Increased MSX level improves biological productivity and production stability in multiple recombinant GS CHO cell lines

Increasing cell culture productivity of recombinant proteins via process improvements is the primary focus for research groups within biologics manufacturing. Any recommendations to improve a manufacturing process obviously must be effective, but also be robust, scalable, and with product quality co...

Full description

Saved in:
Bibliographic Details
Published inEngineering in life sciences Vol. 20; no. 3-4; pp. 112 - 125
Main Authors Tian, Jun, He, Qin, Oliveira, Christopher, Qian, Yueming, Egan, Susan, Xu, Jianlin, Qian, Nan‐Xin, Langsdorf, Erik, Warrack, Bethanne, Aranibar, Nelly, Reily, Michael, Borys, Michael, Li, Zheng Jian
Format Journal Article
LanguageEnglish
Published Germany John Wiley and Sons Inc 01.03.2020
Subjects
Online AccessGet full text
ISSN1618-0240
1618-2863
DOI10.1002/elsc.201900124

Cover

Abstract Increasing cell culture productivity of recombinant proteins via process improvements is the primary focus for research groups within biologics manufacturing. Any recommendations to improve a manufacturing process obviously must be effective, but also be robust, scalable, and with product quality comparable to the original process. In this study, we report that three different GS−/− CHO cell lines developed in media containing a standard concentration of the selection agent methionine sulfoximine (MSX), but then exposed to increased MSX concentrations during seed train expansion, achieved titer increases of 10–19%. This result was observed in processes already considerably optimized. Expanding the cells with a higher MSX concentration improved cell line production stability with increased culture age. Production cultures in 500‐L and 1000‐L bioreactors replicated laboratory results using 5‐L bioreactors, demonstrating process robustness and scalability. Furthermore, product quality attributes of the final drug substance using the higher MSX process were comparable with those from cells expanded in media with the standard selection MSX concentration. Subsequent mechanistic investigations confirmed that the cells were not altered at the genetic level in terms of integration profiles or gene copy number, nor transcriptional levels of glutamine synthetase, heavy chain, or light chain genes. This study provides an effective and applicable strategy to improve the productivity of therapeutic proteins for biologics manufacturing.
AbstractList Increasing cell culture productivity of recombinant proteins via process improvements is the primary focus for research groups within biologics manufacturing. Any recommendations to improve a manufacturing process obviously must be effective, but also be robust, scalable, and with product quality comparable to the original process. In this study, we report that three different GS CHO cell lines developed in media containing a standard concentration of the selection agent methionine sulfoximine (MSX), but then exposed to increased MSX concentrations during seed train expansion, achieved titer increases of 10-19%. This result was observed in processes already considerably optimized. Expanding the cells with a higher MSX concentration improved cell line production stability with increased culture age. Production cultures in 500-L and 1000-L bioreactors replicated laboratory results using 5-L bioreactors, demonstrating process robustness and scalability. Furthermore, product quality attributes of the final drug substance using the higher MSX process were comparable with those from cells expanded in media with the standard selection MSX concentration. Subsequent mechanistic investigations confirmed that the cells were not altered at the genetic level in terms of integration profiles or gene copy number, nor transcriptional levels of glutamine synthetase, heavy chain, or light chain genes. This study provides an effective and applicable strategy to improve the productivity of therapeutic proteins for biologics manufacturing.
Increasing cell culture productivity of recombinant proteins via process improvements is the primary focus for research groups within biologics manufacturing. Any recommendations to improve a manufacturing process obviously must be effective, but also be robust, scalable, and with product quality comparable to the original process. In this study, we report that three different GS−/− CHO cell lines developed in media containing a standard concentration of the selection agent methionine sulfoximine (MSX), but then exposed to increased MSX concentrations during seed train expansion, achieved titer increases of 10–19%. This result was observed in processes already considerably optimized. Expanding the cells with a higher MSX concentration improved cell line production stability with increased culture age. Production cultures in 500‐L and 1000‐L bioreactors replicated laboratory results using 5‐L bioreactors, demonstrating process robustness and scalability. Furthermore, product quality attributes of the final drug substance using the higher MSX process were comparable with those from cells expanded in media with the standard selection MSX concentration. Subsequent mechanistic investigations confirmed that the cells were not altered at the genetic level in terms of integration profiles or gene copy number, nor transcriptional levels of glutamine synthetase, heavy chain, or light chain genes. This study provides an effective and applicable strategy to improve the productivity of therapeutic proteins for biologics manufacturing.
Increasing cell culture productivity of recombinant proteins via process improvements is the primary focus for research groups within biologics manufacturing. Any recommendations to improve a manufacturing process obviously must be effective, but also be robust, scalable, and with product quality comparable to the original process. In this study, we report that three different GS −/− CHO cell lines developed in media containing a standard concentration of the selection agent methionine sulfoximine (MSX), but then exposed to increased MSX concentrations during seed train expansion, achieved titer increases of 10–19%. This result was observed in processes already considerably optimized. Expanding the cells with a higher MSX concentration improved cell line production stability with increased culture age. Production cultures in 500‐L and 1000‐L bioreactors replicated laboratory results using 5‐L bioreactors, demonstrating process robustness and scalability. Furthermore, product quality attributes of the final drug substance using the higher MSX process were comparable with those from cells expanded in media with the standard selection MSX concentration. Subsequent mechanistic investigations confirmed that the cells were not altered at the genetic level in terms of integration profiles or gene copy number, nor transcriptional levels of glutamine synthetase, heavy chain, or light chain genes. This study provides an effective and applicable strategy to improve the productivity of therapeutic proteins for biologics manufacturing.
Increasing cell culture productivity of recombinant proteins via process improvements is the primary focus for research groups within biologics manufacturing. Any recommendations to improve a manufacturing process obviously must be effective, but also be robust, scalable, and with product quality comparable to the original process. In this study, we report that three different GS-/- CHO cell lines developed in media containing a standard concentration of the selection agent methionine sulfoximine (MSX), but then exposed to increased MSX concentrations during seed train expansion, achieved titer increases of 10-19%. This result was observed in processes already considerably optimized. Expanding the cells with a higher MSX concentration improved cell line production stability with increased culture age. Production cultures in 500-L and 1000-L bioreactors replicated laboratory results using 5-L bioreactors, demonstrating process robustness and scalability. Furthermore, product quality attributes of the final drug substance using the higher MSX process were comparable with those from cells expanded in media with the standard selection MSX concentration. Subsequent mechanistic investigations confirmed that the cells were not altered at the genetic level in terms of integration profiles or gene copy number, nor transcriptional levels of glutamine synthetase, heavy chain, or light chain genes. This study provides an effective and applicable strategy to improve the productivity of therapeutic proteins for biologics manufacturing.Increasing cell culture productivity of recombinant proteins via process improvements is the primary focus for research groups within biologics manufacturing. Any recommendations to improve a manufacturing process obviously must be effective, but also be robust, scalable, and with product quality comparable to the original process. In this study, we report that three different GS-/- CHO cell lines developed in media containing a standard concentration of the selection agent methionine sulfoximine (MSX), but then exposed to increased MSX concentrations during seed train expansion, achieved titer increases of 10-19%. This result was observed in processes already considerably optimized. Expanding the cells with a higher MSX concentration improved cell line production stability with increased culture age. Production cultures in 500-L and 1000-L bioreactors replicated laboratory results using 5-L bioreactors, demonstrating process robustness and scalability. Furthermore, product quality attributes of the final drug substance using the higher MSX process were comparable with those from cells expanded in media with the standard selection MSX concentration. Subsequent mechanistic investigations confirmed that the cells were not altered at the genetic level in terms of integration profiles or gene copy number, nor transcriptional levels of glutamine synthetase, heavy chain, or light chain genes. This study provides an effective and applicable strategy to improve the productivity of therapeutic proteins for biologics manufacturing.
Author Qian, Yueming
Langsdorf, Erik
Oliveira, Christopher
Li, Zheng Jian
Egan, Susan
Xu, Jianlin
Tian, Jun
He, Qin
Qian, Nan‐Xin
Reily, Michael
Aranibar, Nelly
Borys, Michael
Warrack, Bethanne
AuthorAffiliation 2 Molecular & Cellular Science Bristol‐Myers Squibb Company Princeton NJ USA
1 Biologics Process Development Global Product Development and Supply, Bristol‐Myers Squibb Company Devens MA USA
3 Drug Development and Preclinical Studies Bristol‐Myers Squibb Company Princeton NJ USA
AuthorAffiliation_xml – name: 1 Biologics Process Development Global Product Development and Supply, Bristol‐Myers Squibb Company Devens MA USA
– name: 3 Drug Development and Preclinical Studies Bristol‐Myers Squibb Company Princeton NJ USA
– name: 2 Molecular & Cellular Science Bristol‐Myers Squibb Company Princeton NJ USA
Author_xml – sequence: 1
  givenname: Jun
  surname: Tian
  fullname: Tian, Jun
  organization: Global Product Development and Supply, Bristol‐Myers Squibb Company
– sequence: 2
  givenname: Qin
  surname: He
  fullname: He, Qin
  email: qin.he@bms.com
  organization: Global Product Development and Supply, Bristol‐Myers Squibb Company
– sequence: 3
  givenname: Christopher
  surname: Oliveira
  fullname: Oliveira, Christopher
  organization: Global Product Development and Supply, Bristol‐Myers Squibb Company
– sequence: 4
  givenname: Yueming
  surname: Qian
  fullname: Qian, Yueming
  organization: Global Product Development and Supply, Bristol‐Myers Squibb Company
– sequence: 5
  givenname: Susan
  surname: Egan
  fullname: Egan, Susan
  organization: Global Product Development and Supply, Bristol‐Myers Squibb Company
– sequence: 6
  givenname: Jianlin
  surname: Xu
  fullname: Xu, Jianlin
  organization: Global Product Development and Supply, Bristol‐Myers Squibb Company
– sequence: 7
  givenname: Nan‐Xin
  surname: Qian
  fullname: Qian, Nan‐Xin
  organization: Global Product Development and Supply, Bristol‐Myers Squibb Company
– sequence: 8
  givenname: Erik
  surname: Langsdorf
  fullname: Langsdorf, Erik
  organization: Bristol‐Myers Squibb Company
– sequence: 9
  givenname: Bethanne
  surname: Warrack
  fullname: Warrack, Bethanne
  organization: Bristol‐Myers Squibb Company
– sequence: 10
  givenname: Nelly
  surname: Aranibar
  fullname: Aranibar, Nelly
  organization: Bristol‐Myers Squibb Company
– sequence: 11
  givenname: Michael
  surname: Reily
  fullname: Reily, Michael
  organization: Bristol‐Myers Squibb Company
– sequence: 12
  givenname: Michael
  surname: Borys
  fullname: Borys, Michael
  organization: Global Product Development and Supply, Bristol‐Myers Squibb Company
– sequence: 13
  givenname: Zheng Jian
  orcidid: 0000-0002-1941-4145
  surname: Li
  fullname: Li, Zheng Jian
  organization: Global Product Development and Supply, Bristol‐Myers Squibb Company
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32874175$$D View this record in MEDLINE/PubMed
BookMark eNqFUctuEzEUtVARfcCWJfKSTcL1I-OZDRKKSlspqIuAxM6yPXeKkccO9kyq_D0zaoiATVe27j0P-5xLchZTRELeMlgyAP4BQ3FLDqwBYFy-IBesYvWC15U4O96BSzgnl6X8nCCqrtkrci54rSRTqwvyeBddRlOwpV-232nAPQbq-11OeyzU-hTSg3cm0GnSjm7wez8cqIntaZAiLYOxPswLH2k_hsHvAtKMLvXWRxMHerOl69t76jAEGnzE8pq87Ewo-OZ4XpFvn6-_rm8Xm_ubu_WnzcJJxflCrBRD1zAOsBLCCddaaKRaNRYUAFaNMx00SjaAwKHqTGNszZQ1XadspWpxRT4-6e5G22PrMA7ZBL3Lvjf5oJPx-t9N9D_0Q9prJeUUFkwC748COf0asQy692X-h4mYxqK5FE0lRCVnr3d_e51M_qQ9AZZPAJdTKRm7E4SBnuvUc536VOdEkP8RnB_MnPn0Vh-epT36gIdnTPT1ZrtmvObiN06Ktg4
CitedBy_id crossref_primary_10_3390_bioengineering9040128
crossref_primary_10_3390_bioengineering9040173
crossref_primary_10_1093_bbb_zbae147
crossref_primary_10_1002_bit_28084
crossref_primary_10_1002_btpr_3137
crossref_primary_10_1002_btpr_3467
crossref_primary_10_1038_s41578_021_00399_5
Cites_doi 10.1002/bit.24602
10.1002/bit.24507
10.1002/bit.25332
10.1038/nrd.2017.14
10.1016/j.jbiosc.2010.11.016
10.1007/s00253-015-6789-5
10.4155/pbp.13.56
10.1007/10_2013_214
10.1002/bit.26527
10.3390/molecules22030368
10.4161/mabs.1.5.9448
10.1002/biot.201400664
10.1016/j.ymben.2017.01.003
10.1007/s00253-016-7388-9
10.1016/j.nbt.2013.10.003
10.1021/bp060004t
10.1007/s12010-013-0467-9
10.1007/s10295-017-1913-4
10.1002/biot.201500327
10.3390/bioengineering1040188
10.1007/s12033-013-9725-x
10.1002/biot.201400315
10.1002/bit.25319
10.1002/bit.26263
10.1016/j.jbiotec.2014.04.002
10.1007/s10616-012-9468-8
10.1002/biot.201300325
10.1038/s41598-018-23720-9
10.1016/j.ymben.2013.10.005
10.1186/1472-6750-11-78
10.1080/19420862.2018.1433978
10.1002/btpr.1530
10.1002/bit.24365
10.1021/bp034093a
10.1016/j.jbiosc.2016.03.003
10.1371/journal.pone.0093865
10.1002/bit.25141
10.1016/j.enzmictec.2005.05.016
10.1007/s00253-014-6012-0
10.1002/bit.24367
10.1007/s00253-014-5584-z
10.1002/biot.201100255
10.1371/journal.pone.0157111
10.1089/hyb.2006.25.1
10.1002/bit.24983
10.1002/bit.22039
10.1002/bit.26460
10.1016/j.jbiotec.2015.11.022
10.1016/j.jbiotec.2010.12.005
10.1002/btpr.2372
10.1002/btpr.2143
10.1002/btpr.1907
ContentType Journal Article
Copyright 2020 The Authors. published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 The Authors. Engineering in Life Sciences published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 The Authors. published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 The Authors. Engineering in Life Sciences published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 24P
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1002/elsc.201900124
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate TIAN et al
EISSN 1618-2863
EndPage 125
ExternalDocumentID PMC7447880
32874175
10_1002_elsc_201900124
ELSC1282
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAHBH
AAMMB
AANHP
AAONW
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJCF
ABJNI
ACBWZ
ACCMX
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFPKN
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
EBD
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HHY
HVGLF
HZ~
IAO
IEP
IGS
ITC
IX1
J0M
JPC
KQQ
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PHGZM
PHGZT
PIMPY
PTHSS
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
33P
AEUQT
AFPWT
NPM
RWI
WIN
WRC
7X8
5PM
ID FETCH-LOGICAL-c4722-3571ec91200533c3cdb094759b0700e69caf097490e0206fa9ab817baff7b6783
IEDL.DBID DR2
ISSN 1618-0240
IngestDate Thu Aug 21 18:31:53 EDT 2025
Tue Aug 05 09:33:13 EDT 2025
Wed Feb 19 02:02:06 EST 2025
Tue Jul 01 01:15:37 EDT 2025
Thu Apr 24 23:02:12 EDT 2025
Sun Jul 06 04:45:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords bioprocessing
methionine sulfoximine (MSX)
monoclonal antibody
specific productivity
biologics manufacturing
Language English
License Attribution
2020 The Authors. Engineering in Life Sciences published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4722-3571ec91200533c3cdb094759b0700e69caf097490e0206fa9ab817baff7b6783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1941-4145
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felsc.201900124
PMID 32874175
PQID 2439633648
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7447880
proquest_miscellaneous_2439633648
pubmed_primary_32874175
crossref_primary_10_1002_elsc_201900124
crossref_citationtrail_10_1002_elsc_201900124
wiley_primary_10_1002_elsc_201900124_ELSC1282
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Engineering in life sciences
PublicationTitleAlternate Eng Life Sci
PublicationYear 2020
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2017; 40
2014; 139
2013; 1
2013; 65
2017; 22
2017; 44
2015; 31
2006; 38
2015; 99
2013; 20
2015; 10
2016; 100
2011; 11
2016; 122
2003; 19
2014; 111
2011; 151
2017; 114
2011; 111
2012; 109
2016; 11
2014; 1
2018; 8
2016; 218
2017; 16
2006; 22
2017; 33
2015; 112
2018; 115
2006; 25
2014; 180
2017
2009; 102
2016
2012; 28
2015
2013; 110
2014; 9
2014; 30
2012; 7
2009; 1
2018; 10
2013; 171
2014; 56
2014; 98
2014; 31
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
Grand‐View‐Research (e_1_2_8_5_1) 2017
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
Grand‐View‐Research (e_1_2_8_6_1) 2016
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
RESEARCH‐AND‐MARKETS (e_1_2_8_4_1) 2017
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 102
  start-page: 246
  year: 2009
  end-page: 263
  article-title: Comparative transcriptome analysis to unveil genes affecting recombinant protein productivity in mammalian cells
  publication-title: Biotechnol. Bioeng.
– volume: 109
  start-page: 1007
  year: 2012
  end-page: 1015
  article-title: Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells
  publication-title: Biotechnol. Bioeng.
– volume: 1
  start-page: 487
  year: 2013
  end-page: 502
  article-title: The use of glutamine synthetase as a selection marker: recent advances in Chinese hamster ovary cell line generation processes
  publication-title: Pharm. Bioprocess.
– volume: 11
  start-page: 78
  year: 2011
  article-title: Sustained productivity in recombinant Chinese hamster ovary (CHO) cell lines: proteome analysis of the molecular basis for a process‐related phenotype
  publication-title: BMC Biotechnol.
– volume: 16
  start-page: 73
  year: 2017
  end-page: 76
  article-title: 2016 FDA drug approvals
  publication-title: Nat. Rev. Drug Discov.
– year: 2017
  article-title: Biologics market size worth $399.5 billion By 2025 | growth rate: 3.9%
  publication-title: Grand View Res.
– volume: 122
  start-page: 499
  year: 2016
  end-page: 506
  article-title: Impact of hydrolysates on monoclonal antibody productivity, purification and quality in Chinese hamster ovary cells
  publication-title: J. Biosci. Bioeng.
– volume: 28
  start-page: 803
  year: 2012
  end-page: 813
  article-title: Effect of hydrocortisone on the production and glycosylation of an Fc‐fusion protein in CHO cell cultures
  publication-title: Biotechnol. Prog.
– volume: 98
  start-page: 9239
  year: 2014
  end-page: 9248
  article-title: Effect of lithium chloride on the production and sialylation of Fc‐fusion protein in Chinese hamster ovary cell culture
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 20
  start-page: 157
  year: 2013
  end-page: 166
  article-title: Stable microRNA expression enhances therapeutic antibody productivity of Chinese hamster ovary cells
  publication-title: Metab. Eng.
– volume: 1
  year: 2014
  article-title: Trends in upstream and downstream process development for antibody manufacturing
  publication-title: Bioengineering
– volume: 1
  start-page: 443
  year: 2009
  end-page: 452
  article-title: Industrialization of mAb production technology: the bioprocessing industry at a crossroads
  publication-title: mAbs
– volume: 7
  start-page: 516
  year: 2012
  end-page: 526
  article-title: Microarray expression profiling identifies genes regulating sustained cell specific productivity (S‐Qp) in CHO K1 production cell lines
  publication-title: Biotechnol. J.
