Resting-state Network-specific Breakdown of Functional Connectivity during Ketamine Alteration of Consciousness in Volunteers
BACKGROUND:Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual netwo...
Saved in:
Published in | Anesthesiology (Philadelphia) Vol. 125; no. 5; pp. 873 - 888 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Copyright by , the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc
01.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND:Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual network sustain mentation. Ketamine modifies consciousness differently from other agents, producing psychedelic dreaming and no apparent interaction with the environment. The authors used functional magnetic resonance imaging to explore ketamine-induced changes in RSNs connectivity.
METHODS:Fourteen healthy volunteers received stepwise intravenous infusions of ketamine up to loss of responsiveness. Because of agitation, data from six subjects were excluded from analysis. RSNs connectivity was compared between absence of ketamine (wake state [W1]), light ketamine sedation, and ketamine-induced unresponsiveness (deep sedation [S2]).
RESULTS:Increasing the depth of ketamine sedation from W1 to S2 altered DMn and SALn connectivity and suppressed the anticorrelated activity between DMn and other brain regions. During S2, DMn connectivity, particularly between the medial prefrontal cortex and the remaining network (effect size β [95% CI]W1 = 0.20 [0.18 to 0.22]; S2 = 0.07 [0.04 to 0.09]), and DMn anticorrelated activity (e.g., right sensory cortexW1 = −0.07 [−0.09 to −0.04]; S2 = 0.04 [0.01 to 0.06]) were broken down. SALn connectivity was nonuniformly suppressed (e.g., left parietal operculumW1 = 0.08 [0.06 to 0.09]; S2 = 0.05 [0.02 to 0.07]). Executive control networks, auditory network, SMn, and visual network were minimally affected.
CONCLUSIONS:Ketamine induces specific changes in connectivity within and between RSNs. Breakdown of frontoparietal DMn connectivity and DMn anticorrelation and sensory and SMn connectivity preservation are common to ketamine and propofol-induced alterations of consciousness. |
---|---|
AbstractList | Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual network sustain mentation. Ketamine modifies consciousness differently from other agents, producing psychedelic dreaming and no apparent interaction with the environment. The authors used functional magnetic resonance imaging to explore ketamine-induced changes in RSNs connectivity.
Fourteen healthy volunteers received stepwise intravenous infusions of ketamine up to loss of responsiveness. Because of agitation, data from six subjects were excluded from analysis. RSNs connectivity was compared between absence of ketamine (wake state [W1]), light ketamine sedation, and ketamine-induced unresponsiveness (deep sedation [S2]).
Increasing the depth of ketamine sedation from W1 to S2 altered DMn and SALn connectivity and suppressed the anticorrelated activity between DMn and other brain regions. During S2, DMn connectivity, particularly between the medial prefrontal cortex and the remaining network (effect size β [95% CI]: W1 = 0.20 [0.18 to 0.22]; S2 = 0.07 [0.04 to 0.09]), and DMn anticorrelated activity (e.g., right sensory cortex: W1 = -0.07 [-0.09 to -0.04]; S2 = 0.04 [0.01 to 0.06]) were broken down. SALn connectivity was nonuniformly suppressed (e.g., left parietal operculum: W1 = 0.08 [0.06 to 0.09]; S2 = 0.05 [0.02 to 0.07]). Executive control networks, auditory network, SMn, and visual network were minimally affected.
Ketamine induces specific changes in connectivity within and between RSNs. Breakdown of frontoparietal DMn connectivity and DMn anticorrelation and sensory and SMn connectivity preservation are common to ketamine and propofol-induced alterations of consciousness. BACKGROUND:Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual network sustain mentation. Ketamine modifies consciousness differently from other agents, producing psychedelic dreaming and no apparent interaction with the environment. The authors used functional magnetic resonance imaging to explore ketamine-induced changes in RSNs connectivity. METHODS:Fourteen healthy volunteers received stepwise intravenous infusions of ketamine up to loss of responsiveness. Because of agitation, data from six subjects were excluded from analysis. RSNs connectivity was compared between absence of ketamine (wake state [W1]), light ketamine sedation, and ketamine-induced unresponsiveness (deep sedation [S2]). RESULTS:Increasing the depth of ketamine sedation from W1 to S2 altered DMn and SALn connectivity and suppressed the anticorrelated activity between DMn and other brain regions. During S2, DMn connectivity, particularly between the medial prefrontal cortex and the remaining network (effect size β [95% CI]W1 = 0.20 [0.18 to 0.22]; S2 = 0.07 [0.04 to 0.09]), and DMn anticorrelated activity (e.g., right sensory cortexW1 = −0.07 [−0.09 to −0.04]; S2 = 0.04 [0.01 to 0.06]) were broken down. SALn connectivity was nonuniformly suppressed (e.g., left parietal operculumW1 = 0.08 [0.06 to 0.09]; S2 = 0.05 [0.02 to 0.07]). Executive control networks, auditory network, SMn, and visual network were minimally affected. CONCLUSIONS:Ketamine induces specific changes in connectivity within and between RSNs. Breakdown of frontoparietal DMn connectivity and DMn anticorrelation and sensory and SMn connectivity preservation are common to ketamine and propofol-induced alterations of consciousness. BACKGROUNDConsciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual network sustain mentation. Ketamine modifies consciousness differently from other agents, producing psychedelic dreaming and no apparent interaction with the environment. The authors used functional magnetic resonance imaging to explore ketamine-induced changes in RSNs connectivity.METHODSFourteen healthy volunteers received stepwise intravenous infusions of ketamine up to loss of responsiveness. Because of agitation, data from six subjects were excluded from analysis. RSNs connectivity was compared between absence of ketamine (wake state [W1]), light ketamine sedation, and ketamine-induced unresponsiveness (deep sedation [S2]).RESULTSIncreasing the depth of ketamine sedation from W1 to S2 altered DMn and SALn connectivity and suppressed the anticorrelated activity between DMn and other brain regions. During S2, DMn connectivity, particularly between the medial prefrontal cortex and the remaining network (effect size β [95% CI]: W1 = 0.20 [0.18 to 0.22]; S2 = 0.07 [0.04 to 0.09]), and DMn anticorrelated activity (e.g., right sensory cortex: W1 = -0.07 [-0.09 to -0.04]; S2 = 0.04 [0.01 to 0.06]) were broken down. SALn connectivity was nonuniformly suppressed (e.g., left parietal operculum: W1 = 0.08 [0.06 to 0.09]; S2 = 0.05 [0.02 to 0.07]). Executive control networks, auditory network, SMn, and visual network were minimally affected.CONCLUSIONSKetamine induces specific changes in connectivity within and between RSNs. Breakdown of frontoparietal DMn connectivity and DMn anticorrelation and sensory and SMn connectivity preservation are common to ketamine and propofol-induced alterations of consciousness. |
Author | Boveroux, Pierre Maquet, Pierre Boly, Melanie Bahri, Mohamed Ali Bonhomme, Vincent Bruno, Marie-Aurélie Soddu, Andrea Laureys, Steven Demertzi, Athena Plenevaux, Alain Vanhaudenhuyse, Audrey Brichant, Jean François Jaquet, Oceane |
AuthorAffiliation | From the University Department of Anesthesia and Intensive Care Medicine, CHR Citadelle and CHU University Hospital of Liege, Liege, Belgium (V.B., O.J.); Coma Science Group, GIGA Research, University and CHU University Hospital of Liege, Liege, Belgium (V.B., A.V., A.D., M.-A.B., M.A.B., S.L.); GIGA-Cyclotron Research Center: In Vivo Imaging, University of Liege, Liege, Belgium (A.V., A.D., M.-A.B., M.A.B., A.P., A.S., P.M., S.L.); Departments of Algology and Palliative Care (A.V.), Anesthesia and Intensive Care Medicine (V.B., O.J., P.B., J.F.B.), and Neurology (P.M., S.L.), CHU University Hospital of Liege, Liege, Belgium; Department of Neurology, University of Wisconsin, Madison, Wisconsin (M.B.); Departments of Anesthesia and Intensive Care Medicine (P.B.); Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada (A.S.); and Institut du Cerveau et de la Moelle épinière – ICM, Hôpital Pitié-Salpêtrière, Paris, France (A.D.) |
AuthorAffiliation_xml | – name: From the University Department of Anesthesia and Intensive Care Medicine, CHR Citadelle and CHU University Hospital of Liege, Liege, Belgium (V.B., O.J.); Coma Science Group, GIGA Research, University and CHU University Hospital of Liege, Liege, Belgium (V.B., A.V., A.D., M.-A.B., M.A.B., S.L.); GIGA-Cyclotron Research Center: In Vivo Imaging, University of Liege, Liege, Belgium (A.V., A.D., M.-A.B., M.A.B., A.P., A.S., P.M., S.L.); Departments of Algology and Palliative Care (A.V.), Anesthesia and Intensive Care Medicine (V.B., O.J., P.B., J.F.B.), and Neurology (P.M., S.L.), CHU University Hospital of Liege, Liege, Belgium; Department of Neurology, University of Wisconsin, Madison, Wisconsin (M.B.); Departments of Anesthesia and Intensive Care Medicine (P.B.); Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada (A.S.); and Institut du Cerveau et de la Moelle épinière – ICM, Hôpital Pitié-Salpêtrière, Paris, France (A.D.) |
Author_xml | – sequence: 1 givenname: Vincent surname: Bonhomme fullname: Bonhomme, Vincent organization: From the University Department of Anesthesia and Intensive Care Medicine, CHR Citadelle and CHU University Hospital of Liege, Liege, Belgium (V.B., O.J.); Coma Science Group, GIGA Research, University and CHU University Hospital of Liege, Liege, Belgium (V.B., A.V., A.D., M.-A.B., M.A.B., S.L.); GIGA-Cyclotron Research Center: In Vivo Imaging, University of Liege, Liege, Belgium (A.V., A.D., M.-A.B., M.A.B., A.P., A.S., P.M., S.L.); Departments of Algology and Palliative Care (A.V.), Anesthesia and Intensive Care Medicine (V.B., O.J., P.B., J.F.B.), and Neurology (P.M., S.L.), CHU University Hospital of Liege, Liege, Belgium; Department of Neurology, University of Wisconsin, Madison, Wisconsin (M.B.); Departments of Anesthesia and Intensive Care Medicine (P.B.); Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada (A.S.); and Institut du Cerveau et de la Moelle épinière – ICM, Hôpital Pitié-Salpêtrière, Paris, France (A.D.) – sequence: 2 givenname: Audrey surname: Vanhaudenhuyse fullname: Vanhaudenhuyse, Audrey – sequence: 3 givenname: Athena surname: Demertzi fullname: Demertzi, Athena – sequence: 4 givenname: Marie-Aurélie surname: Bruno fullname: Bruno, Marie-Aurélie – sequence: 5 givenname: Oceane surname: Jaquet fullname: Jaquet, Oceane – sequence: 6 givenname: Mohamed surname: Bahri middlename: Ali fullname: Bahri, Mohamed Ali – sequence: 7 givenname: Alain surname: Plenevaux fullname: Plenevaux, Alain – sequence: 8 givenname: Melanie surname: Boly fullname: Boly, Melanie – sequence: 9 givenname: Pierre surname: Boveroux fullname: Boveroux, Pierre – sequence: 10 givenname: Andrea surname: Soddu fullname: Soddu, Andrea – sequence: 11 givenname: Jean surname: Brichant middlename: François fullname: Brichant, Jean François – sequence: 12 givenname: Pierre surname: Maquet fullname: Maquet, Pierre – sequence: 13 givenname: Steven surname: Laureys fullname: Laureys, Steven |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27496657$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vGyEQhlGUqHHS_oOo4pjLprC7GDY3x8pHVSuVqrbXFQtDQ4zBBTZWDvnvxXVaRTm0XNCg5xkN7xyhfR88IHRCyRklHf8wW9yekReH1pztoQlltago5WwfTcprUzWkrg_RUUr3peSsEW_QYc3bbjplfIKevkDK1v-oUpYZ8C3kTYjLKq1BWWMVvogglzpsPA4GX41eZRu8dHgevIdSPNj8iPUYSwv8CbJcWQ945jJEuSW3VkGTsmFMHlLC1uPvwY0-A8T0Fh0Y6RK8e76P0bery6_zm2rx-frjfLaoVMtrVkmjjVKD1sQAGGCM8LprmJFECDKITk6lErLlSol6IMPQAW20BGWkJt2gu-YYne76rmP4OZYf9yubFDgnPZTBeioa1raCtqSg75_RcViB7tfRrmR87P9EVoB2B6gYUopg_iKU9NvN9GUz_evNFO38laZs_p1RjtK6_8liJ2_CNtq0dOMGYn8H0uW7f6u_AFbqp4g |
CitedBy_id | crossref_primary_10_1016_j_ajp_2024_103991 crossref_primary_10_1038_s41398_021_01455_y crossref_primary_10_1523_JNEUROSCI_2545_17_2018 crossref_primary_10_1016_j_jad_2018_02_049 crossref_primary_10_3389_fneur_2021_694964 crossref_primary_10_3389_fphar_2016_00348 crossref_primary_10_53765_20512201_29_7_115 crossref_primary_10_1016_j_neuroimage_2020_117618 crossref_primary_10_1080_15622975_2019_1679391 crossref_primary_10_1097_ALN_0000000000001276 crossref_primary_10_1177_0269881120909409 crossref_primary_10_1016_j_redar_2020_02_010 crossref_primary_10_1051_jbio_2023028 crossref_primary_10_1126_sciadv_aaz0087 crossref_primary_10_1038_s41398_024_03029_0 crossref_primary_10_1103_PhysRevX_14_041003 crossref_primary_10_1038_s41598_019_46702_x crossref_primary_10_1016_j_neuroimage_2019_03_076 crossref_primary_10_1007_s11055_020_00900_7 crossref_primary_10_1016_j_bjao_2023_100224 crossref_primary_10_1186_s40708_020_00116_y crossref_primary_10_1038_s41598_021_83482_9 crossref_primary_10_1097_ALN_0000000000002636 crossref_primary_10_1097_ALN_0000000000002876 crossref_primary_10_1016_j_neuroimage_2021_118042 crossref_primary_10_1093_bja_aex244 crossref_primary_10_1038_s41467_024_46382_w crossref_primary_10_1038_s41467_023_37463_3 crossref_primary_10_1053_j_jvca_2019_03_038 crossref_primary_10_1016_j_physbeh_2021_113553 crossref_primary_10_1007_s00101_018_0469_7 crossref_primary_10_1002_advs_202406320 crossref_primary_10_3389_fnhum_2022_992649 crossref_primary_10_3389_fpsyt_2021_710338 crossref_primary_10_1002_gps_4823 crossref_primary_10_1016_j_nicl_2019_101739 crossref_primary_10_1016_j_neuron_2024_03_002 crossref_primary_10_1038_s42003_023_04474_1 crossref_primary_10_1007_s11571_021_09775_x crossref_primary_10_1016_j_bja_2020_06_058 crossref_primary_10_1213_ANE_0000000000002427 crossref_primary_10_7554_eLife_34354 crossref_primary_10_1097_ALN_0000000000002228 crossref_primary_10_1097_ALN_0000000000001376 crossref_primary_10_1097_ALN_0000000000003159 crossref_primary_10_3389_fnhum_2017_00328 crossref_primary_10_1016_j_tins_2018_01_003 crossref_primary_10_1038_s41467_019_12658_9 crossref_primary_10_1016_j_bcp_2020_114388 crossref_primary_10_1016_j_jad_2017_09_023 crossref_primary_10_1016_j_neuroimage_2018_05_069 crossref_primary_10_1016_j_neuropharm_2018_01_017 crossref_primary_10_3389_fnins_2023_1113695 crossref_primary_10_1016_j_neuron_2020_01_026 crossref_primary_10_1093_brain_awab118 crossref_primary_10_1016_j_cub_2019_09_071 crossref_primary_10_1016_j_isci_2024_111639 crossref_primary_10_1097_ALN_0000000000002336 crossref_primary_10_1016_j_bja_2024_12_036 crossref_primary_10_18632_aging_203077 crossref_primary_10_1016_j_redare_2020_02_005 crossref_primary_10_3389_fpsyg_2022_846159 crossref_primary_10_3389_fnhum_2016_00612 crossref_primary_10_1038_s41598_020_73216_8 crossref_primary_10_1016_j_neuropsychologia_2019_05_018 crossref_primary_10_1007_s12021_022_09586_3 crossref_primary_10_1016_j_neuroimage_2019_116316 crossref_primary_10_1159_000539714 crossref_primary_10_1097_ACO_0000000000001017 crossref_primary_10_3390_ani15020258 crossref_primary_10_1007_s12031_019_01476_9 crossref_primary_10_1007_s11682_023_00782_6 crossref_primary_10_3389_fnins_2024_1306344 crossref_primary_10_3389_fphar_2024_1456009 crossref_primary_10_3390_psych4010012 crossref_primary_10_1080_17512433_2025_2459377 crossref_primary_10_1016_j_tips_2019_05_001 crossref_primary_10_1007_s40520_018_1008_8 crossref_primary_10_1055_a_1892_1894 crossref_primary_10_3389_fneur_2018_00861 crossref_primary_10_1016_j_neubiorev_2021_05_003 crossref_primary_10_1097_ALN_0000000000003774 crossref_primary_10_1017_S0033291722001313 crossref_primary_10_1097_ACO_0000000000000618 crossref_primary_10_1097_ALN_0000000000001509 crossref_primary_10_1097_HRP_0000000000000179 crossref_primary_10_1093_ijnp_pyaf010 crossref_primary_10_1002_hbm_24892 crossref_primary_10_3390_medsci9010010 crossref_primary_10_3389_fnsys_2017_00016 crossref_primary_10_3389_fnins_2018_00912 crossref_primary_10_3389_fpsyg_2025_1532937 crossref_primary_10_1016_j_bja_2018_03_011 crossref_primary_10_1523_JNEUROSCI_1910_19_2019 crossref_primary_10_3389_fnetp_2023_1279646 crossref_primary_10_1016_j_bbr_2021_113685 crossref_primary_10_1016_j_nicl_2020_102188 crossref_primary_10_1146_annurev_pharmtox_051921_093711 crossref_primary_10_1093_ijnp_pyaa087 crossref_primary_10_1097_ALN_0000000000002677 crossref_primary_10_1016_j_pbb_2020_173092 crossref_primary_10_1126_sciadv_adf8332 crossref_primary_10_1002_hbm_24889 crossref_primary_10_3389_fphar_2019_01379 crossref_primary_10_3389_fnsys_2021_625919 crossref_primary_10_1016_j_neuroimage_2022_118891 crossref_primary_10_3390_brainsci14010050 crossref_primary_10_1016_j_nicl_2018_05_037 crossref_primary_10_1097_ALN_0000000000002704 crossref_primary_10_1038_s44220_023_00172_3 crossref_primary_10_1016_j_tics_2019_12_010 crossref_primary_10_1111_cns_14866 crossref_primary_10_1177_02698811221140011 crossref_primary_10_1515_revneuro_2019_0090 crossref_primary_10_1016_j_neuroimage_2016_12_080 crossref_primary_10_1002_hbm_24838 crossref_primary_10_1097_ALN_0000000000002385 crossref_primary_10_1038_s41598_019_41345_4 crossref_primary_10_1177_23982128211055426 crossref_primary_10_3389_fpain_2022_872696 crossref_primary_10_1002_hbm_25405 crossref_primary_10_1093_bja_aex257 crossref_primary_10_1093_ijnp_pyac074 crossref_primary_10_15252_embr_201847118 crossref_primary_10_7554_eLife_84173 crossref_primary_10_1002_hbm_24791 crossref_primary_10_1213_ANE_0000000000006799 crossref_primary_10_3390_brainsci11081107 crossref_primary_10_4102_jan_v3i1_10 crossref_primary_10_3389_fnhum_2021_626507 crossref_primary_10_3389_fncir_2017_00044 crossref_primary_10_1016_j_bja_2023_05_030 crossref_primary_10_3389_fncel_2016_00257 crossref_primary_10_3389_fnsys_2022_1044536 crossref_primary_10_1038_s41598_023_38258_8 crossref_primary_10_1016_j_neuroimage_2021_118626 crossref_primary_10_1016_j_pscychresns_2017_09_001 crossref_primary_10_1016_j_anrea_2020_04_004 crossref_primary_10_1097_ALN_0000000000002417 crossref_primary_10_1097_ALN_0000000000005241 crossref_primary_10_1097_ALN_0000000000003986 crossref_primary_10_1038_s41386_020_00864_9 |
