LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of s...
Saved in:
Published in | Cell reports (Cambridge) Vol. 39; no. 7; p. 110812 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
17.05.2022
The Authors Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants.
[Display omitted]
•LY-CoV1404 potently neutralizes SARS-CoV-2 Omicron, BA.2 Omicron, and Delta variants•No loss of potency against currently circulating variants•Binding epitope on RBD of SARS-CoV-2 is rarely mutated based on current GISAID data•Breadth of neutralizing activity and potency supports clinical development
Westendorf et al. show that LY-CoV1404 is a potent SARS-CoV-2-binding antibody that neutralizes all known variants of concern and that its epitope is rarely mutated. |
---|---|
AbstractList | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants.
[Display omitted]
•LY-CoV1404 potently neutralizes SARS-CoV-2 Omicron, BA.2 Omicron, and Delta variants•No loss of potency against currently circulating variants•Binding epitope on RBD of SARS-CoV-2 is rarely mutated based on current GISAID data•Breadth of neutralizing activity and potency supports clinical development
Westendorf et al. show that LY-CoV1404 is a potent SARS-CoV-2-binding antibody that neutralizes all known variants of concern and that its epitope is rarely mutated. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants. Westendorf et al. show that LY-CoV1404 is a potent SARS-CoV-2-binding antibody that neutralizes all known variants of concern and that its epitope is rarely mutated. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants. |
ArticleNumber | 110812 |
Author | Corbett, Kizzmekia S. Shi, Wei Menachery, Vineet Kallewaard, Nicole L. Wiggin, Matthew Kraft, Lucas Foster, Denisa Barnhart, Bryan C. Goya, Rodrigo Kobasa, Darwyn Geisbert, Thomas W. Panwar, Pankaj Chen, Jinbiao Choe, Misook Cohen, Courtney A. Sipahimalani, Payal Heinz, Beverly A. Hansen, Carl L. Garces, Fabian A. O’Neill, Aoise Lokugamage, Kumari Hendle, Jörg Falconer, Ester Hassanali, Saleema Zhou, Tongqing Huie, Kathleen E. Anderson, Lisa Siegel, Robert W. Hughes, Ina Hwang, Yuri Ramamurthy, Bharathi Žentelis, Stefanie Pellacani, Davide Jepson, Kevin Audet, Jonathan Munoz, Luis Borisevich, Viktoriya Smith, Maia A. Yang, Eun Sung Jones, Bryan E. Misasi, John Palma, Holly C. Zhang, Yi Dalal, Kush Kwong, Peter D. Pritchard, Caitlin Devorkin, Lindsay Sauder, J. Michael Graham, Barney S. Cross, Robert W. Ricicova, Marketa Freitas, Joshua J. Sullivan, Nancy J. Lovett, Erica Dye, John M. Xiang, Ping Lanz, Iliana Badger, Catherine V. Wang, Lingshu Fernandez, Tara L. Collins, David W. Vaillancourt, Peter Mascola, John R. Westendorf, Kathryn de Puyraimond |
Author_xml | – sequence: 1 givenname: Kathryn orcidid: 0000-0002-7354-9470 surname: Westendorf fullname: Westendorf, Kathryn organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 2 givenname: Stefanie surname: Žentelis fullname: Žentelis, Stefanie organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 3 givenname: Lingshu surname: Wang fullname: Wang, Lingshu organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 4 givenname: Denisa surname: Foster fullname: Foster, Denisa organization: Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA – sequence: 5 givenname: Peter surname: Vaillancourt fullname: Vaillancourt, Peter organization: Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA – sequence: 6 givenname: Matthew surname: Wiggin fullname: Wiggin, Matthew organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 7 givenname: Erica surname: Lovett fullname: Lovett, Erica organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 8 givenname: Robin orcidid: 0000-0001-7391-9438 surname: van der Lee fullname: van der Lee, Robin organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 9 givenname: Jörg surname: Hendle fullname: Hendle, Jörg organization: Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA – sequence: 10 givenname: Anna surname: Pustilnik fullname: Pustilnik, Anna organization: Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA – sequence: 11 givenname: J. Michael orcidid: 0000-0002-0254-4955 surname: Sauder fullname: Sauder, J. Michael organization: Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA – sequence: 12 givenname: Lucas surname: Kraft fullname: Kraft, Lucas organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 13 givenname: Yuri surname: Hwang fullname: Hwang, Yuri organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 14 givenname: Robert W. orcidid: 0000-0002-0833-5580 surname: Siegel fullname: Siegel, Robert W. organization: Eli Lilly and Company, Indianapolis, IN 46285, USA – sequence: 15 givenname: Jinbiao surname: Chen fullname: Chen, Jinbiao organization: Eli Lilly and Company, Indianapolis, IN 46285, USA – sequence: 16 givenname: Beverly A. surname: Heinz fullname: Heinz, Beverly A. organization: Eli Lilly and Company, Indianapolis, IN 46285, USA – sequence: 17 givenname: Richard E. surname: Higgs fullname: Higgs, Richard E. organization: Eli Lilly and Company, Indianapolis, IN 46285, USA – sequence: 18 givenname: Nicole L. surname: Kallewaard fullname: Kallewaard, Nicole L. organization: Eli Lilly and Company, Indianapolis, IN 46285, USA – sequence: 19 givenname: Kevin orcidid: 0000-0001-9349-9653 surname: Jepson fullname: Jepson, Kevin organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 20 givenname: Rodrigo surname: Goya fullname: Goya, Rodrigo organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 21 givenname: Maia A. orcidid: 0000-0001-7196-0154 surname: Smith fullname: Smith, Maia A. organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 22 givenname: David W. surname: Collins fullname: Collins, David W. organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 23 givenname: Davide surname: Pellacani fullname: Pellacani, Davide organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 24 givenname: Ping surname: Xiang fullname: Xiang, Ping organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 25 givenname: Valentine surname: de Puyraimond fullname: de Puyraimond, Valentine organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 26 givenname: Marketa surname: Ricicova fullname: Ricicova, Marketa organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 27 givenname: Lindsay surname: Devorkin fullname: Devorkin, Lindsay organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 28 givenname: Caitlin orcidid: 0000-0002-2061-4531 surname: Pritchard fullname: Pritchard, Caitlin organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 29 givenname: Aoise surname: O’Neill fullname: O’Neill, Aoise organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 30 givenname: Kush surname: Dalal fullname: Dalal, Kush organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 31 givenname: Pankaj surname: Panwar fullname: Panwar, Pankaj organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 32 givenname: Harveer surname: Dhupar fullname: Dhupar, Harveer organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 33 givenname: Fabian A. orcidid: 0000-0003-3620-4470 surname: Garces fullname: Garces, Fabian A. organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 34 givenname: Courtney A. surname: Cohen fullname: Cohen, Courtney A. organization: U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA – sequence: 35 givenname: John M. surname: Dye fullname: Dye, John M. organization: U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA – sequence: 36 givenname: Kathleen E. surname: Huie fullname: Huie, Kathleen E. organization: U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA – sequence: 37 givenname: Catherine V. surname: Badger fullname: Badger, Catherine V. organization: U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA – sequence: 38 givenname: Darwyn orcidid: 0000-0002-6371-7493 surname: Kobasa fullname: Kobasa, Darwyn organization: National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada – sequence: 39 givenname: Jonathan orcidid: 0000-0002-0743-7489 surname: Audet fullname: Audet, Jonathan organization: National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada – sequence: 40 givenname: Joshua J. surname: Freitas fullname: Freitas, Joshua J. organization: Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA – sequence: 41 givenname: Saleema surname: Hassanali fullname: Hassanali, Saleema organization: Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA – sequence: 42 givenname: Ina surname: Hughes fullname: Hughes, Ina organization: Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA – sequence: 43 givenname: Luis surname: Munoz fullname: Munoz, Luis organization: Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA – sequence: 44 givenname: Holly C. surname: Palma fullname: Palma, Holly C. organization: Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA – sequence: 45 givenname: Bharathi surname: Ramamurthy fullname: Ramamurthy, Bharathi organization: Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA – sequence: 46 givenname: Robert W. surname: Cross fullname: Cross, Robert W. organization: University of Manitoba, Winnipeg, MB R3T 2N2, Canada – sequence: 47 givenname: Thomas W. surname: Geisbert fullname: Geisbert, Thomas W. organization: University of Manitoba, Winnipeg, MB R3T 2N2, Canada – sequence: 48 givenname: Vineet surname: Menachery fullname: Menachery, Vineet organization: Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA – sequence: 49 givenname: Kumari surname: Lokugamage fullname: Lokugamage, Kumari organization: Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA – sequence: 50 givenname: Viktoriya surname: Borisevich fullname: Borisevich, Viktoriya organization: Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA – sequence: 51 givenname: Iliana orcidid: 0000-0002-7793-2282 surname: Lanz fullname: Lanz, Iliana organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 52 givenname: Lisa surname: Anderson fullname: Anderson, Lisa organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 53 givenname: Payal surname: Sipahimalani fullname: Sipahimalani, Payal organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 54 givenname: Kizzmekia S. surname: Corbett fullname: Corbett, Kizzmekia S. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 55 givenname: Eun Sung surname: Yang fullname: Yang, Eun Sung organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 56 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 57 givenname: Wei surname: Shi fullname: Shi, Wei organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 58 givenname: Tongqing surname: Zhou fullname: Zhou, Tongqing organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 59 givenname: Misook surname: Choe fullname: Choe, Misook organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 60 givenname: John surname: Misasi fullname: Misasi, John organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 61 givenname: Peter D. surname: Kwong fullname: Kwong, Peter D. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 62 givenname: Nancy J. surname: Sullivan fullname: Sullivan, Nancy J. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 63 givenname: Barney S. orcidid: 0000-0001-8112-0853 surname: Graham fullname: Graham, Barney S. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 64 givenname: Tara L. surname: Fernandez fullname: Fernandez, Tara L. organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 65 givenname: Carl L. surname: Hansen fullname: Hansen, Carl L. organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 66 givenname: Ester orcidid: 0000-0003-1486-5251 surname: Falconer fullname: Falconer, Ester organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada – sequence: 67 givenname: John R. orcidid: 0000-0002-5293-4695 surname: Mascola fullname: Mascola, John R. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 68 givenname: Bryan E. orcidid: 0000-0003-4764-6290 surname: Jones fullname: Jones, Bryan E. email: jones_bryan_edward@lilly.com organization: Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA – sequence: 69 givenname: Bryan C. surname: Barnhart fullname: Barnhart, Bryan C. email: bo.barnhart@abcellera.com organization: AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35568025$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEUhS1UREvpP0Aoy7KY4OvXzLBAKhGPSpGQKCCxsjye6-JoMk5tJ1L59ThMqFoW4I0t-5xz7_X3lByNYURCngOdAwX1ajW3OETczBllbA5AG2CPyAljABUwUR_dOx-Ts5RWtCxFAVrxhBxzKVVDmTwhb5ffq0X4BoKK2XmHXcYh7PzadC9nm5BxzMPtbMRtjmbwPzHNri4-X-0NFZvtTPRmzOkZeezMkPDssJ-Sr-_ffVl8rJafPlwuLpaVFTVjVWkSmRJcKaZMC7bhddt3QrnaWSat7I0wEiRDKY0DK5umZ2BNa2vVN5Rafkoup9w-mJXexNJlvNXBeP37IsRrbWL2dkDdG3SOO8dcA0JSYXgp7LjsOgGts65kvZmyNttujb0tg5YJH4Q-fBn9D30ddrqlXHLFS8D5ISCGmy2mrNc-FSaDGTFsk2ZKibqldSOL9MX9WndF_kAoAjEJbAwpRXR3EqB6j1uv9IRb73HrCXexvf7LZn022Yd9x374n_nwAViI7TxGnazH0WLvI9pcvtT_O-AX-bvFcw |
CitedBy_id | crossref_primary_10_1016_j_isci_2023_108299 crossref_primary_10_1038_s41392_022_01039_2 crossref_primary_10_3389_fimmu_2024_1471396 crossref_primary_10_1128_aac_01556_24 crossref_primary_10_3390_v14061334 crossref_primary_10_3389_fimmu_2024_1407149 crossref_primary_10_3390_v14061332 crossref_primary_10_1093_pcmedi_pbae015 crossref_primary_10_1126_science_abn8897 crossref_primary_10_1016_j_intimp_2022_108943 crossref_primary_10_1371_journal_ppat_1011788 crossref_primary_10_3389_fimmu_2024_1442160 crossref_primary_10_1016_j_xcrm_2024_101577 crossref_primary_10_3390_app13074471 crossref_primary_10_1126_sciadv_add2032 crossref_primary_10_3389_fphar_2023_1117293 crossref_primary_10_3390_vaccines11030711 crossref_primary_10_1016_j_ebiom_2024_105439 crossref_primary_10_1016_j_ebiom_2023_104960 crossref_primary_10_3390_v14112346 crossref_primary_10_3389_fimmu_2023_1100263 crossref_primary_10_3390_antibiotics11121678 crossref_primary_10_1016_j_cell_2022_08_024 crossref_primary_10_1016_S1473_3099_22_00311_5 crossref_primary_10_1016_j_celrep_2022_111903 crossref_primary_10_3390_v15020577 crossref_primary_10_1039_D1CS01170G crossref_primary_10_1080_10408363_2023_2254390 crossref_primary_10_1111_tid_14405 crossref_primary_10_1371_journal_ppat_1012625 crossref_primary_10_3390_life12101472 crossref_primary_10_1371_journal_pone_0300297 crossref_primary_10_1038_s41586_024_08315_x crossref_primary_10_1038_s41590_023_01449_6 crossref_primary_10_1073_pnas_2220948120 crossref_primary_10_1016_j_isci_2023_106413 crossref_primary_10_1182_bloodadvances_2023010624 crossref_primary_10_1016_j_chom_2022_09_002 crossref_primary_10_1080_22221751_2024_2343909 crossref_primary_10_1002_advs_202413786 crossref_primary_10_1126_sciimmunol_ade0958 crossref_primary_10_3390_ijms23041987 crossref_primary_10_1016_j_bbrc_2023_04_002 crossref_primary_10_3390_molecules27248919 crossref_primary_10_51847_RBpkn77cbg crossref_primary_10_3349_ymj_2022_0383 crossref_primary_10_1016_j_celrep_2024_114265 crossref_primary_10_1038_s41467_024_53033_7 crossref_primary_10_1038_s41590_022_01248_5 crossref_primary_10_3389_fimmu_2023_1125246 crossref_primary_10_3389_fimmu_2025_1550279 crossref_primary_10_1016_j_jviromet_2024_114883 crossref_primary_10_1093_jb_mvac096 crossref_primary_10_1016_j_chom_2022_09_018 crossref_primary_10_1016_j_crmeth_2024_100856 crossref_primary_10_1371_journal_ppat_1011085 crossref_primary_10_1038_s41467_023_36561_6 crossref_primary_10_1038_s41577_022_00784_3 crossref_primary_10_1016_j_cell_2023_02_001 crossref_primary_10_3389_fviro_2024_1419276 crossref_primary_10_1016_j_celrep_2022_111650 crossref_primary_10_1016_j_celrep_2023_112621 crossref_primary_10_1016_j_celrep_2023_112503 crossref_primary_10_1038_s41392_024_01748_w crossref_primary_10_1016_S1473_3099_22_00422_4 crossref_primary_10_1080_07391102_2023_2270699 crossref_primary_10_1089_vim_2022_0122 crossref_primary_10_1016_j_vaccine_2023_11_037 crossref_primary_10_1126_scitranslmed_abn8543 crossref_primary_10_3390_ijms251910820 crossref_primary_10_1016_S2666_5247_23_00336_1 crossref_primary_10_1038_s41467_024_47393_3 crossref_primary_10_1016_j_jhep_2022_07_008 crossref_primary_10_3389_fviro_2023_1172027 crossref_primary_10_1016_j_antiviral_2024_106006 crossref_primary_10_1093_bfgp_elad051 crossref_primary_10_1016_j_virs_2022_11_007 crossref_primary_10_3390_life12111758 crossref_primary_10_1016_j_celrep_2023_113150 crossref_primary_10_1016_j_heliyon_2022_e11120 crossref_primary_10_1038_s41467_024_45050_3 crossref_primary_10_3390_ijms25179408 crossref_primary_10_3390_ijms23179763 crossref_primary_10_1126_scitranslmed_ade5795 crossref_primary_10_1016_j_bbrc_2022_08_050 crossref_primary_10_1126_scitranslmed_adi2623 crossref_primary_10_1038_s41598_022_24730_4 crossref_primary_10_3390_jcm11133838 crossref_primary_10_1016_j_ymthe_2022_08_020 crossref_primary_10_1016_j_ebiom_2024_105354 crossref_primary_10_7759_cureus_48046 crossref_primary_10_1002_slct_202302906 crossref_primary_10_1093_jalm_jfac064 crossref_primary_10_1080_22221751_2023_2210237 crossref_primary_10_3390_vaccines11010042 crossref_primary_10_1016_j_isci_2024_110354 crossref_primary_10_1016_j_eclinm_2023_101898 crossref_primary_10_1021_acs_biochem_2c00451 crossref_primary_10_1371_journal_ppat_1012383 crossref_primary_10_1016_j_cell_2022_12_018 crossref_primary_10_3390_ijms25010354 crossref_primary_10_1038_s42003_023_04759_5 crossref_primary_10_1128_mbio_01587_23 crossref_primary_10_1002_jmv_28565 crossref_primary_10_1016_S2213_2600_22_00213_2 crossref_primary_10_1097_INF_0000000000003703 crossref_primary_10_3390_hematolrep15040059 crossref_primary_10_3390_pharmaceutics17010043 crossref_primary_10_1007_s40259_024_00667_0 crossref_primary_10_1016_j_immuni_2023_09_003 crossref_primary_10_1038_s41586_022_05053_w crossref_primary_10_1016_j_dcit_2024_100017 crossref_primary_10_3390_vaccines13010017 crossref_primary_10_1128_spectrum_03655_23 crossref_primary_10_1007_s15010_024_02223_y crossref_primary_10_1080_22221751_2022_2125348 crossref_primary_10_1080_21645515_2024_2388344 crossref_primary_10_1016_j_celrep_2023_112271 crossref_primary_10_1016_j_chembiol_2024_03_008 crossref_primary_10_1038_s42003_025_07769_7 crossref_primary_10_1038_s41421_023_00584_6 crossref_primary_10_1016_j_isci_2024_109363 crossref_primary_10_1084_jem_20220638 crossref_primary_10_1016_j_xcrm_2022_100850 crossref_primary_10_1038_s41586_022_05644_7 crossref_primary_10_1038_s41467_023_39267_x crossref_primary_10_3389_fimmu_2022_1053617 crossref_primary_10_1002_ajh_26766 crossref_primary_10_1016_j_chembiol_2023_07_011 crossref_primary_10_1039_D4CP03031A crossref_primary_10_1126_sciimmunol_adf1421 crossref_primary_10_1016_j_isci_2023_106955 crossref_primary_10_1038_s41589_022_01140_1 crossref_primary_10_1016_j_ogc_2022_10_018 crossref_primary_10_1073_pnas_2406659122 crossref_primary_10_1007_s40588_023_00212_7 crossref_primary_10_1097_CCE_0000000000000800 crossref_primary_10_1016_j_intimp_2022_108786 crossref_primary_10_1021_acsomega_3c07947 crossref_primary_10_1111_imr_13431 crossref_primary_10_3389_fgene_2023_1024063 crossref_primary_10_3390_v14050961 crossref_primary_10_1016_j_cell_2024_07_052 crossref_primary_10_1093_abt_tbae009 crossref_primary_10_1126_science_adc9127 crossref_primary_10_1128_jvi_01137_23 crossref_primary_10_1016_j_celrep_2023_112421 crossref_primary_10_1016_j_chom_2022_07_002 crossref_primary_10_1016_j_jaci_2022_12_800 crossref_primary_10_1016_j_celrep_2024_114338 crossref_primary_10_1016_j_bpc_2024_107387 crossref_primary_10_1016_j_ijbiomac_2023_126817 crossref_primary_10_1186_s13287_023_03556_5 crossref_primary_10_1021_acs_jcim_3c01857 crossref_primary_10_20411_pai_v9i2_718 crossref_primary_10_1016_j_isci_2022_104935 crossref_primary_10_3390_ijms23116083 crossref_primary_10_3390_pr10061053 crossref_primary_10_1016_j_coviro_2023_101332 crossref_primary_10_3390_biom15020301 crossref_primary_10_1007_s12015_022_10477_y crossref_primary_10_1126_scitranslmed_ado9026 crossref_primary_10_1186_s12985_023_02230_9 crossref_primary_10_1111_imr_70000 crossref_primary_10_1186_s44280_023_00012_0 crossref_primary_10_1016_j_anai_2022_06_009 crossref_primary_10_1016_j_xcrp_2023_101249 crossref_primary_10_1038_s41586_023_06753_7 crossref_primary_10_1038_s41598_024_67570_0 crossref_primary_10_1038_s41467_024_46982_6 crossref_primary_10_1128_jvi_01070_23 crossref_primary_10_1371_journal_pcbi_1012215 crossref_primary_10_1038_s41467_023_38965_w crossref_primary_10_1016_j_drudis_2024_104126 crossref_primary_10_2217_fvl_2023_0169 crossref_primary_10_1186_s43556_022_00100_4 crossref_primary_10_1007_s11033_022_07724_3 crossref_primary_10_1016_S1473_3099_22_00642_9 crossref_primary_10_1093_infdis_jiae192 crossref_primary_10_1038_s41586_022_04980_y crossref_primary_10_1016_j_chom_2023_10_018 crossref_primary_10_1126_science_abq0839 crossref_primary_10_1371_journal_ppat_1010951 crossref_primary_10_3390_antib11030057 crossref_primary_10_1007_s11427_022_2215_6 crossref_primary_10_1016_j_heliyon_2024_e26423 crossref_primary_10_3390_v15061398 crossref_primary_10_1371_journal_pone_0279326 crossref_primary_10_1016_j_jpba_2022_115039 crossref_primary_10_1126_sciimmunol_abp9312 crossref_primary_10_1002_rmv_2439 crossref_primary_10_1016_j_micinf_2024_105461 crossref_primary_10_1016_j_str_2023_12_013 crossref_primary_10_3390_ijms23137315 crossref_primary_10_1016_j_isci_2023_108254 crossref_primary_10_5004_dwt_2023_29574 crossref_primary_10_1016_j_ijbiomac_2023_125997 crossref_primary_10_1080_22221751_2024_2404166 crossref_primary_10_1126_scitranslmed_adn0396 crossref_primary_10_1080_14787210_2022_2134117 crossref_primary_10_1080_22221751_2022_2146538 crossref_primary_10_1016_j_it_2023_03_010 crossref_primary_10_1016_j_clim_2024_109902 crossref_primary_10_1016_j_jinf_2023_04_010 crossref_primary_10_1038_s41551_025_01353_4 crossref_primary_10_1073_pnas_2205784119 crossref_primary_10_1038_s41422_022_00700_3 crossref_primary_10_2174_1567201819666221004094509 crossref_primary_10_1155_cjid_4601882 crossref_primary_10_1016_j_jinf_2023_10_008 crossref_primary_10_3390_antib13010005 crossref_primary_10_1038_s41598_022_20849_6 crossref_primary_10_5812_tms_130706 crossref_primary_10_1055_s_0042_1758852 crossref_primary_10_1111_irv_70065 crossref_primary_10_1038_s41422_023_00880_6 crossref_primary_10_1038_s41573_022_00495_3 crossref_primary_10_1186_s12879_023_08236_6 crossref_primary_10_3390_ph15081002 crossref_primary_10_3389_fcimb_2022_928279 crossref_primary_10_1002_jmv_29917 crossref_primary_10_1038_s41586_023_06750_w crossref_primary_10_1093_infdis_jiad013 crossref_primary_10_3390_jpm12060895 crossref_primary_10_1093_abt_tbad002 crossref_primary_10_1021_acs_jmedchem_3c01543 crossref_primary_10_1093_abt_tbad006 crossref_primary_10_1016_j_chom_2022_10_003 crossref_primary_10_1016_j_xcrm_2022_100678 crossref_primary_10_1016_j_isci_2023_106092 crossref_primary_10_3390_v16060900 crossref_primary_10_1016_j_xcrm_2023_101267 crossref_primary_10_1126_science_adk8946 crossref_primary_10_1016_j_str_2024_08_005 crossref_primary_10_1073_pnas_2315354120 crossref_primary_10_1002_advs_202304818 crossref_primary_10_1093_procel_pwae007 crossref_primary_10_3390_pathogens12091108 crossref_primary_10_3390_ph15121512 crossref_primary_10_1126_sciimmunol_add5446 crossref_primary_10_1186_s12985_023_01973_9 crossref_primary_10_1093_infdis_jiad102 crossref_primary_10_2174_1389450124666221014102927 crossref_primary_10_1097_CCE_0000000000000747 crossref_primary_10_1126_scitranslmed_adf4549 crossref_primary_10_1186_s13578_023_01099_z crossref_primary_10_1016_j_immuni_2022_05_005 crossref_primary_10_1038_s41392_022_01105_9 crossref_primary_10_1128_jvi_01230_24 crossref_primary_10_1016_j_antiviral_2022_105507 crossref_primary_10_1126_sciadv_ade3470 crossref_primary_10_1182_blood_2022016089 crossref_primary_10_3390_pharmaceutics15051412 crossref_primary_10_3390_biom12111673 crossref_primary_10_1093_procel_pwad040 crossref_primary_10_1128_jvi_00286_23 crossref_primary_10_1016_j_celrep_2022_111845 crossref_primary_10_1128_spectrum_04332_22 crossref_primary_10_1016_j_cyto_2024_156756 crossref_primary_10_3390_antib12010005 |
