Phenylbutyrate therapy for maple syrup urine disease

Therapy with sodium phenylacetate/benzoate or sodium phenylbutyrate in urea cycle disorder patients has been associated with a selective reduction in branched-chain amino acids (BCAA) in spite of adequate dietary protein intake. Based on this clinical observation, we investigated the potential of ph...

Full description

Saved in:
Bibliographic Details
Published inHuman molecular genetics Vol. 20; no. 4; pp. 631 - 640
Main Authors Brunetti-Pierri, Nicola, Lanpher, Brendan, Erez, Ayelet, Ananieva, Elitsa A., Islam, Mohammad, Marini, Juan C., Sun, Qin, Yu, Chunli, Hegde, Madhuri, Li, Jun, Wynn, R. Max, Chuang, David T., Hutson, Susan, Lee, Brendan
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 15.02.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Therapy with sodium phenylacetate/benzoate or sodium phenylbutyrate in urea cycle disorder patients has been associated with a selective reduction in branched-chain amino acids (BCAA) in spite of adequate dietary protein intake. Based on this clinical observation, we investigated the potential of phenylbutyrate treatment to lower BCAA and their corresponding α-keto acids (BCKA) in patients with classic and variant late-onset forms of maple syrup urine disease (MSUD). We also performed in vitro and in vivo experiments to elucidate the mechanism for this effect. We found that BCAA and BCKA are both significantly reduced following phenylbutyrate therapy in control subjects and in patients with late-onset, intermediate MSUD. In vitro treatment with phenylbutyrate of control fibroblasts and lymphoblasts resulted in an increase in the residual enzyme activity, while treatment of MSUD cells resulted in the variable response which did not simply predict the biochemical response in the patients. In vivo phenylbutyrate increases the proportion of active hepatic enzyme and unphosphorylated form over the inactive phosphorylated form of the E1α subunit of the branched-chain α-keto acid dehydrogenase complex (BCKDC). Using recombinant enzymes, we show that phenylbutyrate prevents phosphorylation of E1α by inhibition of the BCKDC kinase to activate BCKDC overall activity, providing a molecular explanation for the effect of phenylbutyrate in a subset of MSUD patients. Phenylbutyrate treatment may be a valuable treatment for reducing the plasma levels of neurotoxic BCAA and their corresponding BCKA in a subset of MSUD patients and studies of its long-term efficacy are indicated.
AbstractList Therapy with sodium phenylacetate/benzoate or sodium phenylbutyrate in urea cycle disorder patients has been associated with a selective reduction in branched-chain amino acids (BCAA) in spite of adequate dietary protein intake. Based on this clinical observation, we investigated the potential of phenylbutyrate treatment to lower BCAA and their corresponding alpha -keto acids (BCKA) in patients with classic and variant late-onset forms of maple syrup urine disease (MSUD). We also performed in vitro and in vivo experiments to elucidate the mechanism for this effect. We found that BCAA and BCKA are both significantly reduced following phenylbutyrate therapy in control subjects and in patients with late-onset, intermediate MSUD. In vitro treatment with phenylbutyrate of control fibroblasts and lymphoblasts resulted in an increase in the residual enzyme activity, while treatment of MSUD cells resulted in the variable response which did not simply predict the biochemical response in the patients. In vivo phenylbutyrate increases the proportion of active hepatic enzyme and unphosphorylated form over the inactive phosphorylated form of the E1 alpha subunit of the branched-chain alpha -keto acid dehydrogenase complex (BCKDC). Using recombinant enzymes, we show that phenylbutyrate prevents phosphorylation of E1 alpha by inhibition of the BCKDC kinase to activate BCKDC overall activity, providing a molecular explanation for the effect of phenylbutyrate in a subset of MSUD patients. Phenylbutyrate treatment may be a valuable treatment for reducing the plasma levels of neurotoxic BCAA and their corresponding BCKA in a subset of MSUD patients and studies of its long-term efficacy are indicated.
Therapy with sodium phenylacetate/benzoate or sodium phenylbutyrate in urea cycle disorder patients has been associated with a selective reduction in branched-chain amino acids (BCAA) in spite of adequate dietary protein intake. Based on this clinical observation, we investigated the potential of phenylbutyrate treatment to lower BCAA and their corresponding α-keto acids (BCKA) in patients with classic and variant late-onset forms of maple syrup urine disease (MSUD). We also performed in vitro and in vivo experiments to elucidate the mechanism for this effect. We found that BCAA and BCKA are both significantly reduced following phenylbutyrate therapy in control subjects and in patients with late-onset, intermediate MSUD. In vitro treatment with phenylbutyrate of control fibroblasts and lymphoblasts resulted in an increase in the residual enzyme activity, while treatment of MSUD cells resulted in the variable response which did not simply predict the biochemical response in the patients. In vivo phenylbutyrate increases the proportion of active hepatic enzyme and unphosphorylated form over the inactive phosphorylated form of the E1α subunit of the branched-chain α-keto acid dehydrogenase complex (BCKDC). Using recombinant enzymes, we show that phenylbutyrate prevents phosphorylation of E1α by inhibition of the BCKDC kinase to activate BCKDC overall activity, providing a molecular explanation for the effect of phenylbutyrate in a subset of MSUD patients. Phenylbutyrate treatment may be a valuable treatment for reducing the plasma levels of neurotoxic BCAA and their corresponding BCKA in a subset of MSUD patients and studies of its long-term efficacy are indicated.Therapy with sodium phenylacetate/benzoate or sodium phenylbutyrate in urea cycle disorder patients has been associated with a selective reduction in branched-chain amino acids (BCAA) in spite of adequate dietary protein intake. Based on this clinical observation, we investigated the potential of phenylbutyrate treatment to lower BCAA and their corresponding α-keto acids (BCKA) in patients with classic and variant late-onset forms of maple syrup urine disease (MSUD). We also performed in vitro and in vivo experiments to elucidate the mechanism for this effect. We found that BCAA and BCKA are both significantly reduced following phenylbutyrate therapy in control subjects and in patients with late-onset, intermediate MSUD. In vitro treatment with phenylbutyrate of control fibroblasts and lymphoblasts resulted in an increase in the residual enzyme activity, while treatment of MSUD cells resulted in the variable response which did not simply predict the biochemical response in the patients. In vivo phenylbutyrate increases the proportion of active hepatic enzyme and unphosphorylated form over the inactive phosphorylated form of the E1α subunit of the branched-chain α-keto acid dehydrogenase complex (BCKDC). Using recombinant enzymes, we show that phenylbutyrate prevents phosphorylation of E1α by inhibition of the BCKDC kinase to activate BCKDC overall activity, providing a molecular explanation for the effect of phenylbutyrate in a subset of MSUD patients. Phenylbutyrate treatment may be a valuable treatment for reducing the plasma levels of neurotoxic BCAA and their corresponding BCKA in a subset of MSUD patients and studies of its long-term efficacy are indicated.
Therapy with sodium phenylacetate/benzoate or sodium phenylbutyrate in urea cycle disorder patients has been associated with a selective reduction in branched-chain amino acids (BCAA) in spite of adequate dietary protein intake. Based on this clinical observation, we investigated the potential of phenylbutyrate treatment to lower BCAA and their corresponding α-keto acids (BCKA) in patients with classic and variant late-onset forms of maple syrup urine disease (MSUD). We also performed in vitro and in vivo experiments to elucidate the mechanism for this effect. We found that BCAA and BCKA are both significantly reduced following phenylbutyrate therapy in control subjects and in patients with late-onset, intermediate MSUD. In vitro treatment with phenylbutyrate of control fibroblasts and lymphoblasts resulted in an increase in the residual enzyme activity, while treatment of MSUD cells resulted in the variable response which did not simply predict the biochemical response in the patients. In vivo phenylbutyrate increases the proportion of active hepatic enzyme and unphosphorylated form over the inactive phosphorylated form of the E1α subunit of the branched-chain α-keto acid dehydrogenase complex (BCKDC). Using recombinant enzymes, we show that phenylbutyrate prevents phosphorylation of E1α by inhibition of the BCKDC kinase to activate BCKDC overall activity, providing a molecular explanation for the effect of phenylbutyrate in a subset of MSUD patients. Phenylbutyrate treatment may be a valuable treatment for reducing the plasma levels of neurotoxic BCAA and their corresponding BCKA in a subset of MSUD patients and studies of its long-term efficacy are indicated.
Therapy with sodium phenylacetate/benzoate or sodium phenylbutyrate in urea cycle disorder patients has been associated with a selective reduction in branched-chain amino acids (BCAA) in spite of adequate dietary protein intake. Based on this clinical observation, we investigated the potential of phenylbutyrate treatment to lower BCAA and their corresponding α-keto acids (BCKA) in patients with classic and variant late-onset forms of maple syrup urine disease (MSUD). We also performed in vitro and in vivo experiments to elucidate the mechanism for this effect. We found that BCAA and BCKA are both significantly reduced following phenylbutyrate therapy in control subjects and in patients with late-onset, intermediate MSUD. In vitro treatment with phenylbutyrate of control fibroblasts and lymphoblasts resulted in an increase in the residual enzyme activity, while treatment of MSUD cells resulted in the variable response which did not simply predict the biochemical response in the patients. In vivo phenylbutyrate increases the proportion of active hepatic enzyme and unphosphorylated form over the inactive phosphorylated form of the E1α subunit of the branched-chain α-keto acid dehydrogenase complex (BCKDC). Using recombinant enzymes, we show that phenylbutyrate prevents phosphorylation of E1α by inhibition of the BCKDC kinase to activate BCKDC overall activity, providing a molecular explanation for the effect of phenylbutyrate in a subset of MSUD patients. Phenylbutyrate treatment may be a valuable treatment for reducing the plasma levels of neurotoxic BCAA and their corresponding BCKA in a subset of MSUD patients and studies of its long-term efficacy are indicated.
Author Yu, Chunli
Islam, Mohammad
Ananieva, Elitsa A.
Hegde, Madhuri
Erez, Ayelet
Brunetti-Pierri, Nicola
Li, Jun
Marini, Juan C.
Chuang, David T.
Hutson, Susan
Wynn, R. Max
Lee, Brendan
Sun, Qin
Lanpher, Brendan
AuthorAffiliation 6 Department of Biochemistry , University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, TX 75390-9038 , USA
3 Human Nutrition, Foods and Exercise, Virginia Tech, 338 Wallace Hall , Blacksburg, VA 24061 , USA
5 Department of Human Genetics , Emory University School of Medicine , 615 Michael Street, Suite 301, Atlanta, GA 30033 , USA and
1 Department of Molecular and Human Genetics and
2 Howard Hughes Medical Institute , Baylor College of Medicine , One Baylor Plaza, Houston, TX 77030 , USA
4 United States Department of Agriculture/Agriculture Research Service Children's Nutrition Research Center, Department of Pediatrics , Baylor College of Medicine , 1100 Bates Street, Houston, TX 77030 , USA
AuthorAffiliation_xml – name: 1 Department of Molecular and Human Genetics and
– name: 2 Howard Hughes Medical Institute , Baylor College of Medicine , One Baylor Plaza, Houston, TX 77030 , USA
– name: 5 Department of Human Genetics , Emory University School of Medicine , 615 Michael Street, Suite 301, Atlanta, GA 30033 , USA and
– name: 6 Department of Biochemistry , University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, TX 75390-9038 , USA
– name: 3 Human Nutrition, Foods and Exercise, Virginia Tech, 338 Wallace Hall , Blacksburg, VA 24061 , USA
– name: 4 United States Department of Agriculture/Agriculture Research Service Children's Nutrition Research Center, Department of Pediatrics , Baylor College of Medicine , 1100 Bates Street, Houston, TX 77030 , USA
Author_xml – sequence: 1
  givenname: Nicola
  surname: Brunetti-Pierri
  fullname: Brunetti-Pierri, Nicola
– sequence: 2
  givenname: Brendan
  surname: Lanpher
  fullname: Lanpher, Brendan
– sequence: 3
  givenname: Ayelet
  surname: Erez
  fullname: Erez, Ayelet
– sequence: 4
  givenname: Elitsa A.
  surname: Ananieva
  fullname: Ananieva, Elitsa A.
– sequence: 5
  givenname: Mohammad
  surname: Islam
  fullname: Islam, Mohammad
– sequence: 6
  givenname: Juan C.
  surname: Marini
  fullname: Marini, Juan C.
– sequence: 7
  givenname: Qin
  surname: Sun
  fullname: Sun, Qin
– sequence: 8
  givenname: Chunli
  surname: Yu
  fullname: Yu, Chunli
– sequence: 9
  givenname: Madhuri
  surname: Hegde
  fullname: Hegde, Madhuri
– sequence: 10
  givenname: Jun
  surname: Li
  fullname: Li, Jun
– sequence: 11
  givenname: R. Max
  surname: Wynn
  fullname: Wynn, R. Max
– sequence: 12
  givenname: David T.
  surname: Chuang
  fullname: Chuang, David T.
– sequence: 13
  givenname: Susan
  surname: Hutson
  fullname: Hutson, Susan
– sequence: 14
  givenname: Brendan
  surname: Lee
  fullname: Lee, Brendan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23879108$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21098507$$D View this record in MEDLINE/PubMed
BookMark eNqFks1rFTEUxYNU7OvTjX-AzEaEwtibSV4y2QhSrAoFXeg63Mnc9EXmq8lMYf57U96rXwhd3UV-53DvyTljJ8M4EGMvObzlYMTFvr-5aNvbHegnbMOlgrKCWpywDRglS2VAnbKzlH4AcCWFfsZOq6yrM79h8uuehrVrlnmNOFMx7ynitBZ-jEWPU0dFWuMyFUsMAxVtSISJnrOnHrtEL45zy75fffh2-am8_vLx8-X769JJzeeydZxIVhqEk7wBIQlRGgMeW-IN36FTrRde1VWjuWoVkfJK8J1rvNQoSGzZu4PvtDQ9tY6GOWJnpxh6jKsdMdi_X4awtzfjnRVQSZCQDd4cDeJ4u1CabR-So67DgcYlWQOaSyONfpSsdcVFzkw8TsqcuBCVyeSrP9f_tfdD-hl4fQQwOex8xMGF9JsTtTY8f-WWwYFzcUwpkrcuzDiH8f7q0FkO9r4INhfBHoqQJef_SB5c_wP_BLFqtcM
CitedBy_id crossref_primary_10_1093_hmg_ddu123
crossref_primary_10_1111_iep_12190
crossref_primary_10_1080_17425255_2017_1262843
crossref_primary_10_1111_iep_12231
crossref_primary_10_1080_14756366_2023_2290458
crossref_primary_10_1016_j_nbd_2014_01_012
crossref_primary_10_51754_cusbed_781861
crossref_primary_10_1038_s41387_022_00213_3
crossref_primary_10_1016_j_nut_2017_04_003
crossref_primary_10_1002_jcb_24189
crossref_primary_10_1002_jmd2_12419
crossref_primary_10_1007_s11011_020_00631_1
crossref_primary_10_1002_jimd_70007
crossref_primary_10_1113_EP089223
crossref_primary_10_1002_acn3_73
crossref_primary_10_1038_s41392_023_01569_3
crossref_primary_10_1093_hmg_ddv418
crossref_primary_10_1074_jbc_M114_569251
crossref_primary_10_1186_1750_1172_9_73
crossref_primary_10_3109_10409238_2011_557713
crossref_primary_10_1016_j_ymgme_2014_06_005
crossref_primary_10_1007_s10545_016_0005_3
crossref_primary_10_1007_s11011_021_00686_8
crossref_primary_10_1016_j_freeradbiomed_2017_04_364
crossref_primary_10_1194_jlr_M075317
crossref_primary_10_1038_s41569_022_00760_3
crossref_primary_10_2165_11591280_000000000_00000
crossref_primary_10_1016_j_anpedi_2013_05_030
crossref_primary_10_1002_jimd_12662
crossref_primary_10_1038_srep28775
crossref_primary_10_1096_fj_201802842RR
crossref_primary_10_1586_17446651_2014_945908
crossref_primary_10_1016_j_ejpn_2015_07_009
crossref_primary_10_1007_s10545_014_9808_2
crossref_primary_10_21307_ane_2020_027
crossref_primary_10_1111_cge_13088
crossref_primary_10_1016_j_jbc_2023_102959
crossref_primary_10_1007_s00726_017_2412_7
crossref_primary_10_1126_scitranslmed_3004986
crossref_primary_10_1371_journal_pmed_1002179
crossref_primary_10_1016_j_cmet_2018_10_013
crossref_primary_10_1016_j_ymgme_2014_05_006
crossref_primary_10_1016_j_ymgme_2023_108123
crossref_primary_10_1002_mgg3_88
crossref_primary_10_1016_j_ymgme_2021_02_002
crossref_primary_10_1016_j_bbadis_2016_01_016
crossref_primary_10_1152_ajpcell_00377_2020
crossref_primary_10_1515_jpem_2020_0356
crossref_primary_10_1073_pnas_1303220110
crossref_primary_10_3233_TRD_160009
crossref_primary_10_1016_j_phrs_2021_105518
crossref_primary_10_1016_j_ymgme_2013_05_010
crossref_primary_10_1074_jbc_RA120_013121
crossref_primary_10_1093_cvr_cvae248
crossref_primary_10_1155_2017_1045031
crossref_primary_10_1016_j_ebiom_2017_05_001
crossref_primary_10_1186_s12986_018_0271_1
crossref_primary_10_1186_s13023_025_03533_6
crossref_primary_10_3945_ajcn_110_009043
Cites_doi 10.1016/S0065-2571(96)00009-X
10.1038/npp.2008.229
10.1038/sj.emboj.7601444
10.1038/nrd2133
10.1074/jbc.M607552200
10.1042/bj2570625
10.1093/clinchem/46.6.848
10.1016/S0021-9258(18)42179-5
10.1016/j.cmet.2007.08.003
10.1203/00006450-200105000-00004
10.1542/peds.109.6.999
10.1074/jbc.M005075200
10.1016/j.ymgme.2010.04.017
10.1016/S1096-7192(03)00144-6
10.3109/00207459408986065
10.1212/01.wnl.0000223353.34006.54
10.1016/j.ymgme.2008.05.004
10.1016/S0969-2126(00)00105-2
10.1007/s10571-005-4938-6
10.1126/science.1128294
10.1016/j.ymgme.2003.11.017
10.1006/mthe.2002.0639
10.1007/s10545-007-0475-4
10.1074/jbc.M107242200
10.1016/S0021-9258(17)38516-2
10.1016/S0021-9258(18)50626-8
10.1002/humu.9187
10.1038/sj.ejhg.5201320
10.1172/JCI114033
10.1182/blood.V85.1.43.bloodjournal85143
10.1074/jbc.M700198200
10.1056/NEJM196701122760204
10.1152/ajpendo.00153.2003
10.1007/s11064-007-9423-9
10.1074/jbc.M403611200
10.1016/S0140-6736(05)63080-2
10.1016/S0002-9343(70)80121-8
10.1093/jn/136.1.243S
10.1016/S0021-9258(18)94087-1
10.1016/j.str.2005.10.009
10.1002/mds.21632
10.1046/j.1471-4159.1998.71020863.x
10.1016/j.str.2004.09.013
10.1016/0003-9861(84)90362-X
10.1172/JCI38151
10.1172/JCI117804
10.1007/s00431-003-1282-z
ContentType Journal Article
Copyright 2015 INIST-CNRS
The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
8FD
FR3
P64
RC3
5PM
DOI 10.1093/hmg/ddq507
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Genetics Abstracts
Genetics Abstracts
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1460-2083
EndPage 640
ExternalDocumentID PMC3024040
21098507
23879108
10_1093_hmg_ddq507
Genre Research Support, U.S. Gov't, Non-P.H.S
Controlled Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: HD041648
– fundername: NIDDK NIH HHS
  grantid: DK34738
– fundername: NIDDK NIH HHS
  grantid: DK54450
– fundername: NINDS NIH HHS
  grantid: NS38642
– fundername: NIDDK NIH HHS
  grantid: DK26758
– fundername: NCRR NIH HHS
  grantid: RR00188
– fundername: Howard Hughes Medical Institute
– fundername: NIDDK NIH HHS
  grantid: DK081735
– fundername: NIDDK NIH HHS
  grantid: R01 DK092921
– fundername: NICHD NIH HHS
  grantid: HD024064
GroupedDBID ---
-DZ
-E4
.2P
.I3
.XZ
.ZR
0R~
18M
1TH
29I
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACPRK
ACUFI
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
C45
CAG
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBS
EE~
EJD
EMOBN
F5P
F9B
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
NVLIB
O0~
O9-
OAWHX
OBC
OBOKY
OBS
OCZFY
ODMLO
OEB
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
SJN
TEORI
TJX
TLC
TMA
TR2
W8F
WOQ
X7H
XSW
YAYTL
YKOAZ
YXANX
ZKX
~91
.55
.GJ
AAPGJ
AAWDT
ABEFU
ABIME
ABNGD
ABPIB
ABSMQ
ABZEO
ACFRR
ACPQN
ACUKT
ACVCV
ACZBC
ADMTO
AEHUL
AEKPW
AFFQV
AFSHK
AGKRT
AGMDO
AGQPQ
AHGBF
AJDVS
ANFBD
APJGH
AQDSO
AQKUS
ASAOO
ASPBG
ATDFG
ATTQO
AVNTJ
AVWKF
AZFZN
BZKNY
C1A
CXTWN
DFGAJ
EIHJH
ELUNK
FEDTE
HVGLF
IQODW
MBLQV
MBTAY
NEJ
NTWIH
OBFPC
O~Y
PB-
QBD
RIG
RNI
RZF
RZO
TCN
X7M
ZCG
ZGI
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c471t-dc1ee42703c41b034eaa4990fade1b15ac6df3f682b716d6ee6f6315cbf47a3e3
ISSN 0964-6906
1460-2083
IngestDate Thu Aug 21 14:12:55 EDT 2025
Fri Jul 11 15:16:06 EDT 2025
Fri Jul 11 05:23:17 EDT 2025
Thu Jul 10 18:31:06 EDT 2025
Mon Jul 21 05:51:00 EDT 2025
Mon Jul 21 09:14:12 EDT 2025
Tue Jul 01 00:24:10 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Nervous system diseases
Treatment
Leucinosis
Metabolic diseases
Genetics
Phenylbutyrate
Enzymopathy
Aminoacid disorder
Genetic disease
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c471t-dc1ee42703c41b034eaa4990fade1b15ac6df3f682b716d6ee6f6315cbf47a3e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
These authors contributed equally to this study.
OpenAccessLink https://academic.oup.com/hmg/article-pdf/20/4/631/17253672/ddq507.pdf
PMID 21098507
PQID 846903329
PQPubID 23462
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3024040
proquest_miscellaneous_907149497
proquest_miscellaneous_872139853
proquest_miscellaneous_846903329
pubmed_primary_21098507
pascalfrancis_primary_23879108
crossref_citationtrail_10_1093_hmg_ddq507
crossref_primary_10_1093_hmg_ddq507
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-15
PublicationDateYYYYMMDD 2011-02-15
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Human molecular genetics
PublicationTitleAlternate Hum Mol Genet
PublicationYear 2011
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Simon ( key 20170522145949_DDQ507C5) 2007; 30
Nellis ( key 20170522145949_DDQ507C13) 2003; 80
Danner ( key 20170522145949_DDQ507C34) 1979; 254
Brodtkorb ( key 20170522145949_DDQ507C49) 2010; 100
Collins ( key 20170522145949_DDQ507C31) 1995; 85
Korein ( key 20170522145949_DDQ507C2) 1994; 79
Hutson ( key 20170522145949_DDQ507C38) 1986; 261
Scaglia ( key 20170522145949_DDQ507C10) 2004; 81
Lu ( key 20170522145949_DDQ507C9) 2009; 119
Chuang ( key 20170522145949_DDQ507C46) 1994; 55
Hogarth ( key 20170522145949_DDQ507C28) 2007; 22
Paxton ( key 20170522145949_DDQ507C12) 1984; 231
Schulman ( key 20170522145949_DDQ507C3) 1970; 49
Kato ( key 20170522145949_DDQ507C22) 2006; 25
Ozcan ( key 20170522145949_DDQ507C30) 2006; 313
Traynor ( key 20170522145949_DDQ507C27) 2006; 67
Yeaman ( key 20170522145949_DDQ507C6) 1989; 257
Olivieri ( key 20170522145949_DDQ507C25) 1997; 350
Wynn ( key 20170522145949_DDQ507C43) 2004; 12
Dancis ( key 20170522145949_DDQ507C4) 1967; 276
Funchal ( key 20170522145949_DDQ507C18) 2005; 25
Zeitlin ( key 20170522145949_DDQ507C24) 2002; 6
Wynn ( key 20170522145949_DDQ507C35) 2000; 275
Fisher ( key 20170522145949_DDQ507C48) 1993; 52
Grafakou ( key 20170522145949_DDQ507C7) 2003; 162
Fisher ( key 20170522145949_DDQ507C37) 1989; 264
Morton ( key 20170522145949_DDQ507C1) 2002; 109
Islam ( key 20170522145949_DDQ507C41) 2007; 282
Bolden ( key 20170522145949_DDQ507C14) 2006; 5
Tuchman ( key 20170522145949_DDQ507C11) 2008; 94
Hutson ( key 20170522145949_DDQ507C39) 1998; 71
Chuang ( key 20170522145949_DDQ507C44) 1995; 95
Song ( key 20170522145949_DDQ507C19) 2001; 276
She ( key 20170522145949_DDQ507C33) 2007; 6
Zhang ( key 20170522145949_DDQ507C45) 1989; 83
Brahe ( key 20170522145949_DDQ507C26) 2005; 13
Popov ( key 20170522145949_DDQ507C8) 1992; 267
Chuang ( key 20170522145949_DDQ507C21) 2006; 136
Schadewaldt ( key 20170522145949_DDQ507C23) 2001; 49
AEvarsson ( key 20170522145949_DDQ507C20) 2000; 8
Machius ( key 20170522145949_DDQ507C16) 2006; 14
Ricobaraza ( key 20170522145949_DDQ507C29) 2009; 34
Yennawar ( key 20170522145949_DDQ507C40) 2006; 281
Ribeiro ( key 20170522145949_DDQ507C17) 2008; 33
Harris ( key 20170522145949_DDQ507C15) 1997; 37
Pailla ( key 20170522145949_DDQ507C32) 2000; 46
Lynch ( key 20170522145949_DDQ507C36) 2003; 285
Li ( key 20170522145949_DDQ507C42) 2004; 279
Henneke ( key 20170522145949_DDQ507C47) 2003; 22
References_xml – volume: 37
  start-page: 271
  year: 1997
  ident: key 20170522145949_DDQ507C15
  article-title: Studies on the regulation of the mitochondrial alpha-ketoacid dehydrogenase complexes and their kinases
  publication-title: Adv. Enzyme Regul.
  doi: 10.1016/S0065-2571(96)00009-X
– volume: 34
  start-page: 1721
  year: 2009
  ident: key 20170522145949_DDQ507C29
  article-title: Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer's disease mouse model
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2008.229
– volume: 25
  start-page: 5983
  year: 2006
  ident: key 20170522145949_DDQ507C22
  article-title: A synchronized substrate-gating mechanism revealed by cubic-core structure of the bovine branched-chain alpha-ketoacid dehydrogenase complex
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601444
– volume: 5
  start-page: 769
  year: 2006
  ident: key 20170522145949_DDQ507C14
  article-title: Anticancer activities of histone deacetylase inhibitors
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2133
– volume: 281
  start-page: 39660
  year: 2006
  ident: key 20170522145949_DDQ507C40
  article-title: Human mitochondrial branched chain aminotransferase isozyme: structural role of the CXXC center in catalysis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M607552200
– volume: 257
  start-page: 625
  year: 1989
  ident: key 20170522145949_DDQ507C6
  article-title: The 2-oxo acid dehydrogenase complexes: recent advances
  publication-title: Biochem. J.
  doi: 10.1042/bj2570625
– volume: 46
  start-page: 848
  year: 2000
  ident: key 20170522145949_DDQ507C32
  article-title: Branched-chain keto-acids and pyruvate in blood: measurement by HPLC with fluorimetric detection and changes in older subjects
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/46.6.848
– volume: 267
  start-page: 13127
  year: 1992
  ident: key 20170522145949_DDQ507C8
  article-title: Branched-chain alpha-ketoacid dehydrogenase kinase. Molecular cloning, expression, and sequence similarity with histidine protein kinases
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)42179-5
– volume: 6
  start-page: 181
  year: 2007
  ident: key 20170522145949_DDQ507C33
  article-title: Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.08.003
– volume: 49
  start-page: 627
  year: 2001
  ident: key 20170522145949_DDQ507C23
  article-title: Whole-body L-leucine oxidation in patients with variant form of maple syrup urine disease
  publication-title: Pediatr. Res.
  doi: 10.1203/00006450-200105000-00004
– volume: 109
  start-page: 999
  year: 2002
  ident: key 20170522145949_DDQ507C1
  article-title: Diagnosis and treatment of maple syrup disease: a study of 36 patients
  publication-title: Pediatrics
  doi: 10.1542/peds.109.6.999
– volume: 275
  start-page: 30512
  year: 2000
  ident: key 20170522145949_DDQ507C35
  article-title: Tetrameric assembly and conservation in the ATP-binding domain of rat branched-chain alpha-ketoacid dehydrogenase kinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M005075200
– volume: 100
  start-page: 324
  year: 2010
  ident: key 20170522145949_DDQ507C49
  article-title: Four novel mutations identified in Norwegian patients result in intermittent maple syrup urine disease when combined with the R301C mutation
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2010.04.017
– volume: 80
  start-page: 189
  year: 2003
  ident: key 20170522145949_DDQ507C13
  article-title: Relationship of causative genetic mutations in maple syrup urine disease with their clinical expression
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/S1096-7192(03)00144-6
– volume: 79
  start-page: 21
  year: 1994
  ident: key 20170522145949_DDQ507C2
  article-title: Maple syrup urine disease: clinical, EEG, and plasma amino acid correlations with a theoretical mechanism of acute neurotoxicity
  publication-title: Int. J. Neurosci.
  doi: 10.3109/00207459408986065
– volume: 67
  start-page: 20
  year: 2006
  ident: key 20170522145949_DDQ507C27
  article-title: Neuroprotective agents for clinical trials in ALS: a systematic assessment
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000223353.34006.54
– volume: 94
  start-page: 397
  year: 2008
  ident: key 20170522145949_DDQ507C11
  article-title: Cross-sectional multicenter study of patients with urea cycle disorders in the United States
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2008.05.004
– volume: 8
  start-page: 277
  year: 2000
  ident: key 20170522145949_DDQ507C20
  article-title: Crystal structure of human branched-chain alpha-ketoacid dehydrogenase and the molecular basis of multienzyme complex deficiency in maple syrup urine disease
  publication-title: Structure
  doi: 10.1016/S0969-2126(00)00105-2
– volume: 25
  start-page: 851
  year: 2005
  ident: key 20170522145949_DDQ507C18
  article-title: Morphological alterations and cell death provoked by the branched-chain alpha-amino acids accumulating in maple syrup urine disease in astrocytes from rat cerebral cortex
  publication-title: Cell. Mol. Neurobiol.
  doi: 10.1007/s10571-005-4938-6
– volume: 313
  start-page: 1137
  year: 2006
  ident: key 20170522145949_DDQ507C30
  article-title: Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes
  publication-title: Science
  doi: 10.1126/science.1128294
– volume: 81
  start-page: S79
  issue: Suppl. 1
  year: 2004
  ident: key 20170522145949_DDQ507C10
  article-title: Effect of alternative pathway therapy on branched chain amino acid metabolism in urea cycle disorder patients
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2003.11.017
– volume: 6
  start-page: 119
  year: 2002
  ident: key 20170522145949_DDQ507C24
  article-title: Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate
  publication-title: Mol. Ther.
  doi: 10.1006/mthe.2002.0639
– volume: 30
  start-page: 264
  year: 2007
  ident: key 20170522145949_DDQ507C5
  article-title: Social outcome in adults with maple syrup urine disease (MSUD)
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1007/s10545-007-0475-4
– volume: 276
  start-page: 40241
  year: 2001
  ident: key 20170522145949_DDQ507C19
  article-title: Natural osmolyte trimethylamine N-oxide corrects assembly defects of mutant branched-chain alpha-ketoacid decarboxylase in maple syrup urine disease
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M107242200
– volume: 261
  start-page: 4420
  year: 1986
  ident: key 20170522145949_DDQ507C38
  article-title: Branched chain alpha-keto acid oxidative decarboxylation in skeletal muscle mitochondria. Effect of isolation procedure and mitochondrial delta pH
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)38516-2
– volume: 254
  start-page: 5522
  year: 1979
  ident: key 20170522145949_DDQ507C34
  article-title: Purification and characterization of branched chain alpha-ketoacid dehydrogenase from bovine liver mitochondria
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)50626-8
– volume: 52
  start-page: 414
  year: 1993
  ident: key 20170522145949_DDQ507C48
  article-title: Occurrence of a 2-bp (AT) deletion allele and a nonsense (G-to-T) mutant allele at the E2 (DBT) locus of six patients with maple syrup urine disease: multiple-exon skipping as a secondary effect of the mutations
  publication-title: Am. J. Hum. Genet.
– volume: 22
  start-page: 417
  year: 2003
  ident: key 20170522145949_DDQ507C47
  article-title: Identification of twelve novel mutations in patients with classic and variant forms of maple syrup urine disease
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.9187
– volume: 13
  start-page: 256
  year: 2005
  ident: key 20170522145949_DDQ507C26
  article-title: Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/sj.ejhg.5201320
– volume: 83
  start-page: 1425
  year: 1989
  ident: key 20170522145949_DDQ507C45
  article-title: Evidence for both a regulatory mutation and a structural mutation in a family with maple syrup urine disease
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI114033
– volume: 85
  start-page: 43
  year: 1995
  ident: key 20170522145949_DDQ507C31
  article-title: Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial
  publication-title: Blood
  doi: 10.1182/blood.V85.1.43.bloodjournal85143
– volume: 282
  start-page: 11893
  year: 2007
  ident: key 20170522145949_DDQ507C41
  article-title: A novel branched-chain amino acid metabolon. Protein–protein interactions in a supramolecular complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M700198200
– volume: 276
  start-page: 84
  year: 1967
  ident: key 20170522145949_DDQ507C4
  article-title: Intermittent branched-chain ketonuria. Variant of maple-syrup-urine disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM196701122760204
– volume: 285
  start-page: E854
  year: 2003
  ident: key 20170522145949_DDQ507C36
  article-title: Potential role of leucine metabolism in the leucine-signaling pathway involving mTOR
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00153.2003
– volume: 33
  start-page: 114
  year: 2008
  ident: key 20170522145949_DDQ507C17
  article-title: Inhibition of brain energy metabolism by the branched-chain amino acids accumulating in maple syrup urine disease
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-007-9423-9
– volume: 279
  start-page: 32968
  year: 2004
  ident: key 20170522145949_DDQ507C42
  article-title: Cross-talk between thiamin diphosphate binding and phosphorylation loop conformation in human branched-chain alpha-keto acid decarboxylase/dehydrogenase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M403611200
– volume: 350
  start-page: 491
  year: 1997
  ident: key 20170522145949_DDQ507C25
  article-title: Treatment of thalassaemia major with phenylbutyrate and hydroxyurea
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)63080-2
– volume: 49
  start-page: 118
  year: 1970
  ident: key 20170522145949_DDQ507C3
  article-title: A new variant of maple syrup urine disease (branched chain ketoaciduria). Clinical and biochemical evaluation
  publication-title: Am. J. Med.
  doi: 10.1016/S0002-9343(70)80121-8
– volume: 136
  start-page: 243S
  year: 2006
  ident: key 20170522145949_DDQ507C21
  article-title: Lessons from genetic disorders of branched-chain amino acid metabolism
  publication-title: J. Nutr.
  doi: 10.1093/jn/136.1.243S
– volume: 264
  start-page: 3448
  year: 1989
  ident: key 20170522145949_DDQ507C37
  article-title: Molecular phenotypes in cultured maple syrup urine disease cells. Complete E1 alpha cDNA sequence and mRNA and subunit contents of the human branched chain alpha-keto acid dehydrogenase complex
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)94087-1
– volume: 14
  start-page: 287
  year: 2006
  ident: key 20170522145949_DDQ507C16
  article-title: A versatile conformational switch regulates reactivity in human branched-chain alpha-ketoacid dehydrogenase
  publication-title: Structure
  doi: 10.1016/j.str.2005.10.009
– volume: 22
  start-page: 1962
  year: 2007
  ident: key 20170522145949_DDQ507C28
  article-title: Sodium phenylbutyrate in Huntington's disease: a dose-finding study
  publication-title: Mov. Disord.
  doi: 10.1002/mds.21632
– volume: 71
  start-page: 863
  year: 1998
  ident: key 20170522145949_DDQ507C39
  article-title: Role of branched-chain aminotransferase isoenzymes and gabapentin in neurotransmitter metabolism
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1998.71020863.x
– volume: 12
  start-page: 2185
  year: 2004
  ident: key 20170522145949_DDQ507C43
  article-title: Molecular mechanism for regulation of the human mitochondrial branched-chain alpha-ketoacid dehydrogenase complex by phosphorylation
  publication-title: Structure
  doi: 10.1016/j.str.2004.09.013
– volume: 231
  start-page: 58
  year: 1984
  ident: key 20170522145949_DDQ507C12
  article-title: Clofibric acid, phenylpyruvate, and dichloroacetate inhibition of branched-chain alpha-ketoacid dehydrogenase kinase in vitro and in perfused rat heart
  publication-title: Arch. Biochem. Biophys
  doi: 10.1016/0003-9861(84)90362-X
– volume: 119
  start-page: 1678
  year: 2009
  ident: key 20170522145949_DDQ507C9
  article-title: Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI38151
– volume: 95
  start-page: 954
  year: 1995
  ident: key 20170522145949_DDQ507C44
  article-title: Molecular and biochemical basis of intermediate maple syrup urine disease. Occurrence of homozygous G245R and F364C mutations at the E1 alpha locus of Hispanic-Mexican patients
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI117804
– volume: 55
  start-page: 297
  year: 1994
  ident: key 20170522145949_DDQ507C46
  article-title: Molecular basis of maple syrup urine disease: novel mutations at the E1 alpha locus that impair E1(alpha 2 beta 2) assembly or decrease steady-state E1 alpha mRNA levels of branched-chain alpha-keto acid dehydrogenase complex
  publication-title: Am. J. Hum. Genet.
– volume: 162
  start-page: 714
  year: 2003
  ident: key 20170522145949_DDQ507C7
  article-title: Leigh syndrome due to compound heterozygosity of dihydrolipoamide dehydrogenase gene mutations. Description of the first E3 splice site mutation
  publication-title: Eur. J. Pediatr.
  doi: 10.1007/s00431-003-1282-z
SSID ssj0016437
Score 2.308462
Snippet Therapy with sodium phenylacetate/benzoate or sodium phenylbutyrate in urea cycle disorder patients has been associated with a selective reduction in...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 631
SubjectTerms 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) - blood
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) - metabolism
Adolescent
Adult
Amino Acids, Branched-Chain - blood
Amino Acids, Branched-Chain - metabolism
Aminoacid disorders
Animals
Biological and medical sciences
Cells, Cultured
Child
Child, Preschool
Errors of metabolism
Female
Fibroblasts - drug effects
Fibroblasts - enzymology
Fundamental and applied biological sciences. Psychology
Genetics of eukaryotes. Biological and molecular evolution
Humans
Inhibitory Concentration 50
Keto Acids - blood
Keto Acids - metabolism
Male
Maple Syrup Urine Disease - blood
Maple Syrup Urine Disease - drug therapy
Maple Syrup Urine Disease - enzymology
Medical sciences
Metabolic diseases
Mice
Mice, Inbred C57BL
Molecular and cellular biology
Phenylbutyrates - metabolism
Phenylbutyrates - pharmacology
Phenylbutyrates - therapeutic use
Phosphorylation - drug effects
Young Adult
Title Phenylbutyrate therapy for maple syrup urine disease
URI https://www.ncbi.nlm.nih.gov/pubmed/21098507
https://www.proquest.com/docview/846903329
https://www.proquest.com/docview/872139853
https://www.proquest.com/docview/907149497
https://pubmed.ncbi.nlm.nih.gov/PMC3024040
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZx8ZgjK37aPZRDNvLCG5jSVbsx6y0dB8ZeWihb0ayZRJo3CyxC95fsD97J5_s2F1Wtr6ERFZix7_z6e509ztCPmi4ulHsM1fKhLlch9SVqQRlCKOBojJQVZHY5Ls4PedfLvyLXu9XK2upyNVB_HNrXcldUIUxwNVUyf4Hss2PwgC8B3zhFRCG13_CeDrTWXmpirw0hA8DrKXCDMyFNFmC63JVLAcmoK47WzHWGsUI_qLukGvaKZuaxk3kfFXAQD53p3ND4NhITqPKv8lsaUH_ZJJrN6J2vMLQ9LiEda1JrRlnpqL9WtqEsnwtB-ODduDBRFKpi6WXtxU0tiOMgruGBxmXGtSvXAwBQuxdUytgOmwJGm9pU2EXCFyYBfI6_aHzkQ9rtgDVeJIkP3zsotuCf7mo8AfnNgzs0Rsc29PJETNkb3x4j9yn4HBUzvnnr81-lNnerFgb7V-qiW5DdggnPsTTVsTSeI6OlfN4KdfwwKXYKWWbK3MzI7dl4pw9JU-sb-KMUdCekZ7OdskD7FZa7pKHE5uH8ZzwruQ5VvIcwMqpJM-pJM-pJM-xkveCnJ8cnx2durb_hhuDyZK7SexpzSmsCTH31JBxLSU4yMNUJtpTni9jkaQsFQFV4HUnQmuRAmR-rFI-kkyzl2Qnu8r0HnGoYqHmCdV-AA5vmijBgziADyEV0uNen3ys71cUW3J60yPlMsIkCRbBbY7wNvfJ-2buEilZts7a79z2ZirYqCOwkYM-cWocIlCpZp9MZvqqWEeBCRkxRsNbpowouE5g6v59SmhKA0MewpW8QnA3l2ClpE9GHdibCYbzvXskm88q7ncrpq_v_M035NHmYX5LdvJVod-BXZ2r_UrkfwMHx9W1
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phenylbutyrate+therapy+for+maple+syrup+urine+disease&rft.jtitle=Human+molecular+genetics&rft.au=Brunetti-Pierri%2C+Nicola&rft.au=Lanpher%2C+Brendan&rft.au=Erez%2C+Ayelet&rft.au=Ananieva%2C+Elitsa+A.&rft.date=2011-02-15&rft.pub=Oxford+University+Press&rft.issn=0964-6906&rft.eissn=1460-2083&rft.volume=20&rft.issue=4&rft.spage=631&rft.epage=640&rft_id=info:doi/10.1093%2Fhmg%2Fddq507&rft_id=info%3Apmid%2F21098507&rft.externalDocID=PMC3024040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-6906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-6906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-6906&client=summon