Differentiating ischemic stroke patients from healthy subjects using a large-scale, retrospective EEG database and machine learning methods

We set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies on a 3-min resting electroencephalogram (EEG) recording from which features can be computed. Using a large-scale, retrospective databa...

Full description

Saved in:
Bibliographic Details
Published inJournal of stroke and cerebrovascular diseases Vol. 33; no. 6; p. 107714
Main Authors Peterson, William, Ramakrishnan, Nithya, Browder, Krag, Sanossian, Nerses, Nguyen, Peggy, Fink, Ezekiel
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2024
Subjects
Online AccessGet full text
ISSN1052-3057
1532-8511
1532-8511
DOI10.1016/j.jstrokecerebrovasdis.2024.107714

Cover

Loading…
Abstract We set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies on a 3-min resting electroencephalogram (EEG) recording from which features can be computed. Using a large-scale, retrospective database of EEG recordings and matching clinical reports, we were able to construct a dataset of 1385 healthy subjects and 374 stroke patients. With subjects often producing more than one recording per session, the final dataset consisted of 2401 EEG recordings (63% healthy, 37% stroke). Using a rich set of features encompassing both the spectral and temporal domains, our model yielded an AUC of 0.95, with a sensitivity and specificity of 93% and 86%, respectively. Allowing for multiple recordings per subject in the training set boosted sensitivity by 7%, attributable to a more balanced dataset. Our work demonstrates strong potential for the use of EEG in conjunction with machine learning methods to distinguish stroke patients from healthy subjects. Our approach provides a solution that is not only timely (3-minutes recording time) but also highly precise and accurate (AUC: 0.95).
AbstractList We set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies on a 3-min resting electroencephalogram (EEG) recording from which features can be computed.OBJECTIVESWe set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies on a 3-min resting electroencephalogram (EEG) recording from which features can be computed.Using a large-scale, retrospective database of EEG recordings and matching clinical reports, we were able to construct a dataset of 1385 healthy subjects and 374 stroke patients. With subjects often producing more than one recording per session, the final dataset consisted of 2401 EEG recordings (63% healthy, 37% stroke).MATERIALS AND METHODSUsing a large-scale, retrospective database of EEG recordings and matching clinical reports, we were able to construct a dataset of 1385 healthy subjects and 374 stroke patients. With subjects often producing more than one recording per session, the final dataset consisted of 2401 EEG recordings (63% healthy, 37% stroke).Using a rich set of features encompassing both the spectral and temporal domains, our model yielded an AUC of 0.95, with a sensitivity and specificity of 93% and 86%, respectively. Allowing for multiple recordings per subject in the training set boosted sensitivity by 7%, attributable to a more balanced dataset.RESULTSUsing a rich set of features encompassing both the spectral and temporal domains, our model yielded an AUC of 0.95, with a sensitivity and specificity of 93% and 86%, respectively. Allowing for multiple recordings per subject in the training set boosted sensitivity by 7%, attributable to a more balanced dataset.Our work demonstrates strong potential for the use of EEG in conjunction with machine learning methods to distinguish stroke patients from healthy subjects. Our approach provides a solution that is not only timely (3-minutes recording time) but also highly precise and accurate (AUC: 0.95).CONCLUSIONSOur work demonstrates strong potential for the use of EEG in conjunction with machine learning methods to distinguish stroke patients from healthy subjects. Our approach provides a solution that is not only timely (3-minutes recording time) but also highly precise and accurate (AUC: 0.95).
We set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies on a 3-min resting electroencephalogram (EEG) recording from which features can be computed. Using a large-scale, retrospective database of EEG recordings and matching clinical reports, we were able to construct a dataset of 1385 healthy subjects and 374 stroke patients. With subjects often producing more than one recording per session, the final dataset consisted of 2401 EEG recordings (63% healthy, 37% stroke). Using a rich set of features encompassing both the spectral and temporal domains, our model yielded an AUC of 0.95, with a sensitivity and specificity of 93% and 86%, respectively. Allowing for multiple recordings per subject in the training set boosted sensitivity by 7%, attributable to a more balanced dataset. Our work demonstrates strong potential for the use of EEG in conjunction with machine learning methods to distinguish stroke patients from healthy subjects. Our approach provides a solution that is not only timely (3-minutes recording time) but also highly precise and accurate (AUC: 0.95).
ArticleNumber 107714
Author Peterson, William
Nguyen, Peggy
Ramakrishnan, Nithya
Browder, Krag
Fink, Ezekiel
Sanossian, Nerses
Author_xml – sequence: 1
  givenname: William
  orcidid: 0009-0003-9388-5820
  surname: Peterson
  fullname: Peterson, William
  email: wcp7cp@virginia.edu
  organization: University of Virginia, Charlottesville, VA, United States
– sequence: 2
  givenname: Nithya
  surname: Ramakrishnan
  fullname: Ramakrishnan, Nithya
  organization: Baylor College of Medicine, Houston, TX, United States
– sequence: 3
  givenname: Krag
  surname: Browder
  fullname: Browder, Krag
  organization: Aspen Insights, Dallas, TX, United States
– sequence: 4
  givenname: Nerses
  surname: Sanossian
  fullname: Sanossian, Nerses
  organization: Roxanna Todd Hodges Stroke Program, United States
– sequence: 5
  givenname: Peggy
  surname: Nguyen
  fullname: Nguyen, Peggy
  organization: Keck School of Medicine of the University of Southern California, United States
– sequence: 6
  givenname: Ezekiel
  surname: Fink
  fullname: Fink, Ezekiel
  organization: Houston Hospital, Houston, TX, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38636829$$D View this record in MEDLINE/PubMed
BookMark eNqVkcluFDEQhi0URBZ4BeQjQvTgZXo7QjJk0Uhc4Gy57XLaHbd7sN0jzTPw0njUySXiMidb9l9fqeq7RGd-8oDQZ0pWlNDq67AaYgrTEygI0IVpL6O2ccUIW-dAXdP1G3RBS86KpqT0LN9JyQpOyvocXcY4EEJp2ZTv0DlvKl41rL1Af2-sMRnnk5XJ-kdso-phtAovrfAuP-ffiE2YRtyDdKk_4Dh3A6j8OsdjkcROhkcoopIOvuAAuTbucsDuAW82t1jLJDsZAUuv8ShVbz1gBzL4Y_kIqZ90fI_eGukifHg-r9DvH5tf13fF9uft_fW3baHWNU2FpozUVdXQstW6rlSlOAMCvIWWMM5MZ5QxpCQGtJGsVo0GJQknTKuKdq3mV-jTwt2F6c8MMYkxTw3OSQ_THAUna07qMsNy9ONzdO5G0GIX7CjDQbwsMAfuloDKE8cARiib8somn4K0TlAiju7EIP7nThzdicVdRn1_hXrpdhJku0AgL3BvIYiosj8F2obsQ-jJnoZ7eIVTznqbNT_B4VTYP_vT5ZI
CitedBy_id crossref_primary_10_1016_j_neubiorev_2024_105795
Cites_doi 10.1007/s00415-021-10781-6
10.1016/j.clinph.2018.05.021
10.1056/NEJMoa1414792
10.1161/01.STR.0000144649.49861.1d
10.1371/journal.pone.0238872
10.1109/TBME.2021.3062502
10.3389/fnins.2016.00196
10.1097/NPT.0000000000000072
10.1056/NEJMoa1415061
10.1080/00207454.2016.1189913
10.1016/j.neuroimage.2020.117021
10.1016/j.clinph.2012.07.003
10.1002/ana.25669
10.1016/0013-4694(89)90027-8
10.1016/j.neuron.2015.05.041
10.1186/cc11230
10.1002/ana.410360404
10.1007/s40138-021-00234-9
10.1161/STROKEAHA.120.030150
10.3389/fneur.2021.780324
10.1016/j.clinph.2007.07.021
10.1016/j.jstrokecerebrovasdis.2019.05.019
10.1161/CIR.0000000000000757
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jstrokecerebrovasdis.2024.107714
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-8511
ExternalDocumentID 38636829
10_1016_j_jstrokecerebrovasdis_2024_107714
S1052305724001599
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.~1
0R~
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACIEU
ACJTP
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AEVXI
AFJKZ
AFRHN
AFTJW
AFXBA
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
L7B
M2W
M41
MO0
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SNG
SNH
SPCBC
SSH
SSZ
T5K
X7M
Z5R
~G-
AACTN
AAIAV
ABLVK
AFKWA
AJOXV
AMFUW
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c471t-d1207668159dd76c6c32e0e39e90232fbfcff050fedfa27c8deca0302dc61b9d3
IEDL.DBID .~1
ISSN 1052-3057
1532-8511
IngestDate Fri Jul 11 07:26:54 EDT 2025
Mon Jul 21 06:03:40 EDT 2025
Tue Jul 01 03:13:44 EDT 2025
Thu Apr 24 23:02:27 EDT 2025
Sat May 11 15:32:33 EDT 2024
Tue Aug 26 18:51:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Electroencephalogram (EEG)
Ischemic stroke
Feature engineering
Prehospital stroke scale
Machine learning
Large vessel occlusion
Language English
License Copyright © 2024 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-d1207668159dd76c6c32e0e39e90232fbfcff050fedfa27c8deca0302dc61b9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0003-9388-5820
PMID 38636829
PQID 3043075023
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3043075023
pubmed_primary_38636829
crossref_citationtrail_10_1016_j_jstrokecerebrovasdis_2024_107714
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107714
elsevier_sciencedirect_doi_10_1016_j_jstrokecerebrovasdis_2024_107714
elsevier_clinicalkey_doi_10_1016_j_jstrokecerebrovasdis_2024_107714
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of stroke and cerebrovascular diseases
PublicationTitleAlternate J Stroke Cerebrovasc Dis
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References López, Suarez, Jungreis, Obeid, Picone (bib0014) 2015
Shreve, Kaur, Vo (bib0010) 2019; 28
Bentes, Peralta, Viana (bib0023) 2018; 129
Sarraj, Hassan, Grotta (bib0006) 2020; 87
Nicholls, Ince, Minhas, Chung (bib0002) 2022; 12
Jordan (bib0021) 2004; 21
Obeid, Picone (bib0013) 2016; 10
Gemein, Schirrmeister, Chrabąszcz (bib0012) 2020; 220
Jayarathne, Cohen, Amarakeerthi (bib0015) 2020; 15
Nagata, Tagawa, Hiroi, Shishido, Uemura (bib0022) 1989; 72
Saver, Goyal, Bonafe (bib0003) 2015; 372
Vivaldi, Caiola, Solarana, Ye (bib0017) 2021; 68
Wolf, M.E., Ebert, A.D., & Chatzikonstantinou, A. (2017). The use of routine EEG in acute ischemic stroke patients without seizures: generalized but not focal EEG pathology is associated with clinical deterioration. Int J Neurosci, 127(5), 421–426.
Hossmann (bib0020) 1994; 36
George, Steinberg (bib0019) 2015; 87
Finnigan, Walsh, Rose, Chalk (bib0025) 2007; 118
.
Virani, Alonso, Benjamin (bib0001) 2020; 141
Patrick, Smith, Keenan (bib0005) 2021; 9
Foreman, Claassen (bib0016) 2012; 16
van Putten, Tavy (bib0008) 2004; 35
Erani, Zolotova, Vanderschelden (bib0009) 2020; 51
van Meenen, van Stigt, Marquering (bib0011) 2022; 269
Finnigan, van Putten (bib0024) 2013; 124
Campbell, Mitchell, Kleinig (bib0004) 2015; 372
Borich, Brown, Lakhani, Boyd (bib0018) 2015; 39
George (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0019) 2015; 87
Erani (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0009) 2020; 51
van Meenen (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0011) 2022; 269
Jordan (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0021) 2004; 21
Vivaldi (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0017) 2021; 68
Nicholls (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0002) 2022; 12
Sarraj (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0006) 2020; 87
Foreman (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0016) 2012; 16
Shreve (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0010) 2019; 28
Nagata (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0022) 1989; 72
Jayarathne (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0015) 2020; 15
Finnigan (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0025) 2007; 118
Borich (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0018) 2015; 39
Saver (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0003) 2015; 372
Obeid (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0013) 2016; 10
van Putten (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0008) 2004; 35
Bentes (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0023) 2018; 129
Patrick (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0005) 2021; 9
10.1016/j.jstrokecerebrovasdis.2024.107714_bib0007
Gemein (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0012) 2020; 220
Virani (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0001) 2020; 141
Campbell (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0004) 2015; 372
Hossmann (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0020) 1994; 36
Finnigan (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0024) 2013; 124
López (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0014) 2015
References_xml – volume: 372
  start-page: 2285
  year: 2015
  end-page: 2295
  ident: bib0003
  article-title: Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke
  publication-title: N Engl J Med
– volume: 87
  start-page: 419
  year: 2020
  end-page: 433
  ident: bib0006
  article-title: Optimizing patient selection for endovascular treatment in acute ischemic stroke (SELECT): a prospective, multicenter cohort study of imaging selection
  publication-title: Ann Neurol
– volume: 51
  start-page: 3361
  year: 2020
  end-page: 3365
  ident: bib0009
  article-title: Electroencephalography might improve diagnosis of acute stroke and large vessel occlusion
  publication-title: Stroke,
– volume: 28
  start-page: 2280
  year: 2019
  end-page: 2286
  ident: bib0010
  article-title: Electroencephalography measures are useful for identifying large acute ischemic stroke in the emergency department
  publication-title: J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc
– volume: 124
  start-page: 10
  year: 2013
  end-page: 19
  ident: bib0024
  article-title: EEG in ischaemic stroke: quantitative EEG can uniquely inform (sub-)acute prognoses and clinical management
  publication-title: Clin Neurophysiol: Off J Int Fed Clin Neurophysiol
– volume: 15
  year: 2020
  ident: bib0015
  article-title: Person identification from EEG using various machine learning techniques with inter-hemispheric amplitude ratio
  publication-title: PloS One
– volume: 68
  start-page: 3205
  year: 2021
  end-page: 3216
  ident: bib0017
  article-title: Evaluating performance of EEG data-driven machine learning for traumatic brain injury classification
  publication-title: IEEE Trans Bio-med Eng
– reference: Wolf, M.E., Ebert, A.D., & Chatzikonstantinou, A. (2017). The use of routine EEG in acute ischemic stroke patients without seizures: generalized but not focal EEG pathology is associated with clinical deterioration. Int J Neurosci, 127(5), 421–426.
– volume: 36
  start-page: 557
  year: 1994
  end-page: 565
  ident: bib0020
  article-title: Viability thresholds and the penumbra of focal ischemia
  publication-title: Ann Neurol
– volume: 9
  start-page: 64
  year: 2021
  end-page: 72
  ident: bib0005
  article-title: Large vessel occlusion stroke detection in the prehospital environment
  publication-title: Curr Emerg Hosp Med Rep
– volume: 16
  start-page: 216
  year: 2012
  ident: bib0016
  article-title: Quantitative EEG for the detection of brain ischemia
  publication-title: Crit Care (Lond, Engl)
– volume: 87
  start-page: 297
  year: 2015
  end-page: 309
  ident: bib0019
  article-title: Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments
  publication-title: Neuron
– volume: 72
  start-page: 16
  year: 1989
  end-page: 30
  ident: bib0022
  article-title: Electroencephalographic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 35
  start-page: 2489
  year: 2004
  end-page: 2492
  ident: bib0008
  article-title: Continuous quantitative EEG monitoring in hemispheric stroke patients using the brain symmetry index
  publication-title: Stroke
– volume: 141
  start-page: e139
  year: 2020
  end-page: e596
  ident: bib0001
  article-title: Heart disease and stroke statistics-2020 update: a report from the American heart association
  publication-title: Circulation
– volume: 12
  year: 2022
  ident: bib0002
  article-title: Emerging detection techniques for large vessel occlusion stroke: a scoping review
  publication-title: Front Neurol
– year: 2015
  ident: bib0014
  article-title: Automated identification of abnormal adult EEGs
  publication-title: IEEE Signal Processing in Medicine and Biology Symposium (SPMB). IEEE Signal Processing in Medicine and Biology Symposium, 2015
– volume: 21
  start-page: 341
  year: 2004
  end-page: 352
  ident: bib0021
  article-title: Emergency EEG and continuous EEG monitoring in acute ischemic stroke
  publication-title: J Clin Neurophysiol: Off Publ Am Electroencephalogr Soc
– volume: 129
  start-page: 1680
  year: 2018
  end-page: 1687
  ident: bib0023
  article-title: Quantitative EEG and functional outcome following acute ischemic stroke
  publication-title: Clin Neurophysiol: Off J Int Federat Clin Neurophysiol
– reference: .
– volume: 118
  start-page: 2525
  year: 2007
  end-page: 2532
  ident: bib0025
  article-title: Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes
  publication-title: Clin Neurophysiol: Off J Int Fed Clin Neurophysiol
– volume: 39
  start-page: 43
  year: 2015
  end-page: 51
  ident: bib0018
  article-title: Applications of electroencephalography to characterize brain activity: perspectives in stroke
  publication-title: J Neurol Phys Ther: JNPT
– volume: 10
  start-page: 196
  year: 2016
  ident: bib0013
  article-title: The temple university hospital EEG data corpus
  publication-title: Front Neurosci
– volume: 269
  start-page: 2030
  year: 2022
  end-page: 2038
  ident: bib0011
  article-title: Detection of large vessel occlusion stroke with electroencephalography in the emergency room: first results of the ELECTRA-STROKE study
  publication-title: J Neurol
– volume: 220
  year: 2020
  ident: bib0012
  article-title: Machine-learning-based diagnostics of EEG pathology
  publication-title: NeuroImage
– volume: 372
  start-page: 1009
  year: 2015
  end-page: 1018
  ident: bib0004
  article-title: Endovascular therapy for ischemic stroke with perfusion-imaging selection
  publication-title: N Engl J Med
– volume: 269
  start-page: 2030
  issue: 4
  year: 2022
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0011
  article-title: Detection of large vessel occlusion stroke with electroencephalography in the emergency room: first results of the ELECTRA-STROKE study
  publication-title: J Neurol
  doi: 10.1007/s00415-021-10781-6
– volume: 129
  start-page: 1680
  issue: 8
  year: 2018
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0023
  article-title: Quantitative EEG and functional outcome following acute ischemic stroke
  publication-title: Clin Neurophysiol: Off J Int Federat Clin Neurophysiol
  doi: 10.1016/j.clinph.2018.05.021
– volume: 372
  start-page: 1009
  issue: 11
  year: 2015
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0004
  article-title: Endovascular therapy for ischemic stroke with perfusion-imaging selection
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1414792
– volume: 35
  start-page: 2489
  issue: 11
  year: 2004
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0008
  article-title: Continuous quantitative EEG monitoring in hemispheric stroke patients using the brain symmetry index
  publication-title: Stroke
  doi: 10.1161/01.STR.0000144649.49861.1d
– volume: 15
  issue: 9
  year: 2020
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0015
  article-title: Person identification from EEG using various machine learning techniques with inter-hemispheric amplitude ratio
  publication-title: PloS One
  doi: 10.1371/journal.pone.0238872
– year: 2015
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0014
  article-title: Automated identification of abnormal adult EEGs
– volume: 68
  start-page: 3205
  issue: 11
  year: 2021
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0017
  article-title: Evaluating performance of EEG data-driven machine learning for traumatic brain injury classification
  publication-title: IEEE Trans Bio-med Eng
  doi: 10.1109/TBME.2021.3062502
– volume: 10
  start-page: 196
  year: 2016
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0013
  article-title: The temple university hospital EEG data corpus
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2016.00196
– volume: 39
  start-page: 43
  issue: 1
  year: 2015
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0018
  article-title: Applications of electroencephalography to characterize brain activity: perspectives in stroke
  publication-title: J Neurol Phys Ther: JNPT
  doi: 10.1097/NPT.0000000000000072
– volume: 21
  start-page: 341
  issue: 5
  year: 2004
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0021
  article-title: Emergency EEG and continuous EEG monitoring in acute ischemic stroke
  publication-title: J Clin Neurophysiol: Off Publ Am Electroencephalogr Soc
– volume: 372
  start-page: 2285
  issue: 24
  year: 2015
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0003
  article-title: Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1415061
– ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0007
  doi: 10.1080/00207454.2016.1189913
– volume: 220
  year: 2020
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0012
  article-title: Machine-learning-based diagnostics of EEG pathology
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117021
– volume: 124
  start-page: 10
  issue: 1
  year: 2013
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0024
  article-title: EEG in ischaemic stroke: quantitative EEG can uniquely inform (sub-)acute prognoses and clinical management
  publication-title: Clin Neurophysiol: Off J Int Fed Clin Neurophysiol
  doi: 10.1016/j.clinph.2012.07.003
– volume: 87
  start-page: 419
  issue: 3
  year: 2020
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0006
  article-title: Optimizing patient selection for endovascular treatment in acute ischemic stroke (SELECT): a prospective, multicenter cohort study of imaging selection
  publication-title: Ann Neurol
  doi: 10.1002/ana.25669
– volume: 72
  start-page: 16
  issue: 1
  year: 1989
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0022
  article-title: Electroencephalographic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(89)90027-8
– volume: 87
  start-page: 297
  issue: 2
  year: 2015
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0019
  article-title: Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.05.041
– volume: 16
  start-page: 216
  issue: 2
  year: 2012
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0016
  article-title: Quantitative EEG for the detection of brain ischemia
  publication-title: Crit Care (Lond, Engl)
  doi: 10.1186/cc11230
– volume: 36
  start-page: 557
  issue: 4
  year: 1994
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0020
  article-title: Viability thresholds and the penumbra of focal ischemia
  publication-title: Ann Neurol
  doi: 10.1002/ana.410360404
– volume: 9
  start-page: 64
  issue: 3
  year: 2021
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0005
  article-title: Large vessel occlusion stroke detection in the prehospital environment
  publication-title: Curr Emerg Hosp Med Rep
  doi: 10.1007/s40138-021-00234-9
– volume: 51
  start-page: 3361
  issue: 11
  year: 2020
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0009
  article-title: Electroencephalography might improve diagnosis of acute stroke and large vessel occlusion
  publication-title: Stroke,
  doi: 10.1161/STROKEAHA.120.030150
– volume: 12
  year: 2022
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0002
  article-title: Emerging detection techniques for large vessel occlusion stroke: a scoping review
  publication-title: Front Neurol
  doi: 10.3389/fneur.2021.780324
– volume: 118
  start-page: 2525
  issue: 11
  year: 2007
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0025
  article-title: Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes
  publication-title: Clin Neurophysiol: Off J Int Fed Clin Neurophysiol
  doi: 10.1016/j.clinph.2007.07.021
– volume: 28
  start-page: 2280
  issue: 8
  year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0010
  article-title: Electroencephalography measures are useful for identifying large acute ischemic stroke in the emergency department
  publication-title: J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc
  doi: 10.1016/j.jstrokecerebrovasdis.2019.05.019
– volume: 141
  start-page: e139
  issue: 9
  year: 2020
  ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0001
  article-title: Heart disease and stroke statistics-2020 update: a report from the American heart association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000757
SSID ssj0011585
Score 2.35519
Snippet We set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107714
SubjectTerms Electroencephalogram (EEG)
Feature engineering
Ischemic stroke
Large vessel occlusion
Machine learning
Prehospital stroke scale
Title Differentiating ischemic stroke patients from healthy subjects using a large-scale, retrospective EEG database and machine learning methods
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1052305724001599
https://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2024.107714
https://www.ncbi.nlm.nih.gov/pubmed/38636829
https://www.proquest.com/docview/3043075023
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqVqq4IMpzeVRG4oQI69iJk4jTatmygOgFKvUWJfZ4tW3JVpvsgQt_gD_NTOwsQmoPK_WWRPbI8YxnxvY3M4y9sTLRqXNFVAllo8SJKiog1ijLFV2rGVG4PtvnqZ6fJV_O0_M9Nh1iYQhWGXS_1-m9tg5fxmE2x9fL5fh73J9ophmhINEoUxBfkmQk5e9_b2Ee6PD0ZTmpcUStD9nbfxivi7Zbry7BwBo3oIT9tEtK4S0TbJD1kT03G6vbnNHeKJ08YPeDN8knfsBHbA-ah-zwW7gvf8T-fAz1TzriQLPgS9zMEhye-yHxkFa15RRmwn1Q5C_ebmo6nmk5oeIXvOJXhBePWuQnvONrwL5DhCafzT5xgpmSOeRVY_nPHp4JPNSjWHBfpLp9zM5OZj-m8yiUX4gMWqwusrEUmdY5zq21mTbaKAkCVAEFGnrpamecE6lwYF0lM5NbMMhxIa3RcV1Y9YTtN6sGnjEuNaAfhIQUqAQf8rrK4pQcNsgE5GLEJsM8lybkJqcSGVflAEK7KG_iVUm8Kj2vRuzDlsa1z9SxU-_pwN5yiElFLVqiYdmJymxL5T8p3pnO60HCSlzudIdTNbDatKWiHG3o5Uk1Yk-96G3_VuVa6VwWz-9oFC_YPXrzwLiXbL9bb-AVumBdfdyvsWN2MPn8dX76FyZgOTc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCa6FOh2GfZeupcG7DTMiCzZso2dgixdura5rAV6E2w9gnStU8TOYb9hf3qiJWcY0B0C7GbYEiGLlEiJH0mAD5olIrW2iErKdZRYWkaFiYWT5RLdaooWtsv2ORezi-TbZXq5B5M-FgZhlWHv93t6t1uHN6Mwm6Pb5XL0Pe5uNNMMUZBOKRf3YB-zU6UD2B8fn8zmW2dCnHaVObF9hB0O4OMfmNdV065XP4wya3cGRfinXmIWb5a4BlkX3HO3vvqXPdrppaNH8DAYlGTsx_wY9kz9BA7Ogsv8Kfz6EkqgtMiEekGW7jyLiHjih0RCZtWGYKQJ8XGRP0mzqfCGpiEIjF-QklwjZDxqHEvNJ7I2rm8fpEmm068EkaaoEUlZa3LTITQNCSUpFsTXqW6ewcXR9Hwyi0IFhkg5pdVGOmY0EyJ306t1JpRQnBlqeGEKp-uZrayylqbUGm1LlqlcG-WYTplWIq4KzZ_DoF7V5iUQJowzhRwhbnjiHvKqzOIUbTaTUZPTIYz7eZYqpCfHKhnXssehXcm7eCWRV9LzagiftzRufbKOnXpPevbKPizVbaTS6ZadqEy3VP4S5J3pvO8lTLoVj26csjarTSM5pmlzhh7jQ3jhRW_7tzwXXOSsOPxPo3gH92fnZ6fy9Hh-8goe4BePk3sNg3a9MW-cRdZWb8OK-w2tWjvo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentiating+ischemic+stroke+patients+from+healthy+subjects+using+a+large-scale%2C+retrospective+EEG+database+and+machine+learning+methods&rft.jtitle=Journal+of+stroke+and+cerebrovascular+diseases&rft.au=Peterson%2C+William&rft.au=Ramakrishnan%2C+Nithya&rft.au=Browder%2C+Krag&rft.au=Sanossian%2C+Nerses&rft.date=2024-06-01&rft.eissn=1532-8511&rft.volume=33&rft.issue=6&rft.spage=107714&rft_id=info:doi/10.1016%2Fj.jstrokecerebrovasdis.2024.107714&rft_id=info%3Apmid%2F38636829&rft.externalDocID=38636829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-3057&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-3057&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-3057&client=summon