Cites_doi | 10.1016/j.chom.2021.03.008 10.1371/journal.pone.0232311 10.1073/pnas.93.21.11382 10.1016/j.cell.2021.02.035 10.1128/mBio.00696-21 10.1056/NEJMcibr2032888 10.1016/bs.mie.2016.04.012 10.1038/s41586-022-04594-4 10.1038/s41551-020-00660-2 10.1016/j.chom.2021.01.014 10.1038/d41586-021-00728-2 10.1126/science.abg4493 10.1001/jama.2021.0202 10.1038/s41586-020-2895-3 10.1038/s41591-021-01270-4 10.1038/s41586-020-2571-7 10.1038/s41596-021-00491-8 10.2807/1560-7917.ES.2017.22.13.30494 10.1016/j.celrep.2021.108890 10.1126/science.abg7404 10.1016/j.cell.2021.03.036 10.1016/j.cell.2020.09.032 10.1126/science.abf4830 10.1038/s41591-021-01255-3 10.1056/NEJMc2031364 10.1107/S0907444910045749 10.1093/gigascience/giab008 10.1038/s41586-020-2622-0 10.1038/s41594-020-0469-6 10.1126/science.abd0827 10.1080/22221751.2020.1743767 10.1186/s12967-020-02344-6 10.1016/j.cell.2021.03.055 10.1126/science.abc4730 10.1016/j.jviromet.2010.08.006 10.1056/NEJMoa2107934 10.1107/S0907444911056058 10.1038/s41586-020-2349-y 10.1136/bmj.n771 10.1126/scitranslmed.abf1906 10.1107/S0907444909042073 10.1126/science.abe5901 10.1056/NEJMoa2029849 10.1038/s41586-020-2852-1 10.1126/science.abd0826 10.1126/science.abg3055 10.3389/fmicb.2020.01800 10.1107/S0907444911007773 10.1107/S0907444913000061 10.1093/bioinformatics/btp698 10.1016/j.cell.2021.01.037 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. 2022 The Authors 2022 |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2022 The Authors 2022 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2022.110812 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 110812 |
ExternalDocumentID | oai_doaj_org_article_daeff3ff2f814504a3643f35bb419fcf PMC9035363 35568025 10_1016_j_celrep_2022_110812 S2211124722005836 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c4722-110e26436626a91c8379db46f7fc25c5da4a5152e55af1c588d21ca9c76d800c3 |
IEDL.DBID | IXB |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:30:51 EDT 2025 Thu Aug 21 14:10:10 EDT 2025 Fri Jul 11 05:29:34 EDT 2025 Mon Jul 21 05:59:35 EDT 2025 Tue Jul 01 02:59:26 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 Tue Jul 25 21:03:32 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | COVID-19 neutralizing antibody variant of concern SARS-CoV-2 CP: Microbiology |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4722-110e26436626a91c8379db46f7fc25c5da4a5152e55af1c588d21ca9c76d800c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
ORCID | 0000-0001-9349-9653 0000-0002-0254-4955 0000-0002-6371-7493 0000-0002-0833-5580 0000-0002-2061-4531 0000-0002-7354-9470 0000-0002-7793-2282 0000-0003-1486-5251 0000-0001-7196-0154 0000-0001-7391-9438 0000-0002-5293-4695 0000-0002-0743-7489 0000-0001-8112-0853 0000-0003-4764-6290 0000-0003-3620-4470 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124722005836 |
PMID | 35568025 |
PQID | 2664790785 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_daeff3ff2f814504a3643f35bb419fcf pubmedcentral_primary_oai_pubmedcentral_nih_gov_9035363 proquest_miscellaneous_2664790785 pubmed_primary_35568025 crossref_primary_10_1016_j_celrep_2022_110812 crossref_citationtrail_10_1016_j_celrep_2022_110812 elsevier_sciencedirect_doi_10_1016_j_celrep_2022_110812 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-17 |
PublicationDateYYYYMMDD | 2022-05-17 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2022 |
Publisher | Elsevier Inc The Authors Elsevier |
Publisher_xml | – name: Elsevier Inc – name: The Authors – name: Elsevier |
References | Hoffmann, Arora, Groß, Seidel, Hörnich, Hahn, Krüger, Graichen, Hofmann-Winkler, Kempf (bib23) 2021; 184 Wang, Zhou, Zhang, Yang, Schramm, Shi, Pegu, Oloninyi, Ransier, Darko (bib61) 2021 Winn, Ballard, Cowtan, Dodson, Emsley, Evans, Keegan, Krissinel, Leslie, McCoy (bib65) 2011; 67 Darby, Hiscox (bib14) 2021; 372 Evans, Murshudov (bib18) 2013; 69 Lieu, Antonysamy, Druzina, Ho, Kang, Pustilnik, Wang, Atwell (bib35) 2020; 15 Thomson, Rosen, Shepherd, Spreafico, Filipe, Wojcechowskyj, Davis, Piccoli, Pascall, Dillen (bib57) 2021; 184 Baric (bib5) 2020; 383 Gottlieb, Nirula, Chen, Boscia, Heller, Morris, Huhn, Cardona, Mocherla, Stosor (bib19) 2021; 325 Barnes, Jette, Abernathy, Dam, Esswein, Gristick, Malyutin, Sharaf, Huey-Tubman, Lee (bib6) 2020; 588 (bib17) 2020 (bib64) 2021 Tegally, Wilkinson, Lessells, Giandhari, Pillay, Msomi, Mlisana, Bhiman, von Gottberg, Walaza (bib56) 2021; 27 AstraZeneca (bib4) 2020 Corbett, Edwards, Leist, Abiona, Boyoglu-Barnum, Gillespie, Himansu, Schäfer, Ziwawo, DiPiazza (bib12) 2020; 586 Hsieh, Goldsmith, Schaub, DiVenere, Kuo, Javanmardi, Le, Wrapp, Lee, Liu (bib25) 2020; 369 Jones, Brown-Augsburger, Corbett, Westendorf, Davies, Cujec, Wiethoff, Blackbourne, Heinz, Foster (bib29) 2020 Davies, Abbott, Barnard, Jarvis, Kucharski, Munday, Pearson, Russell, Tully, Washburne (bib15) 2021; 372 Chen, Nirula, Heller, Gottlieb, Boscia, Morris, Huhn, Cardona, Mocherla, Stosor (bib9) 2020; 384 Tortorici, Czudnochowski, Starr, Marzi, Walls, Zatta, Bowen, Jaconi, di iulio, Wang (bib58) 2021 Regeneron (bib50) 2021 Liu, VanBlargan, Bloyet, Rothlauf, Chen, Stumpf, Zhao, Errico, Theel, Liebeskind (bib38) 2021; 29 Smart, Womack, Flensburg, Keller, Paciorek, Sharff, Vonrhein, Bricogne (bib54) 2012; 68 Naldini, Blömer, Gage, Trono, Verma (bib43) 1996; 93 Kabsch (bib31) 2010 Choi, Choudhary, Regan, Sparks, Padera, Qiu, Solomon, Kuo, Boucau, Bowman (bib11) 2020; 383 Gu, Chen, Yang, He, Fan, Deng, Wang, Teng, Zhao, Cui (bib21) 2020; 369 Whitt (bib63) 2010; 169 Oude Munnink, Sikkema, Nieuwenhuijse, Molenaar, Munger, Molenkamp, van der Spek, Tolsma, Rietveld, Brouwer (bib42) 2021; 371 Hansen, Baum, Pascal, Russo, Giordano, Wloga, Fulton, Yan, Koon, Patel (bib22) 2020; 369 Iketani, Liu, Guo, Liu, Huang, Wang, Luo, Yu, Yin, Sobieszczyk (bib27) 2022; 604 (bib20) 2021 Santos, Passos (bib51) 2021 Pinto, Park, Beltramello, Walls, Tortorici, Bianchi, Jaconi, Culap, Zatta, De Marco (bib46) 2020; 583 Rees-Spear, Muir, Griffith, Heaney, Aldon, Snitselaar, Thomas, Graham, Seow, Lee (bib49) 2021; 34 Shu, McCauley (bib53) 2017; 22 Huo, Le Bas, Ruza, Duyvesteyn, Mikolajek, Malinauskas, Tan, Rijal, Dumoux, Ward (bib26) 2020; 27 Tada, Dcosta, Samanovic, Herati, Cornelius, Zhou, Vaill, Kazmierski, Mulligan, Landau (bib55) 2021; 12 Kuzmina, Khalaila, Voloshin, Keren-Naus, Boehm-Cohen, Raviv, Shemer-Avni, Rosenberg, Taube (bib33) 2021; 29 Yao, Wang, Ma, Tang, Wang, Li, Lin, Li, Zhong (bib68) 2021 Aschwanden (bib3) 2021; 591 Liu, Wang, Nair, Yu, Rapp, Wang, Luo, Chan, Sahi, Figueroa (bib37) 2020; 584 Xie, Lokugamage, Zhang, Vu, Muruato, Menachery, Shi (bib67) 2021; 16 Nie, Li, Wu, Zhao, Hao, Liu, Zhang, Nie, Qin, Wang (bib44) 2020; 9 Xie, Liu, Liu, Zhang, Zou, Fontes-Garfias, Xia, Swanson, Cutler, Cooper (bib66) 2021; 27 Horby, Huntley, Davies, Edmunds, Ferguson, Medley, Semple (bib24) 2021 McCormick, Jacobs, Mellors (bib40) 2021; 371 Dejnirattisai, Zhou, Supasa, Liu, Mentzer, Ginn, Zhao, Duyvesteyn, Tuekprakhon, Nutalai (bib16) 2021; 184 Gupta, Gonzalez-Rojas, Juarez, Casal, Moya, Falci, Sarkis, Solis, Zheng, Scott (bib70) 2021; 385 Wang, Nair, Liu, Iketani, Luo, Guo, Wang, Yu, Zhang, Kwong (bib62) 2021 Mercatelli, Giorgi (bib41) 2020; 11 Scheres (bib52) 2016; 579 (bib59) 2020 Cerutti, Rapp, Guo, Bahna, Bimela, Reddem, Yu, Wang, Liu, Huang (bib8) 2021 Lieu, Antonysamy, Druzina, Ho, Kang, Pustilnik, Wang, Atwell (bib36) 2020; 15 Cathcart, Havenar-Daughton, Lempp, Ma, Schmid, Agostini, Guarino, iulio, Rosen, Tucker (bib7) 2021 Jones, Brown-Augsburger, Corbett, Westendorf, Davies, Cujec, Wiethoff, Blackbourne, Heinz, Foster (bib30) 2021; 13 Yurkovetskiy, Wang, Pascal, Tomkins-Tinch, Nyalile, Wang, Baum, Diehl, Dauphin, Carbone (bib69) 2020; 183 Andreano, Nicastri, Paciello, Pileri, Manganaro, Piccini, Manenti, Pantano, Kabanova, Troisi (bib2) 2021; 184 Li, Durbin (bib34) 2010; 26 Pachetti, Marini, Benedetti, Giudici, Mauro, Storici, Masciovecchio, Angeletti, Ciccozzi, Gallo (bib45) 2020; 18 Chen, Arendall, Headd, Keedy, Immormino, Kapral, Murray, Richardson, Richardson (bib10) 2010; 66 Danecek, Bonfield, Liddle, Marshall, Ohan, Pollard, Whitwham, Keane, McCarthy, Davies (bib13) 2021; 10 Plante, Liu, Liu, Xia, Johnson, Lokugamage, Zhang, Muruato, Zou, Fontes-Garfias (bib47) 2020; 592 Rappazzo, Tse, Kaku, Wrapp, Sakharkar, Huang, Deveau, Yockachonis, Herbert, Battles (bib48) 2021; 371 Mansbach, Chakraborty, Nguyen, Montefiori, Korber, Gnanakaran (bib39) 2020 Jiang, Zhang, Yang, Hotez, Du (bib28) 2020; 4 Kemp, Collier, Datir, Ferreira, Gayed, Jahun, Hosmillo, Rees-Spear, Mlcochova, Lumb (bib32) 2021 Vonrhein, Flensburg, Keller, Sharff, Smart, Paciorek, Womack, Bricogne (bib60) 2011; 67 Altmann, Boyton, Beale (bib1) 2021; 371 Oude Munnink (10.1016/j.celrep.2022.110812_bib42) 2021; 371 Wang (10.1016/j.celrep.2022.110812_bib62) 2021 Kuzmina (10.1016/j.celrep.2022.110812_bib33) 2021; 29 Baric (10.1016/j.celrep.2022.110812_bib5) 2020; 383 Choi (10.1016/j.celrep.2022.110812_bib11) 2020; 