Biotechnol. Bioeng.
– volume: 9
  start-page: e107588
  year: 2014
  article-title: Early Staphylococcal biofilm formation on solid orthopaedic implant materials: In vitro study
  publication-title: PLOS One
– volume: 146
  start-page: 1
  year: 2014
  end-page: 51
  article-title: Investigation of microbial biofilm structure by laser scanning microscopy
  publication-title: Adv. Biochem. Eng. Biotechnol
– volume: 64
  start-page: 847
  year: 2000
  end-page: 867
  article-title: Microbial biofilms: from ecology to molecular genetics
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 146
  start-page: 163
  year: 2014
  end-page: 205
  article-title: Ecological roles and biotechnological applications of marine and intertidal microbial biofilms
  publication-title: Adv. Biochem. Eng. Biotechnol
– volume: 86
  start-page: 248
  year: 2011
  end-page: 51
  article-title: CARD‐FISH and confocal laser scanner microscopy to assess successional changes of the bacterial community in freshwater biofilms
  publication-title: J. Microbiol. Methods
– year: 2010
– volume: 146
  start-page: 2395
  year: 2000
  end-page: 2407
  article-title: Quantification of biofilm structures by the novel computer program COMSTAT
  publication-title: Microbiology
– volume: 23
  start-page: 301
  year: 2012
  end-page: 307
  article-title: Influence of topography and hydrophilicity on initial oral biofilm formation on microstructured titanium surfaces in vitro
  publication-title: Clin. Oral. Implants Res
– volume: 176
  start-page: 2137
  year: 1994
  end-page: 2142
  article-title: Biofilms, the customized microniche
  publication-title: J. Bacteriol
– volume: 82
  start-page: 64
  year: 2010
  end-page: 70
  article-title: The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method
  publication-title: J. Microbiol. Methods
– volume: 7
  start-page: 1644
  year: 2015
  end-page: 1651
  article-title: The influence of surface modification on bacterial adhesion to titanium‐based substrates
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  year: 2012
  article-title: Growing and analyzing biofilms in flow cells
  publication-title: Curr. Protoc. Microbiol
– start-page: 113
  year: 2008
  end-page: 116
– volume: 3
  start-page: 487
  year: 2016
  end-page: 494
  article-title: The importance of sewer biofilms
  publication-title: WIREs Water
– volume: 17
  start-page: 865
  year: 2017
  end-page: 873
  article-title: Analyzing the influence of microstructured surfaces on the lactic acid production of Lactobacillus delbrueckii lactis in a flow‐through cell system
  publication-title: Eng. Life Sci
– volume: 16
  start-page: 4633
  year: 2016
  end-page: 4641
  article-title: Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns
  publication-title: Langmuir
– start-page: 2016
  year: 2016
– volume: 94
  start-page: 149
  year: 2010
  end-page: 156
  article-title: Bioactivity and architecture of biofilms developed on poly(methyl methacrylate) resin surface
  publication-title: J. Biomed. Mater. Res. B Appl Biomater
– volume: 80
  start-page: 177
  year: 2014
  end-page: 183
  article-title: Impact of substratum surface on microbial community structure and treatment performance in biological aerated filters
  publication-title: J. Appl. Environ. Microbiol
– volume: 31
  start-page: 283
  year: 2015
  end-page: 296
  article-title: Enhanced biofilm formation and melanin synthesis by the oyster settlement‐promoting is related to hydrophobic surface and simulated intertidal environment
  publication-title: Biofouling
– volume: 31
  start-page: 3674
  year: 2010
  end-page: 3683
  article-title: The influence of nano‐scale surface roughness on bacterial adhesion to ultrafine‐grained titanium
  publication-title: Biomaterials
– volume: 1149
  start-page: 615
  year: 2014
  end-page: 29
  article-title: Methods for studying biofilm formation: flow cells and confocal laser scanning microscopy
  publication-title: Methods Mol. Biol
– volume: 769
  start-page: 53
  year: 2014
  end-page: 60
  article-title: Micromachining of CP‐titanium on a desktop machine‐study on bottom surface quality in micro end milling
  publication-title: Adv. Mater. Res
– volume: 173
  start-page: 33
  year: 1996
  end-page: 38
  article-title: FACS‐optimized mutants of the green fluorescent protein (GFP)
  publication-title: Gene
– volume: 79
  start-page: 2703
  year: 2013
  end-page: 2712
  article-title: Effect of micro‐and nanoscale topography on the adhesion of bacterial cells to solid surfaces
  publication-title: Appl. Environ. Microbiol
– volume: 16
  start-page: 88
  year: 2016
  end-page: 92
  article-title: Chloroperoxidase production by biofilms
  publication-title: Eng. Life. Sci
– volume: 6
  start-page: e25029
  year: 2011
  article-title: Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation
  publication-title: PLOS One
– ident: e_1_2_8_22_1
  doi: 10.1002/elsc.201700045
– volume-title: Biofilms: Recent Advances in Their Study and Control
  year: 2000
  ident: e_1_2_8_33_1
– ident: e_1_2_8_32_1
  doi: 10.1080/08927014.2015.1038705
– ident: e_1_2_8_17_1
  doi: 10.1016/j.mimet.2011.05.011
– volume: 94
  start-page: 149
  year: 2010
  ident: e_1_2_8_29_1
  article-title: Bioactivity and architecture of Candida albicans biofilms developed on poly(methyl methacrylate) resin surface
  publication-title: J. Biomed. Mater. Res. B Appl Biomater
  doi: 10.1002/jbm.b.31635
– ident: e_1_2_8_42_1
  doi: 10.1021/am507148n
– ident: e_1_2_8_19_1
  doi: 10.1080/08927014.2012.716044
– ident: e_1_2_8_31_1
  doi: 10.1016/j.mimet.2010.04.006
– ident: e_1_2_8_38_1
  doi: 10.1371/journal.pone.0025029
– ident: e_1_2_8_7_1
  doi: 10.1186/1471-2180-10-98
– ident: e_1_2_8_26_1
  doi: 10.1073/pnas.84.24.8814
– ident: e_1_2_8_34_1
  doi: 10.1002/bit.260431118
– ident: e_1_2_8_21_1
  doi: 10.1007/978-1-4939-0473-0_47
– volume: 16
  start-page: 4633
  year: 2016
  ident: e_1_2_8_13_1
  article-title: Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns
  publication-title: Langmuir
– ident: e_1_2_8_36_1
  doi: 10.1002/elsc.201500032
– ident: e_1_2_8_39_1
  doi: 10.1371/journal.pone.0107588
– ident: e_1_2_8_35_1
  doi: 10.1016/j.mimet.2014.02.020
– ident: e_1_2_8_8_1
  doi: 10.1016/S0009-2541(01)00303-5
– ident: e_1_2_8_18_1
  doi: 10.1021/ac00049a013
– ident: e_1_2_8_2_1
  doi: 10.1128/jb.176.8.2137-2142.1994
– ident: e_1_2_8_3_1
  doi: 10.1128/MMBR.64.4.847-867.2000
– ident: e_1_2_8_4_1
  doi: 10.1007/10_2014_271
– ident: e_1_2_8_9_1
  doi: 10.1016/j.colsurfb.2004.11.010
– ident: e_1_2_8_5_1
  doi: 10.1002/wat2.1144
– ident: e_1_2_8_30_1
  doi: 10.1099/00221287-146-10-2395
– ident: e_1_2_8_37_1
  doi: 10.1016/j.biomaterials.2010.01.071
– ident: e_1_2_8_16_1
  doi: 10.1007/10_2014_272
– ident: e_1_2_8_41_1
  doi: 10.1128/AEM.03436-12
– volume-title: Recent Advances in Arthroplasty
  year: 2010
  ident: e_1_2_8_12_1
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1600-0501.2011.02184.x
– ident: e_1_2_8_6_1
  doi: 10.1128/AEM.02129-13
– ident: e_1_2_8_27_1
  doi: 10.1371/journal.pone.0084837
– ident: e_1_2_8_10_1
  doi: 10.1016/j.colsurfb.2006.05.003
– ident: e_1_2_8_24_1
  doi: 10.1116/1.4907754
– ident: e_1_2_8_28_1
  doi: 10.1186/1472-6785-6-1
– start-page: 2016
  volume-title: Productive Biofilms on Structured Metal Surfaces
  year: 2016
  ident: e_1_2_8_15_1
– volume-title: Biomaterials Science: Processing, Properties and Applications II: Ceramic Transactions
  year: 2010
  ident: e_1_2_8_11_1
– ident: e_1_2_8_14_1
  doi: 10.1128/AEM.03001-13
– volume: 1
  year: 2012
  ident: e_1_2_8_20_1
  article-title: Growing and analyzing biofilms in flow cells
  publication-title: Curr. Protoc. Microbiol
– ident: e_1_2_8_25_1
  doi: 10.1111/j.1349-7006.2000.tb00907.x
– ident: e_1_2_8_23_1
  doi: 10.4028/www.scientific.net/AMR.769.53
– ident: e_1_2_8_43_1
  doi: 10.1109/ICONN.2008.4639259
SSID ssj0017881
Score 2.274871
Snippet Imaging of biofilms on opaque surfaces is a challenge presented to researchers especially considering pathogenic bacteria, as those typically grow on living...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 513
SubjectTerms biofilm
flow cell
microstructure
stainless steel
titanium
Title Monitoring of biofilms grown on differentially structured metallic surfaces using confocal laser scanning microscopy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felsc.201800176
https://www.ncbi.nlm.nih.gov/pubmed/32625028
https://www.proquest.com/docview/2420624912
https://pubmed.ncbi.nlm.nih.gov/PMC6999451
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Rb9MwEMcttKfxMDbYoAyQkZD2lC12bCd5RGPThIAHYNLeIts5j2ptipr2Yfv0u4ub0DIhhHhM40Zxeuf7X3r-HWPvbO1NsEWaQBZkooxNE6fBJ9opb2ytJATaO_z5i7m4VB-v9NXaLv7IhxheuJFndOs1Obh17ckvaCiGDkIQioIWWmJui8wQPP_D14EfJYiVThmXEUVCMK-e2pjKk82vb0alB1LzYcXkupLtQtH5E2b7ScQKlJvj5cId-7vf-I7_M8tdtrPSqfx9NKw99giap-zxGr3wGVvE9YAO-CxwN6bu39OWX1Nmz2cN75uv4CIymdzyiKpdzqHmU0DNPxl73i7ngYrCONXfX3NMzgMFV46aHua89bGjEp9S2SBtoLndZ5fnZ99PL5JVE4fEq1wS4zBXrgZdem2dw-Qvgzw4KPIgApRkCxk6fl0bS0xSV4iQZrYshHEqrcHq7IBtNbMGXjAuPaA4kRhNtVEuOFvqUus8r60NZQ7piCX9j1j5FeGcGm1MqshmlhU9zWp4miN2NIz_Gdkefxz5treJCt2P_lOxDcyWbYUKJzWYwgo5Ys-jjQzXQmWMAlMWI5ZvWM8wgNDem2ea8Y8O8W1QtystcEadcfzl9qqzT99OBQrpl_84_pBt44dlLD9-xbbQDuA1iqyFe9M50j2tXCVE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdPMB6AB8ZvygYYCYmnbLFjO8kj2g8V6PYAm8RbZDv2qGhT1B8P46_nLm7CyoQQ4rHqtarTO9_3kvPnAN6Y2ulgijTxWRCJ1CZNrPIuUVY6bWopfKCzwyenenguP3xRXTchnYWJfIj-hhtFRrtfU4DTDen9X9RQzB3EIOQF7bT6JtySqDao_jr81BOkONHSqebSvEgI59VxG1Oxv_n5zbx0TWxe75m8qmXbZHS8DbZbRuxB-ba3Wto99-M3wuN_rfM-3FtLVfYu-tYDuOGbh3D3CsDwESzjlkAv2CwwO6YB4NMFu6Dins0a1s1fwX1kMrlkkVa7mvuaTT3K_snYscVqHqgvjFEL_gXD-jxQfmUo6_2cLVwcqsSm1DlIZ2guH8P58dHZwTBZz3FInMwFYQ5zaWuvSqeMtVj_ZT4P1hd54MGX5A4Zxn5da0NYUlvwkGamLLi2Mq29UdkT2GpmjX8GTDiP-kRgQlVa2mBNqUql8rw2JpS5TweQdP9i5daQc5q1MakinllUdDWr_moO4G1v_z3iPf5o-bpzigojkB6rmMbPVosKRU6qsYrlYgBPo5P034XiGDWmKAaQb7hPb0B07813mvHXlvKtUbpLxXFFrXf85edVR6PPBxy19PN_tH8Ft4dnJ6Nq9P704w7cQYMydiPvwhb6hH-BmmtpX7ZR9RPoTClj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Lb9NAEIdHUCQEh_IsDc9FQuLk1mvvru0jKo0KlAoBlXqz9lkiEqfK41D-ema8sUmoEEIcI2-i7Hpm5zf27DcAr7SzKugyTXweskQonSZGeptII6zSTmQ-0Nnhjyfq6FS8P5Nna6f4Ix-if-BGntHu1-TgFy7s_4KGYuggBCEvaaNV1-GGUCgnSBZ97gFSnGDplHIpXiZE8-qwjWm2v_n9zbB0RWteLZlcl7JtLBreAd3NIpagfN9bLsye_fEb4PF_pnkXtldClb2JlnUPrvnmPtxewxc-gEXcEOgDmwZmRtT-ezJn55Tas2nDuu4ruIuMx5cssmqXM-_YxKPoH48smy9ngarCGBXgnzPMzgNFV4ai3s_Y3MaWSmxCdYN0gubyIZwOD78eHCWrLg6JFUVGkMNCGOdlZaU2BrO_3BfB-LIIPPiKjCFHz3dOaYKSmpKHNNdVyZURqfNa5juw1Uwbvwsssx7VSYbhVCphgtGVrKQsCqd1qAqfDiDpbmJtV4hz6rQxriOcOatpNet-NQfwuh9_EeEefxz5srOJGv2PXqroxk-X8xolTqowh-XZAB5FG-l_C6UxKsysHECxYT39AGJ7b15pRt9axrdC4S4kxxm1xvGXv1cfHn854KikH__j-Bdw89PbYX387uTDE7iF16tYivwUttAk_DMUXAvzvPWpn1hEKBI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+of+biofilms+grown+on+differentially+structured+metallic+surfaces+using+confocal+laser+scanning+microscopy&rft.jtitle=Engineering+in+life+sciences&rft.au=Kleine%2C+Daniel&rft.au=Chodorski%2C+Jonas&rft.au=Mitra%2C+Sayani&rft.au=Schlegel%2C+Christin&rft.date=2019-07-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1618-0240&rft.eissn=1618-2863&rft.volume=19&rft.issue=7&rft.spage=513&rft.epage=521&rft_id=info:doi/10.1002%2Felsc.201800176&rft_id=info%3Apmid%2F32625028&rft.externalDocID=PMC6999451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1618-0240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1618-0240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1618-0240&client=summon