Sites of reactive oxygen species generation by mitochondria oxidizing different substrates

Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a va...

Full description

Saved in:
Bibliographic Details
Published inRedox biology Vol. 1; no. 1; pp. 304 - 312
Main Authors Quinlan, Casey L., Perevoshchikova, Irina V., Hey-Mogensen, Martin, Orr, Adam L., Brand, Martin D.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier 01.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site IQ), with small contributions from the flavin site in complex I (site IF) and the quinol oxidation site in complex III (site IIIQo). However, with glutamate plus malate as substrate, site IQ made little or no contribution, and production was shared between site IF, site IIIQo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site IIF) was a major contributor (together with sites IF and IIIQo), and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo.
AbstractList Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site IQ), with small contributions from the flavin site in complex I (site IF) and the quinol oxidation site in complex III (site IIIQo). However, with glutamate plus malate as substrate, site IQ made little or no contribution, and production was shared between site IF, site IIIQo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site IIF) was a major contributor (together with sites IF and IIIQo), and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo.
Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site IQ), with small contributions from the flavin site in complex I (site IF) and the quinol oxidation site in complex III (site IIIQo). However, with glutamate plus malate as substrate, site IQ made little or no contribution, and production was shared between site IF, site IIIQo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site IIF) was a major contributor (together with sites IF and IIIQo), and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo.Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site IQ), with small contributions from the flavin site in complex I (site IF) and the quinol oxidation site in complex III (site IIIQo). However, with glutamate plus malate as substrate, site IQ made little or no contribution, and production was shared between site IF, site IIIQo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site IIF) was a major contributor (together with sites IF and IIIQo), and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo.
Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H 2 O 2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site I Q ), with small contributions from the flavin site in complex I (site I F ) and the quinol oxidation site in complex III (site III Qo ). However, with glutamate plus malate as substrate, site I Q made little or no contribution, and production was shared between site I F , site III Qo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site II F ) was a major contributor (together with sites I F and III Qo ), and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo . • Mitochondria oxidizing four substrate combinations make superoxide/H 2 O 2 from six defined sites. • The absolute rates of mitochondrial superoxide/H 2 O 2 depend on the substrate oxidized. • The relative contributions of specific sites of superoxide/H 2 O 2 vary greatly between substrates.
Author Quinlan, Casey L.
Orr, Adam L.
Hey-Mogensen, Martin
Brand, Martin D.
Perevoshchikova, Irina V.
AuthorAffiliation b Department of Biomedical Sciences, Center for Healthy Aging, Copenhagen University, Denmark
a The Buck Institute for Research on Aging, Novato, CA 94945, USA
AuthorAffiliation_xml – name: a The Buck Institute for Research on Aging, Novato, CA 94945, USA
– name: b Department of Biomedical Sciences, Center for Healthy Aging, Copenhagen University, Denmark
Author_xml – sequence: 1
  givenname: Casey L.
  surname: Quinlan
  fullname: Quinlan, Casey L.
– sequence: 2
  givenname: Irina V.
  surname: Perevoshchikova
  fullname: Perevoshchikova, Irina V.
– sequence: 3
  givenname: Martin
  surname: Hey-Mogensen
  fullname: Hey-Mogensen, Martin
– sequence: 4
  givenname: Adam L.
  surname: Orr
  fullname: Orr, Adam L.
– sequence: 5
  givenname: Martin D.
  surname: Brand
  fullname: Brand, Martin D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24024165$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vEzEQhi1URD_oL0BCe-SSxd9eX5BQxUelShyACxfLXo9TR5t1sJ2q4dfjJm3VcsAXj2beeV5bM6foaE4zIPSG4J5gIt-v-gw-3fYUE9Zj3mMsXqATSglbUEbU0ZP4GJ2XssLtDAOnBL9Cx5RjyokUJ-jX91ihdCl0GexY4w106Xa3hLkrGxhjK7UYsq0xzZ3bdetY03idZp-jbcro4584LzsfQ4AMc-3K1pXa9FBeo5fBTgXO7-8z9PPzpx8XXxdX375cXny8WoxckboIWgawSlARhNYAVHKlJLFBa6o8pXqQ2GoyWM_cELwD4iV3gROifBCDZ2fo8sD1ya7MJse1zTuTbDT7RMpLY3ON4wSGcSygMRl1hDPmrMRcCqm5cMLbQTbWhwNrs3Vr8GP7UbbTM-jzyhyvzTLdGKaEklo3wLt7QE6_t1CqWccywjTZGdK2mGZLseIaiyZ9-9Tr0eRhOE3ADoIxp1IyhEcJweZuC8zK7LfA3G2BwdzgPVb_0zXGup9fe3Cc_tv7FybquyM
CitedBy_id crossref_primary_10_1021_acs_biochem_9b00863
crossref_primary_10_3390_ijms21124370
crossref_primary_10_1016_j_freeradbiomed_2023_09_018
crossref_primary_10_1111_apha_13351
crossref_primary_10_1007_s10811_023_03132_7
crossref_primary_10_1038_s41598_021_84852_z
crossref_primary_10_1086_683814
crossref_primary_10_1016_j_jff_2017_08_008
crossref_primary_10_1242_jeb_246549
crossref_primary_10_1155_2015_729191
crossref_primary_10_18499_2070_9277_2023_26_2_92_100
crossref_primary_10_1186_s13395_018_0157_y
crossref_primary_10_3390_ijms21082661
crossref_primary_10_3390_ijms21186512
crossref_primary_10_1016_j_bbadis_2020_165961
crossref_primary_10_1016_j_freeradbiomed_2016_10_011
crossref_primary_10_1111_mmi_14139
crossref_primary_10_3390_ijms241210015
crossref_primary_10_1016_j_mito_2017_10_008
crossref_primary_10_1002_adhm_202300533
crossref_primary_10_1016_j_siny_2022_101347
crossref_primary_10_1016_j_jhazmat_2023_131684
crossref_primary_10_1042_BCJ20220611
crossref_primary_10_3390_antiox10030415
crossref_primary_10_1139_apnm_2020_0005
crossref_primary_10_3390_antiox10111785
crossref_primary_10_1039_C8FO01734D
crossref_primary_10_1111_jcmm_13835
crossref_primary_10_1016_j_cellsig_2016_05_007
crossref_primary_10_1093_jimb_kuab048
crossref_primary_10_1002_bies_201400033
crossref_primary_10_1016_j_aquatox_2024_106986
crossref_primary_10_1111_acel_12287
crossref_primary_10_3390_ijms25042410
crossref_primary_10_1038_s41598_024_60261_w
crossref_primary_10_1016_j_devcel_2019_04_008
crossref_primary_10_1016_j_redox_2013_12_011
crossref_primary_10_1016_j_atherosclerosis_2022_04_025
crossref_primary_10_1016_j_redox_2025_103514
crossref_primary_10_3390_nu11122871
crossref_primary_10_1016_j_biocel_2016_06_015
crossref_primary_10_3389_fgene_2021_734255
crossref_primary_10_7717_peerj_14350
crossref_primary_10_1155_2016_1245049
crossref_primary_10_1371_journal_pone_0100768
crossref_primary_10_1134_S0006297920010046
crossref_primary_10_1016_j_pneurobio_2018_09_003
crossref_primary_10_1007_s40828_019_0085_4
crossref_primary_10_1016_j_freeradbiomed_2020_11_015
crossref_primary_10_1161_RES_0000000000000097
crossref_primary_10_1155_2016_3565127
crossref_primary_10_1161_JAHA_122_026135
crossref_primary_10_1016_j_jot_2022_06_003
crossref_primary_10_1016_j_freeradbiomed_2020_12_234
crossref_primary_10_1089_ars_2017_7225
crossref_primary_10_1155_2016_9057593
crossref_primary_10_1152_physrev_00040_2023
crossref_primary_10_14336_AD_2015_0820
crossref_primary_10_1016_j_cell_2015_10_001
crossref_primary_10_1016_j_cbpb_2024_110940
crossref_primary_10_2337_db16_0387
crossref_primary_10_3390_antiox10020305
crossref_primary_10_1016_j_phrs_2021_105709
crossref_primary_10_1016_j_bcp_2013_11_022
crossref_primary_10_1016_j_jsbmb_2020_105807
crossref_primary_10_3390_ph18030390
crossref_primary_10_3390_antiox10111677
crossref_primary_10_3390_cancers11070955
crossref_primary_10_3390_antiox10030469
crossref_primary_10_1098_rspb_2016_0333
crossref_primary_10_1016_j_jbc_2021_101204
crossref_primary_10_1134_S0006297919110154
crossref_primary_10_1007_s12035_024_04394_z
crossref_primary_10_1007_s10863_015_9632_x
crossref_primary_10_1007_s12038_020_00055_0
crossref_primary_10_1515_hsz_2024_0146
crossref_primary_10_31083_j_fbl2803061
crossref_primary_10_3390_ijms21165825
crossref_primary_10_1002_der2_40
crossref_primary_10_1111_jnc_14705
crossref_primary_10_1139_cjpp_2015_0498
crossref_primary_10_1002_jpln_202300127
crossref_primary_10_3390_ijms24010379
crossref_primary_10_3390_molecules28031488
crossref_primary_10_1089_hum_2016_100
crossref_primary_10_1007_s12576_015_0395_2
crossref_primary_10_1007_s11011_021_00676_w
crossref_primary_10_1016_j_freeradbiomed_2024_11_046
crossref_primary_10_1038_s41419_021_03640_9
crossref_primary_10_1038_s41540_020_00150_w
crossref_primary_10_15324_kjcls_2022_54_3_209
crossref_primary_10_1089_ars_2017_7215
crossref_primary_10_1016_j_phrs_2018_07_015
crossref_primary_10_1152_ajprenal_00208_2019
crossref_primary_10_3389_fonc_2017_00117
crossref_primary_10_1016_j_freeradbiomed_2019_09_006
crossref_primary_10_3390_antiox14010115
crossref_primary_10_1016_j_jbc_2023_105399
crossref_primary_10_3390_antiox11091684
crossref_primary_10_1002_jor_24292
crossref_primary_10_1016_j_placenta_2016_12_012
crossref_primary_10_1186_s13024_015_0055_2
crossref_primary_10_1007_s12035_024_03967_2
crossref_primary_10_1016_j_ejcb_2023_151333
crossref_primary_10_1016_j_redox_2015_05_001
crossref_primary_10_1111_acel_12584
crossref_primary_10_1007_s00204_015_1520_y
crossref_primary_10_1016_j_freeradbiomed_2016_04_018
crossref_primary_10_1093_gbe_evae091
crossref_primary_10_1080_1061186X_2022_2032095
crossref_primary_10_1016_j_redox_2013_09_001
crossref_primary_10_1016_j_anireprosci_2019_106199
crossref_primary_10_1165_rcmb_2023_0110ED
crossref_primary_10_3389_fphys_2022_866792
crossref_primary_10_3390_biom9080351
crossref_primary_10_1038_cddis_2017_19
crossref_primary_10_3389_fphys_2020_00696
crossref_primary_10_1016_j_mito_2020_07_005
crossref_primary_10_1016_j_molmet_2023_101802
crossref_primary_10_1016_j_biotechadv_2022_107967
crossref_primary_10_1016_j_freeradbiomed_2015_02_012
crossref_primary_10_17816_rmmar109074
crossref_primary_10_3390_life11030242
crossref_primary_10_1016_j_tcb_2015_12_007
crossref_primary_10_1111_and_13666
crossref_primary_10_3389_fendo_2020_560375
crossref_primary_10_1186_s11658_024_00570_0
crossref_primary_10_1016_j_intimp_2019_105952
crossref_primary_10_1371_journal_pone_0217045
crossref_primary_10_1186_s13054_015_1160_x
crossref_primary_10_3390_antiox11102043
crossref_primary_10_1016_j_redox_2015_02_001
crossref_primary_10_3389_fcell_2023_1252318
crossref_primary_10_1111_jcmm_16941
crossref_primary_10_1016_j_celrep_2020_108423
crossref_primary_10_1111_cas_15627
crossref_primary_10_1155_2016_9012580
crossref_primary_10_1016_j_semcancer_2017_04_005
crossref_primary_10_1074_jbc_RA120_014483
crossref_primary_10_3390_cells11233843
crossref_primary_10_1016_j_cbpb_2015_10_001
crossref_primary_10_1016_j_freeradbiomed_2022_11_041
crossref_primary_10_1016_j_febslet_2014_06_044
crossref_primary_10_3390_molecules27248754
crossref_primary_10_3390_antiox9121304
crossref_primary_10_1155_2020_1323028
crossref_primary_10_1113_JP278897
crossref_primary_10_3390_ijms232415849
crossref_primary_10_3390_molecules22071161
crossref_primary_10_1242_bio_060069
crossref_primary_10_3390_antiox11112195
crossref_primary_10_1089_ars_2022_0141
crossref_primary_10_1016_j_cbpc_2022_109267
crossref_primary_10_1089_ars_2022_0143
crossref_primary_10_1042_BST20211032
crossref_primary_10_1093_gerona_glaa082
crossref_primary_10_1016_j_xplc_2022_100501
crossref_primary_10_1016_j_bbabio_2016_03_010
crossref_primary_10_1177_0271678X18770331
crossref_primary_10_1089_ars_2022_0173
crossref_primary_10_20340_vmi_rvz_2024_6_MORPH_3
crossref_primary_10_3390_cells9081764
crossref_primary_10_1016_j_freeradbiomed_2018_10_448
crossref_primary_10_1016_j_ab_2017_10_010
crossref_primary_10_3390_cancers15041192
crossref_primary_10_1016_j_freeradbiomed_2018_11_005
crossref_primary_10_1016_j_taap_2018_01_024
crossref_primary_10_1152_ajpendo_00059_2019
crossref_primary_10_1098_rsfs_2016_0104
crossref_primary_10_1007_s10522_017_9733_5
crossref_primary_10_34091_AJLS_3_2_17
crossref_primary_10_1002_adbi_202200234
crossref_primary_10_1139_cjpp_2017_0074
crossref_primary_10_1016_j_cmet_2024_11_011
crossref_primary_10_3389_fcell_2022_826981
crossref_primary_10_1002_adhm_202303206
crossref_primary_10_1002_1873_3468_13973
crossref_primary_10_1007_s10863_014_9595_3
crossref_primary_10_3389_fendo_2017_00296
crossref_primary_10_3390_biomedicines9020216
crossref_primary_10_1074_jbc_M116_772624
crossref_primary_10_1016_j_isci_2024_109643
crossref_primary_10_1016_j_metabol_2024_155913
crossref_primary_10_1371_journal_pone_0120600
crossref_primary_10_3389_fphys_2021_627837
crossref_primary_10_1016_j_freeradbiomed_2019_07_017
crossref_primary_10_1152_ajprenal_00047_2023
crossref_primary_10_1016_j_semcancer_2017_06_012
crossref_primary_10_1016_j_freeradbiomed_2018_06_040
crossref_primary_10_1016_j_freeradbiomed_2016_04_198
crossref_primary_10_1073_pnas_1705406114
crossref_primary_10_3389_fnagi_2018_00124
crossref_primary_10_1016_j_ejmech_2021_113401
crossref_primary_10_1016_j_ibror_2019_07_1721
crossref_primary_10_1016_j_freeradbiomed_2021_01_014
crossref_primary_10_1016_j_nbd_2016_01_007
crossref_primary_10_1007_s13105_018_0633_1
crossref_primary_10_3390_life11050371
crossref_primary_10_1016_j_taap_2019_03_008
crossref_primary_10_2174_1570159X21666230316150559
crossref_primary_10_3390_ijms20246251
crossref_primary_10_1186_s13046_020_01765_x
crossref_primary_10_3389_fnins_2020_536682
crossref_primary_10_1074_jbc_M113_545301
crossref_primary_10_1186_s13568_020_00966_z
crossref_primary_10_3389_fphar_2021_691998
crossref_primary_10_1016_j_biocel_2017_12_019
crossref_primary_10_3389_fphar_2019_00902
crossref_primary_10_1152_ajpregu_00191_2022
crossref_primary_10_3389_fonc_2021_768758
crossref_primary_10_3233_JAD_220514
crossref_primary_10_1016_j_ejop_2020_125689
crossref_primary_10_7554_eLife_32111
crossref_primary_10_1016_j_abb_2021_108877
crossref_primary_10_1016_j_aca_2019_04_069
crossref_primary_10_1016_j_plefa_2020_102237
crossref_primary_10_1016_j_mcn_2019_103408
crossref_primary_10_1111_acel_13710
crossref_primary_10_1371_journal_pone_0216385
crossref_primary_10_1016_j_biochi_2021_04_001
crossref_primary_10_1016_j_foodres_2021_110869
crossref_primary_10_3390_ijms19113362
crossref_primary_10_1152_ajpcell_00455_2021
crossref_primary_10_33549_physiolres_935269
crossref_primary_10_1016_j_freeradbiomed_2015_12_020
crossref_primary_10_1016_j_bcp_2019_03_008
crossref_primary_10_3389_fimmu_2023_1199233
crossref_primary_10_3390_ijms25126498
crossref_primary_10_1186_s13148_018_0603_z
crossref_primary_10_1016_j_biocel_2016_09_010
crossref_primary_10_1016_j_ibmb_2021_103556
crossref_primary_10_1016_j_jbiotec_2021_01_005
crossref_primary_10_1073_pnas_2307904121
crossref_primary_10_1016_j_cbpc_2021_109227
crossref_primary_10_3390_cancers11081191
crossref_primary_10_1016_j_lfs_2015_09_018
crossref_primary_10_3390_antiox12020353
crossref_primary_10_1016_j_freeradbiomed_2013_08_170
crossref_primary_10_1016_j_jmb_2018_03_025
crossref_primary_10_1016_j_freeradbiomed_2015_10_425
crossref_primary_10_3389_fpubh_2018_00270
crossref_primary_10_1089_ars_2015_6260
crossref_primary_10_1007_s00109_021_02104_z
crossref_primary_10_1089_ars_2014_6214
crossref_primary_10_1089_ars_2018_7693
crossref_primary_10_1126_sciadv_abj4991
crossref_primary_10_1186_s12934_018_0898_7
crossref_primary_10_3390_nu13020282
crossref_primary_10_1016_j_redox_2014_02_004
crossref_primary_10_3390_biom14060670
crossref_primary_10_1155_2021_6635460
crossref_primary_10_1002_jcp_28712
crossref_primary_10_1002_biof_1338
crossref_primary_10_3389_fnins_2018_00470
crossref_primary_10_1038_s42003_022_03282_3
crossref_primary_10_3390_ijms25052835
crossref_primary_10_1016_j_freeradbiomed_2019_12_006
crossref_primary_10_1096_fj_201903113RR
crossref_primary_10_3390_life11111269
crossref_primary_10_1016_j_cmet_2015_06_006
crossref_primary_10_1161_CIRCRESAHA_115_306569
crossref_primary_10_1016_j_cmet_2016_08_012
crossref_primary_10_1111_os_13302
crossref_primary_10_1074_jbc_M114_619072
crossref_primary_10_1016_j_bbabio_2018_07_008
crossref_primary_10_1002_oby_21654
crossref_primary_10_1038_s41514_023_00128_y
crossref_primary_10_1016_j_freeradbiomed_2019_04_021
crossref_primary_10_1016_j_freeradbiomed_2021_02_015
crossref_primary_10_1016_j_freeradbiomed_2018_02_013
crossref_primary_10_1515_hsz_2015_0289
crossref_primary_10_1016_j_freeradbiomed_2019_11_015
crossref_primary_10_1111_cbdd_13474
crossref_primary_10_1016_j_freeradbiomed_2016_05_022
crossref_primary_10_1152_ajpendo_00257_2014
crossref_primary_10_3390_antiox12010004
crossref_primary_10_1093_molehr_gaab067
crossref_primary_10_3389_fcell_2019_00355
crossref_primary_10_1152_japplphysiol_00484_2023
crossref_primary_10_1016_j_mito_2024_101868
crossref_primary_10_1080_19420889_2015_1119343
crossref_primary_10_1016_j_pharmthera_2019_05_015
crossref_primary_10_1016_j_freeradbiomed_2024_08_016
crossref_primary_10_1146_annurev_physiol_021115_105031
crossref_primary_10_1155_2017_5691215
crossref_primary_10_1016_j_bpj_2017_08_018
crossref_primary_10_3389_fphys_2019_00078
crossref_primary_10_1074_jbc_RA120_013899
crossref_primary_10_1016_j_bbrc_2023_08_032
crossref_primary_10_1111_eci_13622
crossref_primary_10_1007_s12272_019_01178_1
crossref_primary_10_3390_biom10010093
crossref_primary_10_1016_j_biochi_2017_09_003
crossref_primary_10_1016_j_cmet_2018_05_009
crossref_primary_10_1016_j_freeradbiomed_2018_05_084
crossref_primary_10_1007_s10555_018_9769_2
crossref_primary_10_3390_ijms22010277
crossref_primary_10_1016_j_freeradbiomed_2021_03_011
crossref_primary_10_1038_s41598_020_78620_8
crossref_primary_10_12677_acm_2024_14112955
crossref_primary_10_1016_j_exger_2018_02_012
crossref_primary_10_1155_2015_105135
crossref_primary_10_2174_1871527319666200303121016
crossref_primary_10_1016_j_cbpb_2017_12_013
crossref_primary_10_1111_jnc_16205
crossref_primary_10_1016_j_redox_2015_12_010
crossref_primary_10_3389_fphar_2023_1269581
crossref_primary_10_3389_fphys_2022_874321
crossref_primary_10_3390_ijms18061126
crossref_primary_10_1016_j_theriogenology_2022_05_008
crossref_primary_10_3389_fendo_2023_1151691
crossref_primary_10_1007_s10863_018_9766_8
crossref_primary_10_1016_j_freeradbiomed_2016_04_001
crossref_primary_10_1080_10715762_2022_2036336
crossref_primary_10_1242_jeb_243304
crossref_primary_10_1007_s10555_025_10252_8
crossref_primary_10_1016_j_freeradbiomed_2020_02_027
crossref_primary_10_1134_S1068162023060122
crossref_primary_10_1016_j_bbabio_2015_12_013
crossref_primary_10_1038_onc_2013_578
crossref_primary_10_1016_j_bbabio_2021_148518
crossref_primary_10_1016_j_abb_2023_109690
crossref_primary_10_3390_cells7100154
crossref_primary_10_1111_jnc_14602
crossref_primary_10_3390_biology12060827
crossref_primary_10_1152_japplphysiol_00855_2016
crossref_primary_10_3390_cells11060997
crossref_primary_10_1016_j_redox_2015_09_003
crossref_primary_10_1021_acs_chemrev_7b00698
crossref_primary_10_3389_fphys_2019_00436
crossref_primary_10_3390_antiox8090404
crossref_primary_10_1074_jbc_R117_789271
crossref_primary_10_1016_j_tiv_2023_105669
crossref_primary_10_3390_antiox6030058
crossref_primary_10_1016_j_cbpb_2021_110614
crossref_primary_10_1155_2014_209845
crossref_primary_10_3389_fphys_2021_665747
crossref_primary_10_1038_nchembio_1910
crossref_primary_10_1515_med_2024_1041
crossref_primary_10_3390_molecules28114432
crossref_primary_10_3233_JAD_161088
crossref_primary_10_3390_antiox10040533
crossref_primary_10_1093_biolre_ioy009
crossref_primary_10_1016_j_redox_2014_11_003
crossref_primary_10_1016_j_ejphar_2017_01_017
crossref_primary_10_1016_j_ejphar_2022_175177
crossref_primary_10_1016_j_freeradbiomed_2021_07_020
crossref_primary_10_1086_712639
crossref_primary_10_3389_fphys_2015_00399
crossref_primary_10_1096_fj_201901747RR
crossref_primary_10_3390_antiox9090883
crossref_primary_10_1016_j_abb_2021_108934
crossref_primary_10_1016_j_exger_2023_112158
crossref_primary_10_1093_pcp_pcw155
crossref_primary_10_1016_j_bbrc_2016_03_030
crossref_primary_10_1042_BCJ20190182
crossref_primary_10_1002_humu_24453
crossref_primary_10_3390_oxygen2020006
crossref_primary_10_1210_endocr_bqaa001
crossref_primary_10_3390_jcm6040043
crossref_primary_10_3390_biom14030260
crossref_primary_10_1016_j_cbpb_2017_11_013
crossref_primary_10_3390_futurepharmacol1010002
crossref_primary_10_1038_s41422_018_0071_1
crossref_primary_10_1002_bies_202100152
crossref_primary_10_3390_ijms23020896
crossref_primary_10_1089_ars_2021_0048
crossref_primary_10_1016_j_mam_2016_01_002
crossref_primary_10_3390_cells11152262
crossref_primary_10_1186_s40170_015_0133_5
crossref_primary_10_1371_journal_pone_0158429
crossref_primary_10_1016_j_freeradbiomed_2014_04_007
crossref_primary_10_1016_j_immuni_2015_02_002
crossref_primary_10_3390_ijms242115951
crossref_primary_10_1016_j_freeradbiomed_2016_07_029
crossref_primary_10_1007_s11033_020_05749_0
crossref_primary_10_3390_ijms25010410
crossref_primary_10_3389_fphys_2018_00258
crossref_primary_10_1002_tox_22837
crossref_primary_10_1038_srep39884
crossref_primary_10_1016_j_exger_2014_03_028
crossref_primary_10_1016_j_freeradbiomed_2016_07_026
crossref_primary_10_12968_jokc_2019_4_2_82
crossref_primary_10_3389_fchem_2021_788094
crossref_primary_10_1016_j_freeradbiomed_2023_08_015
crossref_primary_10_1074_jbc_RA119_011695
crossref_primary_10_1016_j_abb_2015_06_011
crossref_primary_10_1186_s13046_018_0728_0
crossref_primary_10_1152_ajpendo_00359_2018
crossref_primary_10_1002_jcp_28670
crossref_primary_10_1002_biof_1673
crossref_primary_10_1074_jbc_RA117_001254
crossref_primary_10_1016_j_biopha_2017_07_066
crossref_primary_10_1530_REP_16_0126
crossref_primary_10_1016_j_cbpb_2022_110713
crossref_primary_10_15252_embj_2019101552
crossref_primary_10_5607_en_2015_24_4_325
crossref_primary_10_1242_jeb_132860
crossref_primary_10_1016_j_jddst_2024_105618
crossref_primary_10_1515_hsz_2017_0284
crossref_primary_10_1016_j_mce_2019_02_013
crossref_primary_10_1186_2046_2395_3_2
crossref_primary_10_1111_jnc_14654
crossref_primary_10_1016_j_jaut_2020_102437
crossref_primary_10_1007_s12035_016_0380_7
crossref_primary_10_1111_jnc_14308
crossref_primary_10_1016_j_freeradbiomed_2018_01_024
crossref_primary_10_1177_0271678X17730242
crossref_primary_10_1002_2211_5463_13589
crossref_primary_10_1007_s00249_019_01415_x
crossref_primary_10_3390_ijms25063114
crossref_primary_10_1016_j_freeradbiomed_2022_06_225
crossref_primary_10_1038_s41392_021_00595_3
crossref_primary_10_1152_ajpcell_00099_2016
crossref_primary_10_1016_j_intimp_2025_114057
crossref_primary_10_3389_fendo_2023_1104662
crossref_primary_10_1038_s41580_021_00415_0
crossref_primary_10_3390_biomedicines10061456
crossref_primary_10_1042_BCJ20160647
crossref_primary_10_1186_s40169_016_0106_5
crossref_primary_10_1016_j_cellsig_2022_110443
crossref_primary_10_1016_j_freeradbiomed_2015_11_011
crossref_primary_10_1016_j_redox_2015_08_020
crossref_primary_10_3390_ijms24054673
crossref_primary_10_1016_j_yjmcc_2017_06_016
Cites_doi 10.1042/BJ20071162
10.1074/jbc.M111.267898
10.1126/science.270.5234.296
10.1016/S0076-6879(04)82002-0
10.1016/j.freeradbiomed.2013.04.006
10.1016/j.freeradbiomed.2012.08.015
10.1042/bj1280617
10.1007/s10863-009-9238-2
10.1007/978-1-61779-382-0_11
10.1523/JNEUROSCI.1899-04.2004
10.1074/jbc.M407715200
10.1073/pnas.0510977103
10.1111/j.1742-4658.2010.07693.x
10.1074/jbc.M700912200
10.1016/j.mito.2010.05.014
10.1074/jbc.M207217200
10.1042/BJ20081386
10.1021/bi0342160
10.1016/S0021-9258(19)41421-X
10.1042/BJ20070215
10.1023/A:1022420007908
10.1113/expphysiol.2009.050526
10.1002/mnfr.200800044
10.1016/j.exger.2010.01.003
10.1074/jbc.M112.374629
10.1074/jbc.M112.397828
10.1016/j.bbabio.2005.08.003
10.1523/JNEUROSCI.1842-04.2004
10.1074/jbc.M111.252502
10.1046/j.1432-1033.2002.03204.x
10.1074/jbc.M109.026203
10.1042/BJ20040485
ContentType Journal Article
Copyright 2013 The Authors 2013
Copyright_xml – notice: 2013 The Authors 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.redox.2013.04.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2213-2317
EndPage 312
ExternalDocumentID oai_doaj_org_article_3405ed2232b1433ba604656945b5da86
PMC3757699
24024165
10_1016_j_redox_2013_04_005
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: TL1 AG032116
– fundername: NIA NIH HHS
  grantid: R01 AG033542
– fundername: NIA NIH HHS
  grantid: PL1 AG032118
– fundername: NIA NIH HHS
  grantid: TL1AG032116
– fundername: NIA NIH HHS
  grantid: P01 AG025901
– fundername: NIA NIH HHS
  grantid: R01AG03354
– fundername: NIA NIH HHS
  grantid: PL1AG032118
– fundername: NIA NIH HHS
  grantid: P01AG025901
– fundername: NIA NIH HHS
  grantid: AG-SS-2288-09
GroupedDBID 0R~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
AAYXX
ABGSF
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADUVX
ADVLN
AENEX
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
M48
MO0
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
AACTN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c471t-f96fea7525f599ee2647761af9927d229860a918ad3b8fdbe1d64bf4117df58d3
IEDL.DBID DOA
ISSN 2213-2317
IngestDate Wed Aug 27 01:31:16 EDT 2025
Thu Aug 21 18:17:07 EDT 2025
Fri Jul 11 00:02:25 EDT 2025
Thu Apr 03 06:56:16 EDT 2025
Thu Apr 24 23:07:39 EDT 2025
Tue Jul 01 00:46:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords IF, flavin site of complex I
QH2, ubiquinol
OGDH, 2-oxoglutarate dehydrogenase
Hydrogen peroxide
Respiratory complexes
IIIQo, quinol oxidation site of complex III
Superoxide
Eh, redox potential
IQ, quinone-binding site of complex I
Q, ubiquinone
Cytochrome b
ETF, electron transferring flavoprotein
NADH
Ubiquinone
ETF:QOR, ETF:ubiquinone oxidoreductase
IIF, flavin site of complex II
PDH, pyruvate dehydrogenase
mGPDH, mitochondrial glycerol 3-phosphate dehydrogenase
ROS, reactive oxygen species
CDNB, 1-chloro-2,4-dinitrobenzene
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-f96fea7525f599ee2647761af9927d229860a918ad3b8fdbe1d64bf4117df58d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/3405ed2232b1433ba604656945b5da86
PMID 24024165
PQID 1432074905
PQPubID 23479
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_3405ed2232b1433ba604656945b5da86
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3757699
proquest_miscellaneous_1432074905
pubmed_primary_24024165
crossref_primary_10_1016_j_redox_2013_04_005
crossref_citationtrail_10_1016_j_redox_2013_04_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Redox biology
PublicationTitleAlternate Redox Biol
PublicationYear 2013
Publisher Elsevier
Publisher_xml – name: Elsevier
References Muller (10.1016/j.redox.2013.04.005_bib33) 2004; 279
Murphy (10.1016/j.redox.2013.04.005_bib5) 2009; 417
Quinlan (10.1016/j.redox.2013.04.005_bib21) 2012; 53
Muller (10.1016/j.redox.2013.04.005_bib28) 2008; 409
Powers (10.1016/j.redox.2013.04.005_bib1) 2010; 95
Brand (10.1016/j.redox.2013.04.005_bib6) 2010; 45
Ralph (10.1016/j.redox.2013.04.005_bib2) 2009; 53
Affourtit (10.1016/j.redox.2013.04.005_bib22) 2012; 810
Starkov (10.1016/j.redox.2013.04.005_bib14) 2004; 24
Seifert (10.1016/j.redox.2013.04.005_bib17) 2010; 285
Hansford (10.1016/j.redox.2013.04.005_bib24) 1997; 29
Zoccarato (10.1016/j.redox.2013.04.005_bib30) 2007; 406
Tretter (10.1016/j.redox.2013.04.005_bib13) 2004; 24
White (10.1016/j.redox.2013.04.005_bib19) 2007; 282
Quinlan (10.1016/j.redox.2013.04.005_bib15) 2012; 287
Sundaresan (10.1016/j.redox.2013.04.005_bib3) 1995; 270
10.1016/j.redox.2013.04.005_bib18
Treberg (10.1016/j.redox.2013.04.005_bib8) 2011; 286
St-Pierre (10.1016/j.redox.2013.04.005_bib27) 2002; 277
Orr (10.1016/j.redox.2013.04.005_bib16) 2012; 287
Kussmaul (10.1016/j.redox.2013.04.005_bib26) 2006; 103
Forman (10.1016/j.redox.2013.04.005_bib20) 1975; 250
Bunik (10.1016/j.redox.2013.04.005_bib12) 2002; 269
Muller (10.1016/j.redox.2013.04.005_bib10) 2003; 42
Witte (10.1016/j.redox.2013.04.005_bib4) 2010; 10
Treberg (10.1016/j.redox.2013.04.005_bib23) 2010; 277
Miwa (10.1016/j.redox.2013.04.005_bib32) 2005; 1709
Kramer (10.1016/j.redox.2013.04.005_bib9) 2004; 382
Quinlan (10.1016/j.redox.2013.04.005_bib11) 2011; 286
Nicholls (10.1016/j.redox.2013.04.005_bib31) 2002
Boveris (10.1016/j.redox.2013.04.005_bib7) 1972; 128
Zoccarato (10.1016/j.redox.2013.04.005_bib29) 2009; 41
Lambert (10.1016/j.redox.2013.04.005_bib25) 2004; 382
15317809 - J Biol Chem. 2004 Nov 19;279(47):49064-73
19123183 - Mol Nutr Food Res. 2009 Jan;53(1):9-28
20573557 - Mitochondrion. 2010 Aug;10(5):411-8
16682634 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7607-12
15047094 - Methods Enzymol. 2004;382:21-45
4404507 - Biochem J. 1972 Jul;128(3):617-30
20032466 - J Biol Chem. 2010 Feb 19;285(8):5748-58
22940066 - Free Radic Biol Med. 2012 Nov 1;53(9):1807-17
17344208 - J Biol Chem. 2007 May 11;282(19):14316-27
12383259 - Eur J Biochem. 2002 Oct;269(20):5004-15
23124204 - J Biol Chem. 2012 Dec 14;287(51):42921-35
22057567 - Methods Mol Biol. 2012;810:165-82
7569979 - Science. 1995 Oct 13;270(5234):296-9
12767232 - Biochemistry. 2003 Jun 3;42(21):6493-9
20064600 - Exp Gerontol. 2010 Aug;45(7-8):466-72
15356189 - J Neurosci. 2004 Sep 8;24(36):7779-88
19061483 - Biochem J. 2009 Jan 1;417(1):1-13
15175007 - Biochem J. 2004 Sep 1;382(Pt 2):511-7
9067806 - J Bioenerg Biomembr. 1997 Feb;29(1):89-95
22689576 - J Biol Chem. 2012 Aug 3;287(32):27255-64
17477844 - Biochem J. 2007 Aug 15;406(1):125-9
21659507 - J Biol Chem. 2011 Aug 5;286(31):27103-10
19821037 - J Bioenerg Biomembr. 2009 Aug;41(4):387-93
165196 - J Biol Chem. 1975 Jun 10;250(11):4322-6
21708945 - J Biol Chem. 2011 Sep 9;286(36):31361-72
12237311 - J Biol Chem. 2002 Nov 22;277(47):44784-90
23583329 - Free Radic Biol Med. 2013 Aug;61:298-309
20491900 - FEBS J. 2010 Jul;277(13):2766-78
19880534 - Exp Physiol. 2010 Jan;95(1):1-9
15356188 - J Neurosci. 2004 Sep 8;24(36):7771-8
17916065 - Biochem J. 2008 Jan 15;409(2):491-9
16140258 - Biochim Biophys Acta. 2005 Sep 30;1709(3):214-9
References_xml – volume: 409
  start-page: 491
  year: 2008
  ident: 10.1016/j.redox.2013.04.005_bib28
  article-title: High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates
  publication-title: Biochemical Journal
  doi: 10.1042/BJ20071162
– volume: 286
  start-page: 31361
  year: 2011
  ident: 10.1016/j.redox.2013.04.005_bib11
  article-title: The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M111.267898
– volume: 270
  start-page: 296
  year: 1995
  ident: 10.1016/j.redox.2013.04.005_bib3
  article-title: Requirement for generation of H2O2 for platelet-derived growth factor signal transduction
  publication-title: Science
  doi: 10.1126/science.270.5234.296
– volume: 382
  start-page: 21
  year: 2004
  ident: 10.1016/j.redox.2013.04.005_bib9
  article-title: Q-cycle bypass reactions at the Qo site of the cytochrome bc1 (and related) complexes
  publication-title: Methods in Enzymology
  doi: 10.1016/S0076-6879(04)82002-0
– ident: 10.1016/j.redox.2013.04.005_bib18
  doi: 10.1016/j.freeradbiomed.2013.04.006
– volume: 53
  start-page: 1807
  year: 2012
  ident: 10.1016/j.redox.2013.04.005_bib21
  article-title: Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters
  publication-title: Free Radical Biology and Medicine
  doi: 10.1016/j.freeradbiomed.2012.08.015
– volume: 128
  start-page: 617
  year: 1972
  ident: 10.1016/j.redox.2013.04.005_bib7
  article-title: The cellular production of hydrogen peroxide
  publication-title: Biochemical Journal
  doi: 10.1042/bj1280617
– volume: 41
  start-page: 387
  year: 2009
  ident: 10.1016/j.redox.2013.04.005_bib29
  article-title: Succinate is the controller of O2−/H2O2 release at mitochondrial complex I: negative modulation by malate, positive by cyanide
  publication-title: Journal of Bioenergetics and Biomembranes
  doi: 10.1007/s10863-009-9238-2
– volume: 810
  start-page: 165
  year: 2012
  ident: 10.1016/j.redox.2013.04.005_bib22
  article-title: Measurement of proton leak and electron leak in isolated mitochondria
  publication-title: Methods in Molecular Biology
  doi: 10.1007/978-1-61779-382-0_11
– volume: 24
  start-page: 7779
  year: 2004
  ident: 10.1016/j.redox.2013.04.005_bib14
  article-title: Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1899-04.2004
– volume: 279
  start-page: 49064
  year: 2004
  ident: 10.1016/j.redox.2013.04.005_bib33
  article-title: Complex III releases superoxide to both sides of the inner mitochondrial membrane
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M407715200
– volume: 103
  start-page: 7607
  year: 2006
  ident: 10.1016/j.redox.2013.04.005_bib26
  article-title: The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria
  publication-title: Proceedings of the National Academy of Sciences of the USA
  doi: 10.1073/pnas.0510977103
– year: 2002
  ident: 10.1016/j.redox.2013.04.005_bib31
– volume: 277
  start-page: 2766
  year: 2010
  ident: 10.1016/j.redox.2013.04.005_bib23
  article-title: Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production—a correction using glutathione depletion
  publication-title: FEBS Journal
  doi: 10.1111/j.1742-4658.2010.07693.x
– volume: 282
  start-page: 14316
  year: 2007
  ident: 10.1016/j.redox.2013.04.005_bib19
  article-title: Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M700912200
– volume: 10
  start-page: 411
  year: 2010
  ident: 10.1016/j.redox.2013.04.005_bib4
  article-title: Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration?
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2010.05.014
– volume: 277
  start-page: 44784
  year: 2002
  ident: 10.1016/j.redox.2013.04.005_bib27
  article-title: Topology of superoxide production from different sites in the mitochondrial electron transport chain
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M207217200
– volume: 417
  start-page: 1
  year: 2009
  ident: 10.1016/j.redox.2013.04.005_bib5
  article-title: How mitochondria produce reactive oxygen species
  publication-title: Biochemical Journal
  doi: 10.1042/BJ20081386
– volume: 42
  start-page: 6493
  year: 2003
  ident: 10.1016/j.redox.2013.04.005_bib10
  article-title: Architecture of the Qo site of the cytochrome bc1 complex probed by superoxide production
  publication-title: Biochemistry
  doi: 10.1021/bi0342160
– volume: 250
  start-page: 4322
  year: 1975
  ident: 10.1016/j.redox.2013.04.005_bib20
  article-title: Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid
  publication-title: Journal of Biological Chemistry
  doi: 10.1016/S0021-9258(19)41421-X
– volume: 406
  start-page: 125
  year: 2007
  ident: 10.1016/j.redox.2013.04.005_bib30
  article-title: Succinate modulation of H2O2 release at NADH:ubiquinone oxidoreductase (Complex I) in brain mitochondria
  publication-title: Biochemical Journal
  doi: 10.1042/BJ20070215
– volume: 29
  start-page: 89
  year: 1997
  ident: 10.1016/j.redox.2013.04.005_bib24
  article-title: Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age
  publication-title: Journal of Bioenergetics and Biomembrane
  doi: 10.1023/A:1022420007908
– volume: 95
  start-page: 1
  year: 2010
  ident: 10.1016/j.redox.2013.04.005_bib1
  article-title: Reactive oxygen species are signalling molecules for skeletal muscle adaptation
  publication-title: Experimental Physiology
  doi: 10.1113/expphysiol.2009.050526
– volume: 53
  start-page: 9
  year: 2009
  ident: 10.1016/j.redox.2013.04.005_bib2
  article-title: Mitochondria as targets for cancer therapy
  publication-title: Molecular Nutrition and Food Research
  doi: 10.1002/mnfr.200800044
– volume: 45
  start-page: 466
  year: 2010
  ident: 10.1016/j.redox.2013.04.005_bib6
  article-title: The sites and topology of mitochondrial superoxide production
  publication-title: Experimental Gerontology
  doi: 10.1016/j.exger.2010.01.003
– volume: 287
  start-page: 27255
  year: 2012
  ident: 10.1016/j.redox.2013.04.005_bib15
  article-title: Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M112.374629
– volume: 287
  start-page: 42921
  year: 2012
  ident: 10.1016/j.redox.2013.04.005_bib16
  article-title: A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M112.397828
– volume: 1709
  start-page: 214
  year: 2005
  ident: 10.1016/j.redox.2013.04.005_bib32
  article-title: The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria
  publication-title: Biochimica Biophysica Acta
  doi: 10.1016/j.bbabio.2005.08.003
– volume: 24
  start-page: 7771
  year: 2004
  ident: 10.1016/j.redox.2013.04.005_bib13
  article-title: Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1842-04.2004
– volume: 286
  start-page: 27103
  year: 2011
  ident: 10.1016/j.redox.2013.04.005_bib8
  article-title: Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I)
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M111.252502
– volume: 269
  start-page: 5004
  year: 2002
  ident: 10.1016/j.redox.2013.04.005_bib12
  article-title: Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species
  publication-title: European Journal of Biochemistry
  doi: 10.1046/j.1432-1033.2002.03204.x
– volume: 285
  start-page: 5748
  year: 2010
  ident: 10.1016/j.redox.2013.04.005_bib17
  article-title: Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 Emission during long-chain fatty acid oxidation
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M109.026203
– volume: 382
  start-page: 511
  year: 2004
  ident: 10.1016/j.redox.2013.04.005_bib25
  article-title: Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane
  publication-title: Biochemical Journal
  doi: 10.1042/BJ20040485
– reference: 22689576 - J Biol Chem. 2012 Aug 3;287(32):27255-64
– reference: 15175007 - Biochem J. 2004 Sep 1;382(Pt 2):511-7
– reference: 16682634 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7607-12
– reference: 12767232 - Biochemistry. 2003 Jun 3;42(21):6493-9
– reference: 9067806 - J Bioenerg Biomembr. 1997 Feb;29(1):89-95
– reference: 23583329 - Free Radic Biol Med. 2013 Aug;61:298-309
– reference: 19061483 - Biochem J. 2009 Jan 1;417(1):1-13
– reference: 20064600 - Exp Gerontol. 2010 Aug;45(7-8):466-72
– reference: 20573557 - Mitochondrion. 2010 Aug;10(5):411-8
– reference: 15356188 - J Neurosci. 2004 Sep 8;24(36):7771-8
– reference: 21708945 - J Biol Chem. 2011 Sep 9;286(36):31361-72
– reference: 19880534 - Exp Physiol. 2010 Jan;95(1):1-9
– reference: 22940066 - Free Radic Biol Med. 2012 Nov 1;53(9):1807-17
– reference: 15047094 - Methods Enzymol. 2004;382:21-45
– reference: 4404507 - Biochem J. 1972 Jul;128(3):617-30
– reference: 15317809 - J Biol Chem. 2004 Nov 19;279(47):49064-73
– reference: 19123183 - Mol Nutr Food Res. 2009 Jan;53(1):9-28
– reference: 20491900 - FEBS J. 2010 Jul;277(13):2766-78
– reference: 12237311 - J Biol Chem. 2002 Nov 22;277(47):44784-90
– reference: 19821037 - J Bioenerg Biomembr. 2009 Aug;41(4):387-93
– reference: 23124204 - J Biol Chem. 2012 Dec 14;287(51):42921-35
– reference: 17916065 - Biochem J. 2008 Jan 15;409(2):491-9
– reference: 15356189 - J Neurosci. 2004 Sep 8;24(36):7779-88
– reference: 17344208 - J Biol Chem. 2007 May 11;282(19):14316-27
– reference: 7569979 - Science. 1995 Oct 13;270(5234):296-9
– reference: 17477844 - Biochem J. 2007 Aug 15;406(1):125-9
– reference: 21659507 - J Biol Chem. 2011 Aug 5;286(31):27103-10
– reference: 12383259 - Eur J Biochem. 2002 Oct;269(20):5004-15
– reference: 16140258 - Biochim Biophys Acta. 2005 Sep 30;1709(3):214-9
– reference: 165196 - J Biol Chem. 1975 Jun 10;250(11):4322-6
– reference: 22057567 - Methods Mol Biol. 2012;810:165-82
– reference: 20032466 - J Biol Chem. 2010 Feb 19;285(8):5748-58
SSID ssj0000884210
Score 2.4913
Snippet Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 304
SubjectTerms Animals
Cytochrome b
Electron Transport Complex I - chemistry
Electron Transport Complex I - metabolism
Electron Transport Complex III - chemistry
Electron Transport Complex III - metabolism
Female
Glycerophosphates - metabolism
Hydrogen peroxide
Malates - metabolism
Mitochondria, Muscle - metabolism
Muscle, Skeletal - metabolism
NADH
Palmitoylcarnitine - metabolism
Rats
Rats, Wistar
Reactive Oxygen Species - metabolism
Research Paper
Respiratory complexes
Succinic Acid - metabolism
Superoxide
Superoxides - metabolism
Ubiquinone
Title Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
URI https://www.ncbi.nlm.nih.gov/pubmed/24024165
https://www.proquest.com/docview/1432074905
https://pubmed.ncbi.nlm.nih.gov/PMC3757699
https://doaj.org/article/3405ed2232b1433ba604656945b5da86
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLamoklcpsEG64DJk3YkorGdxD4ORFUxicO2imoXy47trROkiLRSy1_Pe05SpQjBhWviyNbz-_E9--V7hFwESLcKzkwi8XADO8EmkEbYRLrAS7DMUpSxyvdzPpmKT7Ns1mv1hTVhDT1wI7h3HBCFdxDEmIXQzq3JR0jxpURmM2dkJNuGmNdLpqIPllKwSEXAWMoTADFFRzkUi7uQjHONhV08Ep1i87peWIrs_X-CnL9XTvZC0fiQHLQYkl42a39G9nz1nOw3XSU3R-TuBmBkTReBAiCM7owu1htQFIq_VUJmTO8j1zRuCbUb-g2MGpxg5UAXYeTczX9CPKNd65QlrcG5RBLb-phMxx9vP0yStoVCUkLUWSZB5cGbImNZyJTynuF_p3lqglKsAKkqmY-MSqVx3MrgrE9dLmwQaVq4kEnHX5BBtaj8CaEOzNUrH0rnSiG4s06akeXgHyFFsyEfEtZJUJctvzi2ufiqu0KyRx3FrlHseiQ0iH1I3m4_-t7Qa_x9-Hvcmu1Q5MaOD0BjdKsx-l8aMyTn3cZqsCW8IDGVX6xqSIM4A0ilcKKXzUZvp8JbKACv8KbYUYGdtey-qeYPka-bF5DUKXX6Pxb_ijxlsSEHHgK9JoPlj5V_A7Boac_Ik8ur6y9XZ9ESfgG8lwtE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sites+of+reactive+oxygen+species+generation+by+mitochondria+oxidizing+different+substrates&rft.jtitle=Redox+biology&rft.au=Quinlan%2C+Casey+L&rft.au=Perevoshchikova%2C+Irina+V&rft.au=Hey-Mogensen%2C+Martin&rft.au=Orr%2C+Adam+L&rft.date=2013-01-01&rft.eissn=2213-2317&rft.volume=1&rft.spage=304&rft_id=info:doi/10.1016%2Fj.redox.2013.04.005&rft_id=info%3Apmid%2F24024165&rft.externalDocID=24024165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon