Corrective Muscle Activity Reveals Subject-Specific Sensorimotor Recalibration
Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive) movements in human locomotion are thought to simply reflect sudden environmental changes independently from sensorimotor recalibration. Thus...
Saved in:
Published in | eNeuro Vol. 6; no. 2; p. ENEURO.0358-18.2019 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
01.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2373-2822 2373-2822 |
DOI | 10.1523/ENEURO.0358-18.2019 |
Cover
Abstract | Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive) movements in human locomotion are thought to simply reflect sudden environmental changes independently from sensorimotor recalibration. Thus, we asked whether corrective responses can indicate the motor system’s adapted state following prolonged exposure to a novel walking situation inducing sensorimotor adaptation. We recorded electromyographic (EMG) signals bilaterally on 15 leg muscles before, during, and after split-belts walking (i.e., novel walking situation), in which the legs move at different speeds. We exploited the rapid temporal dynamics of corrective responses upon unexpected speed transitions to isolate them from the overall motor output. We found that corrective muscle activity was structurally different following short versus long exposures to split-belts walking. Only after a long exposure, removal of the novel environment elicited corrective muscle patterns that matched those expected in response to a perturbation opposite to the one originally experienced. This indicated that individuals who recalibrated their motor system adopted split-belts environment as their new “normal” and transitioning back to the original walking environment causes subjects to react as if it was novel to them. Interestingly, this learning declined with age, but steady state modulation of muscle activity during split-belts walking did not, suggesting potentially different neural mechanisms underlying these motor patterns. Taken together, our results show that corrective motor commands reflect the adapted state of the motor system, which is less flexible as we age. |
---|---|
AbstractList | Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive) movements in human locomotion are thought to simply reflect sudden environmental changes independently from sensorimotor recalibration. Thus, we asked whether corrective responses can indicate the motor system's adapted state following prolonged exposure to a novel walking situation inducing sensorimotor adaptation. We recorded electromyographic (EMG) signals bilaterally on 15 leg muscles before, during, and after split-belts walking (i.e., novel walking situation), in which the legs move at different speeds. We exploited the rapid temporal dynamics of corrective responses upon unexpected speed transitions to isolate them from the overall motor output. We found that corrective muscle activity was structurally different following short versus long exposures to split-belts walking. Only after a long exposure, removal of the novel environment elicited corrective muscle patterns that matched those expected in response to a perturbation opposite to the one originally experienced. This indicated that individuals who recalibrated their motor system adopted split-belts environment as their new "normal" and transitioning back to the original walking environment causes subjects to react as if it was novel to them. Interestingly, this learning declined with age, but steady state modulation of muscle activity during split-belts walking did not, suggesting potentially different neural mechanisms underlying these motor patterns. Taken together, our results show that corrective motor commands reflect the adapted state of the motor system, which is less flexible as we age. Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive) movements in human locomotion are thought to simply reflect sudden environmental changes independently from sensorimotor recalibration. Thus, we asked whether corrective responses can indicate the motor system's adapted state following prolonged exposure to a novel walking situation inducing sensorimotor adaptation. We recorded electromyographic (EMG) signals bilaterally on 15 leg muscles before, during, and after split-belts walking (i.e., novel walking situation), in which the legs move at different speeds. We exploited the rapid temporal dynamics of corrective responses upon unexpected speed transitions to isolate them from the overall motor output. We found that corrective muscle activity was structurally different following short versus long exposures to split-belts walking. Only after a long exposure, removal of the novel environment elicited corrective muscle patterns that matched those expected in response to a perturbation opposite to the one originally experienced. This indicated that individuals who recalibrated their motor system adopted split-belts environment as their new "normal" and transitioning back to the original walking environment causes subjects to react as if it was novel to them. Interestingly, this learning declined with age, but steady state modulation of muscle activity during split-belts walking did not, suggesting potentially different neural mechanisms underlying these motor patterns. Taken together, our results show that corrective motor commands reflect the adapted state of the motor system, which is less flexible as we age.Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive) movements in human locomotion are thought to simply reflect sudden environmental changes independently from sensorimotor recalibration. Thus, we asked whether corrective responses can indicate the motor system's adapted state following prolonged exposure to a novel walking situation inducing sensorimotor adaptation. We recorded electromyographic (EMG) signals bilaterally on 15 leg muscles before, during, and after split-belts walking (i.e., novel walking situation), in which the legs move at different speeds. We exploited the rapid temporal dynamics of corrective responses upon unexpected speed transitions to isolate them from the overall motor output. We found that corrective muscle activity was structurally different following short versus long exposures to split-belts walking. Only after a long exposure, removal of the novel environment elicited corrective muscle patterns that matched those expected in response to a perturbation opposite to the one originally experienced. This indicated that individuals who recalibrated their motor system adopted split-belts environment as their new "normal" and transitioning back to the original walking environment causes subjects to react as if it was novel to them. Interestingly, this learning declined with age, but steady state modulation of muscle activity during split-belts walking did not, suggesting potentially different neural mechanisms underlying these motor patterns. Taken together, our results show that corrective motor commands reflect the adapted state of the motor system, which is less flexible as we age. |
Author | Iturralde, Pablo A. Torres-Oviedo, Gelsy |
Author_xml | – sequence: 1 givenname: Pablo A. orcidid: 0000-0001-6074-9070 surname: Iturralde fullname: Iturralde, Pablo A. – sequence: 2 givenname: Gelsy orcidid: 0000-0003-2415-1033 surname: Torres-Oviedo fullname: Torres-Oviedo, Gelsy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31043463$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtLAzEQDqJorf4CQfboZWse-0guQin1AWrB6jlks7Ma2W5qslvovzdrW1EPnmYm-R7DfMdov7ENIHRG8IiklF1OH6cvT7MRZimPCR9RTMQeGlCWs5hySvd_9Efo1Pt3jDHJaE44OURHjOCEJRkboMeJdQ50a1YQPXRe1xCN-8m06-gJVqBqH8274j1A4vkStKmMjubQeOvMwrbWBZRWtSmcao1tTtBBFShwuq1D9HI9fZ7cxvezm7vJ-D7WSU7auMrTiinGODBKkpSSXJWU6iwnLClBV2XCw7aFxkKkWaiQpCXgstTA8xSrjA3R1UZ32RULCO9N61Qtl2Ep5dbSKiN__zTmTb7alcwSkQvMg8DFVsDZjw58KxfGa6hr1YDtvKSUcCEEZSRAz396fZvsjhgAYgPQznrvoJLatF_nCNamlgTLPjO5yUz2mUnCZZ9Z4LI_3J38f6xPs0ebvQ |
CitedBy_id | crossref_primary_10_1007_s00221_021_06127_3 crossref_primary_10_1038_s41598_019_56888_9 crossref_primary_10_1152_jn_00484_2019 crossref_primary_10_1177_15459683211011226 crossref_primary_10_1242_jeb_247271 crossref_primary_10_1152_jn_00248_2023 crossref_primary_10_1186_s12984_024_01324_x crossref_primary_10_1152_jn_00865_2018 crossref_primary_10_1088_2516_1091_ac91b6 crossref_primary_10_1152_jn_00083_2020 crossref_primary_10_3389_fnagi_2021_610359 crossref_primary_10_3389_fnagi_2022_920475 crossref_primary_10_3389_fnins_2020_00174 crossref_primary_10_1109_TBME_2024_3491906 crossref_primary_10_1038_s41598_024_85091_8 crossref_primary_10_1007_s00221_024_06929_1 crossref_primary_10_3389_fnhum_2020_581026 crossref_primary_10_1523_ENEURO_0493_19_2020 crossref_primary_10_1186_s12984_020_00698_y crossref_primary_10_1038_s41598_020_61231_8 crossref_primary_10_1177_10738584211013723 |
Cites_doi | 10.1177/0269215517723056 10.1152/jn.01360.2006 10.1038/s41598-017-08147-y 10.1002/0471678384 10.1371/journal.pcbi.1003177 10.1523/JNEUROSCI.6344-11.2012 10.1152/jn.00965.2014 10.1016/j.tics.2016.05.002 10.1523/JNEUROSCI.4205-10.2010 10.1038/ncomms13034 10.1113/JP270228 10.1523/JNEUROSCI.3099-08.2008 10.1161/CIR.0000000000000350 10.1152/jn.00315.2012 10.1152/jn.00549.2010 10.3389/fnhum.2012.00119 10.1371/journal.pone.0194875 10.1523/JNEUROSCI.1046-15.2015 10.3389/fnagi.2017.00040 10.1523/JNEUROSCI.5479-07.2008 10.1111/j.2517-6161.1995.tb02031.x 10.1038/nn1930 10.1152/jn.00089.2005 10.1152/jn.00302.2015 10.1113/jphysiol.2012.245506 10.1093/gerona/54.2.M89 10.1016/j.jbiomech.2010.04.003 10.1016/S0966-6362(03)00071-7 10.1073/pnas.1611699114 10.1123/japa.6.4.363 10.1016/S1364-6613(98)01221-2 10.1523/JNEUROSCI.0263-13.2013 10.1007/BF00227344 10.1126/science.1253138 10.1152/jn.00014.2014 10.1371/journal.pcbi.1004961 10.1016/j.gaitpost.2007.11.004 10.1177/1545968312474118 10.1093/biomet/93.3.491 10.1152/jn.00437.2013 10.1177/1545968309332880 10.1126/science.1107799 10.1152/jn.00497.2012 10.1007/s004220050543 10.1016/j.clinbiomech.2012.08.005 10.1523/JNEUROSCI.4326-08.2009 10.1207/s15516709cog1603_1 10.1007/s12311-017-0879-0 10.1152/jn.00018.2012 10.1093/brain/aws265 10.1523/JNEUROSCI.2622-06.2006 10.1177/1545968317718267 10.1016/S0021-9290(01)00105-1 10.1152/jn.00391.2011 10.1152/jn.00653.2011 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Iturralde and Torres-Oviedo. Copyright © 2019 Iturralde and Torres-Oviedo 2019 Iturralde and Torres-Oviedo |
Copyright_xml | – notice: Copyright © 2019 Iturralde and Torres-Oviedo. – notice: Copyright © 2019 Iturralde and Torres-Oviedo 2019 Iturralde and Torres-Oviedo |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1523/ENEURO.0358-18.2019 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Corrective Responses Indicate Motor Learning |
EISSN | 2373-2822 |
ExternalDocumentID | PMC6497908 31043463 10_1523_ENEURO_0358_18_2019 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P30 AG024827 – fundername: National Science Foundation (NSF) grantid: BRIGE 1342183; 1535036 |
GroupedDBID | 53G 5VS AAYXX ADBBV ADRAZ AKSEZ ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION GROUPED_DOAJ H13 HYE KQ8 M48 M~E OK1 RHI RPM TFN CGR CUY CVF ECM EIF NPM RHF 7X8 5PM |
ID | FETCH-LOGICAL-c471t-f75f3a338e32145217ad22c67134decfd48016bc099566bce45de0ddce8750a63 |
IEDL.DBID | M48 |
ISSN | 2373-2822 |
IngestDate | Thu Aug 21 18:06:33 EDT 2025 Fri Jul 11 03:42:10 EDT 2025 Thu Jan 02 22:59:16 EST 2025 Tue Jul 01 03:56:34 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | motor learning EMG locomotion split-belt walking |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 Copyright © 2019 Iturralde and Torres-Oviedo. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-f75f3a338e32145217ad22c67134decfd48016bc099566bce45de0ddce8750a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This work was supported by the National Science Foundation (NSF) Broadening Participation Research Initiation Grants in Engineering Grant 1342183 and the NSF Grant 1535036. Author contributions: P.A.I. and G.T.-O. designed research; P.A.I. performed research; P.A.I. and G.T.-O. analyzed data; P.A.I. and G.T.-O. wrote the paper. The authors declare no competing financial interests. |
ORCID | 0000-0003-2415-1033 0000-0001-6074-9070 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1523/ENEURO.0358-18.2019 |
PMID | 31043463 |
PQID | 2218999231 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6497908 proquest_miscellaneous_2218999231 pubmed_primary_31043463 crossref_citationtrail_10_1523_ENEURO_0358_18_2019 crossref_primary_10_1523_ENEURO_0358_18_2019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | eNeuro |
PublicationTitleAlternate | eNeuro |
PublicationYear | 2019 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041302133513000_6.2.ENEURO.0358-18.2019.9 2023041302133513000_6.2.ENEURO.0358-18.2019.8 2023041302133513000_6.2.ENEURO.0358-18.2019.5 2023041302133513000_6.2.ENEURO.0358-18.2019.33 2023041302133513000_6.2.ENEURO.0358-18.2019.4 2023041302133513000_6.2.ENEURO.0358-18.2019.34 2023041302133513000_6.2.ENEURO.0358-18.2019.7 2023041302133513000_6.2.ENEURO.0358-18.2019.35 2023041302133513000_6.2.ENEURO.0358-18.2019.6 2023041302133513000_6.2.ENEURO.0358-18.2019.36 2023041302133513000_6.2.ENEURO.0358-18.2019.1 2023041302133513000_6.2.ENEURO.0358-18.2019.38 2023041302133513000_6.2.ENEURO.0358-18.2019.3 2023041302133513000_6.2.ENEURO.0358-18.2019.39 2023041302133513000_6.2.ENEURO.0358-18.2019.2 2023041302133513000_6.2.ENEURO.0358-18.2019.40 2023041302133513000_6.2.ENEURO.0358-18.2019.41 2023041302133513000_6.2.ENEURO.0358-18.2019.42 2023041302133513000_6.2.ENEURO.0358-18.2019.43 2023041302133513000_6.2.ENEURO.0358-18.2019.44 2023041302133513000_6.2.ENEURO.0358-18.2019.45 2023041302133513000_6.2.ENEURO.0358-18.2019.46 2023041302133513000_6.2.ENEURO.0358-18.2019.48 2023041302133513000_6.2.ENEURO.0358-18.2019.49 2023041302133513000_6.2.ENEURO.0358-18.2019.50 2023041302133513000_6.2.ENEURO.0358-18.2019.51 2023041302133513000_6.2.ENEURO.0358-18.2019.52 2023041302133513000_6.2.ENEURO.0358-18.2019.53 2023041302133513000_6.2.ENEURO.0358-18.2019.10 2023041302133513000_6.2.ENEURO.0358-18.2019.54 (2023041302133513000_6.2.ENEURO.0358-18.2019.47) 2018; 10 2023041302133513000_6.2.ENEURO.0358-18.2019.19 (2023041302133513000_6.2.ENEURO.0358-18.2019.37) 2016 2023041302133513000_6.2.ENEURO.0358-18.2019.11 2023041302133513000_6.2.ENEURO.0358-18.2019.55 2023041302133513000_6.2.ENEURO.0358-18.2019.12 (2023041302133513000_6.2.ENEURO.0358-18.2019.18) 1990; 82 2023041302133513000_6.2.ENEURO.0358-18.2019.56 2023041302133513000_6.2.ENEURO.0358-18.2019.13 2023041302133513000_6.2.ENEURO.0358-18.2019.57 2023041302133513000_6.2.ENEURO.0358-18.2019.14 2023041302133513000_6.2.ENEURO.0358-18.2019.58 2023041302133513000_6.2.ENEURO.0358-18.2019.15 2023041302133513000_6.2.ENEURO.0358-18.2019.59 2023041302133513000_6.2.ENEURO.0358-18.2019.16 2023041302133513000_6.2.ENEURO.0358-18.2019.17 2023041302133513000_6.2.ENEURO.0358-18.2019.60 2023041302133513000_6.2.ENEURO.0358-18.2019.20 2023041302133513000_6.2.ENEURO.0358-18.2019.21 2023041302133513000_6.2.ENEURO.0358-18.2019.22 2023041302133513000_6.2.ENEURO.0358-18.2019.23 2023041302133513000_6.2.ENEURO.0358-18.2019.24 2023041302133513000_6.2.ENEURO.0358-18.2019.25 2023041302133513000_6.2.ENEURO.0358-18.2019.26 2023041302133513000_6.2.ENEURO.0358-18.2019.27 2023041302133513000_6.2.ENEURO.0358-18.2019.28 2023041302133513000_6.2.ENEURO.0358-18.2019.29 2023041302133513000_6.2.ENEURO.0358-18.2019.30 2023041302133513000_6.2.ENEURO.0358-18.2019.31 2023041302133513000_6.2.ENEURO.0358-18.2019.32 |
References_xml | – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.23 doi: 10.1177/0269215517723056 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.53 doi: 10.1152/jn.01360.2006 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.45 doi: 10.1038/s41598-017-08147-y – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.28 doi: 10.1002/0471678384 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.11 doi: 10.1371/journal.pcbi.1003177 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.7 doi: 10.1523/JNEUROSCI.6344-11.2012 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.42 doi: 10.1152/jn.00965.2014 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.27 doi: 10.1016/j.tics.2016.05.002 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.54 doi: 10.1523/JNEUROSCI.4205-10.2010 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.57 doi: 10.1038/ncomms13034 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.48 doi: 10.1113/JP270228 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.16 doi: 10.1523/JNEUROSCI.3099-08.2008 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.31 doi: 10.1161/CIR.0000000000000350 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.3 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.60 doi: 10.1152/jn.00315.2012 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.8 doi: 10.1152/jn.00549.2010 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.43 doi: 10.3389/fnhum.2012.00119 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.59 doi: 10.1371/journal.pone.0194875 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.29 doi: 10.1523/JNEUROSCI.1046-15.2015 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.46 doi: 10.3389/fnagi.2017.00040 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.56 doi: 10.1523/JNEUROSCI.5479-07.2008 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.1 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.6 doi: 10.1038/nn1930 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.38 doi: 10.1152/jn.00089.2005 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.55 doi: 10.1152/jn.00302.2015 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.15 doi: 10.1113/jphysiol.2012.245506 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.51 doi: 10.1093/gerona/54.2.M89 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.50 doi: 10.1016/j.jbiomech.2010.04.003 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.13 doi: 10.1016/S0966-6362(03)00071-7 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.26 doi: 10.1073/pnas.1611699114 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.41 doi: 10.1123/japa.6.4.363 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.58 doi: 10.1016/S1364-6613(98)01221-2 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.9 doi: 10.1523/JNEUROSCI.0263-13.2013 – volume: 82 start-page: 167 year: 1990 ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.18 article-title: Postural strategies associated with somatosensory and vestibular loss publication-title: Exp Brain Res – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.14 doi: 10.1007/BF00227344 – start-page: 327 volume-title: Progress in motor control year: 2016 ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.37 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.17 doi: 10.1126/science.1253138 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.19 doi: 10.1152/jn.00014.2014 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.21 doi: 10.1371/journal.pcbi.1004961 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.33 doi: 10.1016/j.gaitpost.2007.11.004 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.40 doi: 10.1177/1545968312474118 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.2 doi: 10.1093/biomet/93.3.491 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.24 doi: 10.1152/jn.00437.2013 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.39 doi: 10.1177/1545968309332880 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.10 doi: 10.1126/science.1107799 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.34 doi: 10.1152/jn.00497.2012 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.4 doi: 10.1007/s004220050543 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.36 doi: 10.1016/j.clinbiomech.2012.08.005 – volume: 10 start-page: 60 year: 2018 ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.47 article-title: Large propulsion demands increase locomotor learning at the expense of step length asymmetry publication-title: Front Physiol – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.52 doi: 10.1523/JNEUROSCI.4326-08.2009 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.20 doi: 10.1207/s15516709cog1603_1 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.49 doi: 10.1007/s12311-017-0879-0 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.5 doi: 10.1152/jn.00018.2012 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.22 doi: 10.1093/brain/aws265 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.30 doi: 10.1523/JNEUROSCI.2622-06.2006 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.12 doi: 10.1177/1545968317718267 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.32 doi: 10.1016/S0021-9290(01)00105-1 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.35 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.25 doi: 10.1152/jn.00391.2011 – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.44 doi: 10.1152/jn.00653.2011 |
SSID | ssj0001627181 |
Score | 2.2200089 |
Snippet | Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive)... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | ENEURO.0358-18.2019 |
SubjectTerms | Adaptation, Physiological - physiology Aged Aging - physiology Electromyography Female Humans Learning - physiology Leg - physiology Male Middle Aged Muscle, Skeletal - physiology New Research Time Factors Walking - physiology |
Title | Corrective Muscle Activity Reveals Subject-Specific Sensorimotor Recalibration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31043463 https://www.proquest.com/docview/2218999231 https://pubmed.ncbi.nlm.nih.gov/PMC6497908 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qhdKL-La-iODR1DTZbJODSCktRUgPaqG3kH0ECyXRtBX9984kabG-Dp5yyGxIZjYz3-zOzgdwKYRlK194pucz32QyUmbErNh0pBdrX6DLzFlLgiEfjNjd2B1XYMmKWipw9mNqR3xSo2zafHt5v8Uf_qZg73Gue0OqemtajosJUV6u5W_AJoYmTtlYUOL9fNGF2-iLW2X3oV_G1qGGmIc5jDvrweobAv1aSPkpMvW3YauElEanmAM7UNHJLtSCctN8D4ZdYuDI_ZoRLGYoY3RkQRph3OtXRIozA_0HLciYOR19PJHGA6a3aUaGTDOUQktSXk1W3IdRv_fYHZgljYIpMfLMzbjtxk6EqagmUiIM1-1I2bbkdIpUaRkr6iDDhbTokCteNXOVthR-FOYyVsSdA6gmaaKPwPBFpDidVbVVxDzhCoxtytJKKY-YrGQD7KW-Qln2GCeqi2lIuQbqOyz0HZK-w5YXkr4bcLUa9Fy02Phb_GJpiBB_BdrfiBKdLmahjXAF8S4i1gYcFoZZPXBp0Qa010y2EqA22-t3kslT3m6bM7_tW97xv0eeQJ1evKhcO4XqPFvoM4Qyc3GeLwGc55P0A_VR89M |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corrective+Muscle+Activity+Reveals+Subject-Specific+Sensorimotor+Recalibration&rft.jtitle=eNeuro&rft.au=Iturralde%2C+Pablo+A.&rft.au=Torres-Oviedo%2C+Gelsy&rft.date=2019-03-01&rft.pub=Society+for+Neuroscience&rft.eissn=2373-2822&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1523%2FENEURO.0358-18.2019&rft_id=info%3Apmid%2F31043463&rft.externalDocID=PMC6497908 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-2822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-2822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-2822&client=summon |