Ethylene-Induced Stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 Is Mediated by Proteasomal Degradation of EIN3 Binding F-Box 1 and 2 That Requires EIN2 in Arabidopsis

Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we report that the level of EIL1 protein is upregulated by ethylene through an EBF1/2-dependent pathway. Genetic analysis revealed that EIL1 and EIN3...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 22; no. 7; pp. 2384 - 2401
Main Authors An, Fengying, Zhao, Qiong, Ji, Yusi, Li, Wenyang, Jiang, Zhiqiang, Yu, Xiangchun, Zhang, Chen, Han, Ying, He, Wenrong, Liu, Yidong, Zhang, Shuqun, Ecker, Joseph R., Guo, Hongwei
Format Journal Article
LanguageEnglish
Published United States American Society of Plant Biologists 01.07.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we report that the level of EIL1 protein is upregulated by ethylene through an EBF1/2-dependent pathway. Genetic analysis revealed that EIL1 and EIN3 cooperatively but differentially regulate a wide array of ethylene responses, with EIL1 mainly inhibiting leaf expansion and stem elongation in adult plants and EIN3 largely regulating a multitude of ethylene responses in seedlings. When EBF1 and EBF2 are disrupted, EIL1 and EIN3 constitutively accumulate in the nucleus and remain unresponsive to exogenous ethylene application. Further study revealed that the levels of EBF1 and EBF2 proteins are downregulated by ethylene and upregulated by silver ion and MG132, suggesting that ethylene stabilizes EIN3/EIL1 by promoting EBF1 and EBF2 proteasomal degradation. Also, we found that EIN2 is indispensable for mediating ethylene-induced EIN3/EIL1 accumulation and EBF1/2 degradation, whereas MKK9 is not required for ethylene signal transduction, contrary to a previous report. Together, our studies demonstrate that ethylene similarly regulates EIN3 and EIL1, the two master transcription factors coordinating myriad ethylene responses, and clarify that EIN2 but not MKK9 is required for ethylene-induced EIN3/EIL1 stabilization. Our results also reveal that EBF1 and EBF2 act as essential ethylene signal transducers that by themselves are subject to proteasomal degradation.
AbstractList Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we report that the level of EIL1 protein is upregulated by ethylene through an EBF1/2-dependent pathway. Genetic analysis revealed that EIL1 and EIN3 cooperatively but differentially regulate a wide array of ethylene responses, with EIL1 mainly inhibiting leaf expansion and stem elongation in adult plants and EIN3 largely regulating a multitude of ethylene responses in seedlings. When EBF1 and EBF2 are disrupted, EIL1 and EIN3 constitutively accumulate in the nucleus and remain unresponsive to exogenous ethylene application. Further study revealed that the levels of EBF1 and EBF2 proteins are downregulated by ethylene and upregulated by silver ion and MG132, suggesting that ethylene stabilizes EIN3/EIL1 by promoting EBF1 and EBF2 proteasomal degradation. Also, we found that EIN2 is indispensable for mediating ethylene-induced EIN3/EIL1 accumulation and EBF1/2 degradation, whereas MKK9 is not required for ethylene signal transduction, contrary to a previous report. Together, our studies demonstrate that ethylene similarly regulates EIN3 and EIL1, the two master transcription factors coordinating myriad ethylene responses, and clarify that EIN2 but not MKK9 is required for ethylene-induced EIN3/EIL1 stabilization. Our results also reveal that EBF1 and EBF2 act as essential ethylene signal transducers that by themselves are subject to proteasomal degradation.Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we report that the level of EIL1 protein is upregulated by ethylene through an EBF1/2-dependent pathway. Genetic analysis revealed that EIL1 and EIN3 cooperatively but differentially regulate a wide array of ethylene responses, with EIL1 mainly inhibiting leaf expansion and stem elongation in adult plants and EIN3 largely regulating a multitude of ethylene responses in seedlings. When EBF1 and EBF2 are disrupted, EIL1 and EIN3 constitutively accumulate in the nucleus and remain unresponsive to exogenous ethylene application. Further study revealed that the levels of EBF1 and EBF2 proteins are downregulated by ethylene and upregulated by silver ion and MG132, suggesting that ethylene stabilizes EIN3/EIL1 by promoting EBF1 and EBF2 proteasomal degradation. Also, we found that EIN2 is indispensable for mediating ethylene-induced EIN3/EIL1 accumulation and EBF1/2 degradation, whereas MKK9 is not required for ethylene signal transduction, contrary to a previous report. Together, our studies demonstrate that ethylene similarly regulates EIN3 and EIL1, the two master transcription factors coordinating myriad ethylene responses, and clarify that EIN2 but not MKK9 is required for ethylene-induced EIN3/EIL1 stabilization. Our results also reveal that EBF1 and EBF2 act as essential ethylene signal transducers that by themselves are subject to proteasomal degradation.
The recently controversial ethylene signaling pathway has been reexamined in this study with results supporting a linear signaling pathway, in which EIN2 and EBF1/EBF2, but not MAP KINASE KINASE9, are essential signaling components required for ethylene-induced EIN3 and EIL1 protein stabilization. Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we report that the level of EIL1 protein is upregulated by ethylene through an EBF1/2-dependent pathway. Genetic analysis revealed that EIL1 and EIN3 cooperatively but differentially regulate a wide array of ethylene responses, with EIL1 mainly inhibiting leaf expansion and stem elongation in adult plants and EIN3 largely regulating a multitude of ethylene responses in seedlings. When EBF1 and EBF2 are disrupted, EIL1 and EIN3 constitutively accumulate in the nucleus and remain unresponsive to exogenous ethylene application. Further study revealed that the levels of EBF1 and EBF2 proteins are downregulated by ethylene and upregulated by silver ion and MG132, suggesting that ethylene stabilizes EIN3/EIL1 by promoting EBF1 and EBF2 proteasomal degradation. Also, we found that EIN2 is indispensable for mediating ethylene-induced EIN3/EIL1 accumulation and EBF1/2 degradation, whereas MKK9 is not required for ethylene signal transduction, contrary to a previous report. Together, our studies demonstrate that ethylene similarly regulates EIN3 and EIL1, the two master transcription factors coordinating myriad ethylene responses, and clarify that EIN2 but not MKK9 is required for ethylene-induced EIN3/EIL1 stabilization. Our results also reveal that EBF1 and EBF2 act as essential ethylene signal transducers that by themselves are subject to proteasomal degradation.
Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we report that the level of EIL1 protein is upregulated by ethylene through an EBF1/2-dependent pathway. Genetic analysis revealed that EIL1 and EIN3 cooperatively but differentially regulate a wide array of ethylene responses, with EIL1 mainly inhibiting leaf expansion and stem elongation in adult plants and EIN3 largely regulating a multitude of ethylene responses in seedlings. When EBF1 and EBF2 are disrupted, EIL1 and EIN3 constitutively accumulate in the nucleus and remain unresponsive to exogenous ethylene application. Further study revealed that the levels of EBF1 and EBF2 proteins are downregulated by ethylene and upregulated by silver ion and MG132, suggesting that ethylene stabilizes EIN3/EIL1 by promoting EBF1 and EBF2 proteasomal degradation. Also, we found that EIN2 is indispensable for mediating ethylene-induced EIN3/EIL1 accumulation and EBF1/2 degradation, whereas MKK9 is not required for ethylene signal transduction, contrary to a previous report. Together, our studies demonstrate that ethylene similarly regulates EIN3 and EIL1, the two master transcription factors coordinating myriad ethylene responses, and clarify that EIN2 but not MKK9 is required for ethylene-induced EIN3/EIL1 stabilization. Our results also reveal that EBF1 and EBF2 act as essential ethylene signal transducers that by themselves are subject to proteasomal degradation.
Author Zhao, Qiong
Ji, Yusi
Zhang, Shuqun
Zhang, Chen
He, Wenrong
Ecker, Joseph R.
Jiang, Zhiqiang
An, Fengying
Yu, Xiangchun
Han, Ying
Guo, Hongwei
Li, Wenyang
Liu, Yidong
AuthorAffiliation a National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
b Division of Biochemistry and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211
c Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
AuthorAffiliation_xml – name: c Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
– name: b Division of Biochemistry and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211
– name: a National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
Author_xml – sequence: 1
  givenname: Fengying
  surname: An
  fullname: An, Fengying
– sequence: 2
  givenname: Qiong
  surname: Zhao
  fullname: Zhao, Qiong
– sequence: 3
  givenname: Yusi
  surname: Ji
  fullname: Ji, Yusi
– sequence: 4
  givenname: Wenyang
  surname: Li
  fullname: Li, Wenyang
– sequence: 5
  givenname: Zhiqiang
  surname: Jiang
  fullname: Jiang, Zhiqiang
– sequence: 6
  givenname: Xiangchun
  surname: Yu
  fullname: Yu, Xiangchun
– sequence: 7
  givenname: Chen
  surname: Zhang
  fullname: Zhang, Chen
– sequence: 8
  givenname: Ying
  surname: Han
  fullname: Han, Ying
– sequence: 9
  givenname: Wenrong
  surname: He
  fullname: He, Wenrong
– sequence: 10
  givenname: Yidong
  surname: Liu
  fullname: Liu, Yidong
– sequence: 11
  givenname: Shuqun
  surname: Zhang
  fullname: Zhang, Shuqun
– sequence: 12
  givenname: Joseph R.
  surname: Ecker
  fullname: Ecker, Joseph R.
– sequence: 13
  givenname: Hongwei
  surname: Guo
  fullname: Guo, Hongwei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20647342$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvEzEURkeoiD5gyw5ksaGbCX7NwxuktkzpiBAQCQhWlmfsSRxN7NT2VIT_xH_EaVoolWDlK_l8R9e-9zDZM9aoJHmK4AghmL0K63ZbjGCRZ2X5IDlAGcEpZuXXvVhDClOaZ2g_OfR-CSFEBWKPkn0Mc1oQig-Sn1VYbHplVFobObRKgmkQje71DxG0NcB2oJpdfBtXkwrUk2k1mdaz-ktFgDASVPWEpOP6XYVA7cF7JbUI0dBswEdngxLerkQP3qi5E_KPLobAqTZSmzk4T0_td4CubRjMFiKAT-py0E75LYiBNuDExYakXXvtHycPO9F79eTmPEo-n1ezs4t0_OFtfXYyTltaoJC2TDCicNlglrUIlkxmZVc2UOZN1yiZ5UTJoqOSZjJ-A5RZK4lgVOUEUVzihhwlr3fe9dCslGyVCU70fO30SrgNt0Lzv2-MXvC5veKYYQYZiYKXNwJnLwflA19p36q-F0bZwfOCMohRnheRPP4viWicGs5JTiP64h66tIMz8SO2vhwVDLEIPb_b-u-eb0ceAboDWme9d6rjrQ7X04kv0T1HkG83i8fN2hZ8t1kxNroXuzX_M_BsF1j6YN2dPooSZgUmvwDt-dbx
CitedBy_id crossref_primary_10_1007_s00425_011_1410_3
crossref_primary_10_3390_ijms22168843
crossref_primary_10_1093_jxb_ery009
crossref_primary_10_1093_plphys_kiad395
crossref_primary_10_1111_tpj_15433
crossref_primary_10_1016_j_devcel_2016_10_020
crossref_primary_10_3390_ijms25031663
crossref_primary_10_1186_s12863_023_01144_3
crossref_primary_10_1093_mp_sst005
crossref_primary_10_1126_sciadv_adq5820
crossref_primary_10_1016_j_scienta_2021_110659
crossref_primary_10_3390_ijms19103206
crossref_primary_10_1093_mp_sss150
crossref_primary_10_1016_j_cub_2012_06_039
crossref_primary_10_1534_genetics_118_301470
crossref_primary_10_1007_s13562_021_00736_3
crossref_primary_10_1007_s42994_021_00063_0
crossref_primary_10_1093_plphys_kiae596
crossref_primary_10_1007_s10535_017_0705_z
crossref_primary_10_1016_j_jplph_2011_11_007
crossref_primary_10_1093_jxb_erx046
crossref_primary_10_3390_ijms23073572
crossref_primary_10_1093_jxb_eraa423
crossref_primary_10_1094_MPMI_02_12_0036_R
crossref_primary_10_1186_1471_2229_14_48
crossref_primary_10_1016_j_plantsci_2023_111820
crossref_primary_10_1371_journal_pgen_1005760
crossref_primary_10_1007_s11105_015_0929_z
crossref_primary_10_1016_j_cell_2015_10_032
crossref_primary_10_1371_journal_ppat_1005668
crossref_primary_10_1111_jipb_13083
crossref_primary_10_3390_cells9102219
crossref_primary_10_1134_S1021443716050149
crossref_primary_10_1007_s00344_012_9271_y
crossref_primary_10_1073_pnas_1711723115
crossref_primary_10_1016_j_envexpbot_2023_105610
crossref_primary_10_1038_s41467_023_35975_6
crossref_primary_10_1111_jipb_13761
crossref_primary_10_3389_fpls_2016_02044
crossref_primary_10_3390_plants13243595
crossref_primary_10_1016_j_celrep_2024_113763
crossref_primary_10_1186_1471_2229_14_174
crossref_primary_10_1111_tpj_15096
crossref_primary_10_1093_jxb_erad167
crossref_primary_10_1038_s41467_023_40429_0
crossref_primary_10_1093_plphys_kiad131
crossref_primary_10_1093_jxb_erv518
crossref_primary_10_1371_journal_pgen_1004664
crossref_primary_10_1007_s00299_024_03367_9
crossref_primary_10_1007_s11103_012_9980_4
crossref_primary_10_3389_fpls_2022_858477
crossref_primary_10_1016_j_plgene_2020_100270
crossref_primary_10_1007_s00344_024_11481_x
crossref_primary_10_1371_journal_pgen_1010424
crossref_primary_10_3390_ijms23126603
crossref_primary_10_3390_genes12101635
crossref_primary_10_3390_ijms21239109
crossref_primary_10_1007_s11103_010_9709_1
crossref_primary_10_1007_s11627_013_9559_z
crossref_primary_10_1111_pce_15181
crossref_primary_10_1016_j_plantsci_2012_09_017
crossref_primary_10_3389_fpls_2016_00637
crossref_primary_10_3390_ijms160819195
crossref_primary_10_1242_dev_179457
crossref_primary_10_1093_pcp_pcu115
crossref_primary_10_1104_pp_110_166579
crossref_primary_10_1104_pp_111_179812
crossref_primary_10_1111_tpj_12946
crossref_primary_10_3389_fpls_2019_00726
crossref_primary_10_1038_s41467_019_12045_4
crossref_primary_10_1016_j_jare_2022_06_014
crossref_primary_10_3389_fpls_2019_01136
crossref_primary_10_1016_j_molp_2015_10_008
crossref_primary_10_1007_s00299_020_02525_z
crossref_primary_10_3390_plants9121635
crossref_primary_10_1111_mpp_13452
crossref_primary_10_3390_ijms22116123
crossref_primary_10_3390_plants13182615
crossref_primary_10_3389_fpls_2019_01030
crossref_primary_10_1016_j_molp_2021_07_014
crossref_primary_10_1126_science_abf3013
crossref_primary_10_1016_j_pmpp_2025_102599
crossref_primary_10_3389_fmicb_2018_01966
crossref_primary_10_1126_science_aaa2618
crossref_primary_10_1186_s12870_023_04299_4
crossref_primary_10_1021_acs_jafc_7b05992
crossref_primary_10_1186_s12915_016_0230_0
crossref_primary_10_1093_abbs_gmr056
crossref_primary_10_3389_fpls_2022_1050995
crossref_primary_10_1080_15592324_2015_1017169
crossref_primary_10_1186_s12870_015_0597_z
crossref_primary_10_1073_pnas_2024592118
crossref_primary_10_3389_fgene_2021_639654
crossref_primary_10_1002_smtd_201900452
crossref_primary_10_1105_tpc_111_089029
crossref_primary_10_1016_j_plantsci_2019_110362
crossref_primary_10_3389_fpls_2016_01308
crossref_primary_10_1073_pnas_1103959108
crossref_primary_10_1016_j_pmpp_2018_04_006
crossref_primary_10_1111_nph_15078
crossref_primary_10_1016_j_postharvbio_2021_111707
crossref_primary_10_1093_jxb_err424
crossref_primary_10_1007_s10725_012_9767_2
crossref_primary_10_3389_fgene_2021_698598
crossref_primary_10_1007_s00425_012_1730_y
crossref_primary_10_1111_pce_13667
crossref_primary_10_1016_j_bbrc_2020_02_124
crossref_primary_10_1094_MPMI_05_17_0112_FI
crossref_primary_10_1186_s12870_021_02848_3
crossref_primary_10_1111_plb_12873
crossref_primary_10_1016_j_plaphy_2022_08_030
crossref_primary_10_1016_j_plantsci_2019_110353
crossref_primary_10_1016_j_plantsci_2022_111361
crossref_primary_10_3389_fenvs_2016_00063
crossref_primary_10_3390_plants11162149
crossref_primary_10_1007_s11103_016_0467_6
crossref_primary_10_1016_j_febslet_2012_11_030
crossref_primary_10_1016_j_plantsci_2019_110351
crossref_primary_10_1105_tpc_112_107227
crossref_primary_10_1093_pcp_pcu201
crossref_primary_10_1007_s00299_013_1421_6
crossref_primary_10_1093_jxb_erac314
crossref_primary_10_1038_s41598_021_85789_z
crossref_primary_10_1093_jxb_eru349
crossref_primary_10_3390_ijms22083936
crossref_primary_10_1038_s41586_021_03310_y
crossref_primary_10_1093_jxb_erv438
crossref_primary_10_1016_j_hpj_2024_03_008
crossref_primary_10_1038_ncomms13018
crossref_primary_10_3390_plants13192674
crossref_primary_10_1038_s41467_020_14313_0
crossref_primary_10_1111_j_1365_313X_2012_04965_x
crossref_primary_10_3390_biom9050167
crossref_primary_10_1007_s11103_016_0532_1
crossref_primary_10_1016_j_hpj_2021_03_005
crossref_primary_10_1080_15592324_2014_1003755
crossref_primary_10_1093_mp_ssr042
crossref_primary_10_1111_jipb_12666
crossref_primary_10_1093_pcp_pcy131
crossref_primary_10_1111_ppl_12161
crossref_primary_10_1371_journal_pone_0137439
crossref_primary_10_1104_pp_112_205476
crossref_primary_10_1016_j_plaphy_2020_08_013
crossref_primary_10_1016_j_scienta_2023_111841
crossref_primary_10_1093_jxb_eru112
crossref_primary_10_1093_jxb_erae282
crossref_primary_10_1016_j_jgg_2022_04_002
crossref_primary_10_1080_01140671_2020_1838571
crossref_primary_10_1007_s00709_013_0587_7
crossref_primary_10_1186_s12870_015_0571_9
crossref_primary_10_3389_fpls_2019_00091
crossref_primary_10_3389_fpls_2018_00413
crossref_primary_10_3389_fpls_2019_01737
crossref_primary_10_1016_j_cell_2015_09_037
crossref_primary_10_1146_annurev_phyto_073009_114447
crossref_primary_10_1007_s00299_015_1783_z
crossref_primary_10_3389_fpls_2018_01626
crossref_primary_10_1016_j_jgg_2012_01_001
crossref_primary_10_1007_s00425_022_04034_7
crossref_primary_10_3109_07388551_2016_1141391
crossref_primary_10_1093_plphys_kiac511
crossref_primary_10_1016_j_scienta_2021_109965
crossref_primary_10_1093_jxb_ery165
crossref_primary_10_1105_tpc_113_122002
crossref_primary_10_4161_psb_5_12_13913
crossref_primary_10_1080_07352689_2015_1024566
crossref_primary_10_1093_pcp_pcx035
crossref_primary_10_1016_j_xplc_2020_100104
crossref_primary_10_1016_j_tplants_2015_11_013
crossref_primary_10_1104_pp_112_200527
crossref_primary_10_1104_pp_113_216275
crossref_primary_10_3389_fgene_2022_942806
crossref_primary_10_1038_hortres_2014_53
crossref_primary_10_1186_s40168_018_0436_1
crossref_primary_10_1111_mpp_13139
crossref_primary_10_1016_j_foodchem_2018_05_024
crossref_primary_10_1093_aob_mcv054
crossref_primary_10_1016_j_celrep_2022_110529
crossref_primary_10_1038_cr_2012_29
crossref_primary_10_1134_S2079059717030169
crossref_primary_10_1093_mp_sst087
crossref_primary_10_1111_pce_13186
crossref_primary_10_3389_fpls_2019_01620
crossref_primary_10_1016_j_cub_2015_11_053
crossref_primary_10_3389_fpls_2016_01246
crossref_primary_10_1073_pnas_2110004118
crossref_primary_10_2139_ssrn_4069777
crossref_primary_10_1016_j_ecoenv_2024_116644
crossref_primary_10_1007_s00299_013_1516_0
crossref_primary_10_1111_tpj_15843
crossref_primary_10_1093_plcell_koae083
crossref_primary_10_3390_plants13101386
crossref_primary_10_1016_j_plantsci_2018_03_032
crossref_primary_10_1007_s00344_015_9522_9
crossref_primary_10_1111_jipb_13483
crossref_primary_10_3389_fpls_2017_00253
crossref_primary_10_3390_genes10040267
crossref_primary_10_1111_j_1365_3040_2011_02363_x
crossref_primary_10_1105_tpc_112_105486
crossref_primary_10_1038_srep12477
crossref_primary_10_1016_j_molp_2015_01_003
crossref_primary_10_1073_pnas_1706226114
crossref_primary_10_3389_fpls_2014_00648
crossref_primary_10_1016_j_plaphy_2011_05_005
crossref_primary_10_1038_s41467_024_50290_4
crossref_primary_10_1093_mp_sst071
crossref_primary_10_1007_s12374_020_09274_2
crossref_primary_10_3389_fpls_2019_01094
crossref_primary_10_3389_fpls_2014_00665
crossref_primary_10_1007_s10658_013_0210_y
crossref_primary_10_1073_pnas_2302854120
crossref_primary_10_1016_j_plaphy_2022_08_001
crossref_primary_10_1105_tpc_111_084715
crossref_primary_10_1073_pnas_1214848109
crossref_primary_10_1371_journal_pgen_1004025
crossref_primary_10_1371_journal_pone_0176531
crossref_primary_10_1371_journal_pone_0177621
crossref_primary_10_7717_peerj_6391
crossref_primary_10_1093_jxb_eraf062
crossref_primary_10_4161_psb_5_11_13294
crossref_primary_10_1016_j_plantsci_2018_11_009
crossref_primary_10_3389_fpls_2022_824948
crossref_primary_10_1104_pp_112_205799
crossref_primary_10_1146_annurev_arplant_042809_112256
crossref_primary_10_1007_s00299_022_02832_7
crossref_primary_10_1111_nph_12710
crossref_primary_10_3835_plantgenome2018_11_0089
crossref_primary_10_3390_ijms26062517
crossref_primary_10_1016_j_xplc_2023_100771
crossref_primary_10_1002_smtd_201900278
crossref_primary_10_3390_plants9010128
crossref_primary_10_1016_j_pbi_2020_05_011
crossref_primary_10_1093_g3journal_jkae026
crossref_primary_10_3389_fpls_2015_01059
crossref_primary_10_3389_fpls_2021_644823
crossref_primary_10_1074_jbc_REV120_010854
crossref_primary_10_3390_ijms25042138
crossref_primary_10_1111_tpj_16350
crossref_primary_10_1016_j_scienta_2017_11_007
crossref_primary_10_3389_fpls_2014_00554
crossref_primary_10_1111_j_1469_8137_2012_04100_x
crossref_primary_10_1111_nph_12386
crossref_primary_10_1105_tpc_113_110106
crossref_primary_10_1093_mp_ssu059
crossref_primary_10_1105_tpc_15_00080
crossref_primary_10_1016_j_hpj_2023_05_001
crossref_primary_10_3389_fpls_2017_00475
crossref_primary_10_1016_j_plantsci_2014_03_008
crossref_primary_10_3390_cells11193177
crossref_primary_10_1016_j_jgg_2015_03_012
crossref_primary_10_1186_1471_2229_11_88
crossref_primary_10_1002_smtd_201900267
crossref_primary_10_1093_plcell_koac316
crossref_primary_10_1111_jipb_13028
crossref_primary_10_1002_smtd_201900386
crossref_primary_10_1016_j_sajb_2019_10_015
crossref_primary_10_1016_j_scienta_2020_109468
crossref_primary_10_1002_smtd_201900260
crossref_primary_10_3389_fpls_2016_01571
crossref_primary_10_1007_s10725_024_01248_5
crossref_primary_10_1104_pp_111_182899
crossref_primary_10_3390_stresses4010003
crossref_primary_10_1105_tpc_113_113340
crossref_primary_10_3389_fpls_2022_980237
crossref_primary_10_1007_s11627_019_10022_6
crossref_primary_10_1016_j_plantsci_2016_09_002
crossref_primary_10_1039_c1mb05159h
crossref_primary_10_1093_plcell_koac250
crossref_primary_10_3390_ijms25074116
crossref_primary_10_1111_j_1744_7909_2012_01139_x
crossref_primary_10_3724_SP_J_1259_2011_00233
crossref_primary_10_1134_S102144371305004X
crossref_primary_10_1007_s00203_021_02667_y
crossref_primary_10_1146_annurev_phyto_082712_102314
crossref_primary_10_1146_annurev_phyto_082712_102312
crossref_primary_10_7554_eLife_63335
crossref_primary_10_1016_j_jprot_2020_104062
crossref_primary_10_1111_tpj_14027
crossref_primary_10_1093_pcp_pct180
crossref_primary_10_1111_tpj_12880
crossref_primary_10_3389_fpls_2015_00020
crossref_primary_10_3390_ijms22147313
crossref_primary_10_3390_plants10030448
crossref_primary_10_1016_j_envexpbot_2016_10_015
crossref_primary_10_1111_pce_12292
crossref_primary_10_1111_ppl_12784
crossref_primary_10_1074_jbc_RA119_010480
crossref_primary_10_3390_agronomy12020427
crossref_primary_10_1093_jxb_ery457
crossref_primary_10_1093_plcell_koac146
crossref_primary_10_1038_cr_2012_145
crossref_primary_10_3389_fpls_2022_852206
crossref_primary_10_1111_tpj_16335
crossref_primary_10_3390_plants4030449
crossref_primary_10_1007_s10725_015_0141_z
crossref_primary_10_1073_pnas_1718377115
crossref_primary_10_1126_sciadv_abm7863
crossref_primary_10_1016_j_postharvbio_2024_112826
crossref_primary_10_1016_j_cub_2017_06_062
crossref_primary_10_1111_j_1469_8137_2012_04266_x
crossref_primary_10_1111_pce_12062
crossref_primary_10_3389_fpls_2022_878809
crossref_primary_10_3390_genes15111367
crossref_primary_10_1016_j_mcpro_2024_100738
crossref_primary_10_1007_s10059_013_0097_7
crossref_primary_10_3389_fphys_2017_00142
crossref_primary_10_3390_ijms24108545
crossref_primary_10_3724_SP_J_1259_2011_00338
crossref_primary_10_1016_j_tplants_2011_05_008
crossref_primary_10_3390_biom11020174
crossref_primary_10_1094_MPMI_10_12_0253_R
crossref_primary_10_1111_tpj_14803
crossref_primary_10_1016_j_pbi_2013_08_001
crossref_primary_10_1073_pnas_1803861115
crossref_primary_10_1111_pce_13361
crossref_primary_10_1104_pp_113_225649
crossref_primary_10_1016_j_postharvbio_2024_113124
crossref_primary_10_1093_pcp_pcu171
crossref_primary_10_1093_aobpla_pls031
crossref_primary_10_1038_srep24066
crossref_primary_10_3390_agronomy11122478
crossref_primary_10_1007_s11240_012_0220_z
crossref_primary_10_1093_pcp_pcv009
crossref_primary_10_1007_s11103_025_01559_9
crossref_primary_10_1007_s00425_013_1984_z
crossref_primary_10_1104_pp_114_243360
crossref_primary_10_3389_fpls_2017_00150
crossref_primary_10_1074_mcp_M113_031633
crossref_primary_10_1016_j_pbi_2011_09_006
crossref_primary_10_1016_j_tplants_2020_12_007
crossref_primary_10_1186_s12870_016_0812_6
crossref_primary_10_1007_s11103_021_01128_w
crossref_primary_10_1093_plphys_kiad685
crossref_primary_10_3390_ijms19113577
crossref_primary_10_3389_fpls_2021_663536
Cites_doi 10.1038/nature02516
10.1073/pnas.92.18.8423
10.1105/tpc.106.048140
10.1101/gad.12.23.3703
10.1101/gad.1765709
10.1186/1471-2091-7-1
10.1105/tpc.10.8.1321
10.1073/pnas.0810206106
10.1126/science.1075901
10.1016/0092-8674(93)90119-B
10.1111/j.1365-313X.2008.03404.x
10.1105/tpc.108.065193
10.1016/S0092-8674(00)81425-7
10.1105/tpc.104.026609
10.1074/jbc.M801392200
10.1105/tpc.006882
10.1016/S0092-8674(03)00978-4
10.1046/j.1365-313X.2003.01762.x
10.1073/pnas.0401698101
10.1038/nature06543
10.1111/j.1365-313X.2004.02328.x
10.1126/science.7732375
10.1074/jbc.M201286200
10.1016/S0962-8924(98)01346-4
10.1093/genetics/139.3.1393
10.1073/pnas.95.10.5812
10.1093/aob/mci100
10.1098/rstb.1995.0140
10.1105/tpc.104.161210
10.1016/S0092-8674(02)00721-3
10.1111/j.1365-313X.2008.03521.x
10.1016/j.pbi.2008.06.011
10.1016/S0092-8674(00)81095-8
10.1074/jbc.M305548200
10.1038/nature01984
10.1073/pnas.0438070100
10.1074/jbc.M809069200
10.1186/1471-2229-7-3
10.1104/pp.125.2.1061
10.1126/science.1086391
10.1126/science.241.4869.1086
10.1016/j.pbi.2009.07.009
10.1016/S0092-8674(03)00968-1
10.1126/science.8211181
10.1016/S0092-8674(03)00969-3
10.1126/science.1059780
10.1126/science.284.5423.2148
10.1105/tpc.013060
10.1146/annurev.cellbio.16.1.1
10.1111/j.1365-313X.2008.03551.x
10.1074/jbc.M704419200
10.1016/S0092-8674(00)80300-1
10.1073/pnas.0602239103
10.1126/science.7569898
10.1105/tpc.106.046458
ContentType Journal Article
Copyright 2010 American Society of Plant Biologists
Copyright American Society of Plant Biologists Jul 2010
2010 American Society of Plant Biologists 2010
Copyright_xml – notice: 2010 American Society of Plant Biologists
– notice: Copyright American Society of Plant Biologists Jul 2010
– notice: 2010 American Society of Plant Biologists 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4T-
7QO
7TM
7X2
7X7
7XB
88A
88E
88I
8AF
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M2P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
S0X
7S9
L.6
7X8
5PM
DOI 10.1105/tpc.110.076588
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Docstoc
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
SIRS Editorial
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Docstoc
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef
Agricultural Science Database
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 2401
ExternalDocumentID PMC2929093
2131116401
20647342
10_1105_tpc_110_076588
20780572
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2FS
2WC
2~F
4.4
5VS
5WD
7X2
7X7
85S
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAXTN
AAYJJ
ABBHK
ABDFA
ABEJV
ABGNP
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABUWG
ABVGC
ABXSQ
ABXVV
ABXZS
ACBTR
ACGFO
ACGOD
ACHIC
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADXHL
ADYHW
AEEJZ
AENEX
AEUPB
AEUYN
AFAZZ
AFFNX
AFFZL
AFGWE
AFKRA
AFRAH
AGCDD
AGORE
AGUYK
AHMBA
AHXOZ
AICQM
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AQVQM
AS~
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BEYMZ
BHPHI
BPHCQ
BTFSW
BVXVI
CBGCD
CCPQU
CS3
D1J
DATOO
DIK
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
F8P
F9R
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GX1
H13
HCIFZ
HMCUK
HTVGU
H~9
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
LK8
M0K
M1P
M2P
M2Q
M7P
MV1
N9A
NEJ
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RHI
ROX
RPB
RWL
RXW
S0X
SA0
TAE
TN5
TR2
U5U
UKHRP
W8F
WH7
WOQ
XSW
YBU
YR2
YSK
ZCA
ZCN
~KM
AAYXX
CITATION
53G
AAWDT
ABIME
ABPIB
ABZEO
ACFRR
ACUTJ
ACVCV
ACZBC
ADYWZ
AFYAG
AGMDO
AJDVS
ANFBD
APJGH
AQDSO
C1A
CGR
CUY
CVF
ECM
EIF
FRP
HGD
MVM
NPM
P0-
TCN
UBC
UKR
WHG
XOL
Y6R
ZCG
3V.
4T-
7QO
7TM
7XB
88A
8FD
8FK
FR3
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c471t-c9a93e28b295c1089d58f8b0d6bfbed563ed7f4d45d4730d5cd3a94e6314282b3
IEDL.DBID 7X7
ISSN 1040-4651
1532-298X
IngestDate Thu Aug 21 14:14:07 EDT 2025
Tue Aug 05 11:18:16 EDT 2025
Fri Jul 11 16:05:26 EDT 2025
Sat Aug 23 14:17:31 EDT 2025
Thu Apr 03 07:09:27 EDT 2025
Tue Jul 01 02:52:50 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Fri Jun 20 02:19:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-c9a93e28b295c1089d58f8b0d6bfbed563ed7f4d45d4730d5cd3a94e6314282b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Some figures in this article are displayed in color online but in black and white in the print edition.
These authors contributed equally to this work.
Online version contains Web-only data.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Hongwei Guo (hongweig@pku.edu.cn).
www.plantcell.org/cgi/doi/10.1105/tpc.110.076588
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2929093
PMID 20647342
PQID 749617919
PQPubID 37014
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2929093
proquest_miscellaneous_749021667
proquest_miscellaneous_1400126364
proquest_journals_749617919
pubmed_primary_20647342
crossref_citationtrail_10_1105_tpc_110_076588
crossref_primary_10_1105_tpc_110_076588
jstor_primary_20780572
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-07-01
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Rockville
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2010
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References Christians (2021040621523030800_b17) 2008; 55
Alonso (2021040621523030800_b4) 2003; 100
Yoo (2021040621523030800_b58) 2008; 451
Lin (2021040621523030800_b39) 1995; 92
Kendrick (2021040621523030800_b31) 2008; 11
Lyapina (2021040621523030800_b41) 2001; 292
Bleecker (2021040621523030800_b9) 2000; 16
Konishi (2021040621523030800_b34) 2008; 55
Chen (2021040621523030800_b16) 2007; 282
Cope (2021040621523030800_b19) 2002; 298
Lehman (2021040621523030800_b38) 1996; 85
Bethke (2021040621523030800_b6) 2009; 106
Chao (2021040621523030800_b12) 1997; 89
Guzman (2021040621523030800_b25) 1990; 2
Bechtold (2021040621523030800_b5) 1998; 82
Chang (2021040621523030800_b11) 1993; 262
Binder (2021040621523030800_b7) 2007; 19
Rubio (2021040621523030800_b49) 2005; 41
Joo (2021040621523030800_b30) 2008; 54
Stuttmann (2021040621523030800_b53) 2009; 284
Roman (2021040621523030800_b47) 1995; 350
Hall (2021040621523030800_b26) 2003; 15
Yanagisawa (2021040621523030800_b56) 2003; 425
Liu (2021040621523030800_b40) 2004; 16
Kepinski (2021040621523030800_b32) 2003; 115
Alonso (2021040621523030800_b2) 1999; 284
Chen (2021040621523030800_b15) 2002; 277
Lee (2021040621523030800_b37) 1998; 8
Bleecker (2021040621523030800_b8) 1988; 241
Qu (2021040621523030800_b45) 2007; 7
Cope (2021040621523030800_b18) 2006; 7
Hua (2021040621523030800_b27) 1995; 269
Kieber (2021040621523030800_b33) 1993; 72
Xu (2021040621523030800_b55) 2008; 283
Hua (2021040621523030800_b28) 1998; 94
Sakai (2021040621523030800_b50) 1998; 95
Alonso (2021040621523030800_b3) 2003; 301
Ecker (2021040621523030800_b20) 1994; 16
Gagne (2021040621523030800_b22) 2004; 101
Maruyama-Nakashita (2021040621523030800_b42) 2006; 18
Chen (2021040621523030800_b14) 2005; 95
Potuschak (2021040621523030800_b43) 2003; 115
Chen (2021040621523030800_b13) 2009; 21
Resnick (2021040621523030800_b46) 2006; 103
Stepanova (2021040621523030800_b52) 2009; 12
Yin (2021040621523030800_b57) 2002; 109
Larsen (2021040621523030800_b36) 2001; 125
Ecker (2021040621523030800_b21) 1995; 268
Roman (2021040621523030800_b48) 1995; 139
Solano (2021040621523030800_b51) 1998; 12
Guo (2021040621523030800_b24) 2003; 115
Hua (2021040621523030800_b29) 1998; 10
Chae (2021040621523030800_b10) 2003; 15
Qiao (2021040621523030800_b44) 2009; 23
Wang (2021040621523030800_b54) 2004; 428
Abeles (2021040621523030800_b1) 1992
Larsen (2021040621523030800_b35) 2003; 34
Gao (2021040621523030800_b23) 2003; 278
19416906 - Proc Natl Acad Sci U S A. 2009 May 12;106(19):8067-72
11916973 - J Biol Chem. 2002 May 31;277(22):19861-6
17595158 - J Biol Chem. 2007 Aug 24;282(34):24752-8
9707532 - Plant Cell. 1998 Aug;10(8):1321-32
14675527 - Cell. 2003 Dec 12;115(6):647-8
12787251 - Plant J. 2003 Jun;34(5):709-18
9789328 - Trends Cell Biol. 1998 Oct;8(10):397-403
14675533 - Cell. 2003 Dec 12;115(6):679-89
9851977 - Genes Dev. 1998 Dec 1;12(23):3703-14
12893945 - Science. 2003 Aug 1;301(5633):653-7
18182027 - Plant J. 2008 Apr;54(1):129-40
8211181 - Science. 1993 Oct 22;262(5133):539-44
15539472 - Plant Cell. 2004 Dec;16(12):3386-99
17747490 - Science. 1988 Aug 26;241(4869):1086-9
14523448 - Nature. 2003 Oct 2;425(6957):521-5
19196655 - Genes Dev. 2009 Feb 15;23(4):512-21
15090654 - Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6803-8
19717619 - Plant Cell. 2009 Aug;21(8):2527-40
17114350 - Plant Cell. 2006 Nov;18(11):3235-51
8577853 - Philos Trans R Soc Lond B Biol Sci. 1995 Oct 30;350(1331):75-81
15753119 - Ann Bot. 2005 May;95(6):901-15
19709924 - Curr Opin Plant Biol. 2009 Oct;12(5):548-55
16401342 - BMC Biochem. 2006;7:1
17307926 - Plant Cell. 2007 Feb;19(2):509-23
8431946 - Cell. 1993 Feb 12;72(3):427-41
7768447 - Genetics. 1995 Mar;139(3):1393-409
12007405 - Cell. 2002 Apr 19;109(2):181-91
12821658 - J Biol Chem. 2003 Sep 5;278(36):34725-32
17224067 - BMC Plant Biol. 2007;7:3
12183637 - Science. 2002 Oct 18;298(5593):608-11
11031228 - Annu Rev Cell Dev Biol. 2000;16:1-18
7667306 - Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8423-7
12953109 - Plant Cell. 2003 Sep;15(9):2032-41
18692429 - Curr Opin Plant Biol. 2008 Oct;11(5):479-85
19147500 - J Biol Chem. 2009 Mar 20;284(12):7920-30
12566591 - Plant Cell. 2003 Feb;15(2):545-59
2152173 - Plant Cell. 1990 Jun;2(6):513-23
10381874 - Science. 1999 Jun 25;284(5423):2148-52
7569898 - Science. 1995 Sep 22;269(5231):1712-4
15118728 - Nature. 2004 Apr 29;428(6986):945-50
18693252 - J Biol Chem. 2008 Oct 3;283(40):26996-7006
8612271 - Cell. 1996 Apr 19;85(2):183-94
18466304 - Plant J. 2008 Sep;55(5):821-31
9664431 - Methods Mol Biol. 1998;82:259-66
9695954 - Cell. 1998 Jul 24;94(2):261-71
16682642 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7917-22
18429939 - Plant J. 2008 Aug;55(3):467-77
9576967 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5812-7
15703063 - Plant J. 2005 Mar;41(5):767-78
12606727 - Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2992-7
14675532 - Cell. 2003 Dec 12;115(6):667-77
9215635 - Cell. 1997 Jun 27;89(7):1133-44
11161061 - Plant Physiol. 2001 Feb;125(2):1061-73
18273012 - Nature. 2008 Feb 14;451(7180):789-95
11337588 - Science. 2001 May 18;292(5520):1382-5
7732375 - Science. 1995 May 5;268(5211):667-75
References_xml – volume: 428
  start-page: 945
  year: 2004
  ident: 2021040621523030800_b54
  article-title: Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein
  publication-title: Nature
  doi: 10.1038/nature02516
– volume: 92
  start-page: 8423
  year: 1995
  ident: 2021040621523030800_b39
  article-title: Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.18.8423
– volume: 19
  start-page: 509
  year: 2007
  ident: 2021040621523030800_b7
  article-title: The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.048140
– volume: 12
  start-page: 3703
  year: 1998
  ident: 2021040621523030800_b51
  article-title: Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.23.3703
– volume: 23
  start-page: 512
  year: 2009
  ident: 2021040621523030800_b44
  article-title: Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis
  publication-title: Genes Dev.
  doi: 10.1101/gad.1765709
– volume: 7
  start-page: 1
  year: 2006
  ident: 2021040621523030800_b18
  article-title: Targeted silencing of Jab1/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels
  publication-title: BMC Biochem.
  doi: 10.1186/1471-2091-7-1
– volume: 10
  start-page: 1321
  year: 1998
  ident: 2021040621523030800_b29
  article-title: EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.10.8.1321
– volume: 106
  start-page: 8067
  year: 2009
  ident: 2021040621523030800_b6
  article-title: Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0810206106
– volume: 298
  start-page: 608
  year: 2002
  ident: 2021040621523030800_b19
  article-title: Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1
  publication-title: Science
  doi: 10.1126/science.1075901
– volume: 72
  start-page: 427
  year: 1993
  ident: 2021040621523030800_b33
  article-title: CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90119-B
– volume: 54
  start-page: 129
  year: 2008
  ident: 2021040621523030800_b30
  article-title: MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03404.x
– volume: 21
  start-page: 2527
  year: 2009
  ident: 2021040621523030800_b13
  article-title: ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.065193
– volume: 94
  start-page: 261
  year: 1998
  ident: 2021040621523030800_b28
  article-title: Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81425-7
– volume: 16
  start-page: 3386
  year: 2004
  ident: 2021040621523030800_b40
  article-title: Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.026609
– volume: 283
  start-page: 26996
  year: 2008
  ident: 2021040621523030800_b55
  article-title: Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M801392200
– volume: 82
  start-page: 259
  year: 1998
  ident: 2021040621523030800_b5
  article-title: In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration
  publication-title: Methods Mol. Biol.
– volume: 15
  start-page: 545
  year: 2003
  ident: 2021040621523030800_b10
  article-title: The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein
  publication-title: Plant Cell
  doi: 10.1105/tpc.006882
– volume: 115
  start-page: 647
  year: 2003
  ident: 2021040621523030800_b32
  article-title: SCF-mediated proteolysis and negative regulation in ethylene signaling
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00978-4
– volume: 34
  start-page: 709
  year: 2003
  ident: 2021040621523030800_b35
  article-title: Enhanced ethylene responsiveness in the Arabidopsis eer1 mutant results from a loss-of-function mutation in the protein phosphatase 2A A regulatory subunit, RCN1
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01762.x
– volume: 101
  start-page: 6803
  year: 2004
  ident: 2021040621523030800_b22
  article-title: Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0401698101
– volume: 451
  start-page: 789
  year: 2008
  ident: 2021040621523030800_b58
  article-title: Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling
  publication-title: Nature
  doi: 10.1038/nature06543
– volume: 41
  start-page: 767
  year: 2005
  ident: 2021040621523030800_b49
  article-title: An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02328.x
– volume: 268
  start-page: 667
  year: 1995
  ident: 2021040621523030800_b21
  article-title: The ethylene signal transduction pathway in plants
  publication-title: Science
  doi: 10.1126/science.7732375
– volume: 277
  start-page: 19861
  year: 2002
  ident: 2021040621523030800_b15
  article-title: Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M201286200
– volume: 8
  start-page: 397
  year: 1998
  ident: 2021040621523030800_b37
  article-title: Proteasome inhibitors: Valuable new tools for cell biologists
  publication-title: Trends Cell Biol.
  doi: 10.1016/S0962-8924(98)01346-4
– volume: 139
  start-page: 1393
  year: 1995
  ident: 2021040621523030800_b48
  article-title: Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: Five novel mutant loci integrated into a stress response pathway
  publication-title: Genetics
  doi: 10.1093/genetics/139.3.1393
– volume: 95
  start-page: 5812
  year: 1998
  ident: 2021040621523030800_b50
  article-title: ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.10.5812
– volume: 95
  start-page: 901
  year: 2005
  ident: 2021040621523030800_b14
  article-title: Ethylene signal transduction
  publication-title: Ann. Bot. (Lond.)
  doi: 10.1093/aob/mci100
– volume: 350
  start-page: 75
  year: 1995
  ident: 2021040621523030800_b47
  article-title: Genetic analysis of a seedling stress response to ethylene in Arabidopsis
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.1995.0140
– volume: 16
  start-page: 3169
  year: 1994
  ident: 2021040621523030800_b20
  article-title: Reentry of the ethylene Mpk6 module
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.161210
– volume: 109
  start-page: 181
  year: 2002
  ident: 2021040621523030800_b57
  article-title: BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00721-3
– volume: 55
  start-page: 467
  year: 2008
  ident: 2021040621523030800_b17
  article-title: The eer5 mutation, which affects a novel proteasome-related subunit, indicates a prominent role for the COP9 signalosome in resetting the ethylene-signaling pathway in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03521.x
– volume: 11
  start-page: 479
  year: 2008
  ident: 2021040621523030800_b31
  article-title: Ethylene signaling: New levels of complexity and regulation
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2008.06.011
– volume: 85
  start-page: 183
  year: 1996
  ident: 2021040621523030800_b38
  article-title: HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81095-8
– volume: 278
  start-page: 34725
  year: 2003
  ident: 2021040621523030800_b23
  article-title: Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M305548200
– volume: 425
  start-page: 521
  year: 2003
  ident: 2021040621523030800_b56
  article-title: Differential regulation of EIN3 stability by glucose and ethylene signalling in plants
  publication-title: Nature
  doi: 10.1038/nature01984
– volume: 100
  start-page: 2992
  year: 2003
  ident: 2021040621523030800_b4
  article-title: Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0438070100
– volume: 284
  start-page: 7920
  year: 2009
  ident: 2021040621523030800_b53
  article-title: COP9 signalosome- and 26S proteasome-dependent regulation of SCFTIR1 accumulation in Arabidopsis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M809069200
– volume: 7
  start-page: 3
  year: 2007
  ident: 2021040621523030800_b45
  article-title: A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-7-3
– volume: 125
  start-page: 1061
  year: 2001
  ident: 2021040621523030800_b36
  article-title: The Arabidopsis eer1 mutant has enhanced ethylene responses in the hypocotyl and stem
  publication-title: Plant Physiol.
  doi: 10.1104/pp.125.2.1061
– volume: 301
  start-page: 653
  year: 2003
  ident: 2021040621523030800_b3
  article-title: Genome-wide insertional mutagenesis of Arabidopsis thaliana
  publication-title: Science
  doi: 10.1126/science.1086391
– volume: 241
  start-page: 1086
  year: 1988
  ident: 2021040621523030800_b8
  article-title: Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana
  publication-title: Science
  doi: 10.1126/science.241.4869.1086
– volume: 12
  start-page: 548
  year: 2009
  ident: 2021040621523030800_b52
  article-title: Ethylene signaling and response: Where different regulatory modules meet
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2009.07.009
– volume: 2
  start-page: 513
  year: 1990
  ident: 2021040621523030800_b25
  article-title: Exploiting the triple response of Arabidopsis to identify ethylene-related mutants
  publication-title: Plant Cell
– volume: 115
  start-page: 679
  year: 2003
  ident: 2021040621523030800_b43
  article-title: EIN3-dependent regulation of plant ethylene hormone signaling by two arabidopsis F box proteins: EBF1 and EBF2
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00968-1
– volume: 262
  start-page: 539
  year: 1993
  ident: 2021040621523030800_b11
  article-title: Arabidopsis ethylene response gene ETR1-similarity of product to 2-component regulators
  publication-title: Science
  doi: 10.1126/science.8211181
– volume: 115
  start-page: 667
  year: 2003
  ident: 2021040621523030800_b24
  article-title: Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00969-3
– volume: 292
  start-page: 1382
  year: 2001
  ident: 2021040621523030800_b41
  article-title: Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome
  publication-title: Science
  doi: 10.1126/science.1059780
– volume: 284
  start-page: 2148
  year: 1999
  ident: 2021040621523030800_b2
  article-title: EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis
  publication-title: Science
  doi: 10.1126/science.284.5423.2148
– volume: 15
  start-page: 2032
  year: 2003
  ident: 2021040621523030800_b26
  article-title: Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent
  publication-title: Plant Cell
  doi: 10.1105/tpc.013060
– volume: 16
  start-page: 1
  year: 2000
  ident: 2021040621523030800_b9
  article-title: Ethylene: A gaseous signal molecule in plants
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.16.1.1
– volume: 55
  start-page: 821
  year: 2008
  ident: 2021040621523030800_b34
  article-title: Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03551.x
– volume: 282
  start-page: 24752
  year: 2007
  ident: 2021040621523030800_b16
  article-title: Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M704419200
– volume: 89
  start-page: 1133
  year: 1997
  ident: 2021040621523030800_b12
  article-title: Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80300-1
– volume: 103
  start-page: 7917
  year: 2006
  ident: 2021040621523030800_b46
  article-title: REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0602239103
– volume: 269
  start-page: 1712
  year: 1995
  ident: 2021040621523030800_b27
  article-title: Ethylene insensitivity conferred by Arabidopsis ERS gene
  publication-title: Science
  doi: 10.1126/science.7569898
– volume: 18
  start-page: 3235
  year: 2006
  ident: 2021040621523030800_b42
  article-title: Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.046458
– year: 1992
  ident: 2021040621523030800_b1
  article-title: Ethylene in Plant Biology
– reference: 15118728 - Nature. 2004 Apr 29;428(6986):945-50
– reference: 8211181 - Science. 1993 Oct 22;262(5133):539-44
– reference: 12893945 - Science. 2003 Aug 1;301(5633):653-7
– reference: 15090654 - Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6803-8
– reference: 14675527 - Cell. 2003 Dec 12;115(6):647-8
– reference: 11161061 - Plant Physiol. 2001 Feb;125(2):1061-73
– reference: 11031228 - Annu Rev Cell Dev Biol. 2000;16:1-18
– reference: 8577853 - Philos Trans R Soc Lond B Biol Sci. 1995 Oct 30;350(1331):75-81
– reference: 16682642 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7917-22
– reference: 11337588 - Science. 2001 May 18;292(5520):1382-5
– reference: 7768447 - Genetics. 1995 Mar;139(3):1393-409
– reference: 7732375 - Science. 1995 May 5;268(5211):667-75
– reference: 17114350 - Plant Cell. 2006 Nov;18(11):3235-51
– reference: 18693252 - J Biol Chem. 2008 Oct 3;283(40):26996-7006
– reference: 9215635 - Cell. 1997 Jun 27;89(7):1133-44
– reference: 18466304 - Plant J. 2008 Sep;55(5):821-31
– reference: 9789328 - Trends Cell Biol. 1998 Oct;8(10):397-403
– reference: 18429939 - Plant J. 2008 Aug;55(3):467-77
– reference: 14523448 - Nature. 2003 Oct 2;425(6957):521-5
– reference: 8612271 - Cell. 1996 Apr 19;85(2):183-94
– reference: 18182027 - Plant J. 2008 Apr;54(1):129-40
– reference: 9576967 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5812-7
– reference: 19147500 - J Biol Chem. 2009 Mar 20;284(12):7920-30
– reference: 11916973 - J Biol Chem. 2002 May 31;277(22):19861-6
– reference: 12953109 - Plant Cell. 2003 Sep;15(9):2032-41
– reference: 17224067 - BMC Plant Biol. 2007;7:3
– reference: 15753119 - Ann Bot. 2005 May;95(6):901-15
– reference: 8431946 - Cell. 1993 Feb 12;72(3):427-41
– reference: 16401342 - BMC Biochem. 2006;7:1
– reference: 12007405 - Cell. 2002 Apr 19;109(2):181-91
– reference: 18273012 - Nature. 2008 Feb 14;451(7180):789-95
– reference: 7667306 - Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8423-7
– reference: 14675533 - Cell. 2003 Dec 12;115(6):679-89
– reference: 7569898 - Science. 1995 Sep 22;269(5231):1712-4
– reference: 17747490 - Science. 1988 Aug 26;241(4869):1086-9
– reference: 9707532 - Plant Cell. 1998 Aug;10(8):1321-32
– reference: 15539472 - Plant Cell. 2004 Dec;16(12):3386-99
– reference: 14675532 - Cell. 2003 Dec 12;115(6):667-77
– reference: 12606727 - Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2992-7
– reference: 19709924 - Curr Opin Plant Biol. 2009 Oct;12(5):548-55
– reference: 12787251 - Plant J. 2003 Jun;34(5):709-18
– reference: 17307926 - Plant Cell. 2007 Feb;19(2):509-23
– reference: 12821658 - J Biol Chem. 2003 Sep 5;278(36):34725-32
– reference: 10381874 - Science. 1999 Jun 25;284(5423):2148-52
– reference: 18692429 - Curr Opin Plant Biol. 2008 Oct;11(5):479-85
– reference: 19717619 - Plant Cell. 2009 Aug;21(8):2527-40
– reference: 19196655 - Genes Dev. 2009 Feb 15;23(4):512-21
– reference: 17595158 - J Biol Chem. 2007 Aug 24;282(34):24752-8
– reference: 12183637 - Science. 2002 Oct 18;298(5593):608-11
– reference: 19416906 - Proc Natl Acad Sci U S A. 2009 May 12;106(19):8067-72
– reference: 2152173 - Plant Cell. 1990 Jun;2(6):513-23
– reference: 9851977 - Genes Dev. 1998 Dec 1;12(23):3703-14
– reference: 9664431 - Methods Mol Biol. 1998;82:259-66
– reference: 12566591 - Plant Cell. 2003 Feb;15(2):545-59
– reference: 9695954 - Cell. 1998 Jul 24;94(2):261-71
– reference: 15703063 - Plant J. 2005 Mar;41(5):767-78
SSID ssj0001719
Score 2.5109682
Snippet Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we...
The recently controversial ethylene signaling pathway has been reexamined in this study with results supporting a linear signaling pathway, in which EIN2 and...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2384
SubjectTerms Antibodies
Arabidopsis
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Down-Regulation
enzymology
ethylene
Ethylenes
Ethylenes - metabolism
Gene expression regulation
Genetic mutation
genetic techniques and protocols
genetics
Hydrolysis
Hypocotyls
leaves
mature plants
metabolism
Mutation
Nuclear Proteins
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Phenotypes
Plant cells
plant response
Plants
Proteasome Endopeptidase Complex
Proteasome Endopeptidase Complex - metabolism
Receptors
Receptors, Cell Surface
Receptors, Cell Surface - genetics
Receptors, Cell Surface - metabolism
Seedlings
Signal Transduction
silver
stem elongation
transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Transducers
Transgenic plants
Title Ethylene-Induced Stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 Is Mediated by Proteasomal Degradation of EIN3 Binding F-Box 1 and 2 That Requires EIN2 in Arabidopsis
URI https://www.jstor.org/stable/20780572
https://www.ncbi.nlm.nih.gov/pubmed/20647342
https://www.proquest.com/docview/749617919
https://www.proquest.com/docview/1400126364
https://www.proquest.com/docview/749021667
https://pubmed.ncbi.nlm.nih.gov/PMC2929093
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgQ2IvCAaDMJiMhMT2YJYfzg8_IVpcNWyLxuigPEWJ7WiVRlJIJrG_i3-QuyTNNsR4S5Xrxe05vu-S8_cR8porJBVRijmOVzAOAJ8Jndss406os0IrE-FG4aMkmJ7yj3N_3vfm1H1b5WpNbBdqXSl8Rr4fchEglaZ4t_zBUDQKX672Chp3yToyl2FHVzgf6i1kghEdGYHNUPK752wERLHfLBUevIUq3m9FV65yUteW-C_A-Xff5LVENHlIHvQIkr7vQv6I3DHlJrk3qgDlXW6S--OVgttj8ltCFCCrGIYCHcpoCtASm2G7rZe0KqicTb8dykRSKOJl8jmexV-kR7NSUxknHjuMD6RD45oetYoe4CG_pMdI7ZDV1XcYxQfkmtBX7uBLdLRod8rQCRtVv6jTenPp7Cxr6InBxmNTo6FLFyX8ChiQrpb1ot4d7-1-3XtCTidyNp6yXqSBKchrDVMiE55xo9wVvnLsSGg_KqLc1kFe5Eb7gWd0WHDNfc1hNdG-0l4muAk85Hpzc2-LrJVVaZ4RGhXcQQUa40QCc6aInMyNwEORKQNrjUXYKkyp6hnMUUjjPG0rGdtPIax4kHZhtcibwX7ZcXfcarnVRn0wc23Ueghdi2yvpkHa39x1OkxFi7wazkJo8VVLVprqooaCCnFk4AXcIvQWG3ADACsIQos87ebVtcsH8GdxuHx4Y8YNBkgKfvNMuThrycFdwLu28J7_d-DbZKPrgsC24xdkrfl5YV4CuGrynfYW2iHrI5kcn8Cng0_RH5ReIWM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VFKlcEBQKpjwWCUR7WOrH-nVAiKSOYpJaVZuWcjL27lqNBHbAqSA_ihN_kBm_aBDl1pslj8cbz3j223j2-wh5wQWSigjBDMPKGAeAz3yZ6izhhiuTTArl4Ubhg8gZnfD3Z_bZGvnZ7oXBtsq2JlaFWhYC_yPfc7nvIJWm_3b-laFoFH5cbRU06qwYq-V3WLGVb8J9CO9L0xwG08GINaICTEAdXjDhJ76lTC81fVsYuudL28u8VJdOmqVK2o6lpJtxyW3JIfulLaSV-Fw5FnKTmakFfm-QdW7BSqZH1vtBdHjUlX7DrZREDGzTQ5HxhiUSMMzeYi7w4LXuwpzvrcyCdSPkvyDu352al6a-4R1yu8Gs9F2dZHfJmso3yc1-AbhyuUk2Bq1m3D3yK4C4wzymGEqCCCUpgFlsv603e9Iio8F09HESRAENo-MgOg6n4Wlg0SSXNAgji03CcWDQsKQHlYYIeEiX9BDJJJKy-AKj2Ed2C_nHHVxE-7Nqbw4dsn7xgxqVN5NOz5MFPVLY6qxKNDTpLIdfAQOSxbyclTuD3Z0Pu_fJybVEcIv08iJXDwn1Mm6g5o0yPB9nad8zEtMDD1kiFFQ3jbA2TLFoONNRuuNzXK2ddDuGsOJBXIdVI686-3nNFnKl5VYV9c7M1FFdwjU1st2mQdyUkzLukl8jz7uzEFr8uJPkqrgoYQmHyNWxHK4ReoUNuAFI5ziuRh7UeXXp9g48LA63d1cyrjNAGvLVM_nsvKIjNwFh67716L8Df0Y2RtODSTwJo_E2uVX3YGDT82PSW3y7UE8A2i3Sp80LRcmn636HfwMGol1b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ethylene-Induced+Stabilization+of+ETHYLENE+INSENSITIVE3+and+EIN3-LIKE1+Is+Mediated+by+Proteasomal+Degradation+of+EIN3+Binding+F-Box+1+and+2+That+Requires+EIN2+in+Arabidopsis&rft.jtitle=The+Plant+cell&rft.au=An%2C+Fengying&rft.au=Zhao%2C+Qiong&rft.au=Ji%2C+Yusi&rft.au=Li%2C+Wenyang&rft.date=2010-07-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=1040-4651&rft.volume=22&rft.issue=7&rft.spage=2384&rft.epage=2401&rft_id=info:doi/10.1105%2Ftpc.110.076588&rft.externalDocID=20780572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon