Mitigating the Impact of Electrode Shift on Classification Performance in Electromyography Applications Using Sliding-Window Normalization
Electromyography (EMG) signals have diverse applications, ranging from prosthetic hands and assistive suits to rehabilitation devices. Nonetheless, their performance suffers from cross-subject generalization issues, electrode shifts, and daily variability. In a previous study, while transfer learnin...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 13; p. 4119 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.07.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Electromyography (EMG) signals have diverse applications, ranging from prosthetic hands and assistive suits to rehabilitation devices. Nonetheless, their performance suffers from cross-subject generalization issues, electrode shifts, and daily variability. In a previous study, while transfer learning narrowed the classification performance gap to −1% in an eight-class scenario under electrode shift, they imposed the burden of additional data collection and re-training. To address this issue in real-time prediction, we investigated a sliding-window normalization (SWN) technique that merges z-score normalization with sliding-window processing to align the EMG amplitude across channels and mitigate the performance degradation caused by electrode displacement. We validated SWN using experimental data from a right-arm trajectory-tracking task involving three motion classes (rest, flexion, and extension of the elbow). Offline analysis revealed that SWN mitigated accuracy degradation to −1.0% without additional data for re-training or multi-condition training, a 6.6% improvement compared with the −7.6% baseline without normalization. The advantage of SWN is that it operates with data from a single electrode position for training, which eliminates both the collection of multi-position training data and the calibration of deep learning models before practical use in EMG applications. Moreover, combining SWN with multi-position training exceeded the classification accuracy of the no-shift condition by 2.4%. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s25134119 |