– volume: 9
  start-page: 1413
  year: 2014
  end-page: 1424
  article-title: Hypoxia influences protein transport and epigenetic repression of CHO cell cultures in shake flasks
  publication-title: Biotechnol. J.
– volume: 111
  start-page: 748
  year: 2014
  end-page: 760
  article-title: Cell line profiling to improve monoclonal antibody production
  publication-title: Biotechnol. Bioeng.
– volume: 110
  start-page: 3244
  year: 2013
  end-page: 3257
  article-title: Metabolic signatures of GS‐CHO cell clones associated with butyrate treatment and culture phase transition
  publication-title: Biotechnol. Bioeng.
– volume: 100
  start-page: 3451
  year: 2016
  end-page: 3461
  article-title: Advances in recombinant antibody manufacturing
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 9
  year: 2014
  article-title: Differential effect of culture temperature and specific growth rate on CHO cell behavior in chemostat culture
  publication-title: PLoS One
– volume: 38
  start-page: 372
  year: 2006
  end-page: 380
  article-title: Understanding the enhanced effect of dimethyl sulfoxide on hepatitis B surface antigen expression in the culture of Chinese hamster ovary cells on the basis of proteome analysis
  publication-title: Enzyme Microb. Technol.
– volume: 9
  start-page: 396
  year: 2014
  end-page: 404
  article-title: CHO cell culture longevity and recombinant protein yield are enhanced by depletion of miR‐7 activity via sponge decoy vectors
  publication-title: Biotechnol. J.
– volume: 11
  start-page: 487
  year: 2016
  end-page: 496
  article-title: Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity
  publication-title: Biotechnol. J.
– volume: 31
  start-page: 514
  year: 2014
  end-page: 523
  article-title: Understanding translational control mechanisms of the mTOR pathway in CHO cells by polysome profiling
  publication-title: N Biotechnol.
– volume: 8
  start-page: 5361
  year: 2018
  article-title: Comprehensive characterization of glutamine synthetase‐mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies
  publication-title: Sci. Rep.
– volume: 11
  year: 2016
  article-title: Understanding and controlling sialylation in a CHO Fc‐fusion process
  publication-title: PLoS One
– year: 2015
– volume: 22
  year: 2017
  article-title: The pharmaceutical industry in 2016. An analysis of FDA drug approvals from a perspective of the molecule type
  publication-title: Molecules
– volume: 40
  start-page: 69
  year: 2017
  end-page: 79
  article-title: Secretory pathway optimization of CHO producer cells by co‐engineering of the mitosRNA‐1978 target genes CerS2 and Tbc1D20
  publication-title: Metab. Eng.
– volume: 31
  start-page: 1212
  year: 2015
  end-page: 1216
  article-title: Changes in intracellular ATP‐content of CHO cells as response to hyperosmolality
  publication-title: Biotechnol. Prog.
– volume: 65
  start-page: 135
  year: 2013
  end-page: 143
  article-title: Advantages of AlaGln as an additive to cell culture medium: use with anti‐CD20 chimeric antibody‐producing POTELLIGENT CHO cell lines
  publication-title: Cytotechnology
– volume: 22
  start-page: 770
  year: 2006
  end-page: 780
  article-title: Limitations to the development of humanized antibody producing Chinese hamster ovary cells using glutamine synthetase‐mediated gene amplification
  publication-title: Biotechnol. Prog.
– volume: 25
  start-page: 1
  year: 2006
  end-page: 9
  article-title: Correlation of heavy and light chain mRNA copy numbers to antibody productivity in mouse myeloma production cell lines
  publication-title: Hybridoma (Larchmt)
– volume: 171
  start-page: 1658
  year: 2013
  end-page: 1672
  article-title: Enhancement of human thyrotropin synthesis by sodium butyrate addition to serum‐free CHO cell culture
  publication-title: Appl. Biochem. Biotechnol.
– volume: 111
  start-page: 2466
  year: 2014
  end-page: 2476
  article-title: A framework for the systematic design of fed‐batch strategies in mammalian cell culture
  publication-title: Biotechnol. Bioeng.
– volume: 99
  start-page: 8429
  year: 2015
  end-page: 8440
  article-title: Understanding the intracellular effects of yeast extract on the enhancement of Fc‐fusion protein production in Chinese hamster ovary cell culture
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 110
  start-page: 191
  year: 2013
  end-page: 205
  article-title: Automated dynamic fed‐batch process and media optimization for high productivity cell culture process development
  publication-title: Biotechnol. Bioeng.
– volume: 112
  start-page: 141
  year: 2015
  end-page: 155
  article-title: Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures
  publication-title: Biotechnol. Bioeng.
– volume: 109
  start-page: 1016
  year: 2012
  end-page: 1030
  article-title: Early prediction of instability of Chinese hamster ovary cell lines expressing recombinant antibodies and antibody‐fusion proteins
  publication-title: Biotechnol. Bioeng.
– volume: 109
  start-page: 2286
  year: 2012
  end-page: 2294
  article-title: Utilization of tyrosine‐ and histidine‐containing dipeptides to enhance productivity and culture viability
  publication-title: Biotechnol. Bioeng.
– year: 2017
  article-title: Blockbuster biologics 2016: Sales of recombinant therapeutic antibodies & proteins
  publication-title: Res. Markets
– volume: 151
  start-page: 204
  year: 2011
  end-page: 211
  article-title: Engineering CHO cell growth and recombinant protein productivity by overexpression of miR‐7
  publication-title: J. Biotechnol.
– volume: 30
  start-page: 535
  year: 2014
  end-page: 546
  article-title: Elucidating the effects of postinduction glutamine feeding on the growth and productivity of CHO cells
  publication-title: Biotechnol. Prog.
– volume: 180
  start-page: 23
  year: 2014
  end-page: 29
  article-title: Effect of glutamine substitution by TCA cycle intermediates on the production and sialylation of Fc‐fusion protein in Chinese hamster ovary cell culture
  publication-title: J. Biotechnol.
– volume: 56
  start-page: 421
  year: 2014
  end-page: 428
  article-title: Addition of valproic acid to CHO cell fed‐batch cultures improves monoclonal antibody titers
  publication-title: Mol. Biotechnol.
– year: 2016
  article-title: Monoclonal antibodies (mAbs) market analysis by source (chimeric, murine, humanized, human), by type of production, by indication (cancer, autoimmune, inflammatory, infectious, microbial, viral diseases), by end‐use (hospitals, research, academic institutes, clinics, diagnostic laboratories) and segment forecasts, 2013 ‐ 2024
  publication-title: Grand View Res.
– volume: 98
  start-page: 5959
  year: 2014
  end-page: 5965
  article-title: In search of expression bottlenecks in recombinant CHO cell lines–a case study
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 10
  start-page: 488
  year: 2018
  end-page: 499
  article-title: Improving titer while maintaining quality of final formulated drug substance via optimization of CHO cell culture conditions in low‐iron chemically defined media
  publication-title: mAbs
– volume: 218
  start-page: 53
  year: 2016
  end-page: 63
  article-title: S‐Sulfocysteine simplifies fed‐batch processes and increases the CHO specific productivity via anti‐oxidant activity
  publication-title: J. Biotechnol.
– volume: 114
  start-page: 1310
  year: 2017
  end-page: 1318
  article-title: ATF6beta‐based fine‐tuning of the unfolded protein response enhances therapeutic antibody productivity of Chinese hamster ovary cells
  publication-title: Biotechnol. Bioeng.
– volume: 44
  start-page: 785
  year: 2017
  end-page: 797
  article-title: Advancement in bioprocess technology: parallels between microbial natural products and cell culture biologics
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 10
  start-page: 1434
  year: 2015
  end-page: 1445
  article-title: Metabolite profiling of CHO cells: molecular reflections of bioprocessing effectiveness
  publication-title: Biotechnol. J.
– volume: 19
  start-page: 1734
  year: 2003
  end-page: 1741
  article-title: Proteome analysis of antibody‐expressing CHO cells in response to hyperosmotic pressure
  publication-title: Biotechnol. Prog.
– volume: 111
  start-page: 365
  year: 2011
  end-page: 369
  article-title: Detailed understanding of enhanced specific productivity in Chinese hamster ovary cells at low culture temperature
  publication-title: J. Biosci. Bioeng.
– volume: 115
  start-page: 921
  year: 2018
  end-page: 931
  article-title: Manipulation of the sodium‐potassium ratio as a lever for controlling cell growth and improving cell specific productivity in perfusion CHO cell cultures
  publication-title: Biotechnol. Bioeng.
– volume: 33
  start-page: 17
  year: 2017
  end-page: 25
  article-title: Methionine sulfoximine supplementation enhances productivity in GS‐CHOK1SV cell lines through glutathione biosynthesis
  publication-title: Biotechnol. Prog.
– volume: 139
  start-page: 123
  year: 2014
  end-page: 166
  article-title: Product quality considerations for mammalian cell culture process development and manufacturing
  publication-title: Adv Biochem Eng Biotechnol.
– volume: 115
  start-page: 126
  year: 2018
  end-page: 138
  article-title: Intracellular response to process optimization and impact on productivity and product aggregates for a high‐titer CHO cell process
  publication-title: Biotechnol. Bioeng.
– ident: e_1_2_8_28_1
  doi: 10.1002/bit.24602
– ident: e_1_2_8_34_1
  doi: 10.1002/bit.24507
– ident: e_1_2_8_41_1
  doi: 10.1002/bit.25332
– ident: e_1_2_8_2_1
  doi: 10.1038/nrd.2017.14
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jbiosc.2010.11.016
– ident: e_1_2_8_20_1
  doi: 10.1007/s00253-015-6789-5
– ident: e_1_2_8_48_1
  doi: 10.4155/pbp.13.56
– ident: e_1_2_8_7_1
  doi: 10.1007/10_2013_214
– ident: e_1_2_8_42_1
  doi: 10.1002/bit.26527
– ident: e_1_2_8_3_1
  doi: 10.3390/molecules22030368
– ident: e_1_2_8_11_1
  doi: 10.4161/mabs.1.5.9448
– ident: e_1_2_8_21_1
  doi: 10.1002/biot.201400664
– ident: e_1_2_8_26_1
  doi: 10.1016/j.ymben.2017.01.003
– ident: e_1_2_8_8_1
  doi: 10.1007/s00253-016-7388-9
– ident: e_1_2_8_19_1
  doi: 10.1016/j.nbt.2013.10.003
– ident: e_1_2_8_56_1
  doi: 10.1021/bp060004t
– ident: e_1_2_8_44_1
  doi: 10.1007/s12010-013-0467-9
– ident: e_1_2_8_12_1
  doi: 10.1007/s10295-017-1913-4
– ident: e_1_2_8_46_1
  doi: 10.1002/biot.201500327
– ident: e_1_2_8_10_1
  doi: 10.3390/bioengineering1040188
– ident: e_1_2_8_45_1
  doi: 10.1007/s12033-013-9725-x
– ident: e_1_2_8_15_1
  doi: 10.1002/biot.201400315
– ident: e_1_2_8_55_1
  doi: 10.1002/bit.25319
– ident: e_1_2_8_27_1
  doi: 10.1002/bit.26263
– ident: e_1_2_8_50_1
– ident: e_1_2_8_36_1
  doi: 10.1016/j.jbiotec.2014.04.002
– ident: e_1_2_8_35_1
  doi: 10.1007/s10616-012-9468-8
– ident: e_1_2_8_24_1
  doi: 10.1002/biot.201300325
– ident: e_1_2_8_51_1
  doi: 10.1038/s41598-018-23720-9
– ident: e_1_2_8_25_1
  doi: 10.1016/j.ymben.2013.10.005
– ident: e_1_2_8_16_1
  doi: 10.1186/1472-6750-11-78
– ident: e_1_2_8_52_1
  doi: 10.1080/19420862.2018.1433978
– ident: e_1_2_8_39_1
  doi: 10.1002/btpr.1530
– ident: e_1_2_8_47_1
  doi: 10.1002/bit.24365
– year: 2016
  ident: e_1_2_8_6_1
  article-title: Monoclonal antibodies (mAbs) market analysis by source (chimeric, murine, humanized, human), by type of production, by indication (cancer, autoimmune, inflammatory, infectious, microbial, viral diseases), by end‐use (hospitals, research, academic institutes, clinics, diagnostic laboratories) and segment forecasts, 2013 ‐ 2024
  publication-title: Grand View Res.
– ident: e_1_2_8_32_1
  doi: 10.1021/bp034093a
– year: 2017
  ident: e_1_2_8_5_1
  article-title: Biologics market size worth $399.5 billion By 2025 | growth rate: 3.9%
  publication-title: Grand View Res.
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jbiosc.2016.03.003
– ident: e_1_2_8_30_1
  doi: 10.1371/journal.pone.0093865
– ident: e_1_2_8_18_1
  doi: 10.1002/bit.25141
– ident: e_1_2_8_33_1
  doi: 10.1016/j.enzmictec.2005.05.016
– ident: e_1_2_8_40_1
  doi: 10.1007/s00253-014-6012-0
– ident: e_1_2_8_53_1
  doi: 10.1002/bit.24367
– ident: e_1_2_8_13_1
  doi: 10.1007/s00253-014-5584-z
– year: 2017
  ident: e_1_2_8_4_1
  article-title: Blockbuster biologics 2016: Sales of recombinant therapeutic antibodies & proteins
  publication-title: Res. Markets
– ident: e_1_2_8_17_1
  doi: 10.1002/biot.201100255
– ident: e_1_2_8_54_1
  doi: 10.1371/journal.pone.0157111
– ident: e_1_2_8_57_1
  doi: 10.1089/hyb.2006.25.1
– ident: e_1_2_8_43_1
  doi: 10.1002/bit.24983
– ident: e_1_2_8_14_1
  doi: 10.1002/bit.22039
– ident: e_1_2_8_9_1
  doi: 10.1002/bit.26460
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jbiotec.2015.11.022
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jbiotec.2010.12.005
– ident: e_1_2_8_49_1
  doi: 10.1002/btpr.2372
– ident: e_1_2_8_31_1
  doi: 10.1002/btpr.2143
– ident: e_1_2_8_37_1
  doi: 10.1002/btpr.1907
SSID ssj0017881
Score 2.2771947
Snippet Increasing cell culture productivity of recombinant proteins via process improvements is the primary focus for research groups within biologics manufacturing....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112
SubjectTerms biologics manufacturing
bioprocessing
methionine sulfoximine (MSX)
monoclonal antibody
specific productivity
Title Increased MSX level improves biological productivity and production stability in multiple recombinant GS CHO cell lines
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felsc.201900124
https://www.ncbi.nlm.nih.gov/pubmed/32874175
https://www.proquest.com/docview/2439633648
https://pubmed.ncbi.nlm.nih.gov/PMC7447880
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdPbE_sYePHNjqg8iQknrI5P508orJRIbYhyqS-RXZyFhUjndZWE_z13NlNaJnQhPaauE0uPfu-514-B_AmVLVUKHWQ2MIGCdZ1UGCaB1KHOpWVLLSnfZ5nw8vk4zgdr7zF7_kQ3YYbzwy3XvME12Z2_AcaSqGDEYQU0GiNZSBoGGcMz3__peNHhcxK54wrC-nqFLtaaqOMjtc_vh6V7kjNuxWTq0rWhaLTHdCtEb4C5fvRYm6Oql9_8R0fYuUT2F7qVPHOO9ZTeITNM9haoRc-h1taW7ikHWtxNhqLKy4_EhO3SYEz4elO7ALi2lNlXZsKoZu6OzBtBIlTV577U0wa0VY3Ck7TfxhXpCM-jMRgeCH4HwbB9sx24fL05OtgGCz7OAQVoyiDOFUhVkUYuRd_q7iqDSWVKi0MrTcSs6LSVlJeU0gk8ZpZXWiTh8poa5WhYBrvwWYzbfAFiCg3lAJhnSJJP2VRW4xTnVtNiV-Wx9iDoP0dy2oJOedeG1elxzNHJT_QsnugPXjbjb_2eI9_jjxs3aKkGchG6wani1kZkabLYnK-vAf73k2674q5nQAptB6oNQfqBjDde_1MM_nmKN8q4c4Gkixy_nHP7ZUnn0YD0hrRwX-OfwmPI95CcGV1r2BzfrPA16Sz5qYPG1Hyue92KfpuXv0G1K0lMw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB48HtQH8XY9Iwg-FdMz7aMs6qrrAavgW0nbCS5oV1xF_PfOpNvqIiK-tumRTCfzTfrlG4B9VxVSodROYBLjBFgUToJh7Ejt6lDmMtGV2udV1LkLzu_Dmk3Ie2EqfYhmwY09w87X7OC8IH34pRpKsYM1CCmi0SQbTMJ0QOCcWX1ecNP8SGC1dM65IpeeT9Gr1m2U3uH49eNx6QfY_MmZ_I5lbTA6WYD5EYoUR5XZF2ECyyWY-6YtuAzv5PlMOMdCXPbuxSOTg0TfLiHgUFTaS2wg8VxpvtoiEkKXRXNgUAqCjpY8-yH6pai5h4KT6KfMUmjEaU-0O9eC1_8Fj-lwBe5Ojm_bHWdUZcHJWSjS8UPlYp64nt2Wm_t5kVHKp8Iko9lAYpTk2kjKOhKJBC0joxOdxa7KtDEqo1Dnr8JUOShxHYQXZ5SgYBEiATNlUBv0Qx0bTWlZFPvYAqce4zQfSZBzJYzHtBJP9lK2SdrYpAUHTfvnSnzj15Z7tclS8g_utC5x8DZMPUJcke9HQdyCtcqEzb18Fvsn_NQCNWbcpgFrb4-fKfsPVoNbBVx3QFKP7Gfwx-ulx91em5CAt_HP9rsw07m97Kbds6uLTZj1ONm3BLgtmHp9ecNtQkSv2Y795j8BiQMFow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdPMKQJHvgxGJSfRprEUzbnp5NHVFYKjG2iTOpbZCdnrWKkFW2F4K_nzm5CuwkhxGviNrn07Puee_kcwF6oaqlQ6iCxhQ0SrOugwDQPpA51KitZaE_7PM6GZ8n7cTpee4vf8yG6DTeeGW695gk-q-3Bb2gohQ5GEFJAozU2uQ43kozkBMuiTx1AKmRYOqdcWUiXp-DVYhtldLD5-c2wdEVrXi2ZXJeyLhYN7oBurfAlKF_2lwuzX_28BHj8HzPvwu2VUBWvvWfdg2vY7MCtNXzhffhOiwvXtGMtPo7G4oLrj8TE7VLgXHi8E_uAmHmsrOtTIXRTdwemjSB16upzf4hJI9ryRsF5-lfjqnTE25HoD08E_8Ug2J75AzgbHH7uD4NVI4egYhZlEKcqxKoII_fmbxVXtaGsUqWFoQVHYlZU2kpKbAqJpF4zqwtt8lAZba0yFE3jXdhqpg0-AhHlhnIgrFMk7acsaotxqnOrKfPL8hh7ELS_Y1mtKOfcbOOi9HzmqOQHWnYPtAevuvEzz_f448iXrVuUNAXZaN3gdDkvIxJ1WRxnSd6Dh95Nuu-KuZ8ASbQeqA0H6gYw3nvzTDM5d5hvlXBrA0kWOf_4y-2Vh0ejPomN6PE_jn8B26dvBuXRu-MPT-BmxNsJrsTuKWwtvi3xGWmuhXnuptUvuRwmNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+MSX+level+improves+biological+productivity+and+production+stability+in+multiple+recombinant+GS+CHO+cell+lines&rft.jtitle=Engineering+in+life+sciences&rft.au=Tian%2C+Jun&rft.au=He%2C+Qin&rft.au=Oliveira%2C+Christopher&rft.au=Qian%2C+Yueming&rft.date=2020-03-01&rft.issn=1618-0240&rft.volume=20&rft.issue=3-4&rft.spage=112&rft_id=info:doi/10.1002%2Felsc.201900124&rft_id=info%3Apmid%2F32874175&rft.externalDocID=32874175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1618-0240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1618-0240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1618-0240&client=summon