Ethylene-Induced Stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 Is Mediated by Proteasomal Degradation of EIN3 Binding F-Box 1 and 2 That Requires EIN2 in Arabidopsis
Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we report that the level of EIL1 protein is upregulated by ethylene through an EBF1/2-dependent pathway. Genetic analysis revealed that EIL1 and EIN3...
Saved in:
Published in | The Plant cell Vol. 22; no. 7; pp. 2384 - 2401 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Plant Biologists
01.07.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we report that the level of EIL1 protein is upregulated by ethylene through an EBF1/2-dependent pathway. Genetic analysis revealed that EIL1 and EIN3 cooperatively but differentially regulate a wide array of ethylene responses, with EIL1 mainly inhibiting leaf expansion and stem elongation in adult plants and EIN3 largely regulating a multitude of ethylene responses in seedlings. When EBF1 and EBF2 are disrupted, EIL1 and EIN3 constitutively accumulate in the nucleus and remain unresponsive to exogenous ethylene application. Further study revealed that the levels of EBF1 and EBF2 proteins are downregulated by ethylene and upregulated by silver ion and MG132, suggesting that ethylene stabilizes EIN3/EIL1 by promoting EBF1 and EBF2 proteasomal degradation. Also, we found that EIN2 is indispensable for mediating ethylene-induced EIN3/EIL1 accumulation and EBF1/2 degradation, whereas MKK9 is not required for ethylene signal transduction, contrary to a previous report. Together, our studies demonstrate that ethylene similarly regulates EIN3 and EIL1, the two master transcription factors coordinating myriad ethylene responses, and clarify that EIN2 but not MKK9 is required for ethylene-induced EIN3/EIL1 stabilization. Our results also reveal that EBF1 and EBF2 act as essential ethylene signal transducers that by themselves are subject to proteasomal degradation. |
---|---|
AbstractList | Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we report that the level of EIL1 protein is upregulated by ethylene through an EBF1/2-dependent pathway. Genetic analysis revealed that EIL1 and EIN3 cooperatively but differentially regulate a wide array of ethylene responses, with EIL1 mainly inhibiting leaf expansion and stem elongation in adult plants and EIN3 largely regulating a multitude of ethylene responses in seedlings. When EBF1 and EBF2 are disrupted, EIL1 and EIN3 constitutively accumulate in the nucleus and remain unresponsive to exogenous ethylene application. Further study revealed that the levels of EBF1 and EBF2 proteins are downregulated by ethylene and upregulated by silver ion and MG132, suggesting that ethylene stabilizes EIN3/EIL1 by promoting EBF1 and EBF2 proteasomal degradation. Also, we found that EIN2 is indispensable for mediating ethylene-induced EIN3/EIL1 accumulation and EBF1/2 degradation, whereas MKK9 is not required for ethylene signal transduction, contrary to a previous report. Together, our studies demonstrate that ethylene similarly regulates EIN3 and EIL1, the two master transcription factors coordinating myriad ethylene responses, and clarify that EIN2 but not MKK9 is required for ethylene-induced EIN3/EIL1 stabilization. Our results also reveal that EBF1 and EBF2 act as essential ethylene signal transducers that by themselves are subject to proteasomal degradation.Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we report that the level of EIL1 protein is upregulated by ethylene through an EBF1/2-dependent pathway. Genetic analysis revealed that EIL1 and EIN3 cooperatively but differentially regulate a wide array of ethylene responses, with EIL1 mainly inhibiting leaf expansion and stem elongation in adult plants and EIN3 largely regulating a multitude of ethylene responses in seedlings. When EBF1 and EBF2 are disrupted, EIL1 and EIN3 constitutively accumulate in the nucleus and remain unresponsive to exogenous ethylene application. Further study revealed that the levels of EBF1 and EBF2 proteins are downregulated by ethylene and upregulated by silver ion and MG132, suggesting that ethylene stabilizes EIN3/EIL1 by promoting EBF1 and EBF2 proteasomal degradation. Also, we found that EIN2 is indispensable for mediating ethylene-induced EIN3/EIL1 accumulation and EBF1/2 degradation, whereas MKK9 is not required for ethylene signal transduction, contrary to a previous report. Together, our studies demonstrate that ethylene similarly regulates EIN3 and EIL1, the two master transcription factors coordinating myriad ethylene responses, and clarify that EIN2 but not MKK9 is required for ethylene-induced EIN3/EIL1 stabilization. Our results also reveal that EBF1 and EBF2 act as essential ethylene signal transducers that by themselves are subject to proteasomal degradation. The recently controversial ethylene signaling pathway has been reexamined in this study with results supporting a linear signaling pathway, in which EIN2 and EBF1/EBF2, but not MAP KINASE KINASE9, are essential signaling components required for ethylene-induced EIN3 and EIL1 protein stabilization. Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we report that the level of EIL1 protein is upregulated by ethylene through an EBF1/2-dependent pathway. Genetic analysis revealed that EIL1 and EIN3 cooperatively but differentially regulate a wide array of ethylene responses, with EIL1 mainly inhibiting leaf expansion and stem elongation in adult plants and EIN3 largely regulating a multitude of ethylene responses in seedlings. When EBF1 and EBF2 are disrupted, EIL1 and EIN3 constitutively accumulate in the nucleus and remain unresponsive to exogenous ethylene application. Further study revealed that the levels of EBF1 and EBF2 proteins are downregulated by ethylene and upregulated by silver ion and MG132, suggesting that ethylene stabilizes EIN3/EIL1 by promoting EBF1 and EBF2 proteasomal degradation. Also, we found that EIN2 is indispensable for mediating ethylene-induced EIN3/EIL1 accumulation and EBF1/2 degradation, whereas MKK9 is not required for ethylene signal transduction, contrary to a previous report. Together, our studies demonstrate that ethylene similarly regulates EIN3 and EIL1, the two master transcription factors coordinating myriad ethylene responses, and clarify that EIN2 but not MKK9 is required for ethylene-induced EIN3/EIL1 stabilization. Our results also reveal that EBF1 and EBF2 act as essential ethylene signal transducers that by themselves are subject to proteasomal degradation. Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we report that the level of EIL1 protein is upregulated by ethylene through an EBF1/2-dependent pathway. Genetic analysis revealed that EIL1 and EIN3 cooperatively but differentially regulate a wide array of ethylene responses, with EIL1 mainly inhibiting leaf expansion and stem elongation in adult plants and EIN3 largely regulating a multitude of ethylene responses in seedlings. When EBF1 and EBF2 are disrupted, EIL1 and EIN3 constitutively accumulate in the nucleus and remain unresponsive to exogenous ethylene application. Further study revealed that the levels of EBF1 and EBF2 proteins are downregulated by ethylene and upregulated by silver ion and MG132, suggesting that ethylene stabilizes EIN3/EIL1 by promoting EBF1 and EBF2 proteasomal degradation. Also, we found that EIN2 is indispensable for mediating ethylene-induced EIN3/EIL1 accumulation and EBF1/2 degradation, whereas MKK9 is not required for ethylene signal transduction, contrary to a previous report. Together, our studies demonstrate that ethylene similarly regulates EIN3 and EIL1, the two master transcription factors coordinating myriad ethylene responses, and clarify that EIN2 but not MKK9 is required for ethylene-induced EIN3/EIL1 stabilization. Our results also reveal that EBF1 and EBF2 act as essential ethylene signal transducers that by themselves are subject to proteasomal degradation. |
Author | Zhao, Qiong Ji, Yusi Zhang, Shuqun Zhang, Chen He, Wenrong Ecker, Joseph R. Jiang, Zhiqiang An, Fengying Yu, Xiangchun Han, Ying Guo, Hongwei Li, Wenyang Liu, Yidong |
AuthorAffiliation | a National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China b Division of Biochemistry and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211 c Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 |
AuthorAffiliation_xml | – name: c Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 – name: b Division of Biochemistry and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211 – name: a National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China |
Author_xml | – sequence: 1 givenname: Fengying surname: An fullname: An, Fengying – sequence: 2 givenname: Qiong surname: Zhao fullname: Zhao, Qiong – sequence: 3 givenname: Yusi surname: Ji fullname: Ji, Yusi – sequence: 4 givenname: Wenyang surname: Li fullname: Li, Wenyang – sequence: 5 givenname: Zhiqiang surname: Jiang fullname: Jiang, Zhiqiang – sequence: 6 givenname: Xiangchun surname: Yu fullname: Yu, Xiangchun – sequence: 7 givenname: Chen surname: Zhang fullname: Zhang, Chen – sequence: 8 givenname: Ying surname: Han fullname: Han, Ying – sequence: 9 givenname: Wenrong surname: He fullname: He, Wenrong – sequence: 10 givenname: Yidong surname: Liu fullname: Liu, Yidong – sequence: 11 givenname: Shuqun surname: Zhang fullname: Zhang, Shuqun – sequence: 12 givenname: Joseph R. surname: Ecker fullname: Ecker, Joseph R. – sequence: 13 givenname: Hongwei surname: Guo fullname: Guo, Hongwei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20647342$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktvEzEURkeoiD5gyw5ksaGbCX7NwxuktkzpiBAQCQhWlmfsSRxN7NT2VIT_xH_EaVoolWDlK_l8R9e-9zDZM9aoJHmK4AghmL0K63ZbjGCRZ2X5IDlAGcEpZuXXvVhDClOaZ2g_OfR-CSFEBWKPkn0Mc1oQig-Sn1VYbHplVFobObRKgmkQje71DxG0NcB2oJpdfBtXkwrUk2k1mdaz-ktFgDASVPWEpOP6XYVA7cF7JbUI0dBswEdngxLerkQP3qi5E_KPLobAqTZSmzk4T0_td4CubRjMFiKAT-py0E75LYiBNuDExYakXXvtHycPO9F79eTmPEo-n1ezs4t0_OFtfXYyTltaoJC2TDCicNlglrUIlkxmZVc2UOZN1yiZ5UTJoqOSZjJ-A5RZK4lgVOUEUVzihhwlr3fe9dCslGyVCU70fO30SrgNt0Lzv2-MXvC5veKYYQYZiYKXNwJnLwflA19p36q-F0bZwfOCMohRnheRPP4viWicGs5JTiP64h66tIMz8SO2vhwVDLEIPb_b-u-eb0ceAboDWme9d6rjrQ7X04kv0T1HkG83i8fN2hZ8t1kxNroXuzX_M_BsF1j6YN2dPooSZgUmvwDt-dbx |
CitedBy_id | crossref_primary_10_1007_s00425_011_1410_3 crossref_primary_10_3390_ijms22168843 crossref_primary_10_1093_jxb_ery009 crossref_primary_10_1093_plphys_kiad395 crossref_primary_10_1111_tpj_15433 crossref_primary_10_1016_j_devcel_2016_10_020 crossref_primary_10_3390_ijms25031663 crossref_primary_10_1186_s12863_023_01144_3 crossref_primary_10_1093_mp_sst005 crossref_primary_10_1126_sciadv_adq5820 crossref_primary_10_1016_j_scienta_2021_110659 crossref_primary_10_3390_ijms19103206 crossref_primary_10_1093_mp_sss150 crossref_primary_10_1016_j_cub_2012_06_039 crossref_primary_10_1534_genetics_118_301470 crossref_primary_10_1007_s13562_021_00736_3 crossref_primary_10_1007_s42994_021_00063_0 crossref_primary_10_1093_plphys_kiae596 crossref_primary_10_1007_s10535_017_0705_z crossref_primary_10_1016_j_jplph_2011_11_007 crossref_primary_10_1093_jxb_erx046 crossref_primary_10_3390_ijms23073572 crossref_primary_10_1093_jxb_eraa423 crossref_primary_10_1094_MPMI_02_12_0036_R crossref_primary_10_1186_1471_2229_14_48 crossref_primary_10_1016_j_plantsci_2023_111820 crossref_primary_10_1371_journal_pgen_1005760 crossref_primary_10_1007_s11105_015_0929_z crossref_primary_10_1016_j_cell_2015_10_032 crossref_primary_10_1371_journal_ppat_1005668 crossref_primary_10_1111_jipb_13083 crossref_primary_10_3390_cells9102219 crossref_primary_10_1134_S1021443716050149 crossref_primary_10_1007_s00344_012_9271_y crossref_primary_10_1073_pnas_1711723115 crossref_primary_10_1016_j_envexpbot_2023_105610 crossref_primary_10_1038_s41467_023_35975_6 crossref_primary_10_1111_jipb_13761 crossref_primary_10_3389_fpls_2016_02044 crossref_primary_10_3390_plants13243595 crossref_primary_10_1016_j_celrep_2024_113763 crossref_primary_10_1186_1471_2229_14_174 crossref_primary_10_1111_tpj_15096 crossref_primary_10_1093_jxb_erad167 crossref_primary_10_1038_s41467_023_40429_0 crossref_primary_10_1093_plphys_kiad131 crossref_primary_10_1093_jxb_erv518 crossref_primary_10_1371_journal_pgen_1004664 crossref_primary_10_1007_s00299_024_03367_9 crossref_primary_10_1007_s11103_012_9980_4 crossref_primary_10_3389_fpls_2022_858477 crossref_primary_10_1016_j_plgene_2020_100270 crossref_primary_10_1007_s00344_024_11481_x crossref_primary_10_1371_journal_pgen_1010424 crossref_primary_10_3390_ijms23126603 crossref_primary_10_3390_genes12101635 crossref_primary_10_3390_ijms21239109 crossref_primary_10_1007_s11103_010_9709_1 crossref_primary_10_1007_s11627_013_9559_z crossref_primary_10_1111_pce_15181 crossref_primary_10_1016_j_plantsci_2012_09_017 crossref_primary_10_3389_fpls_2016_00637 crossref_primary_10_3390_ijms160819195 crossref_primary_10_1242_dev_179457 crossref_primary_10_1093_pcp_pcu115 crossref_primary_10_1104_pp_110_166579 crossref_primary_10_1104_pp_111_179812 crossref_primary_10_1111_tpj_12946 crossref_primary_10_3389_fpls_2019_00726 crossref_primary_10_1038_s41467_019_12045_4 crossref_primary_10_1016_j_jare_2022_06_014 crossref_primary_10_3389_fpls_2019_01136 crossref_primary_10_1016_j_molp_2015_10_008 crossref_primary_10_1007_s00299_020_02525_z crossref_primary_10_3390_plants9121635 crossref_primary_10_1111_mpp_13452 crossref_primary_10_3390_ijms22116123 crossref_primary_10_3390_plants13182615 crossref_primary_10_3389_fpls_2019_01030 crossref_primary_10_1016_j_molp_2021_07_014 crossref_primary_10_1126_science_abf3013 crossref_primary_10_1016_j_pmpp_2025_102599 crossref_primary_10_3389_fmicb_2018_01966 crossref_primary_10_1126_science_aaa2618 crossref_primary_10_1186_s12870_023_04299_4 crossref_primary_10_1021_acs_jafc_7b05992 crossref_primary_10_1186_s12915_016_0230_0 crossref_primary_10_1093_abbs_gmr056 crossref_primary_10_3389_fpls_2022_1050995 crossref_primary_10_1080_15592324_2015_1017169 crossref_primary_10_1186_s12870_015_0597_z crossref_primary_10_1073_pnas_2024592118 crossref_primary_10_3389_fgene_2021_639654 crossref_primary_10_1002_smtd_201900452 crossref_primary_10_1105_tpc_111_089029 crossref_primary_10_1016_j_plantsci_2019_110362 crossref_primary_10_3389_fpls_2016_01308 crossref_primary_10_1073_pnas_1103959108 crossref_primary_10_1016_j_pmpp_2018_04_006 crossref_primary_10_1111_nph_15078 crossref_primary_10_1016_j_postharvbio_2021_111707 crossref_primary_10_1093_jxb_err424 crossref_primary_10_1007_s10725_012_9767_2 crossref_primary_10_3389_fgene_2021_698598 crossref_primary_10_1007_s00425_012_1730_y crossref_primary_10_1111_pce_13667 crossref_primary_10_1016_j_bbrc_2020_02_124 crossref_primary_10_1094_MPMI_05_17_0112_FI crossref_primary_10_1186_s12870_021_02848_3 crossref_primary_10_1111_plb_12873 crossref_primary_10_1016_j_plaphy_2022_08_030 crossref_primary_10_1016_j_plantsci_2019_110353 crossref_primary_10_1016_j_plantsci_2022_111361 crossref_primary_10_3389_fenvs_2016_00063 crossref_primary_10_3390_plants11162149 crossref_primary_10_1007_s11103_016_0467_6 crossref_primary_10_1016_j_febslet_2012_11_030 crossref_primary_10_1016_j_plantsci_2019_110351 crossref_primary_10_1105_tpc_112_107227 crossref_primary_10_1093_pcp_pcu201 crossref_primary_10_1007_s00299_013_1421_6 crossref_primary_10_1093_jxb_erac314 crossref_primary_10_1038_s41598_021_85789_z crossref_primary_10_1093_jxb_eru349 crossref_primary_10_3390_ijms22083936 crossref_primary_10_1038_s41586_021_03310_y crossref_primary_10_1093_jxb_erv438 crossref_primary_10_1016_j_hpj_2024_03_008 crossref_primary_10_1038_ncomms13018 crossref_primary_10_3390_plants13192674 crossref_primary_10_1038_s41467_020_14313_0 crossref_primary_10_1111_j_1365_313X_2012_04965_x crossref_primary_10_3390_biom9050167 crossref_primary_10_1007_s11103_016_0532_1 crossref_primary_10_1016_j_hpj_2021_03_005 crossref_primary_10_1080_15592324_2014_1003755 crossref_primary_10_1093_mp_ssr042 crossref_primary_10_1111_jipb_12666 crossref_primary_10_1093_pcp_pcy131 crossref_primary_10_1111_ppl_12161 crossref_primary_10_1371_journal_pone_0137439 crossref_primary_10_1104_pp_112_205476 crossref_primary_10_1016_j_plaphy_2020_08_013 crossref_primary_10_1016_j_scienta_2023_111841 crossref_primary_10_1093_jxb_eru112 crossref_primary_10_1093_jxb_erae282 crossref_primary_10_1016_j_jgg_2022_04_002 crossref_primary_10_1080_01140671_2020_1838571 crossref_primary_10_1007_s00709_013_0587_7 crossref_primary_10_1186_s12870_015_0571_9 crossref_primary_10_3389_fpls_2019_00091 crossref_primary_10_3389_fpls_2018_00413 crossref_primary_10_3389_fpls_2019_01737 crossref_primary_10_1016_j_cell_2015_09_037 crossref_primary_10_1146_annurev_phyto_073009_114447 crossref_primary_10_1007_s00299_015_1783_z crossref_primary_10_3389_fpls_2018_01626 crossref_primary_10_1016_j_jgg_2012_01_001 crossref_primary_10_1007_s00425_022_04034_7 crossref_primary_10_3109_07388551_2016_1141391 crossref_primary_10_1093_plphys_kiac511 crossref_primary_10_1016_j_scienta_2021_109965 crossref_primary_10_1093_jxb_ery165 crossref_primary_10_1105_tpc_113_122002 crossref_primary_10_4161_psb_5_12_13913 crossref_primary_10_1080_07352689_2015_1024566 crossref_primary_10_1093_pcp_pcx035 crossref_primary_10_1016_j_xplc_2020_100104 crossref_primary_10_1016_j_tplants_2015_11_013 crossref_primary_10_1104_pp_112_200527 crossref_primary_10_1104_pp_113_216275 crossref_primary_10_3389_fgene_2022_942806 crossref_primary_10_1038_hortres_2014_53 crossref_primary_10_1186_s40168_018_0436_1 crossref_primary_10_1111_mpp_13139 crossref_primary_10_1016_j_foodchem_2018_05_024 crossref_primary_10_1093_aob_mcv054 crossref_primary_10_1016_j_celrep_2022_110529 crossref_primary_10_1038_cr_2012_29 crossref_primary_10_1134_S2079059717030169 crossref_primary_10_1093_mp_sst087 crossref_primary_10_1111_pce_13186 crossref_primary_10_3389_fpls_2019_01620 crossref_primary_10_1016_j_cub_2015_11_053 crossref_primary_10_3389_fpls_2016_01246 crossref_primary_10_1073_pnas_2110004118 crossref_primary_10_2139_ssrn_4069777 crossref_primary_10_1016_j_ecoenv_2024_116644 crossref_primary_10_1007_s00299_013_1516_0 crossref_primary_10_1111_tpj_15843 crossref_primary_10_1093_plcell_koae083 crossref_primary_10_3390_plants13101386 crossref_primary_10_1016_j_plantsci_2018_03_032 crossref_primary_10_1007_s00344_015_9522_9 crossref_primary_10_1111_jipb_13483 crossref_primary_10_3389_fpls_2017_00253 crossref_primary_10_3390_genes10040267 crossref_primary_10_1111_j_1365_3040_2011_02363_x crossref_primary_10_1105_tpc_112_105486 crossref_primary_10_1038_srep12477 crossref_primary_10_1016_j_molp_2015_01_003 crossref_primary_10_1073_pnas_1706226114 crossref_primary_10_3389_fpls_2014_00648 crossref_primary_10_1016_j_plaphy_2011_05_005 crossref_primary_10_1038_s41467_024_50290_4 crossref_primary_10_1093_mp_sst071 crossref_primary_10_1007_s12374_020_09274_2 crossref_primary_10_3389_fpls_2019_01094 crossref_primary_10_3389_fpls_2014_00665 crossref_primary_10_1007_s10658_013_0210_y crossref_primary_10_1073_pnas_2302854120 crossref_primary_10_1016_j_plaphy_2022_08_001 crossref_primary_10_1105_tpc_111_084715 crossref_primary_10_1073_pnas_1214848109 crossref_primary_10_1371_journal_pgen_1004025 crossref_primary_10_1371_journal_pone_0176531 crossref_primary_10_1371_journal_pone_0177621 crossref_primary_10_7717_peerj_6391 crossref_primary_10_1093_jxb_eraf062 crossref_primary_10_4161_psb_5_11_13294 crossref_primary_10_1016_j_plantsci_2018_11_009 crossref_primary_10_3389_fpls_2022_824948 crossref_primary_10_1104_pp_112_205799 crossref_primary_10_1146_annurev_arplant_042809_112256 crossref_primary_10_1007_s00299_022_02832_7 crossref_primary_10_1111_nph_12710 crossref_primary_10_3835_plantgenome2018_11_0089 crossref_primary_10_3390_ijms26062517 crossref_primary_10_1016_j_xplc_2023_100771 crossref_primary_10_1002_smtd_201900278 crossref_primary_10_3390_plants9010128 crossref_primary_10_1016_j_pbi_2020_05_011 crossref_primary_10_1093_g3journal_jkae026 crossref_primary_10_3389_fpls_2015_01059 