383 Hsieh (10.1016/j.celrep.2022.110812_bib25) 2020; 369 Scheres (10.1016/j.celrep.2022.110812_bib52) 2016; 579 (10.1016/j.celrep.2022.110812_bib64) 2021 Jones (10.1016/j.celrep.2022.110812_bib29) 2020 Kabsch (10.1016/j.celrep.2022.110812_bib31) 2010 McCormick (10.1016/j.celrep.2022.110812_bib40) 2021; 371 Evans (10.1016/j.celrep.2022.110812_bib18) 2013; 69 Lieu (10.1016/j.celrep.2022.110812_bib36) 2020; 15 Pachetti (10.1016/j.celrep.2022.110812_bib45) 2020; 18 Winn (10.1016/j.celrep.2022.110812_bib65) 2011; 67 Mercatelli (10.1016/j.celrep.2022.110812_bib41) 2020; 11 Lieu (10.1016/j.celrep.2022.110812_bib35) 2020; 15 Yao (10.1016/j.celrep.2022.110812_bib68) 2021 Horby (10.1016/j.celrep.2022.110812_bib24) 2021 Regeneron (10.1016/j.celrep.2022.110812_bib50) 2021 Mansbach (10.1016/j.celrep.2022.110812_bib39) 2020 Plante (10.1016/j.celrep.2022.110812_bib47) 2020; 592 Andreano (10.1016/j.celrep.2022.110812_bib2) 2021; 184 Dejnirattisai (10.1016/j.celrep.2022.110812_bib16) 2021; 184 Huo (10.1016/j.celrep.2022.110812_bib26) 2020; 27 Thomson (10.1016/j.celrep.2022.110812_bib57) 2021; 184 Gupta (10.1016/j.celrep.2022.110812_bib70) 2021; 385 Smart (10.1016/j.celrep.2022.110812_bib54) 2012; 68 Jones (10.1016/j.celrep.2022.110812_bib30) 2021; 13 Wang (10.1016/j.celrep.2022.110812_bib61) 2021 Chen (10.1016/j.celrep.2022.110812_bib9) 2020; 384 (10.1016/j.celrep.2022.110812_bib20) 2021 Liu (10.1016/j.celrep.2022.110812_bib38) 2021; 29 Gu (10.1016/j.celrep.2022.110812_bib21) 2020; 369 Vonrhein (10.1016/j.celrep.2022.110812_bib60) 2011; 67 Corbett (10.1016/j.celrep.2022.110812_bib12) 2020; 586 Liu (10.1016/j.celrep.2022.110812_bib37) 2020; 584 Shu (10.1016/j.celrep.2022.110812_bib53) 2017; 22 Xie (10.1016/j.celrep.2022.110812_bib66) 2021; 27 AstraZeneca (10.1016/j.celrep.2022.110812_bib4) 2020 Kemp (10.1016/j.celrep.2022.110812_bib32) 2021 Tada (10.1016/j.celrep.2022.110812_bib55) 2021; 12 Cerutti (10.1016/j.celrep.2022.110812_bib8) 2021 Iketani (10.1016/j.celrep.2022.110812_bib27) 2022; 604 Naldini (10.1016/j.celrep.2022.110812_bib43) 1996; 93 Santos (10.1016/j.celrep.2022.110812_bib51) 2021 (10.1016/j.celrep.2022.110812_bib59) 2020 Li (10.1016/j.celrep.2022.110812_bib34) 2010; 26 Altmann (10.1016/j.celrep.2022.110812_bib1) 2021; 371 Aschwanden (10.1016/j.celrep.2022.110812_bib3) 2021; 591 Tegally (10.1016/j.celrep.2022.110812_bib56) 2021; 27 Danecek (10.1016/j.celrep.2022.110812_bib13) 2021; 10 Rees-Spear (10.1016/j.celrep.2022.110812_bib49) 2021; 34 Pinto (10.1016/j.celrep.2022.110812_bib46) 2020; 583 Yurkovetskiy (10.1016/j.celrep.2022.110812_bib69) 2020; 183 Gottlieb (10.1016/j.celrep.2022.110812_bib19) 2021; 325 (10.1016/j.celrep.2022.110812_bib17) 2020 Cathcart (10.1016/j.celrep.2022.110812_bib7) 2021 Darby (10.1016/j.celrep.2022.110812_bib14) 2021; 372 Rappazzo (10.1016/j.celrep.2022.110812_bib48) 2021; 371 Chen (10.1016/j.celrep.2022.110812_bib10) 2010; 66 Jiang (10.1016/j.celrep.2022.110812_bib28) 2020; 4 Tortorici (10.1016/j.celrep.2022.110812_bib58) 2021 Nie (10.1016/j.celrep.2022.110812_bib44) 2020; 9 Hansen (10.1016/j.celrep.2022.110812_bib22) 2020; 369 Whitt (10.1016/j.celrep.2022.110812_bib63) 2010; 169 Xie (10.1016/j.celrep.2022.110812_bib67) 2021; 16 Davies (10.1016/j.celrep.2022.110812_bib15) 2021; 372 Barnes (10.1016/j.celrep.2022.110812_bib6) 2020; 588 Hoffmann (10.1016/j.celrep.2022.110812_bib23) 2021; 184 33972947 - bioRxiv. 2022 Mar 24:2021.04.30.442182. doi: 10.1101/2021.04.30.442182 |
References_xml | – volume: 15 start-page: e0232311 year: 2020 ident: bib36 article-title: Rapid and robust antibody Fab fragment crystallization utilizing edge-to-edge beta-sheet packing publication-title: Plos One – volume: 22 start-page: 30494 year: 2017 ident: bib53 article-title: GISAID: global initiative on sharing all influenza data – from vision to reality publication-title: Eurosurveillance – volume: 34 start-page: 108890 year: 2021 ident: bib49 article-title: The effect of spike mutations on SARS-CoV-2 neutralization publication-title: Cell Rep. – year: 2021 ident: bib50 article-title: Phase 3 Trial Shows REGEN-COV TM (Casirivimab with Imdevimab) Antibody Cocktail Reduced Hospitalization or Death by 70% in Non-hospitalized COVID-19 Patients – volume: 372 start-page: n771 year: 2021 ident: bib14 article-title: Covid-19: variants and vaccination publication-title: BMJ – volume: 372 start-page: eabg3055 year: 2021 ident: bib15 article-title: Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England publication-title: Science – volume: 586 start-page: 5 year: 2020 end-page: 571 ident: bib12 article-title: SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness publication-title: Nature – start-page: 1 year: 2021 end-page: 9 ident: bib62 article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 publication-title: Nature – volume: 369 start-page: 1603 year: 2020 end-page: 1607 ident: bib21 article-title: Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy publication-title: Science – volume: 369 start-page: 1501 year: 2020 end-page: 1505 ident: bib25 article-title: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes publication-title: Science – year: 2020 ident: bib39 article-title: The SARS-CoV-2 spike variant D614G favors an open conformational state publication-title: bioRxiv – volume: 184 start-page: 1171 year: 2021 end-page: 1187.e20 ident: bib57 article-title: Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity publication-title: Cell – volume: 12 start-page: e00696-21 year: 2021 ident: bib55 article-title: Convalescent-phase sera and vaccine-elicited antibodies largely maintain neutralizing titer against global SARS-CoV-2 variant spikes publication-title: mBio – year: 2020 ident: bib4 article-title: COVID-19 Long-Acting AntiBody (LAAB) Combination AZD7442 Rapidly Advances into Phase III Clinical Trials – volume: 183 start-page: 739 year: 2020 end-page: 751.e8 ident: bib69 article-title: Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant publication-title: Cell – volume: 383 start-page: 4 year: 2020 end-page: 2686 ident: bib5 article-title: Emergence of a highly fit SARS-CoV-2 variant publication-title: N. Engl. J. Med. – volume: 169 start-page: 365 year: 2010 end-page: 374 ident: bib63 article-title: Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines publication-title: J. Virol. Methods – volume: 588 start-page: 682 year: 2020 end-page: 687 ident: bib6 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature – year: 2021 ident: bib58 article-title: Structural basis for broad sarbecovirus neutralization by a human monoclonal antibody publication-title: bioRxiv – volume: 591 start-page: 520 year: 2021 end-page: 5 ident: bib3 article-title: Five reasons why COVID herd immunity is probably impossible publication-title: Nature – year: 2020 ident: bib17 article-title: Lilly’s Neutralizing Antibody Bamlanivimab (LY-CoV555) Receives FDA Emergency Use Authorization for the Treatment of Recently Diagnosed COVID-19 – volume: 369 start-page: 1010 year: 2020 end-page: 1014 ident: bib22 article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail publication-title: Science – volume: 371 start-page: 172 year: 2021 end-page: 177 ident: bib42 article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans publication-title: Science – volume: 67 start-page: 293 year: 2011 end-page: 302 ident: bib60 article-title: Data processing and analysis with the autoPROC toolbox publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. – volume: 384 start-page: 2 year: 2020 end-page: 237 ident: bib9 article-title: SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19 publication-title: N. Engl. J. Med. – volume: 29 start-page: 522 year: 2021 end-page: 528.e2 ident: bib33 article-title: SARS CoV-2 spike variants exhibit differential infectivity and neutralization resistance to convalescent or post-vaccination sera publication-title: Cell Host Microbe – volume: 579 start-page: 125 year: 2016 end-page: 157 ident: bib52 article-title: Processing of structurally heterogeneous cryo-EM data in RELION publication-title: Methods Enzymol. – volume: 584 start-page: 450 year: 2020 end-page: 456 ident: bib37 article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike publication-title: Nature – volume: 325 start-page: 632 year: 2021 end-page: 644 ident: bib19 article-title: Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19 publication-title: JAMA – volume: 371 start-page: 3 year: 2021 end-page: 110 ident: bib1 article-title: Immunity to SARS-CoV-2 variants of concern publication-title: Science – volume: 18 start-page: 179 year: 2020 ident: bib45 article-title: Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant publication-title: J. Transl. Med. – volume: 15 start-page: e0232311 year: 2020 ident: bib35 article-title: Rapid and robust antibody Fab fragment crystallization utilizing edge-to-edge beta-sheet packing publication-title: PLoS One – volume: 184 start-page: 2384 year: 2021 end-page: 2393.e12 ident: bib23 article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies publication-title: Cell – year: 2020 ident: bib29 article-title: LY-CoV555, a rapidly isolated potent neutralizing antibody, provides protection in a non-human primate model of SARS-CoV-2 infection publication-title: bioRxiv – volume: 592 start-page: 116 year: 2020 end-page: 121 ident: bib47 article-title: Spike mutation D614G alters SARS-CoV-2 fitness publication-title: Nature – volume: 27 start-page: 440 year: 2021 end-page: 446 ident: bib56 article-title: Sixteen novel lineages of SARS-CoV-2 in South Africa publication-title: Nat. Med. – year: 2021 ident: bib7 article-title: The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2 publication-title: bioRxiv – volume: 371 start-page: 823 year: 2021 end-page: 829 ident: bib48 article-title: Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody publication-title: Science – volume: 67 start-page: 235 year: 2011 end-page: 242 ident: bib65 article-title: Overview of the CCP4 suite and current developments publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. – volume: 184 start-page: 2939 year: 2021 end-page: 2954.e9 ident: bib16 article-title: Antibody evasion by the P.1 strain of SARS-CoV-2 publication-title: Cell – volume: 26 start-page: 589 year: 2010 end-page: 595 ident: bib34 article-title: Fast and accurate long-read alignment with Burrows–Wheeler transform publication-title: Bioinformatics – volume: 9 start-page: 680 year: 2020 end-page: 686 ident: bib44 article-title: Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2 publication-title: Emerg. Microbes Infec. – start-page: 1 year: 2021 end-page: 10 ident: bib32 article-title: SARS-CoV-2 evolution during treatment of chronic infection publication-title: Nature – volume: 66 start-page: 12 year: 2010 end-page: 21 ident: bib10 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. – volume: 383 start-page: 2291 year: 2020 end-page: 2293 ident: bib11 article-title: Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host publication-title: N. Engl. J. Med. – year: 2021 ident: bib8 article-title: Structural basis for accommodation of emerging B.1.351 and B.1.1.7 variants by two potent SARS-CoV-2 neutralizing antibodies publication-title: bioRxiv – volume: 29 start-page: 477 year: 2021 end-page: 488.e4 ident: bib38 article-title: Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization publication-title: Cell Host Microbe – volume: 184 start-page: 1821 year: 2021 end-page: 1835.e16 ident: bib2 article-title: Extremely potent human monoclonal antibodies from COVID-1 publication-title: Cell – start-page: 125 year: 2010 end-page: 132 ident: bib31 publication-title: XDS. Acta Crystallogr Sect D Biological Crystallogr 66 – year: 2021 ident: bib64 article-title: COVID-19 Weekly Epidemiological Update – volume: 27 start-page: 846 year: 2020 end-page: 854 ident: bib26 article-title: Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2 publication-title: Nat. Struct. Mol. Biol. – volume: 69 start-page: 1204 year: 2013 end-page: 1214 ident: bib18 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallogr. Sect D Biol. Crystallogr – volume: 13 start-page: eabf1906 year: 2021 ident: bib30 article-title: The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in non-human primates publication-title: Sci. Transl. Med. – volume: 583 start-page: 290 year: 2020 end-page: 295 ident: bib46 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature – volume: 68 start-page: 368 year: 2012 end-page: 380 ident: bib54 article-title: Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. – year: 2021 ident: bib68 article-title: Spike mutations decrease SARS-CoV-2 sensitivity to neutralizing antibodies but not ACE2-Ig in vitro publication-title: bioRxiv – year: 2021 ident: bib20 article-title: Vir Biotechnology and GSK Announce VIR-7831 Reduces Hospitalisation and Risk of Death in Early Treatment of Adults with COVID-19 – volume: 10 start-page: giab008 year: 2021 ident: bib13 article-title: Twelve years of SAMtools and BCFtools publication-title: Gigascience – volume: 604 start-page: 553 year: 2022 end-page: 556 ident: bib27 article-title: Antibody evasion properties of SARS-CoV-2 omicron sublineages publication-title: Nature – volume: 4 start-page: 11 year: 2020 end-page: 1139 ident: bib28 article-title: Neutralizing antibodies for the treatment of COVID-19 publication-title: Nat. Biomed. Eng. – volume: 371 start-page: 1306 year: 2021 end-page: 1308 ident: bib40 article-title: The emerging plasticity of SARS-CoV-2 publication-title: Science – volume: 16 start-page: 1761 year: 2021 end-page: 1784 ident: bib67 article-title: Engineering SARS-CoV-2 using a reverse genetic system publication-title: Nat. Protoc. – volume: 93 start-page: 11382 year: 1996 end-page: 11388 ident: bib43 article-title: Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector publication-title: Proc. Natl. Acad. Sci. – volume: 27 start-page: 620 year: 2021 end-page: 621 ident: bib66 article-title: Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera publication-title: Nat. Med. – volume: 11 start-page: 1800 year: 2020 ident: bib41 article-title: Geographic and genomic distribution of SARS-CoV-2 mutations publication-title: Front. Microbiol. – year: 2021 ident: bib61 article-title: Antibodies with potent and broad neutralizing activity against antigenically diverse and highly transmissible SARS-CoV-2 variants publication-title: bioRxiv – year: 2021 ident: bib51 article-title: The high infectivity of SARS-CoV-2 B.1.1.7 is associated with increased interaction force between Spike-ACE2 caused by the viral N501Y mutation publication-title: bioRxiv – volume: 385 start-page: 1941 year: 2021 end-page: 1950 ident: bib70 article-title: Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody publication-title: Sotrovimab. New Engl. J. Med. – year: 2021 ident: bib24 article-title: Paper from the New and Emerging Respiratory Virus Threats Advisory Group (NERVTAG) on New Coronavirus (COVID-19) Variant B.1.1.7 – year: 2020 ident: bib59 article-title: A Study of Immune System Proteins in Participants with Mild to Moderate COVID-19 Illness (BLAZE-4) – volume: 29 start-page: 522 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib33 article-title: SARS CoV-2 spike variants exhibit differential infectivity and neutralization resistance to convalescent or post-vaccination sera publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.03.008 – volume: 15 start-page: e0232311 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib36 article-title: Rapid and robust antibody Fab fragment crystallization utilizing edge-to-edge beta-sheet packing publication-title: Plos One doi: 10.1371/journal.pone.0232311 – volume: 93 start-page: 11382 year: 1996 ident: 10.1016/j.celrep.2022.110812_bib43 article-title: Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.93.21.11382 – year: 2021 ident: 10.1016/j.celrep.2022.110812_bib50 – volume: 184 start-page: 1821 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib2 article-title: Extremely potent human monoclonal antibodies from COVID-1 9 convalescent patients publication-title: Cell doi: 10.1016/j.cell.2021.02.035 – volume: 12 start-page: e00696-21 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib55 article-title: Convalescent-phase sera and vaccine-elicited antibodies largely maintain neutralizing titer against global SARS-CoV-2 variant spikes publication-title: mBio doi: 10.1128/mBio.00696-21 – volume: 383 start-page: 2684 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib5 article-title: Emergence of a highly fit SARS-CoV-2 variant publication-title: N. Engl. J. Med. doi: 10.1056/NEJMcibr2032888 – volume: 15 start-page: e0232311 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib35 article-title: Rapid and robust antibody Fab fragment crystallization utilizing edge-to-edge beta-sheet packing publication-title: PLoS One doi: 10.1371/journal.pone.0232311 – volume: 579 start-page: 125 year: 2016 ident: 10.1016/j.celrep.2022.110812_bib52 article-title: Processing of structurally heterogeneous cryo-EM data in RELION publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2016.04.012 – volume: 604 start-page: 553 year: 2022 ident: 10.1016/j.celrep.2022.110812_bib27 article-title: Antibody evasion properties of SARS-CoV-2 omicron sublineages publication-title: Nature doi: 10.1038/s41586-022-04594-4 – volume: 4 start-page: 1134 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib28 article-title: Neutralizing antibodies for the treatment of COVID-19 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-00660-2 – volume: 29 start-page: 477 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib38 article-title: Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.01.014 – year: 2021 ident: 10.1016/j.celrep.2022.110812_bib8 article-title: Structural basis for accommodation of emerging B.1.351 and B.1.1.7 variants by two potent SARS-CoV-2 neutralizing antibodies publication-title: bioRxiv – volume: 591 start-page: 520 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib3 article-title: Five reasons why COVID herd immunity is probably impossible publication-title: Nature doi: 10.1038/d41586-021-00728-2 – start-page: 125 year: 2010 ident: 10.1016/j.celrep.2022.110812_bib31 – volume: 371 start-page: 1306 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib40 article-title: The emerging plasticity of SARS-CoV-2 publication-title: Science doi: 10.1126/science.abg4493 – volume: 325 start-page: 632 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib19 article-title: Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19 publication-title: JAMA doi: 10.1001/jama.2021.0202 – volume: 592 start-page: 116 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib47 article-title: Spike mutation D614G alters SARS-CoV-2 fitness publication-title: Nature doi: 10.1038/s41586-020-2895-3 – volume: 27 start-page: 620 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib66 article-title: Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera publication-title: Nat. Med. doi: 10.1038/s41591-021-01270-4 – volume: 584 start-page: 450 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib37 article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike publication-title: Nature doi: 10.1038/s41586-020-2571-7 – volume: 16 start-page: 1761 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib67 article-title: Engineering SARS-CoV-2 using a reverse genetic system publication-title: Nat. Protoc. doi: 10.1038/s41596-021-00491-8 – volume: 22 start-page: 30494 year: 2017 ident: 10.1016/j.celrep.2022.110812_bib53 article-title: GISAID: global initiative on sharing all influenza data – from vision to reality publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES.2017.22.13.30494 – volume: 34 start-page: 108890 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib49 article-title: The effect of spike mutations on SARS-CoV-2 neutralization publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.108890 – volume: 371 start-page: 1103 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib1 article-title: Immunity to SARS-CoV-2 variants of concern publication-title: Science doi: 10.1126/science.abg7404 – year: 2021 ident: 10.1016/j.celrep.2022.110812_bib68 article-title: Spike mutations decrease SARS-CoV-2 sensitivity to neutralizing antibodies but not ACE2-Ig in vitro publication-title: bioRxiv – year: 2021 ident: 10.1016/j.celrep.2022.110812_bib58 article-title: Structural basis for broad sarbecovirus neutralization by a human monoclonal antibody publication-title: bioRxiv – volume: 184 start-page: 2384 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib23 article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies publication-title: Cell doi: 10.1016/j.cell.2021.03.036 – volume: 183 start-page: 739 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib69 article-title: Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant publication-title: Cell doi: 10.1016/j.cell.2020.09.032 – volume: 371 start-page: 823 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib48 article-title: Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody publication-title: Science doi: 10.1126/science.abf4830 – volume: 27 start-page: 440 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib56 article-title: Sixteen novel lineages of SARS-CoV-2 in South Africa publication-title: Nat. Med. doi: 10.1038/s41591-021-01255-3 – volume: 383 start-page: 2291 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib11 article-title: Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2031364 – start-page: 1 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib32 article-title: SARS-CoV-2 evolution during treatment of chronic infection publication-title: Nature – year: 2021 ident: 10.1016/j.celrep.2022.110812_bib51 article-title: The high infectivity of SARS-CoV-2 B.1.1.7 is associated with increased interaction force between Spike-ACE2 caused by the viral N501Y mutation publication-title: bioRxiv – volume: 67 start-page: 235 year: 2011 ident: 10.1016/j.celrep.2022.110812_bib65 article-title: Overview of the CCP4 suite and current developments publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. doi: 10.1107/S0907444910045749 – volume: 10 start-page: giab008 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib13 article-title: Twelve years of SAMtools and BCFtools publication-title: Gigascience doi: 10.1093/gigascience/giab008 – volume: 586 start-page: 567 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib12 article-title: SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness publication-title: Nature doi: 10.1038/s41586-020-2622-0 – volume: 27 start-page: 846 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib26 article-title: Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0469-6 – year: 2021 ident: 10.1016/j.celrep.2022.110812_bib20 – year: 2020 ident: 10.1016/j.celrep.2022.110812_bib29 article-title: LY-CoV555, a rapidly isolated potent neutralizing antibody, provides protection in a non-human primate model of SARS-CoV-2 infection publication-title: bioRxiv – year: 2021 ident: 10.1016/j.celrep.2022.110812_bib61 article-title: Antibodies with potent and broad neutralizing activity against antigenically diverse and highly transmissible SARS-CoV-2 variants publication-title: bioRxiv – year: 2021 ident: 10.1016/j.celrep.2022.110812_bib24 – volume: 369 start-page: 1010 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib22 article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail publication-title: Science doi: 10.1126/science.abd0827 – year: 2021 ident: 10.1016/j.celrep.2022.110812_bib64 – year: 2020 ident: 10.1016/j.celrep.2022.110812_bib39 article-title: The SARS-CoV-2 spike variant D614G favors an open conformational state publication-title: bioRxiv – volume: 9 start-page: 680 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib44 article-title: Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2 publication-title: Emerg. Microbes Infec. doi: 10.1080/22221751.2020.1743767 – volume: 18 start-page: 179 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib45 article-title: Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant publication-title: J. Transl. Med. doi: 10.1186/s12967-020-02344-6 – volume: 184 start-page: 2939 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib16 article-title: Antibody evasion by the P.1 strain of SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2021.03.055 – volume: 369 start-page: 1603 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib21 article-title: Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy publication-title: Science doi: 10.1126/science.abc4730 – start-page: 1 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib62 article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 publication-title: Nature – volume: 169 start-page: 365 year: 2010 ident: 10.1016/j.celrep.2022.110812_bib63 article-title: Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2010.08.006 – volume: 385 start-page: 1941 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib70 article-title: Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody publication-title: Sotrovimab. New Engl. J. Med. doi: 10.1056/NEJMoa2107934 – volume: 68 start-page: 368 year: 2012 ident: 10.1016/j.celrep.2022.110812_bib54 article-title: Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. doi: 10.1107/S0907444911056058 – volume: 583 start-page: 290 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib46 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature doi: 10.1038/s41586-020-2349-y – volume: 372 start-page: n771 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib14 article-title: Covid-19: variants and vaccination publication-title: BMJ doi: 10.1136/bmj.n771 – volume: 13 start-page: eabf1906 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib30 article-title: The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in non-human primates publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abf1906 – year: 2021 ident: 10.1016/j.celrep.2022.110812_bib7 article-title: The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2 publication-title: bioRxiv – volume: 66 start-page: 12 year: 2010 ident: 10.1016/j.celrep.2022.110812_bib10 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. doi: 10.1107/S0907444909042073 – volume: 371 start-page: 172 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib42 article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans publication-title: Science doi: 10.1126/science.abe5901 – year: 2020 ident: 10.1016/j.celrep.2022.110812_bib4 – year: 2020 ident: 10.1016/j.celrep.2022.110812_bib59 – volume: 384 start-page: 229 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib9 article-title: SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2029849 – volume: 588 start-page: 682 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib6 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature doi: 10.1038/s41586-020-2852-1 – volume: 369 start-page: 1501 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib25 article-title: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes publication-title: Science doi: 10.1126/science.abd0826 – volume: 372 start-page: eabg3055 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib15 article-title: Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England publication-title: Science doi: 10.1126/science.abg3055 – volume: 11 start-page: 1800 year: 2020 ident: 10.1016/j.celrep.2022.110812_bib41 article-title: Geographic and genomic distribution of SARS-CoV-2 mutations publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.01800 – volume: 67 start-page: 293 year: 2011 ident: 10.1016/j.celrep.2022.110812_bib60 article-title: Data processing and analysis with the autoPROC toolbox publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. doi: 10.1107/S0907444911007773 – year: 2020 ident: 10.1016/j.celrep.2022.110812_bib17 – volume: 69 start-page: 1204 year: 2013 ident: 10.1016/j.celrep.2022.110812_bib18 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallogr. Sect D Biol. Crystallogr doi: 10.1107/S0907444913000061 – volume: 26 start-page: 589 year: 2010 ident: 10.1016/j.celrep.2022.110812_bib34 article-title: Fast and accurate long-read alignment with Burrows–Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp698 – volume: 184 start-page: 1171 year: 2021 ident: 10.1016/j.celrep.2022.110812_bib57 article-title: Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity publication-title: Cell doi: 10.1016/j.cell.2021.01.037 – reference: 33972947 - bioRxiv. 2022 Mar 24:2021.04.30.442182. doi: 10.1101/2021.04.30.442182 |
SSID | ssj0000601194 |
Score | 2.6829 |
Snippet | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110812 |
SubjectTerms | Antibodies, Monoclonal - chemistry Antibodies, Monoclonal - pharmacology Antibodies, Monoclonal - therapeutic use Antibodies, Neutralizing - chemistry Antibodies, Neutralizing - pharmacology Antibodies, Neutralizing - therapeutic use Antibodies, Viral COVID-19 COVID-19 Drug Treatment CP: Microbiology Epitopes Humans neutralizing antibody SARS-CoV-2 variant of concern |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDdbHgoSBzhEJH4k8bGtqKqqcKAUlZPlx1hstU2qdrdS-fXMxMlqA4e9cE3iODMee76Jx98w9j7EEkoLRa6LaHMZMGB1UvFccygi-v8KBB1O_vK1OjqTx-fqfKPUF-WEJXrgpLhPwUKMIkYem1KqQlqBPjQK5ZwsdfSRVl_0eRvBVFqDicuMtpQ5p5wtLuvx3Fyf3OVhcQ1EV8l5nwhf8olf6un7J-7pX_j5dxblhls6fMQeDngy20tyPGb3oH3C7qcKk3dP2f7Jz_yg-0HsNtkHB24Ji-52fmndx-yqQ7i8XNxlLaz63x2_4SY73ft2Sg1ynt1iFE1JMs_Y2eHn7wdH-VA2IffE_JijPIAwR1QYq1hdegxBdXCyinX0XHkVrLSIYjgoZWPpVdMEXnqrfV0FhI9ePGc7bdfCS5aB0FCLxoWqiRKxivWBc1wGgogY5miYMTEqzfiBU5xKWyzMmDx2YZKqDanaJFXPWL5udZU4NbY8v0_jsX6WGLH7C2gnZrATs81OZqweR9MM4CKBBnzVfEv378bBNzj3aEPFttCtbgyCG1lrBFlqxl4kY1h_pCBqNwSU2O_ETCZSTO-08189v7cuhBKV2P0fYr9iD0gUynco69dsZ3m9gjcIo5bubT9j_gBeqxgM priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwELaqIiQuqOyPTUHiAIegxEsSHxBqK6oKUQ6Uh8rJcuxxeSgk7VsqHr-emSwPwqJKHJPYjj32ZL6Jx98w9tSHFFILSayTYGPp0WEtpeKx5pAEtP8ZCDqcfPQuO5zKNyfqZIsNOVt7AS7-6tpRPqnpvHrx7Xz9ChX-5c9YLQfVHIh9kvM2rp3SDl9B25STqh71gL_7NhPHGW01c06xXFzmw3m6fzQ0slctrf_IbP0JS3-PrvzFXB3ssOs9zox2u4Vxg21BfZNd7TJPrm-xvbef4v3mI7HeRM9KKJdQNRezr7Z8Hp01CKOX1TqqYdX-BvkOi-h49_0xVYh5dIHeNQXP3GbTg9cf9g_jPp1C7IgRMsbxAMIfkaEPY3Xq0DXVvpRZyIPjyilvpUV0w0EpG1KnisLz1Fnt8swjrHTiDtuumxrusQiEhlwUpc-KIBHDWOc5x8-DFwHdHw0TJgahGddzjVPKi8oMQWVfTCdqQ6I2nagnLN7UOuu4Ni4pv0fzsSlLTNntjWZ-anrFM95CCCIEHopUqkRagSIIQpWlTHVwYcLyYTZNDzo6MIFNzS55_ZNh8g3qJG202Bqa1cIg6JG5RvClJuxutxg2nRRE-YZAE987WiajUYyf1LPPLe-3ToQSmbj_3z1-wK7RFQU_pPlDtr2cr-ARYqpl-bhVkx_YwBxc priority: 102 providerName: Scholars Portal |
Title | LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants |
URI | https://dx.doi.org/10.1016/j.celrep.2022.110812 https://www.ncbi.nlm.nih.gov/pubmed/35568025 https://www.proquest.com/docview/2664790785 https://pubmed.ncbi.nlm.nih.gov/PMC9035363 https://doaj.org/article/daeff3ff2f814504a3643f35bb419fcf |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEG8WShUkDnCwNn4l8bG7oqoQ5cBStJwsxxlDqiVZbXcrtb-esZOsCBwqcYmUxI7t8WO-mYw_E_K28gyYhZTq1FsqKzRYS6k41RxSj_o_AxE2J59_zs4u5MelWh6Q-bAXJoRV9mt_t6bH1bp_Mu2lOV3X9XTB0XZB7ZTz4BgpRKDdFrKIm_iWs72fJfCNsHgeYkhPQ4ZhB10M83Kw2kAgruQ8hsQzPtJQkch_pKj-BaJ_x1P-oaBOH5IHPbJMTrrKPyIH0Dwm97qzJm-ekNmn73Tefgs8N8m7EsotrNrr-pct3yfrFoHzdnWTNLCLjo9buEoWJ18WIQPlyTXa0yFc5im5OP3wdX5G-wMUqAtiodgeQMAjMrRarGYOjVFdlTLzuXdcOVVZaRHPcFDKeuZUUVScOatdnlUIJJ14Rg6btoEXJAGhIRdFWWWFl4harKtQ7oJVwqPBo2FCxCA043p28XDIxcoMYWSXphO1CaI2nagnhO5zrTt2jTvSz0J_7NMGbuz4oN38MP3gMJUF74X33BdMqlRagSLwQpWlZNo7PyH50JtmNNTwU_Udxb8ZOt_gLAy_VmwD7e7KIMyRuUa4pSbkeTcY9pUUgeQNoSWWOxomo1aM3zT1z8j0rVOhRCZe_neNX5H74S6EO7D8iBxuNzt4jShqWx5H78NxnCx4PZfFb6gCGZ4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKEaIXxLvhuUgc4LDK-rW7PjYRVQppD6RF4WR57TEEhd0oTSqVX894HxELh0pc_Vjb48d84x1_Q8hb5ylQA0msEm9i4dBgLYRksWKQeNT_KfDwOPn0LJ1ciI9zOd8j4-4tTHCrbM_-5kyvT-s2ZdhKc7haLIYzhrYLaqeMhYuRnKe3yG1EA1mI33AyH-0uWgLhCK0DIoYKcajRPaGr_bwsLNcQmCsZq33iKeupqJrJv6ep_kWifztU_qGhju-Tey20jI6a3j8ge1A-JHeaYJPXj8ho-jUeV18C0U30roBiA8vqavHTFO-jVYXIebO8jkrY1jcfv-Aymh19noUKMYuu0KAO_jKPycXxh_PxJG4jKMQ2yCXG8QAiHp6i2WIUtWiNKleI1GfeMmmlM8IgoGEgpfHUyjx3jFqjbJY6RJKWPyH7ZVXCIYmAK8h4Xrg09wJhi7EOBc-p4x4tHgUDwjuhadvSi4coF0vd-ZH90I2odRC1bkQ9IPGu1qqh17ih_CjMx65sIMeuE6r1N92uDu0MeM-9Zz6nQibCcBSB57IoBFXe-gHJutnUvbWGn1rc0PybbvI1bsPwb8WUUG0vNeIckSnEW3JAnjaLYddJHljeEFtiu71l0htFP6dcfK-pvlXCJU_5s__u8Wtyd3J-OtXTk7NPz8lByAm-DzR7QfY36y28REi1KV7VW-Y3jXEa7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LY-CoV1404+%28bebtelovimab%29+potently+neutralizes+SARS-CoV-2+variants&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Westendorf%2C+Kathryn&rft.au=%C5%BDentelis%2C+Stefanie&rft.au=Wang%2C+Lingshu&rft.au=Foster%2C+Denisa&rft.date=2022-05-17&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=39&rft.issue=7&rft_id=info:doi/10.1016%2Fj.celrep.2022.110812&rft.externalDocID=S2211124722005836 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |