Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a va...
Saved in:
Published in | Redox biology Vol. 1; no. 1; pp. 304 - 312 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier
01.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site IQ), with small contributions from the flavin site in complex I (site IF) and the quinol oxidation site in complex III (site IIIQo). However, with glutamate plus malate as substrate, site IQ made little or no contribution, and production was shared between site IF, site IIIQo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site IIF) was a major contributor (together with sites IF and IIIQo), and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo. |
---|---|
AbstractList | Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site IQ), with small contributions from the flavin site in complex I (site IF) and the quinol oxidation site in complex III (site IIIQo). However, with glutamate plus malate as substrate, site IQ made little or no contribution, and production was shared between site IF, site IIIQo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site IIF) was a major contributor (together with sites IF and IIIQo), and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo. Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site IQ), with small contributions from the flavin site in complex I (site IF) and the quinol oxidation site in complex III (site IIIQo). However, with glutamate plus malate as substrate, site IQ made little or no contribution, and production was shared between site IF, site IIIQo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site IIF) was a major contributor (together with sites IF and IIIQo), and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo.Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site IQ), with small contributions from the flavin site in complex I (site IF) and the quinol oxidation site in complex III (site IIIQo). However, with glutamate plus malate as substrate, site IQ made little or no contribution, and production was shared between site IF, site IIIQo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site IIF) was a major contributor (together with sites IF and IIIQo), and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo. Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H 2 O 2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site I Q ), with small contributions from the flavin site in complex I (site I F ) and the quinol oxidation site in complex III (site III Qo ). However, with glutamate plus malate as substrate, site I Q made little or no contribution, and production was shared between site I F , site III Qo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site II F ) was a major contributor (together with sites I F and III Qo ), and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo . • Mitochondria oxidizing four substrate combinations make superoxide/H 2 O 2 from six defined sites. • The absolute rates of mitochondrial superoxide/H 2 O 2 depend on the substrate oxidized. • The relative contributions of specific sites of superoxide/H 2 O 2 vary greatly between substrates. |
Author | Quinlan, Casey L. Orr, Adam L. Hey-Mogensen, Martin Brand, Martin D. Perevoshchikova, Irina V. |
AuthorAffiliation | b Department of Biomedical Sciences, Center for Healthy Aging, Copenhagen University, Denmark a The Buck Institute for Research on Aging, Novato, CA 94945, USA |
AuthorAffiliation_xml | – name: a The Buck Institute for Research on Aging, Novato, CA 94945, USA – name: b Department of Biomedical Sciences, Center for Healthy Aging, Copenhagen University, Denmark |
Author_xml | – sequence: 1 givenname: Casey L. surname: Quinlan fullname: Quinlan, Casey L. – sequence: 2 givenname: Irina V. surname: Perevoshchikova fullname: Perevoshchikova, Irina V. – sequence: 3 givenname: Martin surname: Hey-Mogensen fullname: Hey-Mogensen, Martin – sequence: 4 givenname: Adam L. surname: Orr fullname: Orr, Adam L. – sequence: 5 givenname: Martin D. surname: Brand fullname: Brand, Martin D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24024165$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vEzEQhi1URD_oL0BCe-SSxd9eX5BQxUelShyACxfLXo9TR5t1sJ2q4dfjJm3VcsAXj2beeV5bM6foaE4zIPSG4J5gIt-v-gw-3fYUE9Zj3mMsXqATSglbUEbU0ZP4GJ2XssLtDAOnBL9Cx5RjyokUJ-jX91ihdCl0GexY4w106Xa3hLkrGxhjK7UYsq0xzZ3bdetY03idZp-jbcro4584LzsfQ4AMc-3K1pXa9FBeo5fBTgXO7-8z9PPzpx8XXxdX375cXny8WoxckboIWgawSlARhNYAVHKlJLFBa6o8pXqQ2GoyWM_cELwD4iV3gROifBCDZ2fo8sD1ya7MJse1zTuTbDT7RMpLY3ON4wSGcSygMRl1hDPmrMRcCqm5cMLbQTbWhwNrs3Vr8GP7UbbTM-jzyhyvzTLdGKaEklo3wLt7QE6_t1CqWccywjTZGdK2mGZLseIaiyZ9-9Tr0eRhOE3ADoIxp1IyhEcJweZuC8zK7LfA3G2BwdzgPVb_0zXGup9fe3Cc_tv7FybquyM |
CitedBy_id | crossref_primary_10_1021_acs_biochem_9b00863 crossref_primary_10_3390_ijms21124370 crossref_primary_10_1016_j_freeradbiomed_2023_09_018 crossref_primary_10_1111_apha_13351 crossref_primary_10_1007_s10811_023_03132_7 crossref_primary_10_1038_s41598_021_84852_z crossref_primary_10_1086_683814 crossref_primary_10_1016_j_jff_2017_08_008 crossref_primary_10_1242_jeb_246549 crossref_primary_10_1155_2015_729191 crossref_primary_10_18499_2070_9277_2023_26_2_92_100 crossref_primary_10_1186_s13395_018_0157_y crossref_primary_10_3390_ijms21082661 crossref_primary_10_3390_ijms21186512 crossref_primary_10_1016_j_bbadis_2020_165961 crossref_primary_10_1016_j_freeradbiomed_2016_10_011 crossref_primary_10_1111_mmi_14139 crossref_primary_10_3390_ijms241210015 crossref_primary_10_1016_j_mito_2017_10_008 crossref_primary_10_1002_adhm_202300533 crossref_primary_10_1016_j_siny_2022_101347 crossref_primary_10_1016_j_jhazmat_2023_131684 crossref_primary_10_1042_BCJ20220611 crossref_primary_10_3390_antiox10030415 crossref_primary_10_1139_apnm_2020_0005 crossref_primary_10_3390_antiox10111785 crossref_primary_10_1039_C8FO01734D crossref_primary_10_1111_jcmm_13835 crossref_primary_10_1016_j_cellsig_2016_05_007 crossref_primary_10_1093_jimb_kuab048 crossref_primary_10_1002_bies_201400033 crossref_primary_10_1016_j_aquatox_2024_106986 crossref_primary_10_1111_acel_12287 crossref_primary_10_3390_ijms25042410 crossref_primary_10_1038_s41598_024_60261_w crossref_primary_10_1016_j_devcel_2019_04_008 crossref_primary_10_1016_j_redox_2013_12_011 crossref_primary_10_1016_j_atherosclerosis_2022_04_025 crossref_primary_10_1016_j_redox_2025_103514 crossref_primary_10_3390_nu11122871 crossref_primary_10_1016_j_biocel_2016_06_015 crossref_primary_10_3389_fgene_2021_734255 crossref_primary_10_7717_peerj_14350 crossref_primary_10_1155_2016_1245049 crossref_primary_10_1371_journal_pone_0100768 crossref_primary_10_1134_S0006297920010046 crossref_primary_10_1016_j_pneurobio_2018_09_003 crossref_primary_10_1007_s40828_019_0085_4 crossref_primary_10_1016_j_freeradbiomed_2020_11_015 crossref_primary_10_1161_RES_0000000000000097 crossref_primary_10_1155_2016_3565127 crossref_primary_10_1161_JAHA_122_026135 crossref_primary_10_1016_j_jot_2022_06_003 crossref_primary_10_1016_j_freeradbiomed_2020_12_234 crossref_primary_10_1089_ars_2017_7225 crossref_primary_10_1155_2016_9057593 crossref_primary_10_1152_physrev_00040_2023 crossref_primary_10_14336_AD_2015_0820 crossref_primary_10_1016_j_cell_2015_10_001 crossref_primary_10_1016_j_cbpb_2024_110940 crossref_primary_10_2337_db16_0387 crossref_primary_10_3390_antiox10020305 crossref_primary_10_1016_j_phrs_2021_105709 crossref_primary_10_1016_j_bcp_2013_11_022 crossref_primary_10_1016_j_jsbmb_2020_105807 crossref_primary_10_3390_ph18030390 crossref_primary_10_3390_antiox10111677 crossref_primary_10_3390_cancers11070955 crossref_primary_10_3390_antiox10030469 crossref_primary_10_1098_rspb_2016_0333 crossref_primary_10_1016_j_jbc_2021_101204 crossref_primary_10_1134_S0006297919110154 crossref_primary_10_1007_s12035_024_04394_z crossref_primary_10_1007_s10863_015_9632_x crossref_primary_10_1007_s12038_020_00055_0 crossref_primary_10_1515_hsz_2024_0146 crossref_primary_10_31083_j_fbl2803061 crossref_primary_10_3390_ijms21165825 crossref_primary_10_1002_der2_40 crossref_primary_10_1111_jnc_14705 crossref_primary_10_1139_cjpp_2015_0498 crossref_primary_10_1002_jpln_202300127 crossref_primary_10_3390_ijms24010379 crossref_primary_10_3390_molecules28031488 crossref_primary_10_1089_hum_2016_100 crossref_primary_10_1007_s12576_015_0395_2 crossref_primary_10_1007_s11011_021_00676_w crossref_primary_10_1016_j_freeradbiomed_2024_11_046 crossref_primary_10_1038_s41419_021_03640_9 crossref_primary_10_1038_s41540_020_00150_w crossref_primary_10_15324_kjcls_2022_54_3_209 crossref_primary_10_1089_ars_2017_7215 crossref_primary_10_1016_j_phrs_2018_07_015 crossref_primary_10_1152_ajprenal_00208_2019 crossref_primary_10_3389_fonc_2017_00117 crossref_primary_10_1016_j_freeradbiomed_2019_09_006 crossref_primary_10_3390_antiox14010115 crossref_primary_10_1016_j_jbc_2023_105399 crossref_primary_10_3390_antiox11091684 crossref_primary_10_1002_jor_24292 crossref_primary_10_1016_j_placenta_2016_12_012 crossref_primary_10_1186_s13024_015_0055_2 crossref_primary_10_1007_s12035_024_03967_2 crossref_primary_10_1016_j_ejcb_2023_151333 crossref_primary_10_1016_j_redox_2015_05_001 crossref_primary_10_1111_acel_12584 crossref_primary_10_1007_s00204_015_1520_y crossref_primary_10_1016_j_freeradbiomed_2016_04_018 crossref_primary_10_1093_gbe_evae091 crossref_primary_10_1080_1061186X_2022_2032095 crossref_primary_10_1016_j_redox_2013_09_001 crossref_primary_10_1016_j_anireprosci_2019_106199 crossref_primary_10_1165_rcmb_2023_0110ED crossref_primary_10_3389_fphys_2022_866792 crossref_primary_10_3390_biom9080351 crossref_primary_10_1038_cddis_2017_19 crossref_primary_10_3389_fphys_2020_00696 crossref_primary_10_1016_j_mito_2020_07_005 crossref_primary_10_1016_j_molmet_2023_101802 crossref_primary_10_1016_j_biotechadv_2022_107967 crossref_primary_10_1016_j_freeradbiomed_2015_02_012 crossref_primary_10_17816_rmmar109074 crossref_primary_10_3390_life11030242 crossref_primary_10_1016_j_tcb_2015_12_007 crossref_primary_10_1111_and_13666 crossref_primary_10_3389_fendo_2020_560375 crossref_primary_10_1186_s11658_024_00570_0 crossref_primary_10_1016_j_intimp_2019_105952 crossref_primary_10_1371_journal_pone_0217045 crossref_primary_10_1186_s13054_015_1160_x crossref_primary_10_3390_antiox11102043 crossref_primary_10_1016_j_redox_2015_02_001 crossref_primary_10_3389_fcell_2023_1252318 crossref_primary_10_1111_jcmm_16941 crossref_primary_10_1016_j_celrep_2020_108423 crossref_primary_10_1111_cas_15627 crossref_primary_10_1155_2016_9012580 crossref_primary_10_1016_j_semcancer_2017_04_005 crossref_primary_10_1074_jbc_RA120_014483 crossref_primary_10_3390_cells11233843 crossref_primary_10_1016_j_cbpb_2015_10_001 crossref_primary_10_1016_j_freeradbiomed_2022_11_041 crossref_primary_10_1016_j_febslet_2014_06_044 crossref_primary_10_3390_molecules27248754 crossref_primary_10_3390_antiox9121304 crossref_primary_10_1155_2020_1323028 crossref_primary_10_1113_JP278897 crossref_primary_10_3390_ijms232415849 crossref_primary_10_3390_molecules22071161 crossref_primary_10_1242_bio_060069 crossref_primary_10_3390_antiox11112195 crossref_primary_10_1089_ars_2022_0141 crossref_primary_10_1016_j_cbpc_2022_109267 crossref_primary_10_1089_ars_2022_0143 crossref_primary_10_1042_BST20211032 crossref_primary_10_1093_gerona_glaa082 crossref_primary_10_1016_j_xplc_2022_100501 crossref_primary_10_1016_j_bbabio_2016_03_010 crossref_primary_10_1177_0271678X18770331 crossref_primary_10_1089_ars_2022_0173 crossref_primary_10_20340_vmi_rvz_2024_6_MORPH_3 crossref_primary_10_3390_cells9081764 crossref_primary_10_1016_j_freeradbiomed_2018_10_448 crossref_primary_10_1016_j_ab_2017_10_010 crossref_primary_10_3390_cancers15041192 crossref_primary_10_1016_j_freeradbiomed_2018_11_005 crossref_primary_10_1016_j_taap_2018_01_024 crossref_primary_10_1152_ajpendo_00059_2019 crossref_primary_10_1098_rsfs_2016_0104 crossref_primary_10_1007_s10522_017_9733_5 crossref_primary_10_34091_AJLS_3_2_17 crossref_primary_10_1002_adbi_202200234 crossref_primary_10_1139_cjpp_2017_0074 crossref_primary_10_1016_j_cmet_2024_11_011 crossref_primary_10_3389_fcell_2022_826981 crossref_primary_10_1002_adhm_202303206 crossref_primary_10_1002_1873_3468_13973 crossref_primary_10_1007_s10863_014_9595_3 crossref_primary_10_3389_fendo_2017_00296 crossref_primary_10_3390_biomedicines9020216 crossref_primary_10_1074_jbc_M116_772624 crossref_primary_10_1016_j_isci_2024_109643 crossref_primary_10_1016_j_metabol_2024_155913 crossref_primary_10_1371_journal_pone_0120600 crossref_primary_10_3389_fphys_2021_627837 crossref_primary_10_1016_j_freeradbiomed_2019_07_017 crossref_primary_10_1152_ajprenal_00047_2023 crossref_primary_10_1016_j_semcancer_2017_06_012 crossref_primary_10_1016_j_freeradbiomed_2018_06_040 crossref_primary_10_1016_j_freeradbiomed_2016_04_198 crossref_primary_10_1073_pnas_1705406114 crossref_primary_10_3389_fnagi_2018_00124 crossref_primary_10_1016_j_ejmech_2021_113401 crossref_primary_10_1016_j_ibror_2019_07_1721 crossref_primary_10_1016_j_freeradbiomed_2021_01_014 crossref_primary_10_1016_j_nbd_2016_01_007 crossref_primary_10_1007_s13105_018_0633_1 crossref_primary_10_3390_life11050371 crossref_primary_10_1016_j_taap_2019_03_008 crossref_primary_10_2174_1570159X21666230316150559 crossref_primary_10_3390_ijms20246251 crossref_primary_10_1186_s13046_020_01765_x crossref_primary_10_3389_fnins_2020_536682 crossref_primary_10_1074_jbc_M113_545301 crossref_primary_10_1186_s13568_020_00966_z crossref_primary_10_3389_fphar_2021_691998 crossref_primary_10_1016_j_biocel_2017_12_019 crossref_primary_10_3389_fphar_2019_00902 crossref_primary_10_1152_ajpregu_00191_2022 crossref_primary_10_3389_fonc_2021_768758 crossref_primary_10_3233_JAD_220514 crossref_primary_10_1016_j_ejop_2020_125689 crossref_primary_10_7554_eLife_32111 crossref_primary_10_1016_j_abb_2021_108877 crossref_primary_10_1016_j_aca_2019_04_069 crossref_primary_10_1016_j_plefa_2020_102237 crossref_primary_10_1016_j_mcn_2019_103408 crossref_primary_10_1111_acel_13710 crossref_primary_10_1371_journal_pone_0216385 crossref_primary_10_1016_j_biochi_2021_04_001 crossref_primary_10_1016_j_foodres_2021_110869 crossref_primary_10_3390_ijms19113362 crossref_primary_10_1152_ajpcell_00455_2021 crossref_primary_10_33549_physiolres_935269 crossref_primary_10_1016_j_freeradbiomed_2015_12_020 crossref_primary_10_1016_j_bcp_2019_03_008 crossref_primary_10_3389_fimmu_2023_1199233 crossref_primary_10_3390_ijms25126498 crossref_primary_10_1186_s13148_018_0603_z crossref_primary_10_1016_j_biocel_2016_09_010 crossref_primary_10_1016_j_ibmb_2021_103556 crossref_primary_10_1016_j_jbiotec_2021_01_005 crossref_primary_10_1073_pnas_2307904121 crossref_primary_10_1016_j_cbpc_2021_109227 crossref_primary_10_3390_cancers11081191 crossref_primary_10_1016_j_lfs_2015_09_018 crossref_primary_10_3390_antiox12020353 crossref_primary_10_1016_j_freeradbiomed_2013_08_170 crossref_primary_10_1016_j_jmb_2018_03_025 crossref_primary_10_1016_j_freeradbiomed_2015_10_425 crossref_primary_10_3389_fpubh_2018_00270 crossref_primary_10_1089_ars_2015_6260 crossref_primary_10_1007_s00109_021_02104_z crossref_primary_10_1089_ars_2014_6214 crossref_primary_10_1089_ars_2018_7693 crossref_primary_10_1126_sciadv_abj4991 crossref_primary_10_1186_s12934_018_0898_7 crossref_primary_10_3390_nu13020282 crossref_primary_10_1016_j_redox_2014_02_004 crossref_primary_10_3390_biom14060670 crossref_primary_10_1155_2021_6635460 crossref_primary_10_1002_jcp_28712 crossref_primary_10_1002_biof_1338 crossref_primary_10_3389_fnins_2018_00470 crossref_primary_10_1038_s42003_022_03282_3 crossref_primary_10_3390_ijms25052835 crossref_primary_10_1016_j_freeradbiomed_2019_12_006 crossref_primary_10_1096_fj_201903113RR crossref_primary_10_3390_life11111269 crossref_primary_10_1016_j_cmet_2015_06_006 crossref_primary_10_1161_CIRCRESAHA_115_306569 crossref_primary_10_1016_j_cmet_2016_08_012 crossref_primary_10_1111_os_13302 crossref_primary_10_1074_jbc_M114_619072 crossref_primary_10_1016_j_bbabio_2018_07_008 crossref_primary_10_1002_oby_21654 crossref_primary_10_1038_s41514_023_00128_y crossref_primary_10_1016_j_freeradbiomed_2019_04_021 crossref_primary_10_1016_j_freeradbiomed_2021_02_015 crossref_primary_10_1016_j_freeradbiomed_2018_02_013 crossref_primary_10_1515_hsz_2015_0289 crossref_primary_10_1016_j_freeradbiomed_2019_11_015 crossref_primary_10_1111_cbdd_13474 crossref_primary_10_1016_j_freeradbiomed_2016_05_022 crossref_primary_10_1152_ajpendo_00257_2014 crossref_primary_10_3390_antiox12010004 crossref_primary_10_1093_molehr_gaab067 crossref_primary_10_3389_fcell_2019_00355 crossref_primary_10_1152_japplphysiol_00484_2023 crossref_primary_10_1016_j_mito_2024_101868 crossref_primary_10_1080_19420889_2015_1119343 crossref_primary_10_1016_j_pharmthera_2019_05_015 crossref_primary_10_1016_j_freeradbiomed_2024_08_016 crossref_primary_10_1146_annurev_physiol_021115_105031 crossref_primary_10_1155_2017_5691215 crossref_primary_10_1016_j_bpj_2017_08_018 crossref_primary_10_3389_fphys_2019_00078 crossref_primary_10_1074_jbc_RA120_013899 crossref_primary_10_1016_j_bbrc_2023_08_032 crossref_primary_10_1111_eci_13622 crossref_primary_10_1007_s12272_019_01178_1 crossref_primary_10_3390_biom10010093 crossref_primary_10_1016_j_biochi_2017_09_003 crossref_primary_10_1016_j_cmet_2018_05_009 crossref_primary_10_1016_j_freeradbiomed_2018_05_084 crossref_primary_10_1007_s10555_018_9769_2 crossref_primary_10_3390_ijms22010277 crossref_primary_10_1016_j_freeradbiomed_2021_03_011 crossref_primary_10_1038_s41598_020_78620_8 crossref_primary_10_12677_acm_2024_14112955 crossref_primary_10_1016_j_exger_2018_02_012 crossref_primary_10_1155_2015_105135 crossref_primary_10_2174_1871527319666200303121016 crossref_primary_10_1016_j_cbpb_2017_12_013 crossref_primary_10_1111_jnc_16205 crossref_primary_10_1016_j_redox_2015_12_010 crossref_primary_10_3389_fphar_2023_1269581 crossref_primary_10_3389_fphys_2022_874321 crossref_primary_10_3390_ijms18061126 crossref_primary_10_1016_j_theriogenology_2022_05_008 crossref_primary_10_3389_fendo_2023_1151691 crossref_primary_10_1007_s10863_018_9766_8 crossref_primary_10_1016_j_freeradbiomed_2016_04_001 crossref_primary_10_1080_10715762_2022_2036336 crossref_primary_10_1242_jeb_243304 crossref_primary_10_1007_s10555_025_10252_8 crossref_primary_10_1016_j_freeradbiomed_2020_02_027 crossref_primary_10_1134_S1068162023060122 crossref_primary_10_1016_j_bbabio_2015_12_013 crossref_primary_10_1038_onc_2013_578 crossref_primary_10_1016_j_bbabio_2021_148518 crossref_primary_10_1016_j_abb_2023_109690 crossref_primary_10_3390_cells7100154 crossref_primary_10_1111_jnc_14602 crossref_primary_10_3390_biology12060827 crossref_primary_10_1152_japplphysiol_00855_2016 crossref_primary_10_3390_cells11060997 crossref_primary_10_1016_j_redox_2015_09_003 crossref_primary_10_1021_acs_chemrev_7b00698 crossref_primary_10_3389_fphys_2019_00436 crossref_primary_10_3390_antiox8090404 crossref_primary_10_1074_jbc_R117_789271 crossref_primary_10_1016_j_tiv_2023_105669 crossref_primary_10_3390_antiox6030058 crossref_primary_10_1016_j_cbpb_2021_110614 crossref_primary_10_1155_2014_209845 crossref_primary_10_3389_fphys_2021_665747 crossref_primary_10_1038_nchembio_1910 crossref_primary_10_1515_med_2024_1041 crossref_primary_10_3390_molecules28114432 crossref_primary_10_3233_JAD_161088 crossref_primary_10_3390_antiox10040533 crossref_primary_10_1093_biolre_ioy009 crossref_primary_10_1016_j_redox_2014_11_003 crossref_primary_10_1016_j_ejphar_2017_01_017 crossref_primary_10_1016_j_ejphar_2022_175177 crossref_primary_10_1016_j_freeradbiomed_2021_07_020 crossref_primary_10_1086_712639 crossref_primary_10_3389_fphys_2015_00399 crossref_primary_10_1096_fj_201901747RR crossref_primary_10_3390_antiox9090883 crossref_primary_10_1016_j_abb_2021_108934 crossref_primary_10_1016_j_exger_2023_112158 crossref_primary_10_1093_pcp_pcw155 crossref_primary_10_1016_j_bbrc_2016_03_030 crossref_primary_10_1042_BCJ20190182 crossref_primary_10_1002_humu_24453 crossref_primary_10_3390_oxygen2020006 crossref_primary_10_1210_endocr_bqaa001 crossref_primary_10_3390_jcm6040043 crossref_primary_10_3390_biom14030260 crossref_primary_10_1016_j_cbpb_2017_11_013 crossref_primary_10_3390_futurepharmacol1010002 crossref_primary_10_1038_s41422_018_0071_1 crossref_primary_10_1002_bies_202100152 crossref_primary_10_3390_ijms23020896 crossref_primary_10_1089_ars_2021_0048 crossref_primary_10_1016_j_mam_2016_01_002 crossref_primary_10_3390_cells11152262 crossref_primary_10_1186_s40170_015_0133_5 crossref_primary_10_1371_journal_pone_0158429 crossref_primary_10_1016_j_freeradbiomed_2014_04_007 crossref_primary_10_1016_j_immuni_2015_02_002 crossref_primary_10_3390_ijms242115951 crossref_primary_10_1016_j_freeradbiomed_2016_07_029 crossref_primary_10_1007_s11033_020_05749_0 crossref_primary_10_3390_ijms25010410 crossref_primary_10_3389_fphys_2018_00258 crossref_primary_10_1002_tox_22837 crossref_primary_10_1038_srep39884 crossref_primary_10_1016_j_exger_2014_03_028 crossref_primary_10_1016_j_freeradbiomed_2016_07_026 crossref_primary_10_12968_jokc_2019_4_2_82 crossref_primary_10_3389_fchem_2021_788094 crossref_primary_10_1016_j_freeradbiomed_2023_08_015 crossref_primary_10_1074_jbc_RA119_011695 crossref_primary_10_1016_j_abb_2015_06_011 crossref_primary_10_1186_s13046_018_0728_0 crossref_primary_10_1152_ajpendo_00359_2018 crossref_primary_10_1002_jcp_28670 crossref_primary_10_1002_biof_1673 crossref_primary_10_1074_jbc_RA117_001254 crossref_primary_10_1016_j_biopha_2017_07_066 crossref_primary_10_1530_REP_16_0126 crossref_primary_10_1016_j_cbpb_2022_110713 crossref_primary_10_15252_embj_2019101552 crossref_primary_10_5607_en_2015_24_4_325 crossref_primary_10_1242_jeb_132860 crossref_primary_10_1016_j_jddst_2024_105618 crossref_primary_10_1515_hsz_2017_0284 crossref_primary_10_1016_j_mce_2019_02_013 crossref_primary_10_1186_2046_2395_3_2 crossref_primary_10_1111_jnc_14654 crossref_primary_10_1016_j_jaut_2020_102437 crossref_primary_10_1007_s12035_016_0380_7 crossref_primary_10_1111_jnc_14308 crossref_primary_10_1016_j_freeradbiomed_2018_01_024 crossref_primary_10_1177_0271678X17730242 crossref_primary_10_1002_2211_5463_13589 crossref_primary_10_1007_s00249_019_01415_x crossref_primary_10_3390_ijms25063114 crossref_primary_10_1016_j_freeradbiomed_2022_06_225 crossref_primary_10_1038_s41392_021_00595_3 crossref_primary_10_1152_ajpcell_00099_2016 crossref_primary_10_1016_j_intimp_2025_114057 crossref_primary_10_3389_fendo_2023_1104662 crossref_primary_10_1038_s41580_021_00415_0 crossref_primary_10_3390_biomedicines10061456 crossref_primary_10_1042_BCJ20160647 crossref_primary_10_1186_s40169_016_0106_5 crossref_primary_10_1016_j_cellsig_2022_110443 crossref_primary_10_1016_j_freeradbiomed_2015_11_011 crossref_primary_10_1016_j_redox_2015_08_020 crossref_primary_10_3390_ijms24054673 crossref_primary_10_1016_j_yjmcc_2017_06_016 |
Cites_doi | 10.1042/BJ20071162 10.1074/jbc.M111.267898 10.1126/science.270.5234.296 10.1016/S0076-6879(04)82002-0 10.1016/j.freeradbiomed.2013.04.006 10.1016/j.freeradbiomed.2012.08.015 10.1042/bj1280617 10.1007/s10863-009-9238-2 10.1007/978-1-61779-382-0_11 10.1523/JNEUROSCI.1899-04.2004 10.1074/jbc.M407715200 10.1073/pnas.0510977103 10.1111/j.1742-4658.2010.07693.x 10.1074/jbc.M700912200 10.1016/j.mito.2010.05.014 10.1074/jbc.M207217200 10.1042/BJ20081386 10.1021/bi0342160 10.1016/S0021-9258(19)41421-X 10.1042/BJ20070215 10.1023/A:1022420007908 10.1113/expphysiol.2009.050526 10.1002/mnfr.200800044 10.1016/j.exger.2010.01.003 10.1074/jbc.M112.374629 10.1074/jbc.M112.397828 10.1016/j.bbabio.2005.08.003 10.1523/JNEUROSCI.1842-04.2004 10.1074/jbc.M111.252502 10.1046/j.1432-1033.2002.03204.x 10.1074/jbc.M109.026203 10.1042/BJ20040485 |
ContentType | Journal Article |
Copyright | 2013 The Authors 2013 |
Copyright_xml | – notice: 2013 The Authors 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.redox.2013.04.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-2317 |
EndPage | 312 |
ExternalDocumentID | oai_doaj_org_article_3405ed2232b1433ba604656945b5da86 PMC3757699 24024165 10_1016_j_redox_2013_04_005 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: TL1 AG032116 – fundername: NIA NIH HHS grantid: R01 AG033542 – fundername: NIA NIH HHS grantid: PL1 AG032118 – fundername: NIA NIH HHS grantid: TL1AG032116 – fundername: NIA NIH HHS grantid: P01 AG025901 – fundername: NIA NIH HHS grantid: R01AG03354 – fundername: NIA NIH HHS grantid: PL1AG032118 – fundername: NIA NIH HHS grantid: P01AG025901 – fundername: NIA NIH HHS grantid: AG-SS-2288-09 |
GroupedDBID | 0R~ 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO AAYXX ABGSF ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADUVX ADVLN AENEX AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV CITATION DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB M48 MO0 M~E O-L O9- OK1 RIG ROL RPM SSZ AACTN CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c471t-f96fea7525f599ee2647761af9927d229860a918ad3b8fdbe1d64bf4117df58d3 |
IEDL.DBID | DOA |
ISSN | 2213-2317 |
IngestDate | Wed Aug 27 01:31:16 EDT 2025 Thu Aug 21 18:17:07 EDT 2025 Fri Jul 11 00:02:25 EDT 2025 Thu Apr 03 06:56:16 EDT 2025 Thu Apr 24 23:07:39 EDT 2025 Tue Jul 01 00:46:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | IF, flavin site of complex I QH2, ubiquinol OGDH, 2-oxoglutarate dehydrogenase Hydrogen peroxide Respiratory complexes IIIQo, quinol oxidation site of complex III Superoxide Eh, redox potential IQ, quinone-binding site of complex I Q, ubiquinone Cytochrome b ETF, electron transferring flavoprotein NADH Ubiquinone ETF:QOR, ETF:ubiquinone oxidoreductase IIF, flavin site of complex II PDH, pyruvate dehydrogenase mGPDH, mitochondrial glycerol 3-phosphate dehydrogenase ROS, reactive oxygen species CDNB, 1-chloro-2,4-dinitrobenzene |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-f96fea7525f599ee2647761af9927d229860a918ad3b8fdbe1d64bf4117df58d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/3405ed2232b1433ba604656945b5da86 |
PMID | 24024165 |
PQID | 1432074905 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3405ed2232b1433ba604656945b5da86 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3757699 proquest_miscellaneous_1432074905 pubmed_primary_24024165 crossref_primary_10_1016_j_redox_2013_04_005 crossref_citationtrail_10_1016_j_redox_2013_04_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Redox biology |
PublicationTitleAlternate | Redox Biol |
PublicationYear | 2013 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Muller (10.1016/j.redox.2013.04.005_bib33) 2004; 279 Murphy (10.1016/j.redox.2013.04.005_bib5) 2009; 417 Quinlan (10.1016/j.redox.2013.04.005_bib21) 2012; 53 Muller (10.1016/j.redox.2013.04.005_bib28) 2008; 409 Powers (10.1016/j.redox.2013.04.005_bib1) 2010; 95 Brand (10.1016/j.redox.2013.04.005_bib6) 2010; 45 Ralph (10.1016/j.redox.2013.04.005_bib2) 2009; 53 Affourtit (10.1016/j.redox.2013.04.005_bib22) 2012; 810 Starkov (10.1016/j.redox.2013.04.005_bib14) 2004; 24 Seifert (10.1016/j.redox.2013.04.005_bib17) 2010; 285 Hansford (10.1016/j.redox.2013.04.005_bib24) 1997; 29 Zoccarato (10.1016/j.redox.2013.04.005_bib30) 2007; 406 Tretter (10.1016/j.redox.2013.04.005_bib13) 2004; 24 White (10.1016/j.redox.2013.04.005_bib19) 2007; 282 Quinlan (10.1016/j.redox.2013.04.005_bib15) 2012; 287 Sundaresan (10.1016/j.redox.2013.04.005_bib3) 1995; 270 10.1016/j.redox.2013.04.005_bib18 Treberg (10.1016/j.redox.2013.04.005_bib8) 2011; 286 St-Pierre (10.1016/j.redox.2013.04.005_bib27) 2002; 277 Orr (10.1016/j.redox.2013.04.005_bib16) 2012; 287 Kussmaul (10.1016/j.redox.2013.04.005_bib26) 2006; 103 Forman (10.1016/j.redox.2013.04.005_bib20) 1975; 250 Bunik (10.1016/j.redox.2013.04.005_bib12) 2002; 269 Muller (10.1016/j.redox.2013.04.005_bib10) 2003; 42 Witte (10.1016/j.redox.2013.04.005_bib4) 2010; 10 Treberg (10.1016/j.redox.2013.04.005_bib23) 2010; 277 Miwa (10.1016/j.redox.2013.04.005_bib32) 2005; 1709 Kramer (10.1016/j.redox.2013.04.005_bib9) 2004; 382 Quinlan (10.1016/j.redox.2013.04.005_bib11) 2011; 286 Nicholls (10.1016/j.redox.2013.04.005_bib31) 2002 Boveris (10.1016/j.redox.2013.04.005_bib7) 1972; 128 Zoccarato (10.1016/j.redox.2013.04.005_bib29) 2009; 41 Lambert (10.1016/j.redox.2013.04.005_bib25) 2004; 382 15317809 - J Biol Chem. 2004 Nov 19;279(47):49064-73 19123183 - Mol Nutr Food Res. 2009 Jan;53(1):9-28 20573557 - Mitochondrion. 2010 Aug;10(5):411-8 16682634 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7607-12 15047094 - Methods Enzymol. 2004;382:21-45 4404507 - Biochem J. 1972 Jul;128(3):617-30 20032466 - J Biol Chem. 2010 Feb 19;285(8):5748-58 22940066 - Free Radic Biol Med. 2012 Nov 1;53(9):1807-17 17344208 - J Biol Chem. 2007 May 11;282(19):14316-27 12383259 - Eur J Biochem. 2002 Oct;269(20):5004-15 23124204 - J Biol Chem. 2012 Dec 14;287(51):42921-35 22057567 - Methods Mol Biol. 2012;810:165-82 7569979 - Science. 1995 Oct 13;270(5234):296-9 12767232 - Biochemistry. 2003 Jun 3;42(21):6493-9 20064600 - Exp Gerontol. 2010 Aug;45(7-8):466-72 15356189 - J Neurosci. 2004 Sep 8;24(36):7779-88 19061483 - Biochem J. 2009 Jan 1;417(1):1-13 15175007 - Biochem J. 2004 Sep 1;382(Pt 2):511-7 9067806 - J Bioenerg Biomembr. 1997 Feb;29(1):89-95 22689576 - J Biol Chem. 2012 Aug 3;287(32):27255-64 17477844 - Biochem J. 2007 Aug 15;406(1):125-9 21659507 - J Biol Chem. 2011 Aug 5;286(31):27103-10 19821037 - J Bioenerg Biomembr. 2009 Aug;41(4):387-93 165196 - J Biol Chem. 1975 Jun 10;250(11):4322-6 21708945 - J Biol Chem. 2011 Sep 9;286(36):31361-72 12237311 - J Biol Chem. 2002 Nov 22;277(47):44784-90 23583329 - Free Radic Biol Med. 2013 Aug;61:298-309 20491900 - FEBS J. 2010 Jul;277(13):2766-78 19880534 - Exp Physiol. 2010 Jan;95(1):1-9 15356188 - J Neurosci. 2004 Sep 8;24(36):7771-8 17916065 - Biochem J. 2008 Jan 15;409(2):491-9 16140258 - Biochim Biophys Acta. 2005 Sep 30;1709(3):214-9 |
References_xml | – volume: 409 start-page: 491 year: 2008 ident: 10.1016/j.redox.2013.04.005_bib28 article-title: High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates publication-title: Biochemical Journal doi: 10.1042/BJ20071162 – volume: 286 start-page: 31361 year: 2011 ident: 10.1016/j.redox.2013.04.005_bib11 article-title: The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M111.267898 – volume: 270 start-page: 296 year: 1995 ident: 10.1016/j.redox.2013.04.005_bib3 article-title: Requirement for generation of H2O2 for platelet-derived growth factor signal transduction publication-title: Science doi: 10.1126/science.270.5234.296 – volume: 382 start-page: 21 year: 2004 ident: 10.1016/j.redox.2013.04.005_bib9 article-title: Q-cycle bypass reactions at the Qo site of the cytochrome bc1 (and related) complexes publication-title: Methods in Enzymology doi: 10.1016/S0076-6879(04)82002-0 – ident: 10.1016/j.redox.2013.04.005_bib18 doi: 10.1016/j.freeradbiomed.2013.04.006 – volume: 53 start-page: 1807 year: 2012 ident: 10.1016/j.redox.2013.04.005_bib21 article-title: Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters publication-title: Free Radical Biology and Medicine doi: 10.1016/j.freeradbiomed.2012.08.015 – volume: 128 start-page: 617 year: 1972 ident: 10.1016/j.redox.2013.04.005_bib7 article-title: The cellular production of hydrogen peroxide publication-title: Biochemical Journal doi: 10.1042/bj1280617 – volume: 41 start-page: 387 year: 2009 ident: 10.1016/j.redox.2013.04.005_bib29 article-title: Succinate is the controller of O2−/H2O2 release at mitochondrial complex I: negative modulation by malate, positive by cyanide publication-title: Journal of Bioenergetics and Biomembranes doi: 10.1007/s10863-009-9238-2 – volume: 810 start-page: 165 year: 2012 ident: 10.1016/j.redox.2013.04.005_bib22 article-title: Measurement of proton leak and electron leak in isolated mitochondria publication-title: Methods in Molecular Biology doi: 10.1007/978-1-61779-382-0_11 – volume: 24 start-page: 7779 year: 2004 ident: 10.1016/j.redox.2013.04.005_bib14 article-title: Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.1899-04.2004 – volume: 279 start-page: 49064 year: 2004 ident: 10.1016/j.redox.2013.04.005_bib33 article-title: Complex III releases superoxide to both sides of the inner mitochondrial membrane publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M407715200 – volume: 103 start-page: 7607 year: 2006 ident: 10.1016/j.redox.2013.04.005_bib26 article-title: The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria publication-title: Proceedings of the National Academy of Sciences of the USA doi: 10.1073/pnas.0510977103 – year: 2002 ident: 10.1016/j.redox.2013.04.005_bib31 – volume: 277 start-page: 2766 year: 2010 ident: 10.1016/j.redox.2013.04.005_bib23 article-title: Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production—a correction using glutathione depletion publication-title: FEBS Journal doi: 10.1111/j.1742-4658.2010.07693.x – volume: 282 start-page: 14316 year: 2007 ident: 10.1016/j.redox.2013.04.005_bib19 article-title: Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M700912200 – volume: 10 start-page: 411 year: 2010 ident: 10.1016/j.redox.2013.04.005_bib4 article-title: Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? publication-title: Mitochondrion doi: 10.1016/j.mito.2010.05.014 – volume: 277 start-page: 44784 year: 2002 ident: 10.1016/j.redox.2013.04.005_bib27 article-title: Topology of superoxide production from different sites in the mitochondrial electron transport chain publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M207217200 – volume: 417 start-page: 1 year: 2009 ident: 10.1016/j.redox.2013.04.005_bib5 article-title: How mitochondria produce reactive oxygen species publication-title: Biochemical Journal doi: 10.1042/BJ20081386 – volume: 42 start-page: 6493 year: 2003 ident: 10.1016/j.redox.2013.04.005_bib10 article-title: Architecture of the Qo site of the cytochrome bc1 complex probed by superoxide production publication-title: Biochemistry doi: 10.1021/bi0342160 – volume: 250 start-page: 4322 year: 1975 ident: 10.1016/j.redox.2013.04.005_bib20 article-title: Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid publication-title: Journal of Biological Chemistry doi: 10.1016/S0021-9258(19)41421-X – volume: 406 start-page: 125 year: 2007 ident: 10.1016/j.redox.2013.04.005_bib30 article-title: Succinate modulation of H2O2 release at NADH:ubiquinone oxidoreductase (Complex I) in brain mitochondria publication-title: Biochemical Journal doi: 10.1042/BJ20070215 – volume: 29 start-page: 89 year: 1997 ident: 10.1016/j.redox.2013.04.005_bib24 article-title: Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age publication-title: Journal of Bioenergetics and Biomembrane doi: 10.1023/A:1022420007908 – volume: 95 start-page: 1 year: 2010 ident: 10.1016/j.redox.2013.04.005_bib1 article-title: Reactive oxygen species are signalling molecules for skeletal muscle adaptation publication-title: Experimental Physiology doi: 10.1113/expphysiol.2009.050526 – volume: 53 start-page: 9 year: 2009 ident: 10.1016/j.redox.2013.04.005_bib2 article-title: Mitochondria as targets for cancer therapy publication-title: Molecular Nutrition and Food Research doi: 10.1002/mnfr.200800044 – volume: 45 start-page: 466 year: 2010 ident: 10.1016/j.redox.2013.04.005_bib6 article-title: The sites and topology of mitochondrial superoxide production publication-title: Experimental Gerontology doi: 10.1016/j.exger.2010.01.003 – volume: 287 start-page: 27255 year: 2012 ident: 10.1016/j.redox.2013.04.005_bib15 article-title: Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M112.374629 – volume: 287 start-page: 42921 year: 2012 ident: 10.1016/j.redox.2013.04.005_bib16 article-title: A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M112.397828 – volume: 1709 start-page: 214 year: 2005 ident: 10.1016/j.redox.2013.04.005_bib32 article-title: The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria publication-title: Biochimica Biophysica Acta doi: 10.1016/j.bbabio.2005.08.003 – volume: 24 start-page: 7771 year: 2004 ident: 10.1016/j.redox.2013.04.005_bib13 article-title: Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.1842-04.2004 – volume: 286 start-page: 27103 year: 2011 ident: 10.1016/j.redox.2013.04.005_bib8 article-title: Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I) publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M111.252502 – volume: 269 start-page: 5004 year: 2002 ident: 10.1016/j.redox.2013.04.005_bib12 article-title: Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species publication-title: European Journal of Biochemistry doi: 10.1046/j.1432-1033.2002.03204.x – volume: 285 start-page: 5748 year: 2010 ident: 10.1016/j.redox.2013.04.005_bib17 article-title: Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 Emission during long-chain fatty acid oxidation publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M109.026203 – volume: 382 start-page: 511 year: 2004 ident: 10.1016/j.redox.2013.04.005_bib25 article-title: Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane publication-title: Biochemical Journal doi: 10.1042/BJ20040485 – reference: 22689576 - J Biol Chem. 2012 Aug 3;287(32):27255-64 – reference: 15175007 - Biochem J. 2004 Sep 1;382(Pt 2):511-7 – reference: 16682634 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7607-12 – reference: 12767232 - Biochemistry. 2003 Jun 3;42(21):6493-9 – reference: 9067806 - J Bioenerg Biomembr. 1997 Feb;29(1):89-95 – reference: 23583329 - Free Radic Biol Med. 2013 Aug;61:298-309 – reference: 19061483 - Biochem J. 2009 Jan 1;417(1):1-13 – reference: 20064600 - Exp Gerontol. 2010 Aug;45(7-8):466-72 – reference: 20573557 - Mitochondrion. 2010 Aug;10(5):411-8 – reference: 15356188 - J Neurosci. 2004 Sep 8;24(36):7771-8 – reference: 21708945 - J Biol Chem. 2011 Sep 9;286(36):31361-72 – reference: 19880534 - Exp Physiol. 2010 Jan;95(1):1-9 – reference: 22940066 - Free Radic Biol Med. 2012 Nov 1;53(9):1807-17 – reference: 15047094 - Methods Enzymol. 2004;382:21-45 – reference: 4404507 - Biochem J. 1972 Jul;128(3):617-30 – reference: 15317809 - J Biol Chem. 2004 Nov 19;279(47):49064-73 – reference: 19123183 - Mol Nutr Food Res. 2009 Jan;53(1):9-28 – reference: 20491900 - FEBS J. 2010 Jul;277(13):2766-78 – reference: 12237311 - J Biol Chem. 2002 Nov 22;277(47):44784-90 – reference: 19821037 - J Bioenerg Biomembr. 2009 Aug;41(4):387-93 – reference: 23124204 - J Biol Chem. 2012 Dec 14;287(51):42921-35 – reference: 17916065 - Biochem J. 2008 Jan 15;409(2):491-9 – reference: 15356189 - J Neurosci. 2004 Sep 8;24(36):7779-88 – reference: 17344208 - J Biol Chem. 2007 May 11;282(19):14316-27 – reference: 7569979 - Science. 1995 Oct 13;270(5234):296-9 – reference: 17477844 - Biochem J. 2007 Aug 15;406(1):125-9 – reference: 21659507 - J Biol Chem. 2011 Aug 5;286(31):27103-10 – reference: 12383259 - Eur J Biochem. 2002 Oct;269(20):5004-15 – reference: 16140258 - Biochim Biophys Acta. 2005 Sep 30;1709(3):214-9 – reference: 165196 - J Biol Chem. 1975 Jun 10;250(11):4322-6 – reference: 22057567 - Methods Mol Biol. 2012;810:165-82 – reference: 20032466 - J Biol Chem. 2010 Feb 19;285(8):5748-58 |
SSID | ssj0000884210 |
Score | 2.4913 |
Snippet | Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 304 |
SubjectTerms | Animals Cytochrome b Electron Transport Complex I - chemistry Electron Transport Complex I - metabolism Electron Transport Complex III - chemistry Electron Transport Complex III - metabolism Female Glycerophosphates - metabolism Hydrogen peroxide Malates - metabolism Mitochondria, Muscle - metabolism Muscle, Skeletal - metabolism NADH Palmitoylcarnitine - metabolism Rats Rats, Wistar Reactive Oxygen Species - metabolism Research Paper Respiratory complexes Succinic Acid - metabolism Superoxide Superoxides - metabolism Ubiquinone |
Title | Sites of reactive oxygen species generation by mitochondria oxidizing different substrates |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24024165 https://www.proquest.com/docview/1432074905 https://pubmed.ncbi.nlm.nih.gov/PMC3757699 https://doaj.org/article/3405ed2232b1433ba604656945b5da86 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLamoklcpsEG64DJk3YkorGdxD4ORFUxicO2imoXy47trROkiLRSy1_Pe05SpQjBhWviyNbz-_E9--V7hFwESLcKzkwi8XADO8EmkEbYRLrAS7DMUpSxyvdzPpmKT7Ns1mv1hTVhDT1wI7h3HBCFdxDEmIXQzq3JR0jxpURmM2dkJNuGmNdLpqIPllKwSEXAWMoTADFFRzkUi7uQjHONhV08Ep1i87peWIrs_X-CnL9XTvZC0fiQHLQYkl42a39G9nz1nOw3XSU3R-TuBmBkTReBAiCM7owu1htQFIq_VUJmTO8j1zRuCbUb-g2MGpxg5UAXYeTczX9CPKNd65QlrcG5RBLb-phMxx9vP0yStoVCUkLUWSZB5cGbImNZyJTynuF_p3lqglKsAKkqmY-MSqVx3MrgrE9dLmwQaVq4kEnHX5BBtaj8CaEOzNUrH0rnSiG4s06akeXgHyFFsyEfEtZJUJctvzi2ufiqu0KyRx3FrlHseiQ0iH1I3m4_-t7Qa_x9-Hvcmu1Q5MaOD0BjdKsx-l8aMyTn3cZqsCW8IDGVX6xqSIM4A0ilcKKXzUZvp8JbKACv8KbYUYGdtey-qeYPka-bF5DUKXX6Pxb_ijxlsSEHHgK9JoPlj5V_A7Boac_Ik8ur6y9XZ9ESfgG8lwtE |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sites+of+reactive+oxygen+species+generation+by+mitochondria+oxidizing+different+substrates&rft.jtitle=Redox+biology&rft.au=Quinlan%2C+Casey+L&rft.au=Perevoshchikova%2C+Irina+V&rft.au=Hey-Mogensen%2C+Martin&rft.au=Orr%2C+Adam+L&rft.date=2013-01-01&rft.eissn=2213-2317&rft.volume=1&rft.spage=304&rft_id=info:doi/10.1016%2Fj.redox.2013.04.005&rft_id=info%3Apmid%2F24024165&rft.externalDocID=24024165 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon |