Corrective Muscle Activity Reveals Subject-Specific Sensorimotor Recalibration

Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive) movements in human locomotion are thought to simply reflect sudden environmental changes independently from sensorimotor recalibration. Thus...

Full description

Saved in:
Bibliographic Details
Published ineNeuro Vol. 6; no. 2; p. ENEURO.0358-18.2019
Main Authors Iturralde, Pablo A., Torres-Oviedo, Gelsy
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 01.03.2019
Subjects
Online AccessGet full text
ISSN2373-2822
2373-2822
DOI10.1523/ENEURO.0358-18.2019

Cover

Abstract Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive) movements in human locomotion are thought to simply reflect sudden environmental changes independently from sensorimotor recalibration. Thus, we asked whether corrective responses can indicate the motor system’s adapted state following prolonged exposure to a novel walking situation inducing sensorimotor adaptation. We recorded electromyographic (EMG) signals bilaterally on 15 leg muscles before, during, and after split-belts walking (i.e., novel walking situation), in which the legs move at different speeds. We exploited the rapid temporal dynamics of corrective responses upon unexpected speed transitions to isolate them from the overall motor output. We found that corrective muscle activity was structurally different following short versus long exposures to split-belts walking. Only after a long exposure, removal of the novel environment elicited corrective muscle patterns that matched those expected in response to a perturbation opposite to the one originally experienced. This indicated that individuals who recalibrated their motor system adopted split-belts environment as their new “normal” and transitioning back to the original walking environment causes subjects to react as if it was novel to them. Interestingly, this learning declined with age, but steady state modulation of muscle activity during split-belts walking did not, suggesting potentially different neural mechanisms underlying these motor patterns. Taken together, our results show that corrective motor commands reflect the adapted state of the motor system, which is less flexible as we age.
AbstractList Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive) movements in human locomotion are thought to simply reflect sudden environmental changes independently from sensorimotor recalibration. Thus, we asked whether corrective responses can indicate the motor system's adapted state following prolonged exposure to a novel walking situation inducing sensorimotor adaptation. We recorded electromyographic (EMG) signals bilaterally on 15 leg muscles before, during, and after split-belts walking (i.e., novel walking situation), in which the legs move at different speeds. We exploited the rapid temporal dynamics of corrective responses upon unexpected speed transitions to isolate them from the overall motor output. We found that corrective muscle activity was structurally different following short versus long exposures to split-belts walking. Only after a long exposure, removal of the novel environment elicited corrective muscle patterns that matched those expected in response to a perturbation opposite to the one originally experienced. This indicated that individuals who recalibrated their motor system adopted split-belts environment as their new "normal" and transitioning back to the original walking environment causes subjects to react as if it was novel to them. Interestingly, this learning declined with age, but steady state modulation of muscle activity during split-belts walking did not, suggesting potentially different neural mechanisms underlying these motor patterns. Taken together, our results show that corrective motor commands reflect the adapted state of the motor system, which is less flexible as we age.
Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive) movements in human locomotion are thought to simply reflect sudden environmental changes independently from sensorimotor recalibration. Thus, we asked whether corrective responses can indicate the motor system's adapted state following prolonged exposure to a novel walking situation inducing sensorimotor adaptation. We recorded electromyographic (EMG) signals bilaterally on 15 leg muscles before, during, and after split-belts walking (i.e., novel walking situation), in which the legs move at different speeds. We exploited the rapid temporal dynamics of corrective responses upon unexpected speed transitions to isolate them from the overall motor output. We found that corrective muscle activity was structurally different following short versus long exposures to split-belts walking. Only after a long exposure, removal of the novel environment elicited corrective muscle patterns that matched those expected in response to a perturbation opposite to the one originally experienced. This indicated that individuals who recalibrated their motor system adopted split-belts environment as their new "normal" and transitioning back to the original walking environment causes subjects to react as if it was novel to them. Interestingly, this learning declined with age, but steady state modulation of muscle activity during split-belts walking did not, suggesting potentially different neural mechanisms underlying these motor patterns. Taken together, our results show that corrective motor commands reflect the adapted state of the motor system, which is less flexible as we age.Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive) movements in human locomotion are thought to simply reflect sudden environmental changes independently from sensorimotor recalibration. Thus, we asked whether corrective responses can indicate the motor system's adapted state following prolonged exposure to a novel walking situation inducing sensorimotor adaptation. We recorded electromyographic (EMG) signals bilaterally on 15 leg muscles before, during, and after split-belts walking (i.e., novel walking situation), in which the legs move at different speeds. We exploited the rapid temporal dynamics of corrective responses upon unexpected speed transitions to isolate them from the overall motor output. We found that corrective muscle activity was structurally different following short versus long exposures to split-belts walking. Only after a long exposure, removal of the novel environment elicited corrective muscle patterns that matched those expected in response to a perturbation opposite to the one originally experienced. This indicated that individuals who recalibrated their motor system adopted split-belts environment as their new "normal" and transitioning back to the original walking environment causes subjects to react as if it was novel to them. Interestingly, this learning declined with age, but steady state modulation of muscle activity during split-belts walking did not, suggesting potentially different neural mechanisms underlying these motor patterns. Taken together, our results show that corrective motor commands reflect the adapted state of the motor system, which is less flexible as we age.
Author Iturralde, Pablo A.
Torres-Oviedo, Gelsy
Author_xml – sequence: 1
  givenname: Pablo A.
  orcidid: 0000-0001-6074-9070
  surname: Iturralde
  fullname: Iturralde, Pablo A.
– sequence: 2
  givenname: Gelsy
  orcidid: 0000-0003-2415-1033
  surname: Torres-Oviedo
  fullname: Torres-Oviedo, Gelsy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31043463$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtLAzEQDqJorf4CQfboZWse-0guQin1AWrB6jlks7Ma2W5qslvovzdrW1EPnmYm-R7DfMdov7ENIHRG8IiklF1OH6cvT7MRZimPCR9RTMQeGlCWs5hySvd_9Efo1Pt3jDHJaE44OURHjOCEJRkboMeJdQ50a1YQPXRe1xCN-8m06-gJVqBqH8274j1A4vkStKmMjubQeOvMwrbWBZRWtSmcao1tTtBBFShwuq1D9HI9fZ7cxvezm7vJ-D7WSU7auMrTiinGODBKkpSSXJWU6iwnLClBV2XCw7aFxkKkWaiQpCXgstTA8xSrjA3R1UZ32RULCO9N61Qtl2Ep5dbSKiN__zTmTb7alcwSkQvMg8DFVsDZjw58KxfGa6hr1YDtvKSUcCEEZSRAz396fZvsjhgAYgPQznrvoJLatF_nCNamlgTLPjO5yUz2mUnCZZ9Z4LI_3J38f6xPs0ebvQ
CitedBy_id crossref_primary_10_1007_s00221_021_06127_3
crossref_primary_10_1038_s41598_019_56888_9
crossref_primary_10_1152_jn_00484_2019
crossref_primary_10_1177_15459683211011226
crossref_primary_10_1242_jeb_247271
crossref_primary_10_1152_jn_00248_2023
crossref_primary_10_1186_s12984_024_01324_x
crossref_primary_10_1152_jn_00865_2018
crossref_primary_10_1088_2516_1091_ac91b6
crossref_primary_10_1152_jn_00083_2020
crossref_primary_10_3389_fnagi_2021_610359
crossref_primary_10_3389_fnagi_2022_920475
crossref_primary_10_3389_fnins_2020_00174
crossref_primary_10_1109_TBME_2024_3491906
crossref_primary_10_1038_s41598_024_85091_8
crossref_primary_10_1007_s00221_024_06929_1
crossref_primary_10_3389_fnhum_2020_581026
crossref_primary_10_1523_ENEURO_0493_19_2020
crossref_primary_10_1186_s12984_020_00698_y
crossref_primary_10_1038_s41598_020_61231_8
crossref_primary_10_1177_10738584211013723
Cites_doi 10.1177/0269215517723056
10.1152/jn.01360.2006
10.1038/s41598-017-08147-y
10.1002/0471678384
10.1371/journal.pcbi.1003177
10.1523/JNEUROSCI.6344-11.2012
10.1152/jn.00965.2014
10.1016/j.tics.2016.05.002
10.1523/JNEUROSCI.4205-10.2010
10.1038/ncomms13034
10.1113/JP270228
10.1523/JNEUROSCI.3099-08.2008
10.1161/CIR.0000000000000350
10.1152/jn.00315.2012
10.1152/jn.00549.2010
10.3389/fnhum.2012.00119
10.1371/journal.pone.0194875
10.1523/JNEUROSCI.1046-15.2015
10.3389/fnagi.2017.00040
10.1523/JNEUROSCI.5479-07.2008
10.1111/j.2517-6161.1995.tb02031.x
10.1038/nn1930
10.1152/jn.00089.2005
10.1152/jn.00302.2015
10.1113/jphysiol.2012.245506
10.1093/gerona/54.2.M89
10.1016/j.jbiomech.2010.04.003
10.1016/S0966-6362(03)00071-7
10.1073/pnas.1611699114
10.1123/japa.6.4.363
10.1016/S1364-6613(98)01221-2
10.1523/JNEUROSCI.0263-13.2013
10.1007/BF00227344
10.1126/science.1253138
10.1152/jn.00014.2014
10.1371/journal.pcbi.1004961
10.1016/j.gaitpost.2007.11.004
10.1177/1545968312474118
10.1093/biomet/93.3.491
10.1152/jn.00437.2013
10.1177/1545968309332880
10.1126/science.1107799
10.1152/jn.00497.2012
10.1007/s004220050543
10.1016/j.clinbiomech.2012.08.005
10.1523/JNEUROSCI.4326-08.2009
10.1207/s15516709cog1603_1
10.1007/s12311-017-0879-0
10.1152/jn.00018.2012
10.1093/brain/aws265
10.1523/JNEUROSCI.2622-06.2006
10.1177/1545968317718267
10.1016/S0021-9290(01)00105-1
10.1152/jn.00391.2011
10.1152/jn.00653.2011
ContentType Journal Article
Copyright Copyright © 2019 Iturralde and Torres-Oviedo.
Copyright © 2019 Iturralde and Torres-Oviedo 2019 Iturralde and Torres-Oviedo
Copyright_xml – notice: Copyright © 2019 Iturralde and Torres-Oviedo.
– notice: Copyright © 2019 Iturralde and Torres-Oviedo 2019 Iturralde and Torres-Oviedo
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1523/ENEURO.0358-18.2019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Corrective Responses Indicate Motor Learning
EISSN 2373-2822
ExternalDocumentID PMC6497908
31043463
10_1523_ENEURO_0358_18_2019
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P30 AG024827
– fundername: National Science Foundation (NSF)
  grantid: BRIGE 1342183; 1535036
GroupedDBID 53G
5VS
AAYXX
ADBBV
ADRAZ
AKSEZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
GROUPED_DOAJ
H13
HYE
KQ8
M48
M~E
OK1
RHI
RPM
TFN
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
5PM
ID FETCH-LOGICAL-c471t-f75f3a338e32145217ad22c67134decfd48016bc099566bce45de0ddce8750a63
IEDL.DBID M48
ISSN 2373-2822
IngestDate Thu Aug 21 18:06:33 EDT 2025
Fri Jul 11 03:42:10 EDT 2025
Thu Jan 02 22:59:16 EST 2025
Tue Jul 01 03:56:34 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords motor learning
EMG
locomotion
split-belt walking
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
Copyright © 2019 Iturralde and Torres-Oviedo.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-f75f3a338e32145217ad22c67134decfd48016bc099566bce45de0ddce8750a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This work was supported by the National Science Foundation (NSF) Broadening Participation Research Initiation Grants in Engineering Grant 1342183 and the NSF Grant 1535036.
Author contributions: P.A.I. and G.T.-O. designed research; P.A.I. performed research; P.A.I. and G.T.-O. analyzed data; P.A.I. and G.T.-O. wrote the paper.
The authors declare no competing financial interests.
ORCID 0000-0003-2415-1033
0000-0001-6074-9070
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1523/ENEURO.0358-18.2019
PMID 31043463
PQID 2218999231
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6497908
proquest_miscellaneous_2218999231
pubmed_primary_31043463
crossref_citationtrail_10_1523_ENEURO_0358_18_2019
crossref_primary_10_1523_ENEURO_0358_18_2019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle eNeuro
PublicationTitleAlternate eNeuro
PublicationYear 2019
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041302133513000_6.2.ENEURO.0358-18.2019.9
2023041302133513000_6.2.ENEURO.0358-18.2019.8
2023041302133513000_6.2.ENEURO.0358-18.2019.5
2023041302133513000_6.2.ENEURO.0358-18.2019.33
2023041302133513000_6.2.ENEURO.0358-18.2019.4
2023041302133513000_6.2.ENEURO.0358-18.2019.34
2023041302133513000_6.2.ENEURO.0358-18.2019.7
2023041302133513000_6.2.ENEURO.0358-18.2019.35
2023041302133513000_6.2.ENEURO.0358-18.2019.6
2023041302133513000_6.2.ENEURO.0358-18.2019.36
2023041302133513000_6.2.ENEURO.0358-18.2019.1
2023041302133513000_6.2.ENEURO.0358-18.2019.38
2023041302133513000_6.2.ENEURO.0358-18.2019.3
2023041302133513000_6.2.ENEURO.0358-18.2019.39
2023041302133513000_6.2.ENEURO.0358-18.2019.2
2023041302133513000_6.2.ENEURO.0358-18.2019.40
2023041302133513000_6.2.ENEURO.0358-18.2019.41
2023041302133513000_6.2.ENEURO.0358-18.2019.42
2023041302133513000_6.2.ENEURO.0358-18.2019.43
2023041302133513000_6.2.ENEURO.0358-18.2019.44
2023041302133513000_6.2.ENEURO.0358-18.2019.45
2023041302133513000_6.2.ENEURO.0358-18.2019.46
2023041302133513000_6.2.ENEURO.0358-18.2019.48
2023041302133513000_6.2.ENEURO.0358-18.2019.49
2023041302133513000_6.2.ENEURO.0358-18.2019.50
2023041302133513000_6.2.ENEURO.0358-18.2019.51
2023041302133513000_6.2.ENEURO.0358-18.2019.52
2023041302133513000_6.2.ENEURO.0358-18.2019.53
2023041302133513000_6.2.ENEURO.0358-18.2019.10
2023041302133513000_6.2.ENEURO.0358-18.2019.54
(2023041302133513000_6.2.ENEURO.0358-18.2019.47) 2018; 10
2023041302133513000_6.2.ENEURO.0358-18.2019.19
(2023041302133513000_6.2.ENEURO.0358-18.2019.37) 2016
2023041302133513000_6.2.ENEURO.0358-18.2019.11
2023041302133513000_6.2.ENEURO.0358-18.2019.55
2023041302133513000_6.2.ENEURO.0358-18.2019.12
(2023041302133513000_6.2.ENEURO.0358-18.2019.18) 1990; 82
2023041302133513000_6.2.ENEURO.0358-18.2019.56
2023041302133513000_6.2.ENEURO.0358-18.2019.13
2023041302133513000_6.2.ENEURO.0358-18.2019.57
2023041302133513000_6.2.ENEURO.0358-18.2019.14
2023041302133513000_6.2.ENEURO.0358-18.2019.58
2023041302133513000_6.2.ENEURO.0358-18.2019.15
2023041302133513000_6.2.ENEURO.0358-18.2019.59
2023041302133513000_6.2.ENEURO.0358-18.2019.16
2023041302133513000_6.2.ENEURO.0358-18.2019.17
2023041302133513000_6.2.ENEURO.0358-18.2019.60
2023041302133513000_6.2.ENEURO.0358-18.2019.20
2023041302133513000_6.2.ENEURO.0358-18.2019.21
2023041302133513000_6.2.ENEURO.0358-18.2019.22
2023041302133513000_6.2.ENEURO.0358-18.2019.23
2023041302133513000_6.2.ENEURO.0358-18.2019.24
2023041302133513000_6.2.ENEURO.0358-18.2019.25
2023041302133513000_6.2.ENEURO.0358-18.2019.26
2023041302133513000_6.2.ENEURO.0358-18.2019.27
2023041302133513000_6.2.ENEURO.0358-18.2019.28
2023041302133513000_6.2.ENEURO.0358-18.2019.29
2023041302133513000_6.2.ENEURO.0358-18.2019.30
2023041302133513000_6.2.ENEURO.0358-18.2019.31
2023041302133513000_6.2.ENEURO.0358-18.2019.32
References_xml – ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.23
  doi: 10.1177/0269215517723056
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.53
  doi: 10.1152/jn.01360.2006
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.45
  doi: 10.1038/s41598-017-08147-y
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.28
  doi: 10.1002/0471678384
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.11
  doi: 10.1371/journal.pcbi.1003177
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.7
  doi: 10.1523/JNEUROSCI.6344-11.2012
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.42
  doi: 10.1152/jn.00965.2014
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.27
  doi: 10.1016/j.tics.2016.05.002
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.54
  doi: 10.1523/JNEUROSCI.4205-10.2010
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.57
  doi: 10.1038/ncomms13034
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.48
  doi: 10.1113/JP270228
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.16
  doi: 10.1523/JNEUROSCI.3099-08.2008
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.31
  doi: 10.1161/CIR.0000000000000350
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.3
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.60
  doi: 10.1152/jn.00315.2012
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.8
  doi: 10.1152/jn.00549.2010
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.43
  doi: 10.3389/fnhum.2012.00119
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.59
  doi: 10.1371/journal.pone.0194875
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.29
  doi: 10.1523/JNEUROSCI.1046-15.2015
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.46
  doi: 10.3389/fnagi.2017.00040
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.56
  doi: 10.1523/JNEUROSCI.5479-07.2008
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.6
  doi: 10.1038/nn1930
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.38
  doi: 10.1152/jn.00089.2005
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.55
  doi: 10.1152/jn.00302.2015
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.15
  doi: 10.1113/jphysiol.2012.245506
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.51
  doi: 10.1093/gerona/54.2.M89
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.50
  doi: 10.1016/j.jbiomech.2010.04.003
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.13
  doi: 10.1016/S0966-6362(03)00071-7
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.26
  doi: 10.1073/pnas.1611699114
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.41
  doi: 10.1123/japa.6.4.363
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.58
  doi: 10.1016/S1364-6613(98)01221-2
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.9
  doi: 10.1523/JNEUROSCI.0263-13.2013
– volume: 82
  start-page: 167
  year: 1990
  ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.18
  article-title: Postural strategies associated with somatosensory and vestibular loss
  publication-title: Exp Brain Res
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.14
  doi: 10.1007/BF00227344
– start-page: 327
  volume-title: Progress in motor control
  year: 2016
  ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.37
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.17
  doi: 10.1126/science.1253138
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.19
  doi: 10.1152/jn.00014.2014
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.21
  doi: 10.1371/journal.pcbi.1004961
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.33
  doi: 10.1016/j.gaitpost.2007.11.004
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.40
  doi: 10.1177/1545968312474118
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.2
  doi: 10.1093/biomet/93.3.491
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.24
  doi: 10.1152/jn.00437.2013
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.39
  doi: 10.1177/1545968309332880
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.10
  doi: 10.1126/science.1107799
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.34
  doi: 10.1152/jn.00497.2012
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.4
  doi: 10.1007/s004220050543
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.36
  doi: 10.1016/j.clinbiomech.2012.08.005
– volume: 10
  start-page: 60
  year: 2018
  ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.47
  article-title: Large propulsion demands increase locomotor learning at the expense of step length asymmetry
  publication-title: Front Physiol
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.52
  doi: 10.1523/JNEUROSCI.4326-08.2009
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.20
  doi: 10.1207/s15516709cog1603_1
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.49
  doi: 10.1007/s12311-017-0879-0
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.5
  doi: 10.1152/jn.00018.2012
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.22
  doi: 10.1093/brain/aws265
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.30
  doi: 10.1523/JNEUROSCI.2622-06.2006
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.12
  doi: 10.1177/1545968317718267
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.32
  doi: 10.1016/S0021-9290(01)00105-1
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.35
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.25
  doi: 10.1152/jn.00391.2011
– ident: 2023041302133513000_6.2.ENEURO.0358-18.2019.44
  doi: 10.1152/jn.00653.2011
SSID ssj0001627181
Score 2.2200089
Snippet Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive)...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage ENEURO.0358-18.2019
SubjectTerms Adaptation, Physiological - physiology
Aged
Aging - physiology
Electromyography
Female
Humans
Learning - physiology
Leg - physiology
Male
Middle Aged
Muscle, Skeletal - physiology
New Research
Time Factors
Walking - physiology
Title Corrective Muscle Activity Reveals Subject-Specific Sensorimotor Recalibration
URI https://www.ncbi.nlm.nih.gov/pubmed/31043463
https://www.proquest.com/docview/2218999231
https://pubmed.ncbi.nlm.nih.gov/PMC6497908
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qhdKL-La-iODR1DTZbJODSCktRUgPaqG3kH0ECyXRtBX9984kabG-Dp5yyGxIZjYz3-zOzgdwKYRlK194pucz32QyUmbErNh0pBdrX6DLzFlLgiEfjNjd2B1XYMmKWipw9mNqR3xSo2zafHt5v8Uf_qZg73Gue0OqemtajosJUV6u5W_AJoYmTtlYUOL9fNGF2-iLW2X3oV_G1qGGmIc5jDvrweobAv1aSPkpMvW3YauElEanmAM7UNHJLtSCctN8D4ZdYuDI_ZoRLGYoY3RkQRph3OtXRIozA_0HLciYOR19PJHGA6a3aUaGTDOUQktSXk1W3IdRv_fYHZgljYIpMfLMzbjtxk6EqagmUiIM1-1I2bbkdIpUaRkr6iDDhbTokCteNXOVthR-FOYyVsSdA6gmaaKPwPBFpDidVbVVxDzhCoxtytJKKY-YrGQD7KW-Qln2GCeqi2lIuQbqOyz0HZK-w5YXkr4bcLUa9Fy02Phb_GJpiBB_BdrfiBKdLmahjXAF8S4i1gYcFoZZPXBp0Qa010y2EqA22-t3kslT3m6bM7_tW97xv0eeQJ1evKhcO4XqPFvoM4Qyc3GeLwGc55P0A_VR89M
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corrective+Muscle+Activity+Reveals+Subject-Specific+Sensorimotor+Recalibration&rft.jtitle=eNeuro&rft.au=Iturralde%2C+Pablo+A.&rft.au=Torres-Oviedo%2C+Gelsy&rft.date=2019-03-01&rft.pub=Society+for+Neuroscience&rft.eissn=2373-2822&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1523%2FENEURO.0358-18.2019&rft_id=info%3Apmid%2F31043463&rft.externalDocID=PMC6497908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-2822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-2822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-2822&client=summon