Resting-state Network-specific Breakdown of Functional Connectivity during Ketamine Alteration of Consciousness in Volunteers

BACKGROUND:Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual netwo...

Full description

Saved in:
Bibliographic Details
Published inAnesthesiology (Philadelphia) Vol. 125; no. 5; pp. 873 - 888
Main Authors Bonhomme, Vincent, Vanhaudenhuyse, Audrey, Demertzi, Athena, Bruno, Marie-Aurélie, Jaquet, Oceane, Bahri, Mohamed Ali, Plenevaux, Alain, Boly, Melanie, Boveroux, Pierre, Soddu, Andrea, Brichant, Jean François, Maquet, Pierre, Laureys, Steven
Format Journal Article
LanguageEnglish
Published United States Copyright by , the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc 01.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND:Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual network sustain mentation. Ketamine modifies consciousness differently from other agents, producing psychedelic dreaming and no apparent interaction with the environment. The authors used functional magnetic resonance imaging to explore ketamine-induced changes in RSNs connectivity. METHODS:Fourteen healthy volunteers received stepwise intravenous infusions of ketamine up to loss of responsiveness. Because of agitation, data from six subjects were excluded from analysis. RSNs connectivity was compared between absence of ketamine (wake state [W1]), light ketamine sedation, and ketamine-induced unresponsiveness (deep sedation [S2]). RESULTS:Increasing the depth of ketamine sedation from W1 to S2 altered DMn and SALn connectivity and suppressed the anticorrelated activity between DMn and other brain regions. During S2, DMn connectivity, particularly between the medial prefrontal cortex and the remaining network (effect size β [95% CI]W1 = 0.20 [0.18 to 0.22]; S2 = 0.07 [0.04 to 0.09]), and DMn anticorrelated activity (e.g., right sensory cortexW1 = −0.07 [−0.09 to −0.04]; S2 = 0.04 [0.01 to 0.06]) were broken down. SALn connectivity was nonuniformly suppressed (e.g., left parietal operculumW1 = 0.08 [0.06 to 0.09]; S2 = 0.05 [0.02 to 0.07]). Executive control networks, auditory network, SMn, and visual network were minimally affected. CONCLUSIONS:Ketamine induces specific changes in connectivity within and between RSNs. Breakdown of frontoparietal DMn connectivity and DMn anticorrelation and sensory and SMn connectivity preservation are common to ketamine and propofol-induced alterations of consciousness.
AbstractList Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual network sustain mentation. Ketamine modifies consciousness differently from other agents, producing psychedelic dreaming and no apparent interaction with the environment. The authors used functional magnetic resonance imaging to explore ketamine-induced changes in RSNs connectivity. Fourteen healthy volunteers received stepwise intravenous infusions of ketamine up to loss of responsiveness. Because of agitation, data from six subjects were excluded from analysis. RSNs connectivity was compared between absence of ketamine (wake state [W1]), light ketamine sedation, and ketamine-induced unresponsiveness (deep sedation [S2]). Increasing the depth of ketamine sedation from W1 to S2 altered DMn and SALn connectivity and suppressed the anticorrelated activity between DMn and other brain regions. During S2, DMn connectivity, particularly between the medial prefrontal cortex and the remaining network (effect size β [95% CI]: W1 = 0.20 [0.18 to 0.22]; S2 = 0.07 [0.04 to 0.09]), and DMn anticorrelated activity (e.g., right sensory cortex: W1 = -0.07 [-0.09 to -0.04]; S2 = 0.04 [0.01 to 0.06]) were broken down. SALn connectivity was nonuniformly suppressed (e.g., left parietal operculum: W1 = 0.08 [0.06 to 0.09]; S2 = 0.05 [0.02 to 0.07]). Executive control networks, auditory network, SMn, and visual network were minimally affected. Ketamine induces specific changes in connectivity within and between RSNs. Breakdown of frontoparietal DMn connectivity and DMn anticorrelation and sensory and SMn connectivity preservation are common to ketamine and propofol-induced alterations of consciousness.
BACKGROUND:Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual network sustain mentation. Ketamine modifies consciousness differently from other agents, producing psychedelic dreaming and no apparent interaction with the environment. The authors used functional magnetic resonance imaging to explore ketamine-induced changes in RSNs connectivity. METHODS:Fourteen healthy volunteers received stepwise intravenous infusions of ketamine up to loss of responsiveness. Because of agitation, data from six subjects were excluded from analysis. RSNs connectivity was compared between absence of ketamine (wake state [W1]), light ketamine sedation, and ketamine-induced unresponsiveness (deep sedation [S2]). RESULTS:Increasing the depth of ketamine sedation from W1 to S2 altered DMn and SALn connectivity and suppressed the anticorrelated activity between DMn and other brain regions. During S2, DMn connectivity, particularly between the medial prefrontal cortex and the remaining network (effect size β [95% CI]W1 = 0.20 [0.18 to 0.22]; S2 = 0.07 [0.04 to 0.09]), and DMn anticorrelated activity (e.g., right sensory cortexW1 = −0.07 [−0.09 to −0.04]; S2 = 0.04 [0.01 to 0.06]) were broken down. SALn connectivity was nonuniformly suppressed (e.g., left parietal operculumW1 = 0.08 [0.06 to 0.09]; S2 = 0.05 [0.02 to 0.07]). Executive control networks, auditory network, SMn, and visual network were minimally affected. CONCLUSIONS:Ketamine induces specific changes in connectivity within and between RSNs. Breakdown of frontoparietal DMn connectivity and DMn anticorrelation and sensory and SMn connectivity preservation are common to ketamine and propofol-induced alterations of consciousness.
BACKGROUNDConsciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual network sustain mentation. Ketamine modifies consciousness differently from other agents, producing psychedelic dreaming and no apparent interaction with the environment. The authors used functional magnetic resonance imaging to explore ketamine-induced changes in RSNs connectivity.METHODSFourteen healthy volunteers received stepwise intravenous infusions of ketamine up to loss of responsiveness. Because of agitation, data from six subjects were excluded from analysis. RSNs connectivity was compared between absence of ketamine (wake state [W1]), light ketamine sedation, and ketamine-induced unresponsiveness (deep sedation [S2]).RESULTSIncreasing the depth of ketamine sedation from W1 to S2 altered DMn and SALn connectivity and suppressed the anticorrelated activity between DMn and other brain regions. During S2, DMn connectivity, particularly between the medial prefrontal cortex and the remaining network (effect size β [95% CI]: W1 = 0.20 [0.18 to 0.22]; S2 = 0.07 [0.04 to 0.09]), and DMn anticorrelated activity (e.g., right sensory cortex: W1 = -0.07 [-0.09 to -0.04]; S2 = 0.04 [0.01 to 0.06]) were broken down. SALn connectivity was nonuniformly suppressed (e.g., left parietal operculum: W1 = 0.08 [0.06 to 0.09]; S2 = 0.05 [0.02 to 0.07]). Executive control networks, auditory network, SMn, and visual network were minimally affected.CONCLUSIONSKetamine induces specific changes in connectivity within and between RSNs. Breakdown of frontoparietal DMn connectivity and DMn anticorrelation and sensory and SMn connectivity preservation are common to ketamine and propofol-induced alterations of consciousness.
Author Boveroux, Pierre
Maquet, Pierre
Boly, Melanie
Bahri, Mohamed Ali
Bonhomme, Vincent
Bruno, Marie-Aurélie
Soddu, Andrea
Laureys, Steven
Demertzi, Athena
Plenevaux, Alain
Vanhaudenhuyse, Audrey
Brichant, Jean François
Jaquet, Oceane
AuthorAffiliation From the University Department of Anesthesia and Intensive Care Medicine, CHR Citadelle and CHU University Hospital of Liege, Liege, Belgium (V.B., O.J.); Coma Science Group, GIGA Research, University and CHU University Hospital of Liege, Liege, Belgium (V.B., A.V., A.D., M.-A.B., M.A.B., S.L.); GIGA-Cyclotron Research Center: In Vivo Imaging, University of Liege, Liege, Belgium (A.V., A.D., M.-A.B., M.A.B., A.P., A.S., P.M., S.L.); Departments of Algology and Palliative Care (A.V.), Anesthesia and Intensive Care Medicine (V.B., O.J., P.B., J.F.B.), and Neurology (P.M., S.L.), CHU University Hospital of Liege, Liege, Belgium; Department of Neurology, University of Wisconsin, Madison, Wisconsin (M.B.); Departments of Anesthesia and Intensive Care Medicine (P.B.); Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada (A.S.); and Institut du Cerveau et de la Moelle épinière – ICM, Hôpital Pitié-Salpêtrière, Paris, France (A.D.)
AuthorAffiliation_xml – name: From the University Department of Anesthesia and Intensive Care Medicine, CHR Citadelle and CHU University Hospital of Liege, Liege, Belgium (V.B., O.J.); Coma Science Group, GIGA Research, University and CHU University Hospital of Liege, Liege, Belgium (V.B., A.V., A.D., M.-A.B., M.A.B., S.L.); GIGA-Cyclotron Research Center: In Vivo Imaging, University of Liege, Liege, Belgium (A.V., A.D., M.-A.B., M.A.B., A.P., A.S., P.M., S.L.); Departments of Algology and Palliative Care (A.V.), Anesthesia and Intensive Care Medicine (V.B., O.J., P.B., J.F.B.), and Neurology (P.M., S.L.), CHU University Hospital of Liege, Liege, Belgium; Department of Neurology, University of Wisconsin, Madison, Wisconsin (M.B.); Departments of Anesthesia and Intensive Care Medicine (P.B.); Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada (A.S.); and Institut du Cerveau et de la Moelle épinière – ICM, Hôpital Pitié-Salpêtrière, Paris, France (A.D.)
Author_xml – sequence: 1
  givenname: Vincent
  surname: Bonhomme
  fullname: Bonhomme, Vincent
  organization: From the University Department of Anesthesia and Intensive Care Medicine, CHR Citadelle and CHU University Hospital of Liege, Liege, Belgium (V.B., O.J.); Coma Science Group, GIGA Research, University and CHU University Hospital of Liege, Liege, Belgium (V.B., A.V., A.D., M.-A.B., M.A.B., S.L.); GIGA-Cyclotron Research Center: In Vivo Imaging, University of Liege, Liege, Belgium (A.V., A.D., M.-A.B., M.A.B., A.P., A.S., P.M., S.L.); Departments of Algology and Palliative Care (A.V.), Anesthesia and Intensive Care Medicine (V.B., O.J., P.B., J.F.B.), and Neurology (P.M., S.L.), CHU University Hospital of Liege, Liege, Belgium; Department of Neurology, University of Wisconsin, Madison, Wisconsin (M.B.); Departments of Anesthesia and Intensive Care Medicine (P.B.); Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada (A.S.); and Institut du Cerveau et de la Moelle épinière – ICM, Hôpital Pitié-Salpêtrière, Paris, France (A.D.)
– sequence: 2
  givenname: Audrey
  surname: Vanhaudenhuyse
  fullname: Vanhaudenhuyse, Audrey
– sequence: 3
  givenname: Athena
  surname: Demertzi
  fullname: Demertzi, Athena
– sequence: 4
  givenname: Marie-Aurélie
  surname: Bruno
  fullname: Bruno, Marie-Aurélie
– sequence: 5
  givenname: Oceane
  surname: Jaquet
  fullname: Jaquet, Oceane
– sequence: 6
  givenname: Mohamed
  surname: Bahri
  middlename: Ali
  fullname: Bahri, Mohamed Ali
– sequence: 7
  givenname: Alain
  surname: Plenevaux
  fullname: Plenevaux, Alain
– sequence: 8
  givenname: Melanie
  surname: Boly
  fullname: Boly, Melanie
– sequence: 9
  givenname: Pierre
  surname: Boveroux
  fullname: Boveroux, Pierre
– sequence: 10
  givenname: Andrea
  surname: Soddu
  fullname: Soddu, Andrea
– sequence: 11
  givenname: Jean
  surname: Brichant
  middlename: François
  fullname: Brichant, Jean François
– sequence: 12
  givenname: Pierre
  surname: Maquet
  fullname: Maquet, Pierre
– sequence: 13
  givenname: Steven
  surname: Laureys
  fullname: Laureys, Steven
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27496657$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vGyEQhlGUqHHS_oOo4pjLprC7GDY3x8pHVSuVqrbXFQtDQ4zBBTZWDvnvxXVaRTm0XNCg5xkN7xyhfR88IHRCyRklHf8wW9yekReH1pztoQlltago5WwfTcprUzWkrg_RUUr3peSsEW_QYc3bbjplfIKevkDK1v-oUpYZ8C3kTYjLKq1BWWMVvogglzpsPA4GX41eZRu8dHgevIdSPNj8iPUYSwv8CbJcWQ945jJEuSW3VkGTsmFMHlLC1uPvwY0-A8T0Fh0Y6RK8e76P0bery6_zm2rx-frjfLaoVMtrVkmjjVKD1sQAGGCM8LprmJFECDKITk6lErLlSol6IMPQAW20BGWkJt2gu-YYne76rmP4OZYf9yubFDgnPZTBeioa1raCtqSg75_RcViB7tfRrmR87P9EVoB2B6gYUopg_iKU9NvN9GUz_evNFO38laZs_p1RjtK6_8liJ2_CNtq0dOMGYn8H0uW7f6u_AFbqp4g
CitedBy_id crossref_primary_10_1016_j_ajp_2024_103991
crossref_primary_10_1038_s41398_021_01455_y
crossref_primary_10_1523_JNEUROSCI_2545_17_2018
crossref_primary_10_1016_j_jad_2018_02_049
crossref_primary_10_3389_fneur_2021_694964
crossref_primary_10_3389_fphar_2016_00348
crossref_primary_10_53765_20512201_29_7_115
crossref_primary_10_1016_j_neuroimage_2020_117618
crossref_primary_10_1080_15622975_2019_1679391
crossref_primary_10_1097_ALN_0000000000001276
crossref_primary_10_1177_0269881120909409
crossref_primary_10_1016_j_redar_2020_02_010
crossref_primary_10_1051_jbio_2023028
crossref_primary_10_1126_sciadv_aaz0087
crossref_primary_10_1038_s41398_024_03029_0
crossref_primary_10_1103_PhysRevX_14_041003
crossref_primary_10_1038_s41598_019_46702_x
crossref_primary_10_1016_j_neuroimage_2019_03_076
crossref_primary_10_1007_s11055_020_00900_7
crossref_primary_10_1016_j_bjao_2023_100224
crossref_primary_10_1186_s40708_020_00116_y
crossref_primary_10_1038_s41598_021_83482_9
crossref_primary_10_1097_ALN_0000000000002636
crossref_primary_10_1097_ALN_0000000000002876
crossref_primary_10_1016_j_neuroimage_2021_118042
crossref_primary_10_1093_bja_aex244
crossref_primary_10_1038_s41467_024_46382_w
crossref_primary_10_1038_s41467_023_37463_3
crossref_primary_10_1053_j_jvca_2019_03_038
crossref_primary_10_1016_j_physbeh_2021_113553
crossref_primary_10_1007_s00101_018_0469_7
crossref_primary_10_1002_advs_202406320
crossref_primary_10_3389_fnhum_2022_992649
crossref_primary_10_3389_fpsyt_2021_710338
crossref_primary_10_1002_gps_4823
crossref_primary_10_1016_j_nicl_2019_101739
crossref_primary_10_1016_j_neuron_2024_03_002
crossref_primary_10_1038_s42003_023_04474_1
crossref_primary_10_1007_s11571_021_09775_x
crossref_primary_10_1016_j_bja_2020_06_058
crossref_primary_10_1213_ANE_0000000000002427
crossref_primary_10_7554_eLife_34354
crossref_primary_10_1097_ALN_0000000000002228
crossref_primary_10_1097_ALN_0000000000001376
crossref_primary_10_1097_ALN_0000000000003159
crossref_primary_10_3389_fnhum_2017_00328
crossref_primary_10_1016_j_tins_2018_01_003
crossref_primary_10_1038_s41467_019_12658_9
crossref_primary_10_1016_j_bcp_2020_114388
crossref_primary_10_1016_j_jad_2017_09_023
crossref_primary_10_1016_j_neuroimage_2018_05_069
crossref_primary_10_1016_j_neuropharm_2018_01_017
crossref_primary_10_3389_fnins_2023_1113695
crossref_primary_10_1016_j_neuron_2020_01_026
crossref_primary_10_1093_brain_awab118
crossref_primary_10_1016_j_cub_2019_09_071
crossref_primary_10_1016_j_isci_2024_111639
crossref_primary_10_1097_ALN_0000000000002336
crossref_primary_10_1016_j_bja_2024_12_036
crossref_primary_10_18632_aging_203077
crossref_primary_10_1016_j_redare_2020_02_005
crossref_primary_10_3389_fpsyg_2022_846159
crossref_primary_10_3389_fnhum_2016_00612
crossref_primary_10_1038_s41598_020_73216_8
crossref_primary_10_1016_j_neuropsychologia_2019_05_018
crossref_primary_10_1007_s12021_022_09586_3
crossref_primary_10_1016_j_neuroimage_2019_116316
crossref_primary_10_1159_000539714
crossref_primary_10_1097_ACO_0000000000001017
crossref_primary_10_3390_ani15020258
crossref_primary_10_1007_s12031_019_01476_9
crossref_primary_10_1007_s11682_023_00782_6
crossref_primary_10_3389_fnins_2024_1306344
crossref_primary_10_3389_fphar_2024_1456009
crossref_primary_10_3390_psych4010012
crossref_primary_10_1080_17512433_2025_2459377
crossref_primary_10_1016_j_tips_2019_05_001
crossref_primary_10_1007_s40520_018_1008_8
crossref_primary_10_1055_a_1892_1894
crossref_primary_10_3389_fneur_2018_00861
crossref_primary_10_1016_j_neubiorev_2021_05_003
crossref_primary_10_1097_ALN_0000000000003774
crossref_primary_10_1017_S0033291722001313
crossref_primary_10_1097_ACO_0000000000000618
crossref_primary_10_1097_ALN_0000000000001509
crossref_primary_10_1097_HRP_0000000000000179
crossref_primary_10_1093_ijnp_pyaf010
crossref_primary_10_1002_hbm_24892
crossref_primary_10_3390_medsci9010010
crossref_primary_10_3389_fnsys_2017_00016
crossref_primary_10_3389_fnins_2018_00912
crossref_primary_10_3389_fpsyg_2025_1532937
crossref_primary_10_1016_j_bja_2018_03_011
crossref_primary_10_1523_JNEUROSCI_1910_19_2019
crossref_primary_10_3389_fnetp_2023_1279646
crossref_primary_10_1016_j_bbr_2021_113685
crossref_primary_10_1016_j_nicl_2020_102188
crossref_primary_10_1146_annurev_pharmtox_051921_093711
crossref_primary_10_1093_ijnp_pyaa087
crossref_primary_10_1097_ALN_0000000000002677
crossref_primary_10_1016_j_pbb_2020_173092
crossref_primary_10_1126_sciadv_adf8332
crossref_primary_10_1002_hbm_24889
crossref_primary_10_3389_fphar_2019_01379
crossref_primary_10_3389_fnsys_2021_625919
crossref_primary_10_1016_j_neuroimage_2022_118891
crossref_primary_10_3390_brainsci14010050
crossref_primary_10_1016_j_nicl_2018_05_037
crossref_primary_10_1097_ALN_0000000000002704
crossref_primary_10_1038_s44220_023_00172_3
crossref_primary_10_1016_j_tics_2019_12_010
crossref_primary_10_1111_cns_14866
crossref_primary_10_1177_02698811221140011
crossref_primary_10_1515_revneuro_2019_0090
crossref_primary_10_1016_j_neuroimage_2016_12_080
crossref_primary_10_1002_hbm_24838
crossref_primary_10_1097_ALN_0000000000002385
crossref_primary_10_1038_s41598_019_41345_4
crossref_primary_10_1177_23982128211055426
crossref_primary_10_3389_fpain_2022_872696
crossref_primary_10_1002_hbm_25405
crossref_primary_10_1093_bja_aex257
crossref_primary_10_1093_ijnp_pyac074
crossref_primary_10_15252_embr_201847118
crossref_primary_10_7554_eLife_84173
crossref_primary_10_1002_hbm_24791
crossref_primary_10_1213_ANE_0000000000006799
crossref_primary_10_3390_brainsci11081107
crossref_primary_10_4102_jan_v3i1_10
crossref_primary_10_3389_fnhum_2021_626507
crossref_primary_10_3389_fncir_2017_00044
crossref_primary_10_1016_j_bja_2023_05_030
crossref_primary_10_3389_fncel_2016_00257
crossref_primary_10_3389_fnsys_2022_1044536
crossref_primary_10_1038_s41598_023_38258_8
crossref_primary_10_1016_j_neuroimage_2021_118626
crossref_primary_10_1016_j_pscychresns_2017_09_001
crossref_primary_10_1016_j_anrea_2020_04_004
crossref_primary_10_1097_ALN_0000000000002417
crossref_primary_10_1097_ALN_0000000000005241
crossref_primary_10_1097_ALN_0000000000003986
crossref_primary_10_1038_s41386_020_00864_9
Cites_doi 10.1016/j.neulet.2012.06.009
10.1038/nrn2994
10.1097/ALN.0b013e31826a0db3
10.1089/brain.2011.0019
10.1371/journal.pone.0036222
10.1097/00000542-197304000-00006
10.1523/JNEUROSCI.5587-06.2007
10.1371/journal.pone.0044799
10.1097/ALN.0b013e3182a7ca92
10.1097/ALN.0b013e3181f697f5
10.1006/ccog.1999.0423
10.1089/brain.2012.0107
10.1093/bja/88.2.241
10.1371/journal.pone.0100012
10.1073/pnas.0601417103
10.1016/j.tacc.2014.03.002
10.1371/journal.pone.0025155
10.1162/jocn_a_00077
10.1016/j.neuroimage.2006.11.054
10.1371/journal.pcbi.1000381
10.1038/npp.2013.170
10.1016/j.conb.2012.11.010
10.1038/mp.2012.194
10.1162/jocn.2010.21488
10.1097/ALN.0b013e31829103f5
10.1093/bja/aem063
10.1097/ALN.0b013e3182a8ec8c
10.1016/j.neuroimage.2005.08.035
10.1136/bmj.2.5920.656
10.1034/j.1399-6576.2003.00089.x
10.1016/j.cub.2015.10.014
10.1073/pnas.1418031112
10.1523/JNEUROSCI.3769-11.2012
10.1016/j.neuroimage.2014.03.042
10.1093/bja/aet288
10.1097/ACO.0000000000000086
10.1089/brain.2012.0117
10.1097/00000542-200508000-00008
10.1016/j.neuroimage.2016.04.039
10.1196/annals.1440.011
10.1073/pnas.0504136102
ContentType Journal Article
Copyright Copyright © by 2016, the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc. All Rights Reserved.
Copyright_xml – notice: Copyright © by 2016, the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc. All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1097/ALN.0000000000001275
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1528-1175
EndPage 888
ExternalDocumentID 27496657
10_1097_ALN_0000000000001275
10.1097/ALN.0000000000001275
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.-D
.3C
.55
.GJ
.XZ
.Z2
01R
026
0R~
1CY
1J1
23M
2WC
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6J9
71W
77Y
7O~
AAAAV
AAAXR
AAEJM
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AAQQT
AARTV
AASCR
AASOK
AASXQ
AAUEB
AAWTL
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPXF
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACCJW
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACLED
ACOAL
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEBDS
AEETU
AENEX
AFBFQ
AFDTB
AFEXH
AFFNX
AFMBP
AFNMH
AFSOK
AFUWQ
AGINI
AHOMT
AHQNM
AHQVU
AHRYX
AHVBC
AHXIK
AIJEX
AINUH
AJCLO
AJIOK
AJJEV
AJNWD
AJNYG
AJRGT
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BAWUL
BCGUY
BOYCO
BQLVK
BS7
BYPQX
C45
CS3
DIK
DIWNM
DUNZO
E.X
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
GX1
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
J5H
JF7
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
L-C
L7B
M18
N4W
N9A
N~7
N~B
N~M
O9-
OAG
OAH
OB3
OBH
OCUKA
ODA
ODMTH
ODZKP
OGROG
OHH
OHYEH
OK1
OL1
OLB
OLG
OLH
OLL
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
R58
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
TWZ
V2I
W2D
W3M
WH7
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YOC
YQI
YQJ
ZFV
ZGI
ZXP
ZY1
ZZMQN
AAFWJ
AAYXX
ADGHP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4725-afdfccbdd0feefe55072935fa0880b89a6ac8a47cc82b0bb9e13daecfad09bd93
ISSN 0003-3022
IngestDate Fri Jul 11 07:46:05 EDT 2025
Mon Jul 21 06:02:50 EDT 2025
Tue Jul 01 01:04:39 EDT 2025
Thu Apr 24 23:12:11 EDT 2025
Fri May 16 04:03:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4725-afdfccbdd0feefe55072935fa0880b89a6ac8a47cc82b0bb9e13daecfad09bd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://ir.lib.uwo.ca/brainpub/20
PMID 27496657
PQID 1835448140
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_1835448140
pubmed_primary_27496657
crossref_primary_10_1097_ALN_0000000000001275
crossref_citationtrail_10_1097_ALN_0000000000001275
wolterskluwer_health_10_1097_ALN_0000000000001275
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-November
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-November
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Anesthesiology (Philadelphia)
PublicationTitleAlternate Anesthesiology
PublicationYear 2016
Publisher Copyright by , the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc
Publisher_xml – name: Copyright by , the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc
References (2021031919430977900_R26) 2007; 98
(2021031919430977900_R24) 2014; 8
(2021031919430977900_R31) 2009; 5
(2021031919430977900_R47) 2005; 103
(2021031919430977900_R36) 1973; 38
(2021031919430977900_R38) 2000; 9
(2021031919430977900_R25) 1982; 61
(2021031919430977900_R9) 2012; 2
(2021031919430977900_R10) 2010; 113
(2021031919430977900_R16) 2011; 23
(2021031919430977900_R22) 2013; 38
(2021031919430977900_R33) 2012; 7
(2021031919430977900_R7) 2014; 9
(2021031919430977900_R20) 2012; 117
(2021031919430977900_R1) 2012; 150
(2021031919430977900_R3) 2013; 23
(2021031919430977900_R23) 2013; 118
(2021031919430977900_R44) 2010; 4
(2021031919430977900_R11) 2008; 1124
(2021031919430977900_R17) 2014; 4
(2021031919430977900_R15) 2012; 32
(2021031919430977900_R4) 2013; 3
(2021031919430977900_R29) 2005; 102
(2021031919430977900_R30) 2011; 1
(2021031919430977900_R5) 2013; 119
(2021031919430977900_R37) 2015; 18
(2021031919430977900_R6) 2011; 6
(2021031919430977900_R40) 2016; 134
(2021031919430977900_R46) 2014; 27
(2021031919430977900_R35) 2015; 138
(2021031919430977900_R41) 2007; 35
(2021031919430977900_R18) 2012; 522
(2021031919430977900_R2) 2013; 111
(2021031919430977900_R27) 1974; 2
(2021031919430977900_R43) 2014; 95
(2021031919430977900_R48) 2003; 47
(2021031919430977900_R8) 2013; 119
(2021031919430977900_R13) 2011; 23
(2021031919430977900_R42) 2015; 112
(2021031919430977900_R21) 2013; 18
(2021031919430977900_R39) 2015; 25
(2021031919430977900_R28) 2002; 88
(2021031919430977900_R45) 2007; 27
(2021031919430977900_R19) 2012; 7
(2021031919430977900_R32) 2007; 27
(2021031919430977900_R34) 2006; 29
(2021031919430977900_R12) 2006; 103
(2021031919430977900_R14) 2011; 12
27483123 - Anesthesiology. 2016 Nov;125(5):830-831
References_xml – volume: 522
  start-page: 36
  year: 2012
  ident: 2021031919430977900_R18
  article-title: Alterations in regional homogeneity of resting-state brain activity in ketamine addicts.
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2012.06.009
– volume: 12
  start-page: 154
  year: 2011
  ident: 2021031919430977900_R14
  article-title: The integration of negative affect, pain and cognitive control in the cingulate cortex.
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2994
– volume: 117
  start-page: 868
  year: 2012
  ident: 2021031919430977900_R20
  article-title: Effect of subanesthetic ketamine on intrinsic functional brain connectivity: A placebo-controlled functional magnetic resonance imaging study in healthy male volunteers.
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e31826a0db3
– volume: 1
  start-page: 3
  year: 2011
  ident: 2021031919430977900_R30
  article-title: The restless brain.
  publication-title: Brain Connect
  doi: 10.1089/brain.2011.0019
– volume: 7
  start-page: e36222
  year: 2012
  ident: 2021031919430977900_R33
  article-title: Auditory resting-state network connectivity in tinnitus: A functional MRI study.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0036222
– volume: 38
  start-page: 333
  year: 1973
  ident: 2021031919430977900_R36
  article-title: Ketamine-induced electroconvulsive phenomena in the human limbic and thalamic regions.
  publication-title: Anesthesiology
  doi: 10.1097/00000542-197304000-00006
– volume: 27
  start-page: 2349
  year: 2007
  ident: 2021031919430977900_R32
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5587-06.2007
– volume: 7
  start-page: e44799
  year: 2012
  ident: 2021031919430977900_R19
  article-title: Ketamine decreases resting state functional network connectivity in healthy subjects: Implications for antidepressant drug action.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0044799
– volume: 119
  start-page: 1031
  year: 2013
  ident: 2021031919430977900_R8
  article-title: Simultaneous electroencephalographic and functional magnetic resonance imaging indicate impaired cortical top-down processing in association with anesthetic-induced unconsciousness.
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e3182a7ca92
– volume: 113
  start-page: 1038
  year: 2010
  ident: 2021031919430977900_R10
  article-title: Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness.
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e3181f697f5
– volume: 9
  start-page: 370
  year: 2000
  ident: 2021031919430977900_R38
  article-title: Toward a unified theory of narcosis: Brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness.
  publication-title: Conscious Cogn
  doi: 10.1006/ccog.1999.0423
– volume: 2
  start-page: 291
  year: 2012
  ident: 2021031919430977900_R9
  article-title: General anesthesia and human brain connectivity.
  publication-title: Brain Connect
  doi: 10.1089/brain.2012.0107
– volume: 88
  start-page: 241
  year: 2002
  ident: 2021031919430977900_R28
  article-title: Depth of sedation in children undergoing computed tomography: Validity and reliability of the University of Michigan Sedation Scale (UMSS).
  publication-title: Br J Anaesth
  doi: 10.1093/bja/88.2.241
– volume: 9
  start-page: e100012
  year: 2014
  ident: 2021031919430977900_R7
  article-title: Posterior cingulate cortex-related co-activation patterns: A resting state FMRI study in propofol-induced loss of consciousness.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0100012
– volume: 103
  start-page: 13848
  year: 2006
  ident: 2021031919430977900_R12
  article-title: Consistent resting-state networks across healthy subjects.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0601417103
– volume: 4
  start-page: 76
  year: 2014
  ident: 2021031919430977900_R17
  article-title: Ketamine—More mechanisms of action than just NMDA blockade.
  publication-title: Trends Anaesth Crit Care
  doi: 10.1016/j.tacc.2014.03.002
– volume: 6
  start-page: e25155
  year: 2011
  ident: 2021031919430977900_R6
  article-title: Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0025155
– volume: 8
  start-page: 114
  year: 2014
  ident: 2021031919430977900_R24
  article-title: Electroencephalographic effects of ketamine on power, cross-frequency coupling, and connectivity in the alpha bandwidth.
  publication-title: Front Syst Neurosci
– volume: 23
  start-page: 4022
  year: 2011
  ident: 2021031919430977900_R13
  article-title: Behavioral interpretations of intrinsic connectivity networks.
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn_a_00077
– volume: 35
  start-page: 105
  year: 2007
  ident: 2021031919430977900_R41
  article-title: Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.11.054
– volume: 5
  start-page: e1000381
  year: 2009
  ident: 2021031919430977900_R31
  article-title: Functional brain networks develop from a “local to distributed” organization.
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000381
– volume: 38
  start-page: 2613
  year: 2013
  ident: 2021031919430977900_R22
  article-title: The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity.
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2013.170
– volume: 23
  start-page: 172
  year: 2013
  ident: 2021031919430977900_R3
  article-title: Analysing connectivity with Granger causality and dynamic causal modelling.
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/j.conb.2012.11.010
– volume: 18
  start-page: 1199
  year: 2013
  ident: 2021031919430977900_R21
  article-title: Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans.
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2012.194
– volume: 23
  start-page: 570
  year: 2011
  ident: 2021031919430977900_R16
  article-title: Two distinct neuronal networks mediate the awareness of environment and of self.
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn.2010.21488
– volume: 118
  start-page: 1264
  year: 2013
  ident: 2021031919430977900_R23
  article-title: Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane.
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e31829103f5
– volume: 98
  start-page: 615
  year: 2007
  ident: 2021031919430977900_R26
  article-title: Predictive performance of the Domino, Hijazi, and Clements models during low-dose target-controlled ketamine infusions in healthy volunteers.
  publication-title: Br J Anaesth
  doi: 10.1093/bja/aem063
– volume: 119
  start-page: 1347
  year: 2013
  ident: 2021031919430977900_R5
  article-title: Reconfiguration of network hub structure after propofol-induced unconsciousness.
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e3182a8ec8c
– volume: 29
  start-page: 1359
  year: 2006
  ident: 2021031919430977900_R34
  article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.035
– volume: 2
  start-page: 656
  year: 1974
  ident: 2021031919430977900_R27
  article-title: Controlled sedation with alphaxalone-alphadolone.
  publication-title: Br Med J
  doi: 10.1136/bmj.2.5920.656
– volume: 4
  start-page: 8
  year: 2010
  ident: 2021031919430977900_R44
  article-title: Advances and pitfalls in the analysis and interpretation of resting-state FMRI data.
  publication-title: Front Syst Neurosci
– volume: 138
  start-page: 2619
  issue: pt 9
  year: 2015
  ident: 2021031919430977900_R35
  article-title: Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients.
  publication-title: Brain
– volume: 47
  start-page: 569
  year: 2003
  ident: 2021031919430977900_R48
  article-title: Racemic ketamine does not abolish cerebrovascular autoregulation in the pig.
  publication-title: Acta Anaesthesiol Scand
  doi: 10.1034/j.1399-6576.2003.00089.x
– volume: 150
  start-page: 155
  year: 2012
  ident: 2021031919430977900_R1
  article-title: Neural correlates of consciousness during general anesthesia using functional magnetic resonance imaging (fMRI).
  publication-title: Arch Ital Biol
– volume: 25
  start-page: 3099
  year: 2015
  ident: 2021031919430977900_R39
  article-title: Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine.
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2015.10.014
– volume: 112
  start-page: 887
  year: 2015
  ident: 2021031919430977900_R42
  article-title: Signature of consciousness in the dynamics of resting-state brain activity.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1418031112
– volume: 32
  start-page: 7082
  year: 2012
  ident: 2021031919430977900_R15
  article-title: Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3769-11.2012
– volume: 95
  start-page: 1
  year: 2014
  ident: 2021031919430977900_R43
  article-title: Characterizing individual differences in functional connectivity using dual-regression and seed-based approaches.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.042
– volume: 111
  start-page: 872
  year: 2013
  ident: 2021031919430977900_R2
  article-title: Functional magnetic resonance imaging in anaesthesia research.
  publication-title: Br J Anaesth
  doi: 10.1093/bja/aet288
– volume: 27
  start-page: 2349
  year: 2007
  ident: 2021031919430977900_R45
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5587-06.2007
– volume: 27
  start-page: 442
  year: 2014
  ident: 2021031919430977900_R46
  article-title: Role of novel drugs in sedation outside the operating room: Dexmedetomidine, ketamine and remifentanil.
  publication-title: Curr Opin Anaesthesiol
  doi: 10.1097/ACO.0000000000000086
– volume: 3
  start-page: 273
  year: 2013
  ident: 2021031919430977900_R4
  article-title: Thalamus, brainstem and salience network connectivity changes during propofol-induced sedation and unconsciousness.
  publication-title: Brain Connect
  doi: 10.1089/brain.2012.0117
– volume: 18
  year: 2015
  ident: 2021031919430977900_R37
  article-title: Ketamine-induced modulation of the thalamo-cortical network in healthy volunteers as a model for schizophrenia.
  publication-title: Int J Neuropsychopharmacol
– volume: 103
  start-page: 258
  year: 2005
  ident: 2021031919430977900_R47
  article-title: S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans.
  publication-title: Anesthesiology
  doi: 10.1097/00000542-200508000-00008
– volume: 134
  start-page: 459
  year: 2016
  ident: 2021031919430977900_R40
  article-title: Disruption of corticocortical information transfer during ketamine anesthesia in the primate brain.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.039
– volume: 1124
  start-page: 1
  year: 2008
  ident: 2021031919430977900_R11
  article-title: The brain’s default network: Anatomy, function, and relevance to disease.
  publication-title: Ann NY Acad Sci
  doi: 10.1196/annals.1440.011
– volume: 102
  start-page: 9673
  year: 2005
  ident: 2021031919430977900_R29
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0504136102
– volume: 61
  start-page: 87
  year: 1982
  ident: 2021031919430977900_R25
  article-title: Plasma levels of ketamine and two of its metabolites in surgical patients using a gas chromatographic mass fragmentographic assay.
  publication-title: Anesth Analg
– reference: 27483123 - Anesthesiology. 2016 Nov;125(5):830-831
SSID ssj0007538
Score 2.5604975
Snippet BACKGROUND:Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The...
Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode...
BACKGROUNDConsciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The...
SourceID proquest
pubmed
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 873
SubjectTerms Adult
Anesthetics, Dissociative - pharmacology
Brain - diagnostic imaging
Brain - drug effects
Consciousness - drug effects
Female
Humans
Image Processing, Computer-Assisted
Ketamine - pharmacology
Magnetic Resonance Imaging
Male
Nerve Net - diagnostic imaging
Nerve Net - drug effects
Reference Values
Rest
Young Adult
Title Resting-state Network-specific Breakdown of Functional Connectivity during Ketamine Alteration of Consciousness in Volunteers
URI https://www.ncbi.nlm.nih.gov/pubmed/27496657
https://www.proquest.com/docview/1835448140
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6F8gJCCMQVLi0Sb8gQ3_ajoVSFQh9QG_XN2rOxmthRawtRiT_Er2TGuz7SljMPVmQ7a8Xf592Z8cw3hLxMfRbxGB6kRIahE0SB63DtR46OPen6YJ9rifGOz_vR7mHw8Sg8mkx-jLKWmpq_FudX1pX8D6qwD3DFKtl_QLYfFHbAd8AXtoAwbP8K4y8okVEeO21VENbuYpaVg8WTmAAEuCl2IsHNRotwBxYwG_drk1uEbRth6xT3VM1WaHFmy1Zn2dqR2M9TYJpsOyMW5as5_CHAwubN9_q1cBgsyTOr6ARWKwZqUIFyvcBs3D7a8LYqF9XKdGafF6UYpd3MWblgKLS5aL6Zbo9ZI09VH_LfxlLm-rzNPshQs2EUSmjaBuJYeFQoJ2vs6_9locZBDTey1X3tmmQnYg-8W9d0VelnalMjbSkZjubdxPRDubQeGJ3h7NO-0am0HxS1H58OqK5XLUfAR0_xXdSwOvY5i92ha-S6By4JdsvY_rDXr_rg9iVdaWYav7nqkig8bQfZtIIuuTY3ya2vFcJ9dtIWS4xMnoM75Lb1VWhmiHeXTFR5j3zfIB29SDrak45Wmg6ko2PSUUM62pGODqTDX22QjhYlHUh3nxzuvD94t-vYHh6OCGIvdJiWWggu5UwrpRWq54GBGWoGq9uMJymLmEhYEAuReHzGeapcXzIlNJOzlMvUf0C2yqpUjwj1ojTUwlWSJTLAikGeaBZg1pPwPan4lPjdPc2FFbjHPivLvEu0AFDyi6BMidP_am0EXv5w_osOrhxmYny9xkoFtyR3MYYaoILclDw0OPYjdrhPibsBbG6qnX97xce_HO0JuTE8PE_JVn3aqGdgI9f8eUvOnxPTvlo
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resting-state+Network-specific+Breakdown+of+Functional+Connectivity+during+Ketamine+Alteration+of+Consciousness+in+Volunteers&rft.jtitle=Anesthesiology+%28Philadelphia%29&rft.au=Bonhomme%2C+Vincent&rft.au=Vanhaudenhuyse%2C+Audrey&rft.au=Demertzi%2C+Athena&rft.au=Bruno%2C+Marie-Aur%C3%A9lie&rft.date=2016-11-01&rft.eissn=1528-1175&rft.volume=125&rft.issue=5&rft.spage=873&rft_id=info:doi/10.1097%2FALN.0000000000001275&rft_id=info%3Apmid%2F27496657&rft.externalDocID=27496657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-3022&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-3022&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-3022&client=summon