Cites_doi | 10.1016/j.neulet.2012.06.009 10.1038/nrn2994 10.1097/ALN.0b013e31826a0db3 10.1089/brain.2011.0019 10.1371/journal.pone.0036222 10.1097/00000542-197304000-00006 10.1523/JNEUROSCI.5587-06.2007 10.1371/journal.pone.0044799 10.1097/ALN.0b013e3182a7ca92 10.1097/ALN.0b013e3181f697f5 10.1006/ccog.1999.0423 10.1089/brain.2012.0107 10.1093/bja/88.2.241 10.1371/journal.pone.0100012 10.1073/pnas.0601417103 10.1016/j.tacc.2014.03.002 10.1371/journal.pone.0025155 10.1162/jocn_a_00077 10.1016/j.neuroimage.2006.11.054 10.1371/journal.pcbi.1000381 10.1038/npp.2013.170 10.1016/j.conb.2012.11.010 10.1038/mp.2012.194 10.1162/jocn.2010.21488 10.1097/ALN.0b013e31829103f5 10.1093/bja/aem063 10.1097/ALN.0b013e3182a8ec8c 10.1016/j.neuroimage.2005.08.035 10.1136/bmj.2.5920.656 10.1034/j.1399-6576.2003.00089.x 10.1016/j.cub.2015.10.014 10.1073/pnas.1418031112 10.1523/JNEUROSCI.3769-11.2012 10.1016/j.neuroimage.2014.03.042 10.1093/bja/aet288 10.1097/ACO.0000000000000086 10.1089/brain.2012.0117 10.1097/00000542-200508000-00008 10.1016/j.neuroimage.2016.04.039 10.1196/annals.1440.011 10.1073/pnas.0504136102 |
ContentType | Journal Article |
Copyright | Copyright © by 2016, the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc. All Rights Reserved. |
Copyright_xml | – notice: Copyright © by 2016, the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc. All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1097/ALN.0000000000001275 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1528-1175 |
EndPage | 888 |
ExternalDocumentID | 27496657 10_1097_ALN_0000000000001275 10.1097/ALN.0000000000001275 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .-D .3C .55 .GJ .XZ .Z2 01R 026 0R~ 1CY 1J1 23M 2WC 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6J9 71W 77Y 7O~ AAAAV AAAXR AAEJM AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AAQQT AARTV AASCR AASOK AASXQ AAUEB AAWTL AAXQO ABASU ABBUW ABDIG ABJNI ABOCM ABPXF ABVCZ ABXVJ ABXYN ABZAD ABZZY ACCJW ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACLDA ACLED ACOAL ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEBDS AEETU AENEX AFBFQ AFDTB AFEXH AFFNX AFMBP AFNMH AFSOK AFUWQ AGINI AHOMT AHQNM AHQVU AHRYX AHVBC AHXIK AIJEX AINUH AJCLO AJIOK AJJEV AJNWD AJNYG AJRGT AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BAWUL BCGUY BOYCO BQLVK BS7 BYPQX C45 CS3 DIK DIWNM DUNZO E.X EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GNXGY GQDEL GX1 H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ J5H JF7 JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI L-C L7B M18 N4W N9A N~7 N~B N~M O9- OAG OAH OB3 OBH OCUKA ODA ODMTH ODZKP OGROG OHH OHYEH OK1 OL1 OLB OLG OLH OLL OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OVOZU OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P R58 RIG RLZ S4R S4S T8P TEORI TR2 TSPGW TWZ V2I W2D W3M WH7 WOQ WOW X3V X3W X7M XXN XYM YFH YOC YQI YQJ ZFV ZGI ZXP ZY1 ZZMQN AAFWJ AAYXX ADGHP CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4725-afdfccbdd0feefe55072935fa0880b89a6ac8a47cc82b0bb9e13daecfad09bd93 |
ISSN | 0003-3022 |
IngestDate | Fri Jul 11 07:46:05 EDT 2025 Mon Jul 21 06:02:50 EDT 2025 Tue Jul 01 01:04:39 EDT 2025 Thu Apr 24 23:12:11 EDT 2025 Fri May 16 04:03:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4725-afdfccbdd0feefe55072935fa0880b89a6ac8a47cc82b0bb9e13daecfad09bd93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://ir.lib.uwo.ca/brainpub/20 |
PMID | 27496657 |
PQID | 1835448140 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1835448140 pubmed_primary_27496657 crossref_primary_10_1097_ALN_0000000000001275 crossref_citationtrail_10_1097_ALN_0000000000001275 wolterskluwer_health_10_1097_ALN_0000000000001275 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-November |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-November |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Anesthesiology (Philadelphia) |
PublicationTitleAlternate | Anesthesiology |
PublicationYear | 2016 |
Publisher | Copyright by , the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc |
Publisher_xml | – name: Copyright by , the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc |
References | (2021031919430977900_R26) 2007; 98 (2021031919430977900_R24) 2014; 8 (2021031919430977900_R31) 2009; 5 (2021031919430977900_R47) 2005; 103 (2021031919430977900_R36) 1973; 38 (2021031919430977900_R38) 2000; 9 (2021031919430977900_R25) 1982; 61 (2021031919430977900_R9) 2012; 2 (2021031919430977900_R10) 2010; 113 (2021031919430977900_R16) 2011; 23 (2021031919430977900_R22) 2013; 38 (2021031919430977900_R33) 2012; 7 (2021031919430977900_R7) 2014; 9 (2021031919430977900_R20) 2012; 117 (2021031919430977900_R1) 2012; 150 (2021031919430977900_R3) 2013; 23 (2021031919430977900_R23) 2013; 118 (2021031919430977900_R44) 2010; 4 (2021031919430977900_R11) 2008; 1124 (2021031919430977900_R17) 2014; 4 (2021031919430977900_R15) 2012; 32 (2021031919430977900_R4) 2013; 3 (2021031919430977900_R29) 2005; 102 (2021031919430977900_R30) 2011; 1 (2021031919430977900_R5) 2013; 119 (2021031919430977900_R37) 2015; 18 (2021031919430977900_R6) 2011; 6 (2021031919430977900_R40) 2016; 134 (2021031919430977900_R46) 2014; 27 (2021031919430977900_R35) 2015; 138 (2021031919430977900_R41) 2007; 35 (2021031919430977900_R18) 2012; 522 (2021031919430977900_R2) 2013; 111 (2021031919430977900_R27) 1974; 2 (2021031919430977900_R43) 2014; 95 (2021031919430977900_R48) 2003; 47 (2021031919430977900_R8) 2013; 119 (2021031919430977900_R13) 2011; 23 (2021031919430977900_R42) 2015; 112 (2021031919430977900_R21) 2013; 18 (2021031919430977900_R39) 2015; 25 (2021031919430977900_R28) 2002; 88 (2021031919430977900_R45) 2007; 27 (2021031919430977900_R19) 2012; 7 (2021031919430977900_R32) 2007; 27 (2021031919430977900_R34) 2006; 29 (2021031919430977900_R12) 2006; 103 (2021031919430977900_R14) 2011; 12 27483123 - Anesthesiology. 2016 Nov;125(5):830-831 |
References_xml | – volume: 522 start-page: 36 year: 2012 ident: 2021031919430977900_R18 article-title: Alterations in regional homogeneity of resting-state brain activity in ketamine addicts. publication-title: Neurosci Lett doi: 10.1016/j.neulet.2012.06.009 – volume: 12 start-page: 154 year: 2011 ident: 2021031919430977900_R14 article-title: The integration of negative affect, pain and cognitive control in the cingulate cortex. publication-title: Nat Rev Neurosci doi: 10.1038/nrn2994 – volume: 117 start-page: 868 year: 2012 ident: 2021031919430977900_R20 article-title: Effect of subanesthetic ketamine on intrinsic functional brain connectivity: A placebo-controlled functional magnetic resonance imaging study in healthy male volunteers. publication-title: Anesthesiology doi: 10.1097/ALN.0b013e31826a0db3 – volume: 1 start-page: 3 year: 2011 ident: 2021031919430977900_R30 article-title: The restless brain. publication-title: Brain Connect doi: 10.1089/brain.2011.0019 – volume: 7 start-page: e36222 year: 2012 ident: 2021031919430977900_R33 article-title: Auditory resting-state network connectivity in tinnitus: A functional MRI study. publication-title: PLoS One doi: 10.1371/journal.pone.0036222 – volume: 38 start-page: 333 year: 1973 ident: 2021031919430977900_R36 article-title: Ketamine-induced electroconvulsive phenomena in the human limbic and thalamic regions. publication-title: Anesthesiology doi: 10.1097/00000542-197304000-00006 – volume: 27 start-page: 2349 year: 2007 ident: 2021031919430977900_R32 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5587-06.2007 – volume: 7 start-page: e44799 year: 2012 ident: 2021031919430977900_R19 article-title: Ketamine decreases resting state functional network connectivity in healthy subjects: Implications for antidepressant drug action. publication-title: PLoS One doi: 10.1371/journal.pone.0044799 – volume: 119 start-page: 1031 year: 2013 ident: 2021031919430977900_R8 article-title: Simultaneous electroencephalographic and functional magnetic resonance imaging indicate impaired cortical top-down processing in association with anesthetic-induced unconsciousness. publication-title: Anesthesiology doi: 10.1097/ALN.0b013e3182a7ca92 – volume: 113 start-page: 1038 year: 2010 ident: 2021031919430977900_R10 article-title: Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. publication-title: Anesthesiology doi: 10.1097/ALN.0b013e3181f697f5 – volume: 9 start-page: 370 year: 2000 ident: 2021031919430977900_R38 article-title: Toward a unified theory of narcosis: Brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. publication-title: Conscious Cogn doi: 10.1006/ccog.1999.0423 – volume: 2 start-page: 291 year: 2012 ident: 2021031919430977900_R9 article-title: General anesthesia and human brain connectivity. publication-title: Brain Connect doi: 10.1089/brain.2012.0107 – volume: 88 start-page: 241 year: 2002 ident: 2021031919430977900_R28 article-title: Depth of sedation in children undergoing computed tomography: Validity and reliability of the University of Michigan Sedation Scale (UMSS). publication-title: Br J Anaesth doi: 10.1093/bja/88.2.241 – volume: 9 start-page: e100012 year: 2014 ident: 2021031919430977900_R7 article-title: Posterior cingulate cortex-related co-activation patterns: A resting state FMRI study in propofol-induced loss of consciousness. publication-title: PLoS One doi: 10.1371/journal.pone.0100012 – volume: 103 start-page: 13848 year: 2006 ident: 2021031919430977900_R12 article-title: Consistent resting-state networks across healthy subjects. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0601417103 – volume: 4 start-page: 76 year: 2014 ident: 2021031919430977900_R17 article-title: Ketamine—More mechanisms of action than just NMDA blockade. publication-title: Trends Anaesth Crit Care doi: 10.1016/j.tacc.2014.03.002 – volume: 6 start-page: e25155 year: 2011 ident: 2021031919430977900_R6 article-title: Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. publication-title: PLoS One doi: 10.1371/journal.pone.0025155 – volume: 8 start-page: 114 year: 2014 ident: 2021031919430977900_R24 article-title: Electroencephalographic effects of ketamine on power, cross-frequency coupling, and connectivity in the alpha bandwidth. publication-title: Front Syst Neurosci – volume: 23 start-page: 4022 year: 2011 ident: 2021031919430977900_R13 article-title: Behavioral interpretations of intrinsic connectivity networks. publication-title: J Cogn Neurosci doi: 10.1162/jocn_a_00077 – volume: 35 start-page: 105 year: 2007 ident: 2021031919430977900_R41 article-title: Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.11.054 – volume: 5 start-page: e1000381 year: 2009 ident: 2021031919430977900_R31 article-title: Functional brain networks develop from a “local to distributed” organization. publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000381 – volume: 38 start-page: 2613 year: 2013 ident: 2021031919430977900_R22 article-title: The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity. publication-title: Neuropsychopharmacology doi: 10.1038/npp.2013.170 – volume: 23 start-page: 172 year: 2013 ident: 2021031919430977900_R3 article-title: Analysing connectivity with Granger causality and dynamic causal modelling. publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2012.11.010 – volume: 18 start-page: 1199 year: 2013 ident: 2021031919430977900_R21 article-title: Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. publication-title: Mol Psychiatry doi: 10.1038/mp.2012.194 – volume: 23 start-page: 570 year: 2011 ident: 2021031919430977900_R16 article-title: Two distinct neuronal networks mediate the awareness of environment and of self. publication-title: J Cogn Neurosci doi: 10.1162/jocn.2010.21488 – volume: 118 start-page: 1264 year: 2013 ident: 2021031919430977900_R23 article-title: Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. publication-title: Anesthesiology doi: 10.1097/ALN.0b013e31829103f5 – volume: 98 start-page: 615 year: 2007 ident: 2021031919430977900_R26 article-title: Predictive performance of the Domino, Hijazi, and Clements models during low-dose target-controlled ketamine infusions in healthy volunteers. publication-title: Br J Anaesth doi: 10.1093/bja/aem063 – volume: 119 start-page: 1347 year: 2013 ident: 2021031919430977900_R5 article-title: Reconfiguration of network hub structure after propofol-induced unconsciousness. publication-title: Anesthesiology doi: 10.1097/ALN.0b013e3182a8ec8c – volume: 29 start-page: 1359 year: 2006 ident: 2021031919430977900_R34 article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.035 – volume: 2 start-page: 656 year: 1974 ident: 2021031919430977900_R27 article-title: Controlled sedation with alphaxalone-alphadolone. publication-title: Br Med J doi: 10.1136/bmj.2.5920.656 – volume: 4 start-page: 8 year: 2010 ident: 2021031919430977900_R44 article-title: Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. publication-title: Front Syst Neurosci – volume: 138 start-page: 2619 issue: pt 9 year: 2015 ident: 2021031919430977900_R35 article-title: Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. publication-title: Brain – volume: 47 start-page: 569 year: 2003 ident: 2021031919430977900_R48 article-title: Racemic ketamine does not abolish cerebrovascular autoregulation in the pig. publication-title: Acta Anaesthesiol Scand doi: 10.1034/j.1399-6576.2003.00089.x – volume: 150 start-page: 155 year: 2012 ident: 2021031919430977900_R1 article-title: Neural correlates of consciousness during general anesthesia using functional magnetic resonance imaging (fMRI). publication-title: Arch Ital Biol – volume: 25 start-page: 3099 year: 2015 ident: 2021031919430977900_R39 article-title: Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. publication-title: Curr Biol doi: 10.1016/j.cub.2015.10.014 – volume: 112 start-page: 887 year: 2015 ident: 2021031919430977900_R42 article-title: Signature of consciousness in the dynamics of resting-state brain activity. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1418031112 – volume: 32 start-page: 7082 year: 2012 ident: 2021031919430977900_R15 article-title: Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3769-11.2012 – volume: 95 start-page: 1 year: 2014 ident: 2021031919430977900_R43 article-title: Characterizing individual differences in functional connectivity using dual-regression and seed-based approaches. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.042 – volume: 111 start-page: 872 year: 2013 ident: 2021031919430977900_R2 article-title: Functional magnetic resonance imaging in anaesthesia research. publication-title: Br J Anaesth doi: 10.1093/bja/aet288 – volume: 27 start-page: 2349 year: 2007 ident: 2021031919430977900_R45 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5587-06.2007 – volume: 27 start-page: 442 year: 2014 ident: 2021031919430977900_R46 article-title: Role of novel drugs in sedation outside the operating room: Dexmedetomidine, ketamine and remifentanil. publication-title: Curr Opin Anaesthesiol doi: 10.1097/ACO.0000000000000086 – volume: 3 start-page: 273 year: 2013 ident: 2021031919430977900_R4 article-title: Thalamus, brainstem and salience network connectivity changes during propofol-induced sedation and unconsciousness. publication-title: Brain Connect doi: 10.1089/brain.2012.0117 – volume: 18 year: 2015 ident: 2021031919430977900_R37 article-title: Ketamine-induced modulation of the thalamo-cortical network in healthy volunteers as a model for schizophrenia. publication-title: Int J Neuropsychopharmacol – volume: 103 start-page: 258 year: 2005 ident: 2021031919430977900_R47 article-title: S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. publication-title: Anesthesiology doi: 10.1097/00000542-200508000-00008 – volume: 134 start-page: 459 year: 2016 ident: 2021031919430977900_R40 article-title: Disruption of corticocortical information transfer during ketamine anesthesia in the primate brain. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.039 – volume: 1124 start-page: 1 year: 2008 ident: 2021031919430977900_R11 article-title: The brain’s default network: Anatomy, function, and relevance to disease. publication-title: Ann NY Acad Sci doi: 10.1196/annals.1440.011 – volume: 102 start-page: 9673 year: 2005 ident: 2021031919430977900_R29 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0504136102 – volume: 61 start-page: 87 year: 1982 ident: 2021031919430977900_R25 article-title: Plasma levels of ketamine and two of its metabolites in surgical patients using a gas chromatographic mass fragmentographic assay. publication-title: Anesth Analg – reference: 27483123 - Anesthesiology. 2016 Nov;125(5):830-831 |
SSID | ssj0007538 |
Score | 2.5604975 |
Snippet | BACKGROUND:Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The... Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode... BACKGROUNDConsciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The... |
SourceID | proquest pubmed crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 873 |
SubjectTerms | Adult Anesthetics, Dissociative - pharmacology Brain - diagnostic imaging Brain - drug effects Consciousness - drug effects Female Humans Image Processing, Computer-Assisted Ketamine - pharmacology Magnetic Resonance Imaging Male Nerve Net - diagnostic imaging Nerve Net - drug effects Reference Values Rest Young Adult |
Title | Resting-state Network-specific Breakdown of Functional Connectivity during Ketamine Alteration of Consciousness in Volunteers |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27496657 https://www.proquest.com/docview/1835448140 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6F8gJCCMQVLi0Sb8gQ3_ajoVSFQh9QG_XN2rOxmthRawtRiT_Er2TGuz7SljMPVmQ7a8Xf592Z8cw3hLxMfRbxGB6kRIahE0SB63DtR46OPen6YJ9rifGOz_vR7mHw8Sg8mkx-jLKWmpq_FudX1pX8D6qwD3DFKtl_QLYfFHbAd8AXtoAwbP8K4y8okVEeO21VENbuYpaVg8WTmAAEuCl2IsHNRotwBxYwG_drk1uEbRth6xT3VM1WaHFmy1Zn2dqR2M9TYJpsOyMW5as5_CHAwubN9_q1cBgsyTOr6ARWKwZqUIFyvcBs3D7a8LYqF9XKdGafF6UYpd3MWblgKLS5aL6Zbo9ZI09VH_LfxlLm-rzNPshQs2EUSmjaBuJYeFQoJ2vs6_9locZBDTey1X3tmmQnYg-8W9d0VelnalMjbSkZjubdxPRDubQeGJ3h7NO-0am0HxS1H58OqK5XLUfAR0_xXdSwOvY5i92ha-S6By4JdsvY_rDXr_rg9iVdaWYav7nqkig8bQfZtIIuuTY3ya2vFcJ9dtIWS4xMnoM75Lb1VWhmiHeXTFR5j3zfIB29SDrak45Wmg6ko2PSUUM62pGODqTDX22QjhYlHUh3nxzuvD94t-vYHh6OCGIvdJiWWggu5UwrpRWq54GBGWoGq9uMJymLmEhYEAuReHzGeapcXzIlNJOzlMvUf0C2yqpUjwj1ojTUwlWSJTLAikGeaBZg1pPwPan4lPjdPc2FFbjHPivLvEu0AFDyi6BMidP_am0EXv5w_osOrhxmYny9xkoFtyR3MYYaoILclDw0OPYjdrhPibsBbG6qnX97xce_HO0JuTE8PE_JVn3aqGdgI9f8eUvOnxPTvlo |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resting-state+Network-specific+Breakdown+of+Functional+Connectivity+during+Ketamine+Alteration+of+Consciousness+in+Volunteers&rft.jtitle=Anesthesiology+%28Philadelphia%29&rft.au=Bonhomme%2C+Vincent&rft.au=Vanhaudenhuyse%2C+Audrey&rft.au=Demertzi%2C+Athena&rft.au=Bruno%2C+Marie-Aur%C3%A9lie&rft.date=2016-11-01&rft.eissn=1528-1175&rft.volume=125&rft.issue=5&rft.spage=873&rft_id=info:doi/10.1097%2FALN.0000000000001275&rft_id=info%3Apmid%2F27496657&rft.externalDocID=27496657 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-3022&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-3022&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-3022&client=summon |