Investigation of hybrid plasmons in a highly crystalline Bi2Se3/C60 heterostructure using low-loss electron energy loss spectroscopy

Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has...

Full description

Saved in:
Bibliographic Details
Published inCommunications materials Vol. 6; no. 1; pp. 166 - 9
Main Authors McCauley, Mairi, Ansari, Lida, Gity, Farzan, Rogers, Matthew, Burton, Joel, Sasaki, Satoshi, Ramasse, Quentin, Knox, Craig, Hurley, Paul K., MacLaren, Donald, Moorsom, Timothy
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi 2 Se 3 , but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi 2 Se 3 /C 60 with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of π states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing. Topological insulators offer promising potential for nanoscale, high-frequency devices, yet controlling surface plasmon properties remains challenging. Here, the authors grow Bi 2 Se 3 /C 60 heterostructures with exceptional crystallinity, using electron energy loss spectroscopy and density functional theory to reveal significant π state hybridization and quenching of 2D plasmons.
AbstractList Abstract Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi2Se3, but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi2Se3/C60 with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of π states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing.
Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi2Se3, but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi2Se3/C60 with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of π states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing.Topological insulators offer promising potential for nanoscale, high-frequency devices, yet controlling surface plasmon properties remains challenging. Here, the authors grow Bi2Se3/C60 heterostructures with exceptional crystallinity, using electron energy loss spectroscopy and density functional theory to reveal significant π state hybridization and quenching of 2D plasmons.
Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi 2 Se 3 , but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi 2 Se 3 /C 60 with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of π states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing. Topological insulators offer promising potential for nanoscale, high-frequency devices, yet controlling surface plasmon properties remains challenging. Here, the authors grow Bi 2 Se 3 /C 60 heterostructures with exceptional crystallinity, using electron energy loss spectroscopy and density functional theory to reveal significant π state hybridization and quenching of 2D plasmons.
Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi2Se3, but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi2Se3/C60 with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of π states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing.Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi2Se3, but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi2Se3/C60 with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of π states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing.
Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi 2 Se 3 , but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi 2 Se 3 /C 60 with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of π states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing.
ArticleNumber 166
Author Burton, Joel
Sasaki, Satoshi
Gity, Farzan
Ramasse, Quentin
Moorsom, Timothy
Knox, Craig
Rogers, Matthew
MacLaren, Donald
McCauley, Mairi
Ansari, Lida
Hurley, Paul K.
Author_xml – sequence: 1
  givenname: Mairi
  surname: McCauley
  fullname: McCauley, Mairi
  organization: SUPA, School of Physics and Astronomy, University of Glasgow
– sequence: 2
  givenname: Lida
  orcidid: 0000-0002-9284-2832
  surname: Ansari
  fullname: Ansari, Lida
  organization: Micronano Electronics Group, Tyndall National Institute, University College Cork
– sequence: 3
  givenname: Farzan
  orcidid: 0000-0003-3128-1426
  surname: Gity
  fullname: Gity, Farzan
  organization: Micronano Electronics Group, Tyndall National Institute, University College Cork
– sequence: 4
  givenname: Matthew
  orcidid: 0000-0002-4550-2392
  surname: Rogers
  fullname: Rogers, Matthew
  organization: School of Physics and Astronomy, University of Leeds
– sequence: 5
  givenname: Joel
  surname: Burton
  fullname: Burton, Joel
  organization: School of Physics and Astronomy, University of Leeds
– sequence: 6
  givenname: Satoshi
  orcidid: 0000-0002-8915-6735
  surname: Sasaki
  fullname: Sasaki, Satoshi
  organization: School of Physics and Astronomy, University of Leeds
– sequence: 7
  givenname: Quentin
  orcidid: 0000-0001-7466-2283
  surname: Ramasse
  fullname: Ramasse, Quentin
  organization: SuperSTEM, SciTech Daresbury Science and Innovation Campus, School of Chemical and Process Engineering, University of Leeds
– sequence: 8
  givenname: Craig
  surname: Knox
  fullname: Knox, Craig
  organization: School of Physics and Astronomy, University of Leeds
– sequence: 9
  givenname: Paul K.
  surname: Hurley
  fullname: Hurley, Paul K.
  organization: Micronano Electronics Group, Tyndall National Institute, University College Cork, School of Chemistry, University College Cork
– sequence: 10
  givenname: Donald
  orcidid: 0000-0003-0641-686X
  surname: MacLaren
  fullname: MacLaren, Donald
  organization: SUPA, School of Physics and Astronomy, University of Glasgow
– sequence: 11
  givenname: Timothy
  orcidid: 0000-0002-1771-7185
  surname: Moorsom
  fullname: Moorsom, Timothy
  email: T.Moorsom@leeds.ac.uk
  organization: School of Physics and Astronomy, University of Leeds, School of Chemical and Process Engineering, University of Leeds
BookMark eNp9kkFv1DAQhSNUJErpH-BkiQuXtI7HcbInBCsoK1XiAJytiTPJeuW1FztplTs_HHe3AsqBk0fPbz49zczL4swHT0XxuuJXFYf2OkkQUpVc1CXnbZurZ8W5UEqUUko4-6t-UVymtOM8W6tKSX5e_Nz4O0qTHXGywbMwsO3SRduzg8O0Dz4x6xmyrR23bmEmLmlC56wn9sGKrwTXa8XZliaKIU1xNtMcic3J-pG5cF-6kBIjR2aKmU6e4riwo5gORzGZcFheFc8HdIkuH9-L4vunj9_Wn8vbLzeb9fvb0simmkrCDtrGDAKblYCuRjXwVYXQKegQ-hYBZF_Xvcy6RF63He85YZ9ntCKABi6KzYnbB9zpQ7R7jIsOaPVRCHHUGCdrHGk0Q1OroSGhMguxU7IGol52hDmHyqx3J9Zh7vbUG_JTRPcE-vTH260ew52uBPBGiDoT3j4SYvgx5yXovU2GnENPYU4aBNTQti2HbH3zj3UX5ujzrB5css5R21V2iZPL5LmmSMPvNBXXD5eiT5ei8_r18VI0z01wakrZ7EeKf9D_6foFAoLGeA
Cites_doi 10.1103/PhysRevB.46.16067
10.1002/adom.202301673
10.1007/978-1-4419-9583-4
10.1016/0038-1098(92)90656-T
10.1103/PhysRevB.88.205427
10.1063/1.3630230
10.1016/S0022-3697(97)00080-2
10.1140/epjd/e2012-30178-1
10.1103/PhysRevLett.124.226403
10.1038/ncomms1131
10.1103/PhysRevResearch.5.L022042
10.1103/PhysRevB.106.245203
10.1002/advs.201600430
10.1016/j.ultramic.2018.12.006
10.1021/acsnano.6b00272
10.1021/acsnano.7b03569
10.1016/S0368-2048(99)00012-2
10.1016/0039-6028(93)90858-H
10.1002/admi.202000524
10.1038/nnano.2013.134
10.5772/58558
10.1039/C4NR03143A
10.1103/PhysRevB.98.205409
10.1016/S0375-9601(96)00707-4
10.1021/acs.nanolett.5b02635
10.1103/PhysRevB.88.155408
10.1103/PhysRevB.87.075447
10.1007/BF01425691
10.1103/PhysRevB.91.045418
10.1021/acs.nanolett.5b02213
10.1038/am.2017.149
10.1103/PhysRevMaterials.2.044203
10.1103/PhysRevB.99.045425
10.1038/nphoton.2012.262
10.1021/nn3021822
10.1021/jp412690h
10.1016/j.cpc.2018.01.012
10.1103/PhysRevB.51.4014
10.1103/PhysRevLett.104.116401
10.1016/0039-6028(92)90079-L
10.1126/science.aar8438
10.1063/1.461065
10.1016/0009-2614(91)80086-D
10.1063/1.4897970
10.1038/nmat4902
10.1103/PhysRevLett.18.546
10.1103/PhysRevB.87.085126
10.1007/978-3-319-45820-5_13
10.1103/RevModPhys.82.3045
10.1002/admi.201400134
10.1103/PhysRevB.13.5188
10.1103/PhysRevB.105.205408
10.1021/acsnano.8b01481
10.1021/acsanm.3c04197
10.1088/0022-3719/18/27/019
10.1063/1.3382344
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1038/s43246-025-00886-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2662-4443
EndPage 9
ExternalDocumentID oai_doaj_org_article_acf756f7e2604aaab6453eed4beaeab6
PMC12307225
10_1038_s43246_025_00886_0
GrantInformation_xml – fundername: Royal Academy of Engineering
  grantid: RF/201920/19/245
  funderid: 501100000287
– fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/V001914/1; EP/P022464/1; EP/R00661X/1
  funderid: 501100000266
– fundername: Science Foundation Ireland (SFI)
  grantid: SFI-12/RC/2278-P2
  funderid: 501100001602
GroupedDBID 0R~
AAJSJ
AASML
ABJCF
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
KB.
NAO
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
SNYQT
AARCD
AAYXX
CITATION
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c471t-eab387cf2a7923b5a6f091a3b63ba3d8a334d55d46f04a058b0d0ead0389e3373
IEDL.DBID AAJSJ
ISSN 2662-4443
IngestDate Wed Aug 27 00:54:27 EDT 2025
Thu Aug 21 18:33:39 EDT 2025
Fri Aug 01 18:24:55 EDT 2025
Sat Aug 23 12:57:16 EDT 2025
Thu Aug 07 05:49:01 EDT 2025
Wed Jul 30 01:29:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-eab387cf2a7923b5a6f091a3b63ba3d8a334d55d46f04a058b0d0ead0389e3373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8915-6735
0000-0003-0641-686X
0000-0002-1771-7185
0000-0001-7466-2283
0000-0002-4550-2392
0000-0002-9284-2832
0000-0003-3128-1426
OpenAccessLink https://www.nature.com/articles/s43246-025-00886-0
PQID 3234575689
PQPubID 5061814
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_acf756f7e2604aaab6453eed4beaeab6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12307225
proquest_miscellaneous_3235388803
proquest_journals_3234575689
crossref_primary_10_1038_s43246_025_00886_0
springer_journals_10_1038_s43246_025_00886_0
PublicationCentury 2000
PublicationDate 2025-07-29
PublicationDateYYYYMMDD 2025-07-29
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Communications materials
PublicationTitleAbbrev Commun Mater
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References E Gillet (886_CR36) 1992; 273
886_CR1
MZ Hasan (886_CR9) 2010; 82
886_CR42
G Makov (886_CR61) 1995; 51
T Stauber (886_CR11) 2013; 88
A Konečná (886_CR41) 2018; 12
B Ealet (886_CR37) 1993; 281
Y Li (886_CR3) 2017; 4
P Bolognesi (886_CR33) 2012; 66
CS Knox (886_CR52) 2022; 106
P Hansen (886_CR34) 1991; 181
DW Latzke (886_CR19) 2019; 99
O Krivanek (886_CR40) 2019; 203
D Ostling (886_CR31) 1993; 26
A Politano (886_CR26) 2014; 6
P Ai (886_CR20) 2023; 5
V Nascimento (886_CR22) 1999; 104
O Gunnarsson (886_CR48) 1996; 8
886_CR53
FS Hage (886_CR55) 2013; 88
Z Ni (886_CR28) 2017; 11
M Bianchi (886_CR14) 2012; 6
PD Pietro (886_CR10) 2013; 8
M Caputo (886_CR17) 2016; 16
NV Tarakina (886_CR62) 2014; 1
T Stauber (886_CR6) 2014; 26
D Gorokhov (886_CR35) 1996; 223
L Su (886_CR51) 2023; 7
J Neugebauer (886_CR60) 1992; 46
AN Grigorenko (886_CR4) 2012; 6
A Nagashima (886_CR46) 1992; 83
A Konečná (886_CR39) 2018; 98
S Cai (886_CR25) 2018; 3
R Garcia-Molina (886_CR54) 1985; 18
V Despoja (886_CR27) 2013; 87
T Wei (886_CR18) 2022; 105
SC Liou (886_CR24) 2013; 87
J yin (886_CR7) 2017; 9
T Kitazawa (886_CR15) 2020; 7
A Moradi (886_CR43) 2014; 21
J-Y Ou (886_CR50) 2014; 5
M Bianchi (886_CR13) 2010; 1
HJ Monkhorst (886_CR58) 1976; 13
SC Liou (886_CR44) 2015; 91
F Stern (886_CR45) 1967; 18
Y-P Lai (886_CR5) 2014; 4
M Cinchetti (886_CR49) 2017; 16
M van Setten (886_CR57) 2018; 226
DA Iranzo (886_CR2) 2018; 360
S Raghu (886_CR12) 2010; 104
S Jakobs (886_CR21) 2015; 15
G Barton (886_CR32) 1991; 95
H Zhang (886_CR29) 2016; 10
J Wang (886_CR16) 2014; 118
S Smidstrup (886_CR56) 2019; 32
H Kataura (886_CR47) 1997; 58
P Di Pietro (886_CR8) 2020; 124
K Sobczak (886_CR23) 2018; 2
S Grimme (886_CR59) 2010; 132
V Pistore (886_CR30) 2024; 12
EDW Maclean (886_CR38) 2001; 168
References_xml – volume: 46
  start-page: 16067
  year: 1992
  ident: 886_CR60
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.16067
– volume: 12
  start-page: 2301673
  year: 2024
  ident: 886_CR30
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.202301673
– ident: 886_CR53
  doi: 10.1007/978-1-4419-9583-4
– volume: 83
  start-page: 581
  year: 1992
  ident: 886_CR46
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(92)90656-T
– volume: 88
  start-page: 205427
  year: 2013
  ident: 886_CR11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.205427
– ident: 886_CR42
  doi: 10.1063/1.3630230
– volume: 58
  start-page: 1913
  year: 1997
  ident: 886_CR47
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/S0022-3697(97)00080-2
– volume: 66
  year: 2012
  ident: 886_CR33
  publication-title: Eur. Phys. J. D.
  doi: 10.1140/epjd/e2012-30178-1
– volume: 124
  start-page: 226403
  year: 2020
  ident: 886_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.226403
– volume: 1
  start-page: 128
  year: 2010
  ident: 886_CR13
  publication-title: Nat. Comm.
  doi: 10.1038/ncomms1131
– volume: 5
  start-page: L022042
  year: 2023
  ident: 886_CR20
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.5.L022042
– volume: 168
  start-page: 259
  year: 2001
  ident: 886_CR38
  publication-title: Inst. Phys. Conf. Ser.
– volume: 106
  start-page: 245203
  year: 2022
  ident: 886_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.245203
– volume: 4
  start-page: 1600430
  year: 2017
  ident: 886_CR3
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600430
– volume: 203
  start-page: 60
  year: 2019
  ident: 886_CR40
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2018.12.006
– volume: 10
  start-page: 5113
  year: 2016
  ident: 886_CR29
  publication-title: ACS nano
  doi: 10.1021/acsnano.6b00272
– volume: 11
  start-page: 9854
  year: 2017
  ident: 886_CR28
  publication-title: ACS nano
  doi: 10.1021/acsnano.7b03569
– volume: 104
  start-page: 99
  year: 1999
  ident: 886_CR22
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/S0368-2048(99)00012-2
– volume: 281
  start-page: 91
  year: 1993
  ident: 886_CR37
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(93)90858-H
– volume: 7
  start-page: 2000524
  year: 2020
  ident: 886_CR15
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202000524
– volume: 8
  start-page: 556
  year: 2013
  ident: 886_CR10
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2013.134
– volume: 4
  start-page: 13
  year: 2014
  ident: 886_CR5
  publication-title: Nanomaterials Nanotechnol.
  doi: 10.5772/58558
– volume: 6
  start-page: 10927
  year: 2014
  ident: 886_CR26
  publication-title: Nanoscale
  doi: 10.1039/C4NR03143A
– volume: 98
  start-page: 205409
  year: 2018
  ident: 886_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.205409
– volume: 8
  start-page: 2557
  year: 1996
  ident: 886_CR48
  publication-title: J. Phys.: Condens. Matter
– volume: 223
  start-page: 116
  year: 1996
  ident: 886_CR35
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(96)00707-4
– volume: 16
  start-page: 3409
  year: 2016
  ident: 886_CR17
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02635
– volume: 88
  start-page: 155408
  year: 2013
  ident: 886_CR55
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.155408
– volume: 87
  start-page: 075447
  year: 2013
  ident: 886_CR27
  publication-title: Phys. Rev. B-Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.87.075447
– volume: 26
  start-page: 282
  year: 1993
  ident: 886_CR31
  publication-title: Z. fur Phys. D. At., Molecules Clust.
  doi: 10.1007/BF01425691
– volume: 91
  start-page: 045418
  year: 2015
  ident: 886_CR44
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.91.045418
– volume: 5
  year: 2014
  ident: 886_CR50
  publication-title: Nat. Commun.
– volume: 15
  start-page: 6022
  year: 2015
  ident: 886_CR21
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02213
– volume: 9
  start-page: e425
  year: 2017
  ident: 886_CR7
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2017.149
– volume: 2
  start-page: 044203
  year: 2018
  ident: 886_CR23
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.2.044203
– volume: 3
  year: 2018
  ident: 886_CR25
  publication-title: Npj Quantum Mater.
– volume: 99
  start-page: 045425
  year: 2019
  ident: 886_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.045425
– volume: 6
  start-page: 749
  year: 2012
  ident: 886_CR4
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.262
– volume: 6
  start-page: 7009
  year: 2012
  ident: 886_CR14
  publication-title: ACS Nano
  doi: 10.1021/nn3021822
– volume: 118
  start-page: 14860
  year: 2014
  ident: 886_CR16
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp412690h
– volume: 226
  start-page: 39
  year: 2018
  ident: 886_CR57
  publication-title: Computer Phys. Commun.
  doi: 10.1016/j.cpc.2018.01.012
– volume: 51
  start-page: 4014
  year: 1995
  ident: 886_CR61
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.4014
– volume: 104
  start-page: 116401
  year: 2010
  ident: 886_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.116401
– volume: 273
  start-page: 427
  year: 1992
  ident: 886_CR36
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(92)90079-L
– volume: 360
  start-page: 291
  year: 2018
  ident: 886_CR2
  publication-title: Science
  doi: 10.1126/science.aar8438
– volume: 95
  start-page: 1512
  year: 1991
  ident: 886_CR32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.461065
– volume: 181
  start-page: 367
  year: 1991
  ident: 886_CR34
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(91)80086-D
– volume: 21
  start-page: 104508
  year: 2014
  ident: 886_CR43
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4897970
– volume: 16
  start-page: 507
  year: 2017
  ident: 886_CR49
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4902
– volume: 18
  start-page: 546
  year: 1967
  ident: 886_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.18.546
– volume: 87
  start-page: 085126
  year: 2013
  ident: 886_CR24
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.87.085126
– ident: 886_CR1
  doi: 10.1007/978-3-319-45820-5_13
– volume: 82
  start-page: 3045
  year: 2010
  ident: 886_CR9
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.3045
– volume: 32
  start-page: 015901
  year: 2019
  ident: 886_CR56
  publication-title: J. Phys.: Condens. Matter
– volume: 26
  start-page: 123201
  year: 2014
  ident: 886_CR6
  publication-title: J. Phys.: Condens. Matter
– volume: 1
  start-page: 1400134
  year: 2014
  ident: 886_CR62
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201400134
– volume: 13
  start-page: 5188
  year: 1976
  ident: 886_CR58
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 105
  start-page: 205408
  year: 2022
  ident: 886_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.105.205408
– volume: 12
  start-page: 4775
  year: 2018
  ident: 886_CR41
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01481
– volume: 7
  start-page: 170
  year: 2023
  ident: 886_CR51
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.3c04197
– volume: 18
  start-page: 5335
  year: 1985
  ident: 886_CR54
  publication-title: J. Phys. C: Solid State Phys.
  doi: 10.1088/0022-3719/18/27/019
– volume: 132
  start-page: 154104
  year: 2010
  ident: 886_CR59
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
SSID ssj0002511640
Score 2.2987006
Snippet Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering...
Abstract Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 166
SubjectTerms 639/766/119/2792/4128
639/925/357/73
Chemistry and Materials Science
Crystallinity
Density functional theory
Dipoles
Electron energy loss spectroscopy
Electron transport
Electrons
Fullerenes
Graphene
Heterostructures
Interfaces
Investigations
Ion beams
Materials Science
Molecular beam epitaxy
Plasmons
Quenching
Robust control
Spectrum analysis
Thin films
Topological insulators
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BatwwEBUhp15CQ1viNg0q5Naa1XokWT4moSEE2ksayE1IspxdWOwlm1D2ng_PjOxN1oHSS262JGxp5mk0QjNPjB1XU1_VUtcI3jLksi7omhcZcoWG0DuEkAHKd_71W19cy8sbdbN11RfFhPX0wL3gJi40pdJNGdHxls45r6UCNOzSRxfxjawvrnlbmymyweQ4aymGLBkBZrIi6jmKt1U5LnsGn0YrUSLsH3mZr2MkXx2UpvXn_D3bGxxHftJ3eJ_txPYDe9yiyeha3jV8tqYULL5EpxgBtuLzljtOnMSLNQ93a_QFiYQ78tN5cRVhcqYFn1FETNcTyT7cRU6h8Ld80f3NF9hvvrkoh8eUJshTYUrQJCLMbrn-yK7Pf_45u8iHexXygBq4z1FsYMrQFI7IA71yukEJOvAavIPaOABZK4UqbFDkQhkvaoGIIy6-CFDCJ7bbdm08YLyaQohq2kjaavlQVKLW-CFRB41GtAoZ-76RsV329Bk2HXuDsb1GLGrEJo1YkbFTUsNzS6K-TgUICDsAwv4PEBk73CjRDvNxZaEAiY6pNlXGvj1X40yi4xHXxu4htUHrj_YMMmZGyh91aFzTzmeJk3tKAfVoGzP2Y4OTl7__e8Sf32LEX9i7IuG6zIvqkO0iXuJXdJXu_VGaFU_P2RWW
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9swEBZb-rKXsbGNeWuHBnvbTBRLluWn0pSWMlgZ2wp9E5IsN4FgpUnLyPt-eO8UOa0L3ZuxTSzn-3R3lu6-I-RLPbF1I2QD5K1cLpoC27wIl5dgCK0BCimO9c4_zuXZhfh-WV6mBbd1SqvsbWI01E1wuEY-5gUXEFpIVR8ur3PsGoW7q6mFxnOyByZYqRHZm56c__y1W2XBAFoKlqplGFfjNUrQYd5tmYP7U3A08EhRuH8QbT7OlXy0YRr90Okr8jIFkPRoi_hr8sx3b8i_B3IZoaOhpbMNlmLRJQTHMPI1nXfUUNQmXmyoW20gJkQxbk-n8-K35-NjyegMM2PCVlD2duUppsRf0UX4my9g3LRvmEN9LBek8WQs1ERBzLDcvCUXpyd_js_y1F8hd4DETe6N5apybWFQRNCWRrYQPRhuJbeGN8pwLpqyBChbJgwrlWUNA-ahJp_nvOLvyKgLnX9PaD3hzpeTVuAnl3VFzRoJP8QaJ8GY1i4jX_v_WC-3Mho6bn9zpbeIaEBER0Q0y8gUYdjdiRLY8URYXek0o7RxLdChrTx8kQljjJWi5ODxhfUG3kxmZL8HUad5udb3LMrI591lmFG4TWI6H27jPeAFwK7xjKgB-IMBDa9081nU5p5gYj3YyIx863ly__Sn3_jD_wf7kbwoImOrvKj3yQiY4A8gGLqxnxLj7wBTJQxK
  priority: 102
  providerName: ProQuest
Title Investigation of hybrid plasmons in a highly crystalline Bi2Se3/C60 heterostructure using low-loss electron energy loss spectroscopy
URI https://link.springer.com/article/10.1038/s43246-025-00886-0
https://www.proquest.com/docview/3234575689
https://www.proquest.com/docview/3235388803
https://pubmed.ncbi.nlm.nih.gov/PMC12307225
https://doaj.org/article/acf756f7e2604aaab6453eed4beaeab6
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH7ajwsXNASIsFEZiRtEc2PHcY5ttTJVYkKMSbtZtuOslaqkWodQ7_vDec9NCp3gwCmR7SSO3-fnZ_u9zwAfyqErK6kqBG_hU1lldMyL9GmOitBZhJAWFO_85Upd3sjZbX57AFkfCxOd9iOlZVTTvXfY-ZqY48hdNk9x1NJ4dwjHRNWO2D4ejWbXs93KChnNSvIuQoYL_ZeH90ahSNa_Z2E-9Y98skkax57pCTzvjEY22lbzBRyE5iU8_kGR0Tasrdl8Q-FXbIUGMYJrzRYNs4z4iJcb5u83aAcSAXdg40V2HcT5RHE2J2-Ydksii63ByA3-ji3bn-kS6836Q3JYiCGCLCbG4EwiwWxXm1dwM734PrlMuzMVUo-t_5AG64QufJ1ZIg50uVU1WgxWOCWcFZW2Qsgqz1F8NZeW59rxiiPaiIcvCFGI13DUtE14A6wcCh_yYS1pmuV8VvJK4Yt45RUq0NIn8LFvY7PaUmeYuOUttNlKxKBETJSI4QmMSQy7kkR7HRPa-zvTwcBYXxe5qouAszBprXUKAYCjvHTB4p-pBM56IZquL66NyIREo1TpMoH3u2zsRbQ1YpvQ_ohlUPOjLhMJ6D3h71VoP6dZzCMf95Cc6VEvJvCpx8nvr__7j9_-X_FTeJZFBBdpVp7BESIjvEOD6MEN4FBPPw-6foDX8cXV12-YOlGTQVxk-AUeFA5B
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALKgJESgEjwQmizcaONzlUiBaWLX1caKXejO043ZVWybLbqsqd38NvZMZJtqQS3HqL8rQ9n2fG8cw3AG-zoclyIXME78iGIo-pzIuwYYKK0GiEUMop3_n4RE7OxLfz5HwDfne5MBRW2elEr6jzytI_8gGPuUDXQqbZx8XPkKpG0e5qV0KjgcWhq69xybbaPfiM8n0Xx-Mvp_uTsK0qEFr8_mXotOHpyBaxJuo8k2hZoM3U3EhuNM9TzbnIkwQ7UERCR0lqojzC8SYmOsf5iON778F9wdGSU2b6-Ov6nw6561JEbW4OPjBYEeEdRfkmIRrbFI969s-XCej5trcjM29tz3qrN96CR627yj41-HoMG658Ar_-IueoSlYVbFpT4hdboCuO47Ris5JpRkzI85rZZY0eKFF_O7Y3i787PtiXEZtSHE7V0NdeLR2jAPwLNq-uwzm2m3XleZjzyYnMn_RpoUS_WS3qp3B2J-P-DDbLqnTPgWVDbl0yLAQt8IyNsyiX-KIotxJVd2YDeN-NsVo0pB3Kb7bzVDUSUSgR5SWiogD2SAzrO4lw25-olheqnb9K2wLBV4wcrv-E1tpIkXD0L4RxGnsmA9jphKhaLbBSN5gN4M36Ms5f2pTRpauu_D1oc1CL8gDSnvB7DepfKWdTzwQ-pDB-1MgBfOhwcvP1f_d4-_-NfQ0PJqfHR-ro4OTwBTyMPXpHYZztwCaiwr1EN-zSvPLYZ_DjrifbH4IaR8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrYS4IBAgUgoYiRuEOvEjyXFbuioLVEilUm-WX-mutEpW3SK0d344Y2-ykKo99BY5lmN7xjOf45nPAO-rzFSOS4fKW9iUuzxc88JtKtAQGo0qVLKQ7_z9VJ6c8-mFuNgB2efCxKD9SGkZzXQfHXawCsxxIVxWpOi1Snz6tHT1A9hFvJ3xEeyOx9Oz6fbvSgDOktMuS4ay8pYGBp4oEvYPUObNGMkbB6XR_0yewOMOOJLxpqtPYcc3z-DPfzQZbUPamszWIQWLLBEUo4KtyLwhmgRO4sWa2Ks1YsFAwu3J4Tw_8-zgSFIyCxEx7YZIFmeEhFD4S7Jof6cL7DfpL8ohPqYJklgYEzQDEWa7XD-H88nxz6OTtLtXIbUogevUa8PKwta5DuSBRmhZI2rQzEhmNHOlZow7IVCENeWaitJQR1HjAhefZ6xgL2DUtI1_CaTKmPUiq3nYahmbV9RJbIg6K9GIVjaBD_0cq-WGPkPFY29Wqo1EFEpERYkomsBhEMO2ZqC-jgXt1aXqVEFpWxdC1oXHnRjXWhvJBUNPz43XODKZwH4vRNWtx5ViOeMITGVZJfBu-xpXUjge0Y1vf8U6aP3RnrEEyoHwBx0avmnms8jJnYWAerSNCXzs9eTf1-8e8d79qr-Fhz8-T9S3L6dfX8GjPCpzkebVPoxQSfxrxEfX5k23GP4CR3YN5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+hybrid+plasmons+in+a+highly+crystalline+Bi2Se3%2FC60+heterostructure+using+low-loss+electron+energy+loss+spectroscopy&rft.jtitle=Communications+materials&rft.au=McCauley%2C+Mairi&rft.au=Ansari%2C+Lida&rft.au=Gity%2C+Farzan&rft.au=Rogers%2C+Matthew&rft.date=2025-07-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2662-4443&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1038%2Fs43246-025-00886-0&rft.externalDocID=PMC12307225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4443&client=summon