Differentiating ischemic stroke patients from healthy subjects using a large-scale, retrospective EEG database and machine learning methods
We set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies on a 3-min resting electroencephalogram (EEG) recording from which features can be computed. Using a large-scale, retrospective databa...
Saved in:
Published in | Journal of stroke and cerebrovascular diseases Vol. 33; no. 6; p. 107714 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1052-3057 1532-8511 1532-8511 |
DOI | 10.1016/j.jstrokecerebrovasdis.2024.107714 |
Cover
Loading…
Abstract | We set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies on a 3-min resting electroencephalogram (EEG) recording from which features can be computed.
Using a large-scale, retrospective database of EEG recordings and matching clinical reports, we were able to construct a dataset of 1385 healthy subjects and 374 stroke patients. With subjects often producing more than one recording per session, the final dataset consisted of 2401 EEG recordings (63% healthy, 37% stroke).
Using a rich set of features encompassing both the spectral and temporal domains, our model yielded an AUC of 0.95, with a sensitivity and specificity of 93% and 86%, respectively. Allowing for multiple recordings per subject in the training set boosted sensitivity by 7%, attributable to a more balanced dataset.
Our work demonstrates strong potential for the use of EEG in conjunction with machine learning methods to distinguish stroke patients from healthy subjects. Our approach provides a solution that is not only timely (3-minutes recording time) but also highly precise and accurate (AUC: 0.95). |
---|---|
AbstractList | We set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies on a 3-min resting electroencephalogram (EEG) recording from which features can be computed.OBJECTIVESWe set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies on a 3-min resting electroencephalogram (EEG) recording from which features can be computed.Using a large-scale, retrospective database of EEG recordings and matching clinical reports, we were able to construct a dataset of 1385 healthy subjects and 374 stroke patients. With subjects often producing more than one recording per session, the final dataset consisted of 2401 EEG recordings (63% healthy, 37% stroke).MATERIALS AND METHODSUsing a large-scale, retrospective database of EEG recordings and matching clinical reports, we were able to construct a dataset of 1385 healthy subjects and 374 stroke patients. With subjects often producing more than one recording per session, the final dataset consisted of 2401 EEG recordings (63% healthy, 37% stroke).Using a rich set of features encompassing both the spectral and temporal domains, our model yielded an AUC of 0.95, with a sensitivity and specificity of 93% and 86%, respectively. Allowing for multiple recordings per subject in the training set boosted sensitivity by 7%, attributable to a more balanced dataset.RESULTSUsing a rich set of features encompassing both the spectral and temporal domains, our model yielded an AUC of 0.95, with a sensitivity and specificity of 93% and 86%, respectively. Allowing for multiple recordings per subject in the training set boosted sensitivity by 7%, attributable to a more balanced dataset.Our work demonstrates strong potential for the use of EEG in conjunction with machine learning methods to distinguish stroke patients from healthy subjects. Our approach provides a solution that is not only timely (3-minutes recording time) but also highly precise and accurate (AUC: 0.95).CONCLUSIONSOur work demonstrates strong potential for the use of EEG in conjunction with machine learning methods to distinguish stroke patients from healthy subjects. Our approach provides a solution that is not only timely (3-minutes recording time) but also highly precise and accurate (AUC: 0.95). We set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies on a 3-min resting electroencephalogram (EEG) recording from which features can be computed. Using a large-scale, retrospective database of EEG recordings and matching clinical reports, we were able to construct a dataset of 1385 healthy subjects and 374 stroke patients. With subjects often producing more than one recording per session, the final dataset consisted of 2401 EEG recordings (63% healthy, 37% stroke). Using a rich set of features encompassing both the spectral and temporal domains, our model yielded an AUC of 0.95, with a sensitivity and specificity of 93% and 86%, respectively. Allowing for multiple recordings per subject in the training set boosted sensitivity by 7%, attributable to a more balanced dataset. Our work demonstrates strong potential for the use of EEG in conjunction with machine learning methods to distinguish stroke patients from healthy subjects. Our approach provides a solution that is not only timely (3-minutes recording time) but also highly precise and accurate (AUC: 0.95). |
ArticleNumber | 107714 |
Author | Peterson, William Nguyen, Peggy Ramakrishnan, Nithya Browder, Krag Fink, Ezekiel Sanossian, Nerses |
Author_xml | – sequence: 1 givenname: William orcidid: 0009-0003-9388-5820 surname: Peterson fullname: Peterson, William email: wcp7cp@virginia.edu organization: University of Virginia, Charlottesville, VA, United States – sequence: 2 givenname: Nithya surname: Ramakrishnan fullname: Ramakrishnan, Nithya organization: Baylor College of Medicine, Houston, TX, United States – sequence: 3 givenname: Krag surname: Browder fullname: Browder, Krag organization: Aspen Insights, Dallas, TX, United States – sequence: 4 givenname: Nerses surname: Sanossian fullname: Sanossian, Nerses organization: Roxanna Todd Hodges Stroke Program, United States – sequence: 5 givenname: Peggy surname: Nguyen fullname: Nguyen, Peggy organization: Keck School of Medicine of the University of Southern California, United States – sequence: 6 givenname: Ezekiel surname: Fink fullname: Fink, Ezekiel organization: Houston Hospital, Houston, TX, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38636829$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkcluFDEQhi0URBZ4BeQjQvTgZXo7QjJk0Uhc4Gy57XLaHbd7sN0jzTPw0njUySXiMidb9l9fqeq7RGd-8oDQZ0pWlNDq67AaYgrTEygI0IVpL6O2ccUIW-dAXdP1G3RBS86KpqT0LN9JyQpOyvocXcY4EEJp2ZTv0DlvKl41rL1Af2-sMRnnk5XJ-kdso-phtAovrfAuP-ffiE2YRtyDdKk_4Dh3A6j8OsdjkcROhkcoopIOvuAAuTbucsDuAW82t1jLJDsZAUuv8ShVbz1gBzL4Y_kIqZ90fI_eGukifHg-r9DvH5tf13fF9uft_fW3baHWNU2FpozUVdXQstW6rlSlOAMCvIWWMM5MZ5QxpCQGtJGsVo0GJQknTKuKdq3mV-jTwt2F6c8MMYkxTw3OSQ_THAUna07qMsNy9ONzdO5G0GIX7CjDQbwsMAfuloDKE8cARiib8somn4K0TlAiju7EIP7nThzdicVdRn1_hXrpdhJku0AgL3BvIYiosj8F2obsQ-jJnoZ7eIVTznqbNT_B4VTYP_vT5ZI |
CitedBy_id | crossref_primary_10_1016_j_neubiorev_2024_105795 |
Cites_doi | 10.1007/s00415-021-10781-6 10.1016/j.clinph.2018.05.021 10.1056/NEJMoa1414792 10.1161/01.STR.0000144649.49861.1d 10.1371/journal.pone.0238872 10.1109/TBME.2021.3062502 10.3389/fnins.2016.00196 10.1097/NPT.0000000000000072 10.1056/NEJMoa1415061 10.1080/00207454.2016.1189913 10.1016/j.neuroimage.2020.117021 10.1016/j.clinph.2012.07.003 10.1002/ana.25669 10.1016/0013-4694(89)90027-8 10.1016/j.neuron.2015.05.041 10.1186/cc11230 10.1002/ana.410360404 10.1007/s40138-021-00234-9 10.1161/STROKEAHA.120.030150 10.3389/fneur.2021.780324 10.1016/j.clinph.2007.07.021 10.1016/j.jstrokecerebrovasdis.2019.05.019 10.1161/CIR.0000000000000757 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jstrokecerebrovasdis.2024.107714 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1532-8511 |
ExternalDocumentID | 38636829 10_1016_j_jstrokecerebrovasdis_2024_107714 S1052305724001599 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .~1 0R~ 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACIEU ACJTP ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AEVXI AFJKZ AFRHN AFTJW AFXBA AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM L7B M2W M41 MO0 N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SEL SES SEW SNG SNH SPCBC SSH SSZ T5K X7M Z5R ~G- AACTN AAIAV ABLVK AFKWA AJOXV AMFUW RIG AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c471t-d1207668159dd76c6c32e0e39e90232fbfcff050fedfa27c8deca0302dc61b9d3 |
IEDL.DBID | .~1 |
ISSN | 1052-3057 1532-8511 |
IngestDate | Fri Jul 11 07:26:54 EDT 2025 Mon Jul 21 06:03:40 EDT 2025 Tue Jul 01 03:13:44 EDT 2025 Thu Apr 24 23:02:27 EDT 2025 Sat May 11 15:32:33 EDT 2024 Tue Aug 26 18:51:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Electroencephalogram (EEG) Ischemic stroke Feature engineering Prehospital stroke scale Machine learning Large vessel occlusion |
Language | English |
License | Copyright © 2024 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-d1207668159dd76c6c32e0e39e90232fbfcff050fedfa27c8deca0302dc61b9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0003-9388-5820 |
PMID | 38636829 |
PQID | 3043075023 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3043075023 pubmed_primary_38636829 crossref_citationtrail_10_1016_j_jstrokecerebrovasdis_2024_107714 crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107714 elsevier_sciencedirect_doi_10_1016_j_jstrokecerebrovasdis_2024_107714 elsevier_clinicalkey_doi_10_1016_j_jstrokecerebrovasdis_2024_107714 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of stroke and cerebrovascular diseases |
PublicationTitleAlternate | J Stroke Cerebrovasc Dis |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | López, Suarez, Jungreis, Obeid, Picone (bib0014) 2015 Shreve, Kaur, Vo (bib0010) 2019; 28 Bentes, Peralta, Viana (bib0023) 2018; 129 Sarraj, Hassan, Grotta (bib0006) 2020; 87 Nicholls, Ince, Minhas, Chung (bib0002) 2022; 12 Jordan (bib0021) 2004; 21 Obeid, Picone (bib0013) 2016; 10 Gemein, Schirrmeister, Chrabąszcz (bib0012) 2020; 220 Jayarathne, Cohen, Amarakeerthi (bib0015) 2020; 15 Nagata, Tagawa, Hiroi, Shishido, Uemura (bib0022) 1989; 72 Saver, Goyal, Bonafe (bib0003) 2015; 372 Vivaldi, Caiola, Solarana, Ye (bib0017) 2021; 68 Wolf, M.E., Ebert, A.D., & Chatzikonstantinou, A. (2017). The use of routine EEG in acute ischemic stroke patients without seizures: generalized but not focal EEG pathology is associated with clinical deterioration. Int J Neurosci, 127(5), 421–426. Hossmann (bib0020) 1994; 36 George, Steinberg (bib0019) 2015; 87 Finnigan, Walsh, Rose, Chalk (bib0025) 2007; 118 . Virani, Alonso, Benjamin (bib0001) 2020; 141 Patrick, Smith, Keenan (bib0005) 2021; 9 Foreman, Claassen (bib0016) 2012; 16 van Putten, Tavy (bib0008) 2004; 35 Erani, Zolotova, Vanderschelden (bib0009) 2020; 51 van Meenen, van Stigt, Marquering (bib0011) 2022; 269 Finnigan, van Putten (bib0024) 2013; 124 Campbell, Mitchell, Kleinig (bib0004) 2015; 372 Borich, Brown, Lakhani, Boyd (bib0018) 2015; 39 George (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0019) 2015; 87 Erani (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0009) 2020; 51 van Meenen (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0011) 2022; 269 Jordan (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0021) 2004; 21 Vivaldi (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0017) 2021; 68 Nicholls (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0002) 2022; 12 Sarraj (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0006) 2020; 87 Foreman (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0016) 2012; 16 Shreve (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0010) 2019; 28 Nagata (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0022) 1989; 72 Jayarathne (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0015) 2020; 15 Finnigan (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0025) 2007; 118 Borich (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0018) 2015; 39 Saver (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0003) 2015; 372 Obeid (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0013) 2016; 10 van Putten (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0008) 2004; 35 Bentes (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0023) 2018; 129 Patrick (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0005) 2021; 9 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0007 Gemein (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0012) 2020; 220 Virani (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0001) 2020; 141 Campbell (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0004) 2015; 372 Hossmann (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0020) 1994; 36 Finnigan (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0024) 2013; 124 López (10.1016/j.jstrokecerebrovasdis.2024.107714_bib0014) 2015 |
References_xml | – volume: 372 start-page: 2285 year: 2015 end-page: 2295 ident: bib0003 article-title: Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke publication-title: N Engl J Med – volume: 87 start-page: 419 year: 2020 end-page: 433 ident: bib0006 article-title: Optimizing patient selection for endovascular treatment in acute ischemic stroke (SELECT): a prospective, multicenter cohort study of imaging selection publication-title: Ann Neurol – volume: 51 start-page: 3361 year: 2020 end-page: 3365 ident: bib0009 article-title: Electroencephalography might improve diagnosis of acute stroke and large vessel occlusion publication-title: Stroke, – volume: 28 start-page: 2280 year: 2019 end-page: 2286 ident: bib0010 article-title: Electroencephalography measures are useful for identifying large acute ischemic stroke in the emergency department publication-title: J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc – volume: 124 start-page: 10 year: 2013 end-page: 19 ident: bib0024 article-title: EEG in ischaemic stroke: quantitative EEG can uniquely inform (sub-)acute prognoses and clinical management publication-title: Clin Neurophysiol: Off J Int Fed Clin Neurophysiol – volume: 15 year: 2020 ident: bib0015 article-title: Person identification from EEG using various machine learning techniques with inter-hemispheric amplitude ratio publication-title: PloS One – volume: 68 start-page: 3205 year: 2021 end-page: 3216 ident: bib0017 article-title: Evaluating performance of EEG data-driven machine learning for traumatic brain injury classification publication-title: IEEE Trans Bio-med Eng – reference: Wolf, M.E., Ebert, A.D., & Chatzikonstantinou, A. (2017). The use of routine EEG in acute ischemic stroke patients without seizures: generalized but not focal EEG pathology is associated with clinical deterioration. Int J Neurosci, 127(5), 421–426. – volume: 36 start-page: 557 year: 1994 end-page: 565 ident: bib0020 article-title: Viability thresholds and the penumbra of focal ischemia publication-title: Ann Neurol – volume: 9 start-page: 64 year: 2021 end-page: 72 ident: bib0005 article-title: Large vessel occlusion stroke detection in the prehospital environment publication-title: Curr Emerg Hosp Med Rep – volume: 16 start-page: 216 year: 2012 ident: bib0016 article-title: Quantitative EEG for the detection of brain ischemia publication-title: Crit Care (Lond, Engl) – volume: 87 start-page: 297 year: 2015 end-page: 309 ident: bib0019 article-title: Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments publication-title: Neuron – volume: 72 start-page: 16 year: 1989 end-page: 30 ident: bib0022 article-title: Electroencephalographic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction publication-title: Electroencephalogr Clin Neurophysiol – volume: 35 start-page: 2489 year: 2004 end-page: 2492 ident: bib0008 article-title: Continuous quantitative EEG monitoring in hemispheric stroke patients using the brain symmetry index publication-title: Stroke – volume: 141 start-page: e139 year: 2020 end-page: e596 ident: bib0001 article-title: Heart disease and stroke statistics-2020 update: a report from the American heart association publication-title: Circulation – volume: 12 year: 2022 ident: bib0002 article-title: Emerging detection techniques for large vessel occlusion stroke: a scoping review publication-title: Front Neurol – year: 2015 ident: bib0014 article-title: Automated identification of abnormal adult EEGs publication-title: IEEE Signal Processing in Medicine and Biology Symposium (SPMB). IEEE Signal Processing in Medicine and Biology Symposium, 2015 – volume: 21 start-page: 341 year: 2004 end-page: 352 ident: bib0021 article-title: Emergency EEG and continuous EEG monitoring in acute ischemic stroke publication-title: J Clin Neurophysiol: Off Publ Am Electroencephalogr Soc – volume: 129 start-page: 1680 year: 2018 end-page: 1687 ident: bib0023 article-title: Quantitative EEG and functional outcome following acute ischemic stroke publication-title: Clin Neurophysiol: Off J Int Federat Clin Neurophysiol – reference: . – volume: 118 start-page: 2525 year: 2007 end-page: 2532 ident: bib0025 article-title: Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes publication-title: Clin Neurophysiol: Off J Int Fed Clin Neurophysiol – volume: 39 start-page: 43 year: 2015 end-page: 51 ident: bib0018 article-title: Applications of electroencephalography to characterize brain activity: perspectives in stroke publication-title: J Neurol Phys Ther: JNPT – volume: 10 start-page: 196 year: 2016 ident: bib0013 article-title: The temple university hospital EEG data corpus publication-title: Front Neurosci – volume: 269 start-page: 2030 year: 2022 end-page: 2038 ident: bib0011 article-title: Detection of large vessel occlusion stroke with electroencephalography in the emergency room: first results of the ELECTRA-STROKE study publication-title: J Neurol – volume: 220 year: 2020 ident: bib0012 article-title: Machine-learning-based diagnostics of EEG pathology publication-title: NeuroImage – volume: 372 start-page: 1009 year: 2015 end-page: 1018 ident: bib0004 article-title: Endovascular therapy for ischemic stroke with perfusion-imaging selection publication-title: N Engl J Med – volume: 269 start-page: 2030 issue: 4 year: 2022 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0011 article-title: Detection of large vessel occlusion stroke with electroencephalography in the emergency room: first results of the ELECTRA-STROKE study publication-title: J Neurol doi: 10.1007/s00415-021-10781-6 – volume: 129 start-page: 1680 issue: 8 year: 2018 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0023 article-title: Quantitative EEG and functional outcome following acute ischemic stroke publication-title: Clin Neurophysiol: Off J Int Federat Clin Neurophysiol doi: 10.1016/j.clinph.2018.05.021 – volume: 372 start-page: 1009 issue: 11 year: 2015 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0004 article-title: Endovascular therapy for ischemic stroke with perfusion-imaging selection publication-title: N Engl J Med doi: 10.1056/NEJMoa1414792 – volume: 35 start-page: 2489 issue: 11 year: 2004 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0008 article-title: Continuous quantitative EEG monitoring in hemispheric stroke patients using the brain symmetry index publication-title: Stroke doi: 10.1161/01.STR.0000144649.49861.1d – volume: 15 issue: 9 year: 2020 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0015 article-title: Person identification from EEG using various machine learning techniques with inter-hemispheric amplitude ratio publication-title: PloS One doi: 10.1371/journal.pone.0238872 – year: 2015 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0014 article-title: Automated identification of abnormal adult EEGs – volume: 68 start-page: 3205 issue: 11 year: 2021 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0017 article-title: Evaluating performance of EEG data-driven machine learning for traumatic brain injury classification publication-title: IEEE Trans Bio-med Eng doi: 10.1109/TBME.2021.3062502 – volume: 10 start-page: 196 year: 2016 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0013 article-title: The temple university hospital EEG data corpus publication-title: Front Neurosci doi: 10.3389/fnins.2016.00196 – volume: 39 start-page: 43 issue: 1 year: 2015 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0018 article-title: Applications of electroencephalography to characterize brain activity: perspectives in stroke publication-title: J Neurol Phys Ther: JNPT doi: 10.1097/NPT.0000000000000072 – volume: 21 start-page: 341 issue: 5 year: 2004 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0021 article-title: Emergency EEG and continuous EEG monitoring in acute ischemic stroke publication-title: J Clin Neurophysiol: Off Publ Am Electroencephalogr Soc – volume: 372 start-page: 2285 issue: 24 year: 2015 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0003 article-title: Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke publication-title: N Engl J Med doi: 10.1056/NEJMoa1415061 – ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0007 doi: 10.1080/00207454.2016.1189913 – volume: 220 year: 2020 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0012 article-title: Machine-learning-based diagnostics of EEG pathology publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117021 – volume: 124 start-page: 10 issue: 1 year: 2013 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0024 article-title: EEG in ischaemic stroke: quantitative EEG can uniquely inform (sub-)acute prognoses and clinical management publication-title: Clin Neurophysiol: Off J Int Fed Clin Neurophysiol doi: 10.1016/j.clinph.2012.07.003 – volume: 87 start-page: 419 issue: 3 year: 2020 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0006 article-title: Optimizing patient selection for endovascular treatment in acute ischemic stroke (SELECT): a prospective, multicenter cohort study of imaging selection publication-title: Ann Neurol doi: 10.1002/ana.25669 – volume: 72 start-page: 16 issue: 1 year: 1989 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0022 article-title: Electroencephalographic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(89)90027-8 – volume: 87 start-page: 297 issue: 2 year: 2015 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0019 article-title: Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments publication-title: Neuron doi: 10.1016/j.neuron.2015.05.041 – volume: 16 start-page: 216 issue: 2 year: 2012 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0016 article-title: Quantitative EEG for the detection of brain ischemia publication-title: Crit Care (Lond, Engl) doi: 10.1186/cc11230 – volume: 36 start-page: 557 issue: 4 year: 1994 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0020 article-title: Viability thresholds and the penumbra of focal ischemia publication-title: Ann Neurol doi: 10.1002/ana.410360404 – volume: 9 start-page: 64 issue: 3 year: 2021 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0005 article-title: Large vessel occlusion stroke detection in the prehospital environment publication-title: Curr Emerg Hosp Med Rep doi: 10.1007/s40138-021-00234-9 – volume: 51 start-page: 3361 issue: 11 year: 2020 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0009 article-title: Electroencephalography might improve diagnosis of acute stroke and large vessel occlusion publication-title: Stroke, doi: 10.1161/STROKEAHA.120.030150 – volume: 12 year: 2022 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0002 article-title: Emerging detection techniques for large vessel occlusion stroke: a scoping review publication-title: Front Neurol doi: 10.3389/fneur.2021.780324 – volume: 118 start-page: 2525 issue: 11 year: 2007 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0025 article-title: Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes publication-title: Clin Neurophysiol: Off J Int Fed Clin Neurophysiol doi: 10.1016/j.clinph.2007.07.021 – volume: 28 start-page: 2280 issue: 8 year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0010 article-title: Electroencephalography measures are useful for identifying large acute ischemic stroke in the emergency department publication-title: J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc doi: 10.1016/j.jstrokecerebrovasdis.2019.05.019 – volume: 141 start-page: e139 issue: 9 year: 2020 ident: 10.1016/j.jstrokecerebrovasdis.2024.107714_bib0001 article-title: Heart disease and stroke statistics-2020 update: a report from the American heart association publication-title: Circulation doi: 10.1161/CIR.0000000000000757 |
SSID | ssj0011585 |
Score | 2.35519 |
Snippet | We set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107714 |
SubjectTerms | Electroencephalogram (EEG) Feature engineering Ischemic stroke Large vessel occlusion Machine learning Prehospital stroke scale |
Title | Differentiating ischemic stroke patients from healthy subjects using a large-scale, retrospective EEG database and machine learning methods |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1052305724001599 https://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2024.107714 https://www.ncbi.nlm.nih.gov/pubmed/38636829 https://www.proquest.com/docview/3043075023 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqVqq4IMpzeVRG4oQI69iJk4jTatmygOgFKvUWJfZ4tW3JVpvsgQt_gD_NTOwsQmoPK_WWRPbI8YxnxvY3M4y9sTLRqXNFVAllo8SJKiog1ijLFV2rGVG4PtvnqZ6fJV_O0_M9Nh1iYQhWGXS_1-m9tg5fxmE2x9fL5fh73J9ophmhINEoUxBfkmQk5e9_b2Ee6PD0ZTmpcUStD9nbfxivi7Zbry7BwBo3oIT9tEtK4S0TbJD1kT03G6vbnNHeKJ08YPeDN8knfsBHbA-ah-zwW7gvf8T-fAz1TzriQLPgS9zMEhye-yHxkFa15RRmwn1Q5C_ebmo6nmk5oeIXvOJXhBePWuQnvONrwL5DhCafzT5xgpmSOeRVY_nPHp4JPNSjWHBfpLp9zM5OZj-m8yiUX4gMWqwusrEUmdY5zq21mTbaKAkCVAEFGnrpamecE6lwYF0lM5NbMMhxIa3RcV1Y9YTtN6sGnjEuNaAfhIQUqAQf8rrK4pQcNsgE5GLEJsM8lybkJqcSGVflAEK7KG_iVUm8Kj2vRuzDlsa1z9SxU-_pwN5yiElFLVqiYdmJymxL5T8p3pnO60HCSlzudIdTNbDatKWiHG3o5Uk1Yk-96G3_VuVa6VwWz-9oFC_YPXrzwLiXbL9bb-AVumBdfdyvsWN2MPn8dX76FyZgOTc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCa6FOh2GfZeupcG7DTMiCzZso2dgixdura5rAV6E2w9gnStU8TOYb9hf3qiJWcY0B0C7GbYEiGLlEiJH0mAD5olIrW2iErKdZRYWkaFiYWT5RLdaooWtsv2ORezi-TbZXq5B5M-FgZhlWHv93t6t1uHN6Mwm6Pb5XL0Pe5uNNMMUZBOKRf3YB-zU6UD2B8fn8zmW2dCnHaVObF9hB0O4OMfmNdV065XP4wya3cGRfinXmIWb5a4BlkX3HO3vvqXPdrppaNH8DAYlGTsx_wY9kz9BA7Ogsv8Kfz6EkqgtMiEekGW7jyLiHjih0RCZtWGYKQJ8XGRP0mzqfCGpiEIjF-QklwjZDxqHEvNJ7I2rm8fpEmm068EkaaoEUlZa3LTITQNCSUpFsTXqW6ewcXR9Hwyi0IFhkg5pdVGOmY0EyJ306t1JpRQnBlqeGEKp-uZrayylqbUGm1LlqlcG-WYTplWIq4KzZ_DoF7V5iUQJowzhRwhbnjiHvKqzOIUbTaTUZPTIYz7eZYqpCfHKhnXssehXcm7eCWRV9LzagiftzRufbKOnXpPevbKPizVbaTS6ZadqEy3VP4S5J3pvO8lTLoVj26csjarTSM5pmlzhh7jQ3jhRW_7tzwXXOSsOPxPo3gH92fnZ6fy9Hh-8goe4BePk3sNg3a9MW-cRdZWb8OK-w2tWjvo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentiating+ischemic+stroke+patients+from+healthy+subjects+using+a+large-scale%2C+retrospective+EEG+database+and+machine+learning+methods&rft.jtitle=Journal+of+stroke+and+cerebrovascular+diseases&rft.au=Peterson%2C+William&rft.au=Ramakrishnan%2C+Nithya&rft.au=Browder%2C+Krag&rft.au=Sanossian%2C+Nerses&rft.date=2024-06-01&rft.eissn=1532-8511&rft.volume=33&rft.issue=6&rft.spage=107714&rft_id=info:doi/10.1016%2Fj.jstrokecerebrovasdis.2024.107714&rft_id=info%3Apmid%2F38636829&rft.externalDocID=38636829 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-3057&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-3057&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-3057&client=summon |