Investigation of hybrid plasmons in a highly crystalline Bi2Se3/C60 heterostructure using low-loss electron energy loss spectroscopy
Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has...
Saved in:
Published in | Communications materials Vol. 6; no. 1; pp. 166 - 9 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.07.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi
2
Se
3
, but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi
2
Se
3
/C
60
with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of
π
states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing.
Topological insulators offer promising potential for nanoscale, high-frequency devices, yet controlling surface plasmon properties remains challenging. Here, the authors grow Bi
2
Se
3
/C
60
heterostructures with exceptional crystallinity, using electron energy loss spectroscopy and density functional theory to reveal significant
π
state hybridization and quenching of 2D plasmons. |
---|---|
AbstractList | Abstract Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi2Se3, but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi2Se3/C60 with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of π states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing. Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi2Se3, but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi2Se3/C60 with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of π states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing.Topological insulators offer promising potential for nanoscale, high-frequency devices, yet controlling surface plasmon properties remains challenging. Here, the authors grow Bi2Se3/C60 heterostructures with exceptional crystallinity, using electron energy loss spectroscopy and density functional theory to reveal significant π state hybridization and quenching of 2D plasmons. Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi 2 Se 3 , but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi 2 Se 3 /C 60 with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of π states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing. Topological insulators offer promising potential for nanoscale, high-frequency devices, yet controlling surface plasmon properties remains challenging. Here, the authors grow Bi 2 Se 3 /C 60 heterostructures with exceptional crystallinity, using electron energy loss spectroscopy and density functional theory to reveal significant π state hybridization and quenching of 2D plasmons. Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi2Se3, but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi2Se3/C60 with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of π states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing.Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi2Se3, but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi2Se3/C60 with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of π states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing. Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi 2 Se 3 , but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi 2 Se 3 /C 60 with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of π states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing. |
ArticleNumber | 166 |
Author | Burton, Joel Sasaki, Satoshi Gity, Farzan Ramasse, Quentin Moorsom, Timothy Knox, Craig Rogers, Matthew MacLaren, Donald McCauley, Mairi Ansari, Lida Hurley, Paul K. |
Author_xml | – sequence: 1 givenname: Mairi surname: McCauley fullname: McCauley, Mairi organization: SUPA, School of Physics and Astronomy, University of Glasgow – sequence: 2 givenname: Lida orcidid: 0000-0002-9284-2832 surname: Ansari fullname: Ansari, Lida organization: Micronano Electronics Group, Tyndall National Institute, University College Cork – sequence: 3 givenname: Farzan orcidid: 0000-0003-3128-1426 surname: Gity fullname: Gity, Farzan organization: Micronano Electronics Group, Tyndall National Institute, University College Cork – sequence: 4 givenname: Matthew orcidid: 0000-0002-4550-2392 surname: Rogers fullname: Rogers, Matthew organization: School of Physics and Astronomy, University of Leeds – sequence: 5 givenname: Joel surname: Burton fullname: Burton, Joel organization: School of Physics and Astronomy, University of Leeds – sequence: 6 givenname: Satoshi orcidid: 0000-0002-8915-6735 surname: Sasaki fullname: Sasaki, Satoshi organization: School of Physics and Astronomy, University of Leeds – sequence: 7 givenname: Quentin orcidid: 0000-0001-7466-2283 surname: Ramasse fullname: Ramasse, Quentin organization: SuperSTEM, SciTech Daresbury Science and Innovation Campus, School of Chemical and Process Engineering, University of Leeds – sequence: 8 givenname: Craig surname: Knox fullname: Knox, Craig organization: School of Physics and Astronomy, University of Leeds – sequence: 9 givenname: Paul K. surname: Hurley fullname: Hurley, Paul K. organization: Micronano Electronics Group, Tyndall National Institute, University College Cork, School of Chemistry, University College Cork – sequence: 10 givenname: Donald orcidid: 0000-0003-0641-686X surname: MacLaren fullname: MacLaren, Donald organization: SUPA, School of Physics and Astronomy, University of Glasgow – sequence: 11 givenname: Timothy orcidid: 0000-0002-1771-7185 surname: Moorsom fullname: Moorsom, Timothy email: T.Moorsom@leeds.ac.uk organization: School of Physics and Astronomy, University of Leeds, School of Chemical and Process Engineering, University of Leeds |
BookMark | eNp9kkFv1DAQhSNUJErpH-BkiQuXtI7HcbInBCsoK1XiAJytiTPJeuW1FztplTs_HHe3AsqBk0fPbz49zczL4swHT0XxuuJXFYf2OkkQUpVc1CXnbZurZ8W5UEqUUko4-6t-UVymtOM8W6tKSX5e_Nz4O0qTHXGywbMwsO3SRduzg8O0Dz4x6xmyrR23bmEmLmlC56wn9sGKrwTXa8XZliaKIU1xNtMcic3J-pG5cF-6kBIjR2aKmU6e4riwo5gORzGZcFheFc8HdIkuH9-L4vunj9_Wn8vbLzeb9fvb0simmkrCDtrGDAKblYCuRjXwVYXQKegQ-hYBZF_Xvcy6RF63He85YZ9ntCKABi6KzYnbB9zpQ7R7jIsOaPVRCHHUGCdrHGk0Q1OroSGhMguxU7IGol52hDmHyqx3J9Zh7vbUG_JTRPcE-vTH260ew52uBPBGiDoT3j4SYvgx5yXovU2GnENPYU4aBNTQti2HbH3zj3UX5ujzrB5css5R21V2iZPL5LmmSMPvNBXXD5eiT5ei8_r18VI0z01wakrZ7EeKf9D_6foFAoLGeA |
Cites_doi | 10.1103/PhysRevB.46.16067 10.1002/adom.202301673 10.1007/978-1-4419-9583-4 10.1016/0038-1098(92)90656-T 10.1103/PhysRevB.88.205427 10.1063/1.3630230 10.1016/S0022-3697(97)00080-2 10.1140/epjd/e2012-30178-1 10.1103/PhysRevLett.124.226403 10.1038/ncomms1131 10.1103/PhysRevResearch.5.L022042 10.1103/PhysRevB.106.245203 10.1002/advs.201600430 10.1016/j.ultramic.2018.12.006 10.1021/acsnano.6b00272 10.1021/acsnano.7b03569 10.1016/S0368-2048(99)00012-2 10.1016/0039-6028(93)90858-H 10.1002/admi.202000524 10.1038/nnano.2013.134 10.5772/58558 10.1039/C4NR03143A 10.1103/PhysRevB.98.205409 10.1016/S0375-9601(96)00707-4 10.1021/acs.nanolett.5b02635 10.1103/PhysRevB.88.155408 10.1103/PhysRevB.87.075447 10.1007/BF01425691 10.1103/PhysRevB.91.045418 10.1021/acs.nanolett.5b02213 10.1038/am.2017.149 10.1103/PhysRevMaterials.2.044203 10.1103/PhysRevB.99.045425 10.1038/nphoton.2012.262 10.1021/nn3021822 10.1021/jp412690h 10.1016/j.cpc.2018.01.012 10.1103/PhysRevB.51.4014 10.1103/PhysRevLett.104.116401 10.1016/0039-6028(92)90079-L 10.1126/science.aar8438 10.1063/1.461065 10.1016/0009-2614(91)80086-D 10.1063/1.4897970 10.1038/nmat4902 10.1103/PhysRevLett.18.546 10.1103/PhysRevB.87.085126 10.1007/978-3-319-45820-5_13 10.1103/RevModPhys.82.3045 10.1002/admi.201400134 10.1103/PhysRevB.13.5188 10.1103/PhysRevB.105.205408 10.1021/acsnano.8b01481 10.1021/acsanm.3c04197 10.1088/0022-3719/18/27/019 10.1063/1.3382344 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.1038/s43246-025-00886-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Proquest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2662-4443 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_acf756f7e2604aaab6453eed4beaeab6 PMC12307225 10_1038_s43246_025_00886_0 |
GrantInformation_xml | – fundername: Royal Academy of Engineering grantid: RF/201920/19/245 funderid: 501100000287 – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/V001914/1; EP/P022464/1; EP/R00661X/1 funderid: 501100000266 – fundername: Science Foundation Ireland (SFI) grantid: SFI-12/RC/2278-P2 funderid: 501100001602 |
GroupedDBID | 0R~ AAJSJ AASML ABJCF AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ KB. NAO OK1 PDBOC PHGZM PHGZT PIMPY PQGLB SNYQT AARCD AAYXX CITATION 8FE 8FG ABUWG AZQEC D1I DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c471t-eab387cf2a7923b5a6f091a3b63ba3d8a334d55d46f04a058b0d0ead0389e3373 |
IEDL.DBID | AAJSJ |
ISSN | 2662-4443 |
IngestDate | Wed Aug 27 00:54:27 EDT 2025 Thu Aug 21 18:33:39 EDT 2025 Fri Aug 01 18:24:55 EDT 2025 Sat Aug 23 12:57:16 EDT 2025 Thu Aug 07 05:49:01 EDT 2025 Wed Jul 30 01:29:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-eab387cf2a7923b5a6f091a3b63ba3d8a334d55d46f04a058b0d0ead0389e3373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8915-6735 0000-0003-0641-686X 0000-0002-1771-7185 0000-0001-7466-2283 0000-0002-4550-2392 0000-0002-9284-2832 0000-0003-3128-1426 |
OpenAccessLink | https://www.nature.com/articles/s43246-025-00886-0 |
PQID | 3234575689 |
PQPubID | 5061814 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_acf756f7e2604aaab6453eed4beaeab6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12307225 proquest_miscellaneous_3235388803 proquest_journals_3234575689 crossref_primary_10_1038_s43246_025_00886_0 springer_journals_10_1038_s43246_025_00886_0 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-29 |
PublicationDateYYYYMMDD | 2025-07-29 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Communications materials |
PublicationTitleAbbrev | Commun Mater |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | E Gillet (886_CR36) 1992; 273 886_CR1 MZ Hasan (886_CR9) 2010; 82 886_CR42 G Makov (886_CR61) 1995; 51 T Stauber (886_CR11) 2013; 88 A Konečná (886_CR41) 2018; 12 B Ealet (886_CR37) 1993; 281 Y Li (886_CR3) 2017; 4 P Bolognesi (886_CR33) 2012; 66 CS Knox (886_CR52) 2022; 106 P Hansen (886_CR34) 1991; 181 DW Latzke (886_CR19) 2019; 99 O Krivanek (886_CR40) 2019; 203 D Ostling (886_CR31) 1993; 26 A Politano (886_CR26) 2014; 6 P Ai (886_CR20) 2023; 5 V Nascimento (886_CR22) 1999; 104 O Gunnarsson (886_CR48) 1996; 8 886_CR53 FS Hage (886_CR55) 2013; 88 Z Ni (886_CR28) 2017; 11 M Bianchi (886_CR14) 2012; 6 PD Pietro (886_CR10) 2013; 8 M Caputo (886_CR17) 2016; 16 NV Tarakina (886_CR62) 2014; 1 T Stauber (886_CR6) 2014; 26 D Gorokhov (886_CR35) 1996; 223 L Su (886_CR51) 2023; 7 J Neugebauer (886_CR60) 1992; 46 AN Grigorenko (886_CR4) 2012; 6 A Nagashima (886_CR46) 1992; 83 A Konečná (886_CR39) 2018; 98 S Cai (886_CR25) 2018; 3 R Garcia-Molina (886_CR54) 1985; 18 V Despoja (886_CR27) 2013; 87 T Wei (886_CR18) 2022; 105 SC Liou (886_CR24) 2013; 87 J yin (886_CR7) 2017; 9 T Kitazawa (886_CR15) 2020; 7 A Moradi (886_CR43) 2014; 21 J-Y Ou (886_CR50) 2014; 5 M Bianchi (886_CR13) 2010; 1 HJ Monkhorst (886_CR58) 1976; 13 SC Liou (886_CR44) 2015; 91 F Stern (886_CR45) 1967; 18 Y-P Lai (886_CR5) 2014; 4 M Cinchetti (886_CR49) 2017; 16 M van Setten (886_CR57) 2018; 226 DA Iranzo (886_CR2) 2018; 360 S Raghu (886_CR12) 2010; 104 S Jakobs (886_CR21) 2015; 15 G Barton (886_CR32) 1991; 95 H Zhang (886_CR29) 2016; 10 J Wang (886_CR16) 2014; 118 S Smidstrup (886_CR56) 2019; 32 H Kataura (886_CR47) 1997; 58 P Di Pietro (886_CR8) 2020; 124 K Sobczak (886_CR23) 2018; 2 S Grimme (886_CR59) 2010; 132 V Pistore (886_CR30) 2024; 12 EDW Maclean (886_CR38) 2001; 168 |
References_xml | – volume: 46 start-page: 16067 year: 1992 ident: 886_CR60 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.16067 – volume: 12 start-page: 2301673 year: 2024 ident: 886_CR30 publication-title: Adv. Optical Mater. doi: 10.1002/adom.202301673 – ident: 886_CR53 doi: 10.1007/978-1-4419-9583-4 – volume: 83 start-page: 581 year: 1992 ident: 886_CR46 publication-title: Solid State Commun. doi: 10.1016/0038-1098(92)90656-T – volume: 88 start-page: 205427 year: 2013 ident: 886_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.205427 – ident: 886_CR42 doi: 10.1063/1.3630230 – volume: 58 start-page: 1913 year: 1997 ident: 886_CR47 publication-title: J. Phys. Chem. Solids doi: 10.1016/S0022-3697(97)00080-2 – volume: 66 year: 2012 ident: 886_CR33 publication-title: Eur. Phys. J. D. doi: 10.1140/epjd/e2012-30178-1 – volume: 124 start-page: 226403 year: 2020 ident: 886_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.226403 – volume: 1 start-page: 128 year: 2010 ident: 886_CR13 publication-title: Nat. Comm. doi: 10.1038/ncomms1131 – volume: 5 start-page: L022042 year: 2023 ident: 886_CR20 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.5.L022042 – volume: 168 start-page: 259 year: 2001 ident: 886_CR38 publication-title: Inst. Phys. Conf. Ser. – volume: 106 start-page: 245203 year: 2022 ident: 886_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.245203 – volume: 4 start-page: 1600430 year: 2017 ident: 886_CR3 publication-title: Adv. Sci. doi: 10.1002/advs.201600430 – volume: 203 start-page: 60 year: 2019 ident: 886_CR40 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2018.12.006 – volume: 10 start-page: 5113 year: 2016 ident: 886_CR29 publication-title: ACS nano doi: 10.1021/acsnano.6b00272 – volume: 11 start-page: 9854 year: 2017 ident: 886_CR28 publication-title: ACS nano doi: 10.1021/acsnano.7b03569 – volume: 104 start-page: 99 year: 1999 ident: 886_CR22 publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/S0368-2048(99)00012-2 – volume: 281 start-page: 91 year: 1993 ident: 886_CR37 publication-title: Surf. Sci. doi: 10.1016/0039-6028(93)90858-H – volume: 7 start-page: 2000524 year: 2020 ident: 886_CR15 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202000524 – volume: 8 start-page: 556 year: 2013 ident: 886_CR10 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2013.134 – volume: 4 start-page: 13 year: 2014 ident: 886_CR5 publication-title: Nanomaterials Nanotechnol. doi: 10.5772/58558 – volume: 6 start-page: 10927 year: 2014 ident: 886_CR26 publication-title: Nanoscale doi: 10.1039/C4NR03143A – volume: 98 start-page: 205409 year: 2018 ident: 886_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.205409 – volume: 8 start-page: 2557 year: 1996 ident: 886_CR48 publication-title: J. Phys.: Condens. Matter – volume: 223 start-page: 116 year: 1996 ident: 886_CR35 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(96)00707-4 – volume: 16 start-page: 3409 year: 2016 ident: 886_CR17 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02635 – volume: 88 start-page: 155408 year: 2013 ident: 886_CR55 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.155408 – volume: 87 start-page: 075447 year: 2013 ident: 886_CR27 publication-title: Phys. Rev. B-Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.87.075447 – volume: 26 start-page: 282 year: 1993 ident: 886_CR31 publication-title: Z. fur Phys. D. At., Molecules Clust. doi: 10.1007/BF01425691 – volume: 91 start-page: 045418 year: 2015 ident: 886_CR44 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.91.045418 – volume: 5 year: 2014 ident: 886_CR50 publication-title: Nat. Commun. – volume: 15 start-page: 6022 year: 2015 ident: 886_CR21 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02213 – volume: 9 start-page: e425 year: 2017 ident: 886_CR7 publication-title: NPG Asia Mater. doi: 10.1038/am.2017.149 – volume: 2 start-page: 044203 year: 2018 ident: 886_CR23 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.2.044203 – volume: 3 year: 2018 ident: 886_CR25 publication-title: Npj Quantum Mater. – volume: 99 start-page: 045425 year: 2019 ident: 886_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.045425 – volume: 6 start-page: 749 year: 2012 ident: 886_CR4 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.262 – volume: 6 start-page: 7009 year: 2012 ident: 886_CR14 publication-title: ACS Nano doi: 10.1021/nn3021822 – volume: 118 start-page: 14860 year: 2014 ident: 886_CR16 publication-title: J. Phys. Chem. C. doi: 10.1021/jp412690h – volume: 226 start-page: 39 year: 2018 ident: 886_CR57 publication-title: Computer Phys. Commun. doi: 10.1016/j.cpc.2018.01.012 – volume: 51 start-page: 4014 year: 1995 ident: 886_CR61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.4014 – volume: 104 start-page: 116401 year: 2010 ident: 886_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.116401 – volume: 273 start-page: 427 year: 1992 ident: 886_CR36 publication-title: Surf. Sci. doi: 10.1016/0039-6028(92)90079-L – volume: 360 start-page: 291 year: 2018 ident: 886_CR2 publication-title: Science doi: 10.1126/science.aar8438 – volume: 95 start-page: 1512 year: 1991 ident: 886_CR32 publication-title: J. Chem. Phys. doi: 10.1063/1.461065 – volume: 181 start-page: 367 year: 1991 ident: 886_CR34 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(91)80086-D – volume: 21 start-page: 104508 year: 2014 ident: 886_CR43 publication-title: Phys. Plasmas doi: 10.1063/1.4897970 – volume: 16 start-page: 507 year: 2017 ident: 886_CR49 publication-title: Nat. Mater. doi: 10.1038/nmat4902 – volume: 18 start-page: 546 year: 1967 ident: 886_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.18.546 – volume: 87 start-page: 085126 year: 2013 ident: 886_CR24 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.87.085126 – ident: 886_CR1 doi: 10.1007/978-3-319-45820-5_13 – volume: 82 start-page: 3045 year: 2010 ident: 886_CR9 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.3045 – volume: 32 start-page: 015901 year: 2019 ident: 886_CR56 publication-title: J. Phys.: Condens. Matter – volume: 26 start-page: 123201 year: 2014 ident: 886_CR6 publication-title: J. Phys.: Condens. Matter – volume: 1 start-page: 1400134 year: 2014 ident: 886_CR62 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201400134 – volume: 13 start-page: 5188 year: 1976 ident: 886_CR58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 105 start-page: 205408 year: 2022 ident: 886_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.205408 – volume: 12 start-page: 4775 year: 2018 ident: 886_CR41 publication-title: ACS Nano doi: 10.1021/acsnano.8b01481 – volume: 7 start-page: 170 year: 2023 ident: 886_CR51 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c04197 – volume: 18 start-page: 5335 year: 1985 ident: 886_CR54 publication-title: J. Phys. C: Solid State Phys. doi: 10.1088/0022-3719/18/27/019 – volume: 132 start-page: 154104 year: 2010 ident: 886_CR59 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 |
SSID | ssj0002511640 |
Score | 2.2987006 |
Snippet | Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering... Abstract Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 166 |
SubjectTerms | 639/766/119/2792/4128 639/925/357/73 Chemistry and Materials Science Crystallinity Density functional theory Dipoles Electron energy loss spectroscopy Electron transport Electrons Fullerenes Graphene Heterostructures Interfaces Investigations Ion beams Materials Science Molecular beam epitaxy Plasmons Quenching Robust control Spectrum analysis Thin films Topological insulators |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BatwwEBUhp15CQ1viNg0q5Naa1XokWT4moSEE2ksayE1IspxdWOwlm1D2ng_PjOxN1oHSS262JGxp5mk0QjNPjB1XU1_VUtcI3jLksi7omhcZcoWG0DuEkAHKd_71W19cy8sbdbN11RfFhPX0wL3gJi40pdJNGdHxls45r6UCNOzSRxfxjawvrnlbmymyweQ4aymGLBkBZrIi6jmKt1U5LnsGn0YrUSLsH3mZr2MkXx2UpvXn_D3bGxxHftJ3eJ_txPYDe9yiyeha3jV8tqYULL5EpxgBtuLzljtOnMSLNQ93a_QFiYQ78tN5cRVhcqYFn1FETNcTyT7cRU6h8Ld80f3NF9hvvrkoh8eUJshTYUrQJCLMbrn-yK7Pf_45u8iHexXygBq4z1FsYMrQFI7IA71yukEJOvAavIPaOABZK4UqbFDkQhkvaoGIIy6-CFDCJ7bbdm08YLyaQohq2kjaavlQVKLW-CFRB41GtAoZ-76RsV329Bk2HXuDsb1GLGrEJo1YkbFTUsNzS6K-TgUICDsAwv4PEBk73CjRDvNxZaEAiY6pNlXGvj1X40yi4xHXxu4htUHrj_YMMmZGyh91aFzTzmeJk3tKAfVoGzP2Y4OTl7__e8Sf32LEX9i7IuG6zIvqkO0iXuJXdJXu_VGaFU_P2RWW priority: 102 providerName: Directory of Open Access Journals – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9swEBZb-rKXsbGNeWuHBnvbTBRLluWn0pSWMlgZ2wp9E5IsN4FgpUnLyPt-eO8UOa0L3ZuxTSzn-3R3lu6-I-RLPbF1I2QD5K1cLpoC27wIl5dgCK0BCimO9c4_zuXZhfh-WV6mBbd1SqvsbWI01E1wuEY-5gUXEFpIVR8ur3PsGoW7q6mFxnOyByZYqRHZm56c__y1W2XBAFoKlqplGFfjNUrQYd5tmYP7U3A08EhRuH8QbT7OlXy0YRr90Okr8jIFkPRoi_hr8sx3b8i_B3IZoaOhpbMNlmLRJQTHMPI1nXfUUNQmXmyoW20gJkQxbk-n8-K35-NjyegMM2PCVlD2duUppsRf0UX4my9g3LRvmEN9LBek8WQs1ERBzLDcvCUXpyd_js_y1F8hd4DETe6N5apybWFQRNCWRrYQPRhuJbeGN8pwLpqyBChbJgwrlWUNA-ahJp_nvOLvyKgLnX9PaD3hzpeTVuAnl3VFzRoJP8QaJ8GY1i4jX_v_WC-3Mho6bn9zpbeIaEBER0Q0y8gUYdjdiRLY8URYXek0o7RxLdChrTx8kQljjJWi5ODxhfUG3kxmZL8HUad5udb3LMrI591lmFG4TWI6H27jPeAFwK7xjKgB-IMBDa9081nU5p5gYj3YyIx863ly__Sn3_jD_wf7kbwoImOrvKj3yQiY4A8gGLqxnxLj7wBTJQxK priority: 102 providerName: ProQuest |
Title | Investigation of hybrid plasmons in a highly crystalline Bi2Se3/C60 heterostructure using low-loss electron energy loss spectroscopy |
URI | https://link.springer.com/article/10.1038/s43246-025-00886-0 https://www.proquest.com/docview/3234575689 https://www.proquest.com/docview/3235388803 https://pubmed.ncbi.nlm.nih.gov/PMC12307225 https://doaj.org/article/acf756f7e2604aaab6453eed4beaeab6 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH7ajwsXNASIsFEZiRtEc2PHcY5ttTJVYkKMSbtZtuOslaqkWodQ7_vDec9NCp3gwCmR7SSO3-fnZ_u9zwAfyqErK6kqBG_hU1lldMyL9GmOitBZhJAWFO_85Upd3sjZbX57AFkfCxOd9iOlZVTTvXfY-ZqY48hdNk9x1NJ4dwjHRNWO2D4ejWbXs93KChnNSvIuQoYL_ZeH90ahSNa_Z2E-9Y98skkax57pCTzvjEY22lbzBRyE5iU8_kGR0Tasrdl8Q-FXbIUGMYJrzRYNs4z4iJcb5u83aAcSAXdg40V2HcT5RHE2J2-Ydksii63ByA3-ji3bn-kS6836Q3JYiCGCLCbG4EwiwWxXm1dwM734PrlMuzMVUo-t_5AG64QufJ1ZIg50uVU1WgxWOCWcFZW2Qsgqz1F8NZeW59rxiiPaiIcvCFGI13DUtE14A6wcCh_yYS1pmuV8VvJK4Yt45RUq0NIn8LFvY7PaUmeYuOUttNlKxKBETJSI4QmMSQy7kkR7HRPa-zvTwcBYXxe5qouAszBprXUKAYCjvHTB4p-pBM56IZquL66NyIREo1TpMoH3u2zsRbQ1YpvQ_ohlUPOjLhMJ6D3h71VoP6dZzCMf95Cc6VEvJvCpx8nvr__7j9_-X_FTeJZFBBdpVp7BESIjvEOD6MEN4FBPPw-6foDX8cXV12-YOlGTQVxk-AUeFA5B |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALKgJESgEjwQmizcaONzlUiBaWLX1caKXejO043ZVWybLbqsqd38NvZMZJtqQS3HqL8rQ9n2fG8cw3AG-zoclyIXME78iGIo-pzIuwYYKK0GiEUMop3_n4RE7OxLfz5HwDfne5MBRW2elEr6jzytI_8gGPuUDXQqbZx8XPkKpG0e5qV0KjgcWhq69xybbaPfiM8n0Xx-Mvp_uTsK0qEFr8_mXotOHpyBaxJuo8k2hZoM3U3EhuNM9TzbnIkwQ7UERCR0lqojzC8SYmOsf5iON778F9wdGSU2b6-Ov6nw6561JEbW4OPjBYEeEdRfkmIRrbFI969s-XCej5trcjM29tz3qrN96CR627yj41-HoMG658Ar_-IueoSlYVbFpT4hdboCuO47Ris5JpRkzI85rZZY0eKFF_O7Y3i787PtiXEZtSHE7V0NdeLR2jAPwLNq-uwzm2m3XleZjzyYnMn_RpoUS_WS3qp3B2J-P-DDbLqnTPgWVDbl0yLAQt8IyNsyiX-KIotxJVd2YDeN-NsVo0pB3Kb7bzVDUSUSgR5SWiogD2SAzrO4lw25-olheqnb9K2wLBV4wcrv-E1tpIkXD0L4RxGnsmA9jphKhaLbBSN5gN4M36Ms5f2pTRpauu_D1oc1CL8gDSnvB7DepfKWdTzwQ-pDB-1MgBfOhwcvP1f_d4-_-NfQ0PJqfHR-ro4OTwBTyMPXpHYZztwCaiwr1EN-zSvPLYZ_DjrifbH4IaR8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrYS4IBAgUgoYiRuEOvEjyXFbuioLVEilUm-WX-mutEpW3SK0d344Y2-ykKo99BY5lmN7xjOf45nPAO-rzFSOS4fKW9iUuzxc88JtKtAQGo0qVLKQ7_z9VJ6c8-mFuNgB2efCxKD9SGkZzXQfHXawCsxxIVxWpOi1Snz6tHT1A9hFvJ3xEeyOx9Oz6fbvSgDOktMuS4ay8pYGBp4oEvYPUObNGMkbB6XR_0yewOMOOJLxpqtPYcc3z-DPfzQZbUPamszWIQWLLBEUo4KtyLwhmgRO4sWa2Ks1YsFAwu3J4Tw_8-zgSFIyCxEx7YZIFmeEhFD4S7Jof6cL7DfpL8ohPqYJklgYEzQDEWa7XD-H88nxz6OTtLtXIbUogevUa8PKwta5DuSBRmhZI2rQzEhmNHOlZow7IVCENeWaitJQR1HjAhefZ6xgL2DUtI1_CaTKmPUiq3nYahmbV9RJbIg6K9GIVjaBD_0cq-WGPkPFY29Wqo1EFEpERYkomsBhEMO2ZqC-jgXt1aXqVEFpWxdC1oXHnRjXWhvJBUNPz43XODKZwH4vRNWtx5ViOeMITGVZJfBu-xpXUjge0Y1vf8U6aP3RnrEEyoHwBx0avmnms8jJnYWAerSNCXzs9eTf1-8e8d79qr-Fhz8-T9S3L6dfX8GjPCpzkebVPoxQSfxrxEfX5k23GP4CR3YN5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+hybrid+plasmons+in+a+highly+crystalline+Bi2Se3%2FC60+heterostructure+using+low-loss+electron+energy+loss+spectroscopy&rft.jtitle=Communications+materials&rft.au=McCauley%2C+Mairi&rft.au=Ansari%2C+Lida&rft.au=Gity%2C+Farzan&rft.au=Rogers%2C+Matthew&rft.date=2025-07-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2662-4443&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1038%2Fs43246-025-00886-0&rft.externalDocID=PMC12307225 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4443&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4443&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4443&client=summon |