crossref_primary_10_3389_fpls_2021_644823 crossref_primary_10_1074_jbc_REV120_010854 crossref_primary_10_3390_ijms25042138 crossref_primary_10_1111_tpj_16350 crossref_primary_10_1016_j_scienta_2017_11_007 crossref_primary_10_3389_fpls_2014_00554 crossref_primary_10_1111_j_1469_8137_2012_04100_x crossref_primary_10_1111_nph_12386 crossref_primary_10_1105_tpc_113_110106 crossref_primary_10_1093_mp_ssu059 crossref_primary_10_1105_tpc_15_00080 crossref_primary_10_1016_j_hpj_2023_05_001 crossref_primary_10_3389_fpls_2017_00475 crossref_primary_10_1016_j_plantsci_2014_03_008 crossref_primary_10_3390_cells11193177 crossref_primary_10_1016_j_jgg_2015_03_012 crossref_primary_10_1186_1471_2229_11_88 crossref_primary_10_1002_smtd_201900267 crossref_primary_10_1093_plcell_koac316 crossref_primary_10_1111_jipb_13028 crossref_primary_10_1002_smtd_201900386 crossref_primary_10_1016_j_sajb_2019_10_015 crossref_primary_10_1016_j_scienta_2020_109468 crossref_primary_10_1002_smtd_201900260 crossref_primary_10_3389_fpls_2016_01571 crossref_primary_10_1007_s10725_024_01248_5 crossref_primary_10_1104_pp_111_182899 crossref_primary_10_3390_stresses4010003 crossref_primary_10_1105_tpc_113_113340 crossref_primary_10_3389_fpls_2022_980237 crossref_primary_10_1007_s11627_019_10022_6 crossref_primary_10_1016_j_plantsci_2016_09_002 crossref_primary_10_1039_c1mb05159h crossref_primary_10_1093_plcell_koac250 crossref_primary_10_3390_ijms25074116 crossref_primary_10_1111_j_1744_7909_2012_01139_x crossref_primary_10_3724_SP_J_1259_2011_00233 crossref_primary_10_1134_S102144371305004X crossref_primary_10_1007_s00203_021_02667_y crossref_primary_10_1146_annurev_phyto_082712_102314 crossref_primary_10_1146_annurev_phyto_082712_102312 crossref_primary_10_7554_eLife_63335 crossref_primary_10_1016_j_jprot_2020_104062 crossref_primary_10_1111_tpj_14027 crossref_primary_10_1093_pcp_pct180 crossref_primary_10_1111_tpj_12880 crossref_primary_10_3389_fpls_2015_00020 crossref_primary_10_3390_ijms22147313 crossref_primary_10_3390_plants10030448 crossref_primary_10_1016_j_envexpbot_2016_10_015 crossref_primary_10_1111_pce_12292 crossref_primary_10_1111_ppl_12784 crossref_primary_10_1074_jbc_RA119_010480 crossref_primary_10_3390_agronomy12020427 crossref_primary_10_1093_jxb_ery457 crossref_primary_10_1093_plcell_koac146 crossref_primary_10_1038_cr_2012_145 crossref_primary_10_3389_fpls_2022_852206 crossref_primary_10_1111_tpj_16335 crossref_primary_10_3390_plants4030449 crossref_primary_10_1007_s10725_015_0141_z crossref_primary_10_1073_pnas_1718377115 crossref_primary_10_1126_sciadv_abm7863 crossref_primary_10_1016_j_postharvbio_2024_112826 crossref_primary_10_1016_j_cub_2017_06_062 crossref_primary_10_1111_j_1469_8137_2012_04266_x crossref_primary_10_1111_pce_12062 crossref_primary_10_3389_fpls_2022_878809 crossref_primary_10_3390_genes15111367 crossref_primary_10_1016_j_mcpro_2024_100738 crossref_primary_10_1007_s10059_013_0097_7 crossref_primary_10_3389_fphys_2017_00142 crossref_primary_10_3390_ijms24108545 crossref_primary_10_3724_SP_J_1259_2011_00338 crossref_primary_10_1016_j_tplants_2011_05_008 crossref_primary_10_3390_biom11020174 crossref_primary_10_1094_MPMI_10_12_0253_R crossref_primary_10_1111_tpj_14803 crossref_primary_10_1016_j_pbi_2013_08_001 crossref_primary_10_1073_pnas_1803861115 crossref_primary_10_1111_pce_13361 crossref_primary_10_1104_pp_113_225649 crossref_primary_10_1016_j_postharvbio_2024_113124 crossref_primary_10_1093_pcp_pcu171 crossref_primary_10_1093_aobpla_pls031 crossref_primary_10_1038_srep24066 crossref_primary_10_3390_agronomy11122478 crossref_primary_10_1007_s11240_012_0220_z crossref_primary_10_1093_pcp_pcv009 crossref_primary_10_1007_s11103_025_01559_9 crossref_primary_10_1007_s00425_013_1984_z crossref_primary_10_1104_pp_114_243360 crossref_primary_10_3389_fpls_2017_00150 crossref_primary_10_1074_mcp_M113_031633 crossref_primary_10_1016_j_pbi_2011_09_006 crossref_primary_10_1016_j_tplants_2020_12_007 crossref_primary_10_1186_s12870_016_0812_6 crossref_primary_10_1007_s11103_021_01128_w crossref_primary_10_1093_plphys_kiad685 crossref_primary_10_3390_ijms19113577 crossref_primary_10_3389_fpls_2021_663536 |
Cites_doi | 10.1038/nature02516 10.1073/pnas.92.18.8423 10.1105/tpc.106.048140 10.1101/gad.12.23.3703 10.1101/gad.1765709 10.1186/1471-2091-7-1 10.1105/tpc.10.8.1321 10.1073/pnas.0810206106 10.1126/science.1075901 10.1016/0092-8674(93)90119-B 10.1111/j.1365-313X.2008.03404.x 10.1105/tpc.108.065193 10.1016/S0092-8674(00)81425-7 10.1105/tpc.104.026609 10.1074/jbc.M801392200 10.1105/tpc.006882 10.1016/S0092-8674(03)00978-4 10.1046/j.1365-313X.2003.01762.x 10.1073/pnas.0401698101 10.1038/nature06543 10.1111/j.1365-313X.2004.02328.x 10.1126/science.7732375 10.1074/jbc.M201286200 10.1016/S0962-8924(98)01346-4 10.1093/genetics/139.3.1393 10.1073/pnas.95.10.5812 10.1093/aob/mci100 10.1098/rstb.1995.0140 10.1105/tpc.104.161210 10.1016/S0092-8674(02)00721-3 10.1111/j.1365-313X.2008.03521.x 10.1016/j.pbi.2008.06.011 10.1016/S0092-8674(00)81095-8 10.1074/jbc.M305548200 10.1038/nature01984 10.1073/pnas.0438070100 10.1074/jbc.M809069200 10.1186/1471-2229-7-3 10.1104/pp.125.2.1061 10.1126/science.1086391 10.1126/science.241.4869.1086 10.1016/j.pbi.2009.07.009 10.1016/S0092-8674(03)00968-1 10.1126/science.8211181 10.1016/S0092-8674(03)00969-3 10.1126/science.1059780 10.1126/science.284.5423.2148 10.1105/tpc.013060 10.1146/annurev.cellbio.16.1.1 10.1111/j.1365-313X.2008.03551.x 10.1074/jbc.M704419200 10.1016/S0092-8674(00)80300-1 10.1073/pnas.0602239103 10.1126/science.7569898 10.1105/tpc.106.046458 |
ContentType | Journal Article |
Copyright | 2010 American Society of Plant Biologists Copyright American Society of Plant Biologists Jul 2010 2010 American Society of Plant Biologists 2010 |
Copyright_xml | – notice: 2010 American Society of Plant Biologists – notice: Copyright American Society of Plant Biologists Jul 2010 – notice: 2010 American Society of Plant Biologists 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 4T- 7QO 7TM 7X2 7X7 7XB 88A 88E 88I 8AF 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M1P M2P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 S0X 7S9 L.6 7X8 5PM |
DOI | 10.1105/tpc.110.076588 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Docstoc Biotechnology Research Abstracts Nucleic Acids Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts SIRS Editorial AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Docstoc Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1532-298X |
EndPage | 2401 |
ExternalDocumentID | PMC2929093 2131116401 20647342 10_1105_tpc_110_076588 20780572 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2FS 2WC 2~F 4.4 5VS 5WD 7X2 7X7 85S 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN AAYJJ ABBHK ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABUWG ABVGC ABXSQ ABXVV ABXZS ACBTR ACGFO ACGOD ACHIC ACIPB ACIWK ACNCT ACPRK ACUFI ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADXHL ADYHW AEEJZ AENEX AEUPB AEUYN AFAZZ AFFNX AFFZL AFGWE AFKRA AFRAH AGCDD AGORE AGUYK AHMBA AHXOZ AICQM AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AQVQM AS~ ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BEYMZ BHPHI BPHCQ BTFSW BVXVI CBGCD CCPQU CS3 D1J DATOO DIK DU5 DWQXO E3Z EBS ECGQY EJD F5P F8P F9R FLUFQ FOEOM FYUFA GNUQQ GTFYD GX1 H13 HCIFZ HMCUK HTVGU H~9 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN LK8 M0K M1P M2P M2Q M7P MV1 N9A NEJ NOMLY NU- OBOKY OJZSN OK1 OWPYF P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RHI ROX RPB RWL RXW S0X SA0 TAE TN5 TR2 U5U UKHRP W8F WH7 WOQ XSW YBU YR2 YSK ZCA ZCN ~KM AAYXX CITATION 53G AAWDT ABIME ABPIB ABZEO ACFRR ACUTJ ACVCV ACZBC ADYWZ AFYAG AGMDO AJDVS ANFBD APJGH AQDSO C1A CGR CUY CVF ECM EIF FRP HGD MVM NPM P0- TCN UBC UKR WHG XOL Y6R ZCG 3V. 4T- 7QO 7TM 7XB 88A 8FD 8FK FR3 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO Q9U RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c471t-c9a93e28b295c1089d58f8b0d6bfbed563ed7f4d45d4730d5cd3a94e6314282b3 |
IEDL.DBID | 7X7 |
ISSN | 1040-4651 1532-298X |
IngestDate | Thu Aug 21 14:14:07 EDT 2025 Tue Aug 05 11:18:16 EDT 2025 Fri Jul 11 16:05:26 EDT 2025 Sat Aug 23 14:17:31 EDT 2025 Thu Apr 03 07:09:27 EDT 2025 Tue Jul 01 02:52:50 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Fri Jun 20 02:19:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-c9a93e28b295c1089d58f8b0d6bfbed563ed7f4d45d4730d5cd3a94e6314282b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Some figures in this article are displayed in color online but in black and white in the print edition. These authors contributed equally to this work. Online version contains Web-only data. The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Hongwei Guo (hongweig@pku.edu.cn). www.plantcell.org/cgi/doi/10.1105/tpc.110.076588 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2929093 |
PMID | 20647342 |
PQID | 749617919 |
PQPubID | 37014 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2929093 proquest_miscellaneous_749021667 proquest_miscellaneous_1400126364 proquest_journals_749617919 pubmed_primary_20647342 crossref_citationtrail_10_1105_tpc_110_076588 crossref_primary_10_1105_tpc_110_076588 jstor_primary_20780572 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-07-01 |
PublicationDateYYYYMMDD | 2010-07-01 |
PublicationDate_xml | – month: 07 year: 2010 text: 2010-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Rockville |
PublicationTitle | The Plant cell |
PublicationTitleAlternate | Plant Cell |
PublicationYear | 2010 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | Christians (2021040621523030800_b17) 2008; 55 Alonso (2021040621523030800_b4) 2003; 100 Yoo (2021040621523030800_b58) 2008; 451 Lin (2021040621523030800_b39) 1995; 92 Kendrick (2021040621523030800_b31) 2008; 11 Lyapina (2021040621523030800_b41) 2001; 292 Bleecker (2021040621523030800_b9) 2000; 16 Konishi (2021040621523030800_b34) 2008; 55 Chen (2021040621523030800_b16) 2007; 282 Cope (2021040621523030800_b19) 2002; 298 Lehman (2021040621523030800_b38) 1996; 85 Bethke (2021040621523030800_b6) 2009; 106 Chao (2021040621523030800_b12) 1997; 89 Guzman (2021040621523030800_b25) 1990; 2 Bechtold (2021040621523030800_b5) 1998; 82 Chang (2021040621523030800_b11) 1993; 262 Binder (2021040621523030800_b7) 2007; 19 Rubio (2021040621523030800_b49) 2005; 41 Joo (2021040621523030800_b30) 2008; 54 Stuttmann (2021040621523030800_b53) 2009; 284 Roman (2021040621523030800_b47) 1995; 350 Hall (2021040621523030800_b26) 2003; 15 Yanagisawa (2021040621523030800_b56) 2003; 425 Liu (2021040621523030800_b40) 2004; 16 Kepinski (2021040621523030800_b32) 2003; 115 Alonso (2021040621523030800_b2) 1999; 284 Chen (2021040621523030800_b15) 2002; 277 Lee (2021040621523030800_b37) 1998; 8 Bleecker (2021040621523030800_b8) 1988; 241 Qu (2021040621523030800_b45) 2007; 7 Cope (2021040621523030800_b18) 2006; 7 Hua (2021040621523030800_b27) 1995; 269 Kieber (2021040621523030800_b33) 1993; 72 Xu (2021040621523030800_b55) 2008; 283 Hua (2021040621523030800_b28) 1998; 94 Sakai (2021040621523030800_b50) 1998; 95 Alonso (2021040621523030800_b3) 2003; 301 Ecker (2021040621523030800_b20) 1994; 16 Gagne (2021040621523030800_b22) 2004; 101 Maruyama-Nakashita (2021040621523030800_b42) 2006; 18 Chen (2021040621523030800_b14) 2005; 95 Potuschak (2021040621523030800_b43) 2003; 115 Chen (2021040621523030800_b13) 2009; 21 Resnick (2021040621523030800_b46) 2006; 103 Stepanova (2021040621523030800_b52) 2009; 12 Yin (2021040621523030800_b57) 2002; 109 Larsen (2021040621523030800_b36) 2001; 125 Ecker (2021040621523030800_b21) 1995; 268 Roman (2021040621523030800_b48) 1995; 139 Solano (2021040621523030800_b51) 1998; 12 Guo (2021040621523030800_b24) 2003; 115 Hua (2021040621523030800_b29) 1998; 10 Chae (2021040621523030800_b10) 2003; 15 Qiao (2021040621523030800_b44) 2009; 23 Wang (2021040621523030800_b54) 2004; 428 Abeles (2021040621523030800_b1) 1992 Larsen (2021040621523030800_b35) 2003; 34 Gao (2021040621523030800_b23) 2003; 278 19416906 - Proc Natl Acad Sci U S A. 2009 May 12;106(19):8067-72 11916973 - J Biol Chem. 2002 May 31;277(22):19861-6 17595158 - J Biol Chem. 2007 Aug 24;282(34):24752-8 9707532 - Plant Cell. 1998 Aug;10(8):1321-32 14675527 - Cell. 2003 Dec 12;115(6):647-8 12787251 - Plant J. 2003 Jun;34(5):709-18 9789328 - Trends Cell Biol. 1998 Oct;8(10):397-403 14675533 - Cell. 2003 Dec 12;115(6):679-89 9851977 - Genes Dev. 1998 Dec 1;12(23):3703-14 12893945 - Science. 2003 Aug 1;301(5633):653-7 18182027 - Plant J. 2008 Apr;54(1):129-40 8211181 - Science. 1993 Oct 22;262(5133):539-44 15539472 - Plant Cell. 2004 Dec;16(12):3386-99 17747490 - Science. 1988 Aug 26;241(4869):1086-9 14523448 - Nature. 2003 Oct 2;425(6957):521-5 19196655 - Genes Dev. 2009 Feb 15;23(4):512-21 15090654 - Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6803-8 19717619 - Plant Cell. 2009 Aug;21(8):2527-40 17114350 - Plant Cell. 2006 Nov;18(11):3235-51 8577853 - Philos Trans R Soc Lond B Biol Sci. 1995 Oct 30;350(1331):75-81 15753119 - Ann Bot. 2005 May;95(6):901-15 19709924 - Curr Opin Plant Biol. 2009 Oct;12(5):548-55 16401342 - BMC Biochem. 2006;7:1 17307926 - Plant Cell. 2007 Feb;19(2):509-23 8431946 - Cell. 1993 Feb 12;72(3):427-41 7768447 - Genetics. 1995 Mar;139(3):1393-409 12007405 - Cell. 2002 Apr 19;109(2):181-91 12821658 - J Biol Chem. 2003 Sep 5;278(36):34725-32 17224067 - BMC Plant Biol. 2007;7:3 12183637 - Science. 2002 Oct 18;298(5593):608-11 11031228 - Annu Rev Cell Dev Biol. 2000;16:1-18 7667306 - Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8423-7 12953109 - Plant Cell. 2003 Sep;15(9):2032-41 18692429 - Curr Opin Plant Biol. 2008 Oct;11(5):479-85 19147500 - J Biol Chem. 2009 Mar 20;284(12):7920-30 12566591 - Plant Cell. 2003 Feb;15(2):545-59 2152173 - Plant Cell. 1990 Jun;2(6):513-23 10381874 - Science. 1999 Jun 25;284(5423):2148-52 7569898 - Science. 1995 Sep 22;269(5231):1712-4 15118728 - Nature. 2004 Apr 29;428(6986):945-50 18693252 - J Biol Chem. 2008 Oct 3;283(40):26996-7006 8612271 - Cell. 1996 Apr 19;85(2):183-94 18466304 - Plant J. 2008 Sep;55(5):821-31 9664431 - Methods Mol Biol. 1998;82:259-66 9695954 - Cell. 1998 Jul 24;94(2):261-71 16682642 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7917-22 18429939 - Plant J. 2008 Aug;55(3):467-77 9576967 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5812-7 15703063 - Plant J. 2005 Mar;41(5):767-78 12606727 - Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2992-7 14675532 - Cell. 2003 Dec 12;115(6):667-77 9215635 - Cell. 1997 Jun 27;89(7):1133-44 11161061 - Plant Physiol. 2001 Feb;125(2):1061-73 18273012 - Nature. 2008 Feb 14;451(7180):789-95 11337588 - Science. 2001 May 18;292(5520):1382-5 7732375 - Science. 1995 May 5;268(5211):667-75 |
References_xml | – volume: 428 start-page: 945 year: 2004 ident: 2021040621523030800_b54 article-title: Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein publication-title: Nature doi: 10.1038/nature02516 – volume: 92 start-page: 8423 year: 1995 ident: 2021040621523030800_b39 article-title: Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.18.8423 – volume: 19 start-page: 509 year: 2007 ident: 2021040621523030800_b7 article-title: The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling publication-title: Plant Cell doi: 10.1105/tpc.106.048140 – volume: 12 start-page: 3703 year: 1998 ident: 2021040621523030800_b51 article-title: Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1 publication-title: Genes Dev. doi: 10.1101/gad.12.23.3703 – volume: 23 start-page: 512 year: 2009 ident: 2021040621523030800_b44 article-title: Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis publication-title: Genes Dev. doi: 10.1101/gad.1765709 – volume: 7 start-page: 1 year: 2006 ident: 2021040621523030800_b18 article-title: Targeted silencing of Jab1/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels publication-title: BMC Biochem. doi: 10.1186/1471-2091-7-1 – volume: 10 start-page: 1321 year: 1998 ident: 2021040621523030800_b29 article-title: EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.10.8.1321 – volume: 106 start-page: 8067 year: 2009 ident: 2021040621523030800_b6 article-title: Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810206106 – volume: 298 start-page: 608 year: 2002 ident: 2021040621523030800_b19 article-title: Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1 publication-title: Science doi: 10.1126/science.1075901 – volume: 72 start-page: 427 year: 1993 ident: 2021040621523030800_b33 article-title: CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases publication-title: Cell doi: 10.1016/0092-8674(93)90119-B – volume: 54 start-page: 129 year: 2008 ident: 2021040621523030800_b30 article-title: MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03404.x – volume: 21 start-page: 2527 year: 2009 ident: 2021040621523030800_b13 article-title: ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.108.065193 – volume: 94 start-page: 261 year: 1998 ident: 2021040621523030800_b28 article-title: Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana publication-title: Cell doi: 10.1016/S0092-8674(00)81425-7 – volume: 16 start-page: 3386 year: 2004 ident: 2021040621523030800_b40 article-title: Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.104.026609 – volume: 283 start-page: 26996 year: 2008 ident: 2021040621523030800_b55 article-title: Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M801392200 – volume: 82 start-page: 259 year: 1998 ident: 2021040621523030800_b5 article-title: In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration publication-title: Methods Mol. Biol. – volume: 15 start-page: 545 year: 2003 ident: 2021040621523030800_b10 article-title: The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein publication-title: Plant Cell doi: 10.1105/tpc.006882 – volume: 115 start-page: 647 year: 2003 ident: 2021040621523030800_b32 article-title: SCF-mediated proteolysis and negative regulation in ethylene signaling publication-title: Cell doi: 10.1016/S0092-8674(03)00978-4 – volume: 34 start-page: 709 year: 2003 ident: 2021040621523030800_b35 article-title: Enhanced ethylene responsiveness in the Arabidopsis eer1 mutant results from a loss-of-function mutation in the protein phosphatase 2A A regulatory subunit, RCN1 publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01762.x – volume: 101 start-page: 6803 year: 2004 ident: 2021040621523030800_b22 article-title: Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0401698101 – volume: 451 start-page: 789 year: 2008 ident: 2021040621523030800_b58 article-title: Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling publication-title: Nature doi: 10.1038/nature06543 – volume: 41 start-page: 767 year: 2005 ident: 2021040621523030800_b49 article-title: An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02328.x – volume: 268 start-page: 667 year: 1995 ident: 2021040621523030800_b21 article-title: The ethylene signal transduction pathway in plants publication-title: Science doi: 10.1126/science.7732375 – volume: 277 start-page: 19861 year: 2002 ident: 2021040621523030800_b15 article-title: Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M201286200 – volume: 8 start-page: 397 year: 1998 ident: 2021040621523030800_b37 article-title: Proteasome inhibitors: Valuable new tools for cell biologists publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(98)01346-4 – volume: 139 start-page: 1393 year: 1995 ident: 2021040621523030800_b48 article-title: Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: Five novel mutant loci integrated into a stress response pathway publication-title: Genetics doi: 10.1093/genetics/139.3.1393 – volume: 95 start-page: 5812 year: 1998 ident: 2021040621523030800_b50 article-title: ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.10.5812 – volume: 95 start-page: 901 year: 2005 ident: 2021040621523030800_b14 article-title: Ethylene signal transduction publication-title: Ann. Bot. (Lond.) doi: 10.1093/aob/mci100 – volume: 350 start-page: 75 year: 1995 ident: 2021040621523030800_b47 article-title: Genetic analysis of a seedling stress response to ethylene in Arabidopsis publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.1995.0140 – volume: 16 start-page: 3169 year: 1994 ident: 2021040621523030800_b20 article-title: Reentry of the ethylene Mpk6 module publication-title: Plant Cell doi: 10.1105/tpc.104.161210 – volume: 109 start-page: 181 year: 2002 ident: 2021040621523030800_b57 article-title: BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation publication-title: Cell doi: 10.1016/S0092-8674(02)00721-3 – volume: 55 start-page: 467 year: 2008 ident: 2021040621523030800_b17 article-title: The eer5 mutation, which affects a novel proteasome-related subunit, indicates a prominent role for the COP9 signalosome in resetting the ethylene-signaling pathway in Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03521.x – volume: 11 start-page: 479 year: 2008 ident: 2021040621523030800_b31 article-title: Ethylene signaling: New levels of complexity and regulation publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2008.06.011 – volume: 85 start-page: 183 year: 1996 ident: 2021040621523030800_b38 article-title: HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl publication-title: Cell doi: 10.1016/S0092-8674(00)81095-8 – volume: 278 start-page: 34725 year: 2003 ident: 2021040621523030800_b23 article-title: Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M305548200 – volume: 425 start-page: 521 year: 2003 ident: 2021040621523030800_b56 article-title: Differential regulation of EIN3 stability by glucose and ethylene signalling in plants publication-title: Nature doi: 10.1038/nature01984 – volume: 100 start-page: 2992 year: 2003 ident: 2021040621523030800_b4 article-title: Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0438070100 – volume: 284 start-page: 7920 year: 2009 ident: 2021040621523030800_b53 article-title: COP9 signalosome- and 26S proteasome-dependent regulation of SCFTIR1 accumulation in Arabidopsis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M809069200 – volume: 7 start-page: 3 year: 2007 ident: 2021040621523030800_b45 article-title: A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1 publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-7-3 – volume: 125 start-page: 1061 year: 2001 ident: 2021040621523030800_b36 article-title: The Arabidopsis eer1 mutant has enhanced ethylene responses in the hypocotyl and stem publication-title: Plant Physiol. doi: 10.1104/pp.125.2.1061 – volume: 301 start-page: 653 year: 2003 ident: 2021040621523030800_b3 article-title: Genome-wide insertional mutagenesis of Arabidopsis thaliana publication-title: Science doi: 10.1126/science.1086391 – volume: 241 start-page: 1086 year: 1988 ident: 2021040621523030800_b8 article-title: Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana publication-title: Science doi: 10.1126/science.241.4869.1086 – volume: 12 start-page: 548 year: 2009 ident: 2021040621523030800_b52 article-title: Ethylene signaling and response: Where different regulatory modules meet publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2009.07.009 – volume: 2 start-page: 513 year: 1990 ident: 2021040621523030800_b25 article-title: Exploiting the triple response of Arabidopsis to identify ethylene-related mutants publication-title: Plant Cell – volume: 115 start-page: 679 year: 2003 ident: 2021040621523030800_b43 article-title: EIN3-dependent regulation of plant ethylene hormone signaling by two arabidopsis F box proteins: EBF1 and EBF2 publication-title: Cell doi: 10.1016/S0092-8674(03)00968-1 – volume: 262 start-page: 539 year: 1993 ident: 2021040621523030800_b11 article-title: Arabidopsis ethylene response gene ETR1-similarity of product to 2-component regulators publication-title: Science doi: 10.1126/science.8211181 – volume: 115 start-page: 667 year: 2003 ident: 2021040621523030800_b24 article-title: Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor publication-title: Cell doi: 10.1016/S0092-8674(03)00969-3 – volume: 292 start-page: 1382 year: 2001 ident: 2021040621523030800_b41 article-title: Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome publication-title: Science doi: 10.1126/science.1059780 – volume: 284 start-page: 2148 year: 1999 ident: 2021040621523030800_b2 article-title: EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis publication-title: Science doi: 10.1126/science.284.5423.2148 – volume: 15 start-page: 2032 year: 2003 ident: 2021040621523030800_b26 article-title: Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent publication-title: Plant Cell doi: 10.1105/tpc.013060 – volume: 16 start-page: 1 year: 2000 ident: 2021040621523030800_b9 article-title: Ethylene: A gaseous signal molecule in plants publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.16.1.1 – volume: 55 start-page: 821 year: 2008 ident: 2021040621523030800_b34 article-title: Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3 publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03551.x – volume: 282 start-page: 24752 year: 2007 ident: 2021040621523030800_b16 article-title: Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M704419200 – volume: 89 start-page: 1133 year: 1997 ident: 2021040621523030800_b12 article-title: Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins publication-title: Cell doi: 10.1016/S0092-8674(00)80300-1 – volume: 103 start-page: 7917 year: 2006 ident: 2021040621523030800_b46 article-title: REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0602239103 – volume: 269 start-page: 1712 year: 1995 ident: 2021040621523030800_b27 article-title: Ethylene insensitivity conferred by Arabidopsis ERS gene publication-title: Science doi: 10.1126/science.7569898 – volume: 18 start-page: 3235 year: 2006 ident: 2021040621523030800_b42 article-title: Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism publication-title: Plant Cell doi: 10.1105/tpc.106.046458 – year: 1992 ident: 2021040621523030800_b1 article-title: Ethylene in Plant Biology – reference: 15118728 - Nature. 2004 Apr 29;428(6986):945-50 – reference: 8211181 - Science. 1993 Oct 22;262(5133):539-44 – reference: 12893945 - Science. 2003 Aug 1;301(5633):653-7 – reference: 15090654 - Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6803-8 – reference: 14675527 - Cell. 2003 Dec 12;115(6):647-8 – reference: 11161061 - Plant Physiol. 2001 Feb;125(2):1061-73 – reference: 11031228 - Annu Rev Cell Dev Biol. 2000;16:1-18 – reference: 8577853 - Philos Trans R Soc Lond B Biol Sci. 1995 Oct 30;350(1331):75-81 – reference: 16682642 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7917-22 – reference: 11337588 - Science. 2001 May 18;292(5520):1382-5 – reference: 7768447 - Genetics. 1995 Mar;139(3):1393-409 – reference: 7732375 - Science. 1995 May 5;268(5211):667-75 – reference: 17114350 - Plant Cell. 2006 Nov;18(11):3235-51 – reference: 18693252 - J Biol Chem. 2008 Oct 3;283(40):26996-7006 – reference: 9215635 - Cell. 1997 Jun 27;89(7):1133-44 – reference: 18466304 - Plant J. 2008 Sep;55(5):821-31 – reference: 9789328 - Trends Cell Biol. 1998 Oct;8(10):397-403 – reference: 18429939 - Plant J. 2008 Aug;55(3):467-77 – reference: 14523448 - Nature. 2003 Oct 2;425(6957):521-5 – reference: 8612271 - Cell. 1996 Apr 19;85(2):183-94 – reference: 18182027 - Plant J. 2008 Apr;54(1):129-40 – reference: 9576967 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5812-7 – reference: 19147500 - J Biol Chem. 2009 Mar 20;284(12):7920-30 – reference: 11916973 - J Biol Chem. 2002 May 31;277(22):19861-6 – reference: 12953109 - Plant Cell. 2003 Sep;15(9):2032-41 – reference: 17224067 - BMC Plant Biol. 2007;7:3 – reference: 15753119 - Ann Bot. 2005 May;95(6):901-15 – reference: 8431946 - Cell. 1993 Feb 12;72(3):427-41 – reference: 16401342 - BMC Biochem. 2006;7:1 – reference: 12007405 - Cell. 2002 Apr 19;109(2):181-91 – reference: 18273012 - Nature. 2008 Feb 14;451(7180):789-95 – reference: 7667306 - Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8423-7 – reference: 14675533 - Cell. 2003 Dec 12;115(6):679-89 – reference: 7569898 - Science. 1995 Sep 22;269(5231):1712-4 – reference: 17747490 - Science. 1988 Aug 26;241(4869):1086-9 – reference: 9707532 - Plant Cell. 1998 Aug;10(8):1321-32 – reference: 15539472 - Plant Cell. 2004 Dec;16(12):3386-99 – reference: 14675532 - Cell. 2003 Dec 12;115(6):667-77 – reference: 12606727 - Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2992-7 – reference: 19709924 - Curr Opin Plant Biol. 2009 Oct;12(5):548-55 – reference: 12787251 - Plant J. 2003 Jun;34(5):709-18 – reference: 17307926 - Plant Cell. 2007 Feb;19(2):509-23 – reference: 12821658 - J Biol Chem. 2003 Sep 5;278(36):34725-32 – reference: 10381874 - Science. 1999 Jun 25;284(5423):2148-52 – reference: 18692429 - Curr Opin Plant Biol. 2008 Oct;11(5):479-85 – reference: 19717619 - Plant Cell. 2009 Aug;21(8):2527-40 – reference: 19196655 - Genes Dev. 2009 Feb 15;23(4):512-21 – reference: 17595158 - J Biol Chem. 2007 Aug 24;282(34):24752-8 – reference: 12183637 - Science. 2002 Oct 18;298(5593):608-11 – reference: 19416906 - Proc Natl Acad Sci U S A. 2009 May 12;106(19):8067-72 – reference: 2152173 - Plant Cell. 1990 Jun;2(6):513-23 – reference: 9851977 - Genes Dev. 1998 Dec 1;12(23):3703-14 – reference: 9664431 - Methods Mol Biol. 1998;82:259-66 – reference: 12566591 - Plant Cell. 2003 Feb;15(2):545-59 – reference: 9695954 - Cell. 1998 Jul 24;94(2):261-71 – reference: 15703063 - Plant J. 2005 Mar;41(5):767-78 |
SSID | ssj0001719 |
Score | 2.5109682 |
Snippet | Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we... The recently controversial ethylene signaling pathway has been reexamined in this study with results supporting a linear signaling pathway, in which EIN2 and... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2384 |
SubjectTerms | Antibodies Arabidopsis Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Down-Regulation enzymology ethylene Ethylenes Ethylenes - metabolism Gene expression regulation Genetic mutation genetic techniques and protocols genetics Hydrolysis Hypocotyls leaves mature plants metabolism Mutation Nuclear Proteins Nuclear Proteins - genetics Nuclear Proteins - metabolism Phenotypes Plant cells plant response Plants Proteasome Endopeptidase Complex Proteasome Endopeptidase Complex - metabolism Receptors Receptors, Cell Surface Receptors, Cell Surface - genetics Receptors, Cell Surface - metabolism Seedlings Signal Transduction silver stem elongation transcription factors Transcription Factors - genetics Transcription Factors - metabolism Transducers Transgenic plants |
Title | Ethylene-Induced Stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 Is Mediated by Proteasomal Degradation of EIN3 Binding F-Box 1 and 2 That Requires EIN2 in Arabidopsis |
URI | https://www.jstor.org/stable/20780572 https://www.ncbi.nlm.nih.gov/pubmed/20647342 https://www.proquest.com/docview/749617919 https://www.proquest.com/docview/1400126364 https://www.proquest.com/docview/749021667 https://pubmed.ncbi.nlm.nih.gov/PMC2929093 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgQ2IvCAaDMJiMhMT2YJYfzg8_IVpcNWyLxuigPEWJ7WiVRlJIJrG_i3-QuyTNNsR4S5Xrxe05vu-S8_cR8porJBVRijmOVzAOAJ8Jndss406os0IrE-FG4aMkmJ7yj3N_3vfm1H1b5WpNbBdqXSl8Rr4fchEglaZ4t_zBUDQKX672Chp3yToyl2FHVzgf6i1kghEdGYHNUPK752wERLHfLBUevIUq3m9FV65yUteW-C_A-Xff5LVENHlIHvQIkr7vQv6I3DHlJrk3qgDlXW6S--OVgttj8ltCFCCrGIYCHcpoCtASm2G7rZe0KqicTb8dykRSKOJl8jmexV-kR7NSUxknHjuMD6RD45oetYoe4CG_pMdI7ZDV1XcYxQfkmtBX7uBLdLRod8rQCRtVv6jTenPp7Cxr6InBxmNTo6FLFyX8ChiQrpb1ot4d7-1-3XtCTidyNp6yXqSBKchrDVMiE55xo9wVvnLsSGg_KqLc1kFe5Eb7gWd0WHDNfc1hNdG-0l4muAk85Hpzc2-LrJVVaZ4RGhXcQQUa40QCc6aInMyNwEORKQNrjUXYKkyp6hnMUUjjPG0rGdtPIax4kHZhtcibwX7ZcXfcarnVRn0wc23Ueghdi2yvpkHa39x1OkxFi7wazkJo8VVLVprqooaCCnFk4AXcIvQWG3ADACsIQos87ebVtcsH8GdxuHx4Y8YNBkgKfvNMuThrycFdwLu28J7_d-DbZKPrgsC24xdkrfl5YV4CuGrynfYW2iHrI5kcn8Cng0_RH5ReIWM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VFKlcEBQKpjwWCUR7WOrH-nVAiKSOYpJaVZuWcjL27lqNBHbAqSA_ihN_kBm_aBDl1pslj8cbz3j223j2-wh5wQWSigjBDMPKGAeAz3yZ6izhhiuTTArl4Ubhg8gZnfD3Z_bZGvnZ7oXBtsq2JlaFWhYC_yPfc7nvIJWm_3b-laFoFH5cbRU06qwYq-V3WLGVb8J9CO9L0xwG08GINaICTEAdXjDhJ76lTC81fVsYuudL28u8VJdOmqVK2o6lpJtxyW3JIfulLaSV-Fw5FnKTmakFfm-QdW7BSqZH1vtBdHjUlX7DrZREDGzTQ5HxhiUSMMzeYi7w4LXuwpzvrcyCdSPkvyDu352al6a-4R1yu8Gs9F2dZHfJmso3yc1-AbhyuUk2Bq1m3D3yK4C4wzymGEqCCCUpgFlsv603e9Iio8F09HESRAENo-MgOg6n4Wlg0SSXNAgji03CcWDQsKQHlYYIeEiX9BDJJJKy-AKj2Ed2C_nHHVxE-7Nqbw4dsn7xgxqVN5NOz5MFPVLY6qxKNDTpLIdfAQOSxbyclTuD3Z0Pu_fJybVEcIv08iJXDwn1Mm6g5o0yPB9nad8zEtMDD1kiFFQ3jbA2TLFoONNRuuNzXK2ddDuGsOJBXIdVI686-3nNFnKl5VYV9c7M1FFdwjU1st2mQdyUkzLukl8jz7uzEFr8uJPkqrgoYQmHyNWxHK4ReoUNuAFI5ziuRh7UeXXp9g48LA63d1cyrjNAGvLVM_nsvKIjNwFh67716L8Df0Y2RtODSTwJo_E2uVX3YGDT82PSW3y7UE8A2i3Sp80LRcmn636HfwMGol1b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ethylene-Induced+Stabilization+of+ETHYLENE+INSENSITIVE3+and+EIN3-LIKE1+Is+Mediated+by+Proteasomal+Degradation+of+EIN3+Binding+F-Box+1+and+2+That+Requires+EIN2+in+Arabidopsis&rft.jtitle=The+Plant+cell&rft.au=An%2C+Fengying&rft.au=Zhao%2C+Qiong&rft.au=Ji%2C+Yusi&rft.au=Li%2C+Wenyang&rft.date=2010-07-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=1040-4651&rft.volume=22&rft.issue=7&rft.spage=2384&rft.epage=2401&rft_id=info:doi/10.1105%2Ftpc.110.076588&rft.externalDocID=20780572 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon |