Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach
•The arterial pulse pressure waveform (APW) provides an adequate description of the arterial system behaviour..•The development of techniques based on the automatic analysis of biomedical signals could be crucial for a reliable cardiovascular assessment.•An APW database comprising signals from 213 p...
Saved in:
Published in | International journal of medical informatics (Shannon, Ireland) Vol. 109; pp. 30 - 38 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The arterial pulse pressure waveform (APW) provides an adequate description of the arterial system behaviour..•The development of techniques based on the automatic analysis of biomedical signals could be crucial for a reliable cardiovascular assessment.•An APW database comprising signals from 213 patients acquired with a novel optical system was used here.•Support Vector Machines (SVM) and Neural Networks were compared for differentiating between noisy waveforms, healthy and pathologic APWs.•SVM showed a higher accuracy possibly due to its ability to deal with the non-linearity and high-dimensionality degree of APW signal.
The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system.
The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN).
SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available.
The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW. |
---|---|
AbstractList | •The arterial pulse pressure waveform (APW) provides an adequate description of the arterial system behaviour..•The development of techniques based on the automatic analysis of biomedical signals could be crucial for a reliable cardiovascular assessment.•An APW database comprising signals from 213 patients acquired with a novel optical system was used here.•Support Vector Machines (SVM) and Neural Networks were compared for differentiating between noisy waveforms, healthy and pathologic APWs.•SVM showed a higher accuracy possibly due to its ability to deal with the non-linearity and high-dimensionality degree of APW signal.
The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system.
The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN).
SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available.
The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW. The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system.OBJECTIVEThe main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system.The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN).MATERIALS AND METHODSThe APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN).SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available.RESULTS AND DISCUSSIONSVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available.The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW.CONCLUSIONThe comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW. The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system. The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN). SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available. The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW. |
Author | Cardoso, João Paiva, Joana S. Pereira, Tânia |
Author_xml | – sequence: 1 givenname: Joana S. surname: Paiva fullname: Paiva, Joana S. organization: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Rua Dr. Roberto Frias, 4200, Porto, Portugal – sequence: 2 givenname: João surname: Cardoso fullname: Cardoso, João organization: LIBPhys-UC, Physics Department, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal – sequence: 3 givenname: Tânia surname: Pereira fullname: Pereira, Tânia email: taniapereira@lei.fis.uc.pt organization: LIBPhys-UC, Physics Department, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29195703$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1LHTEUxUOx1I_2X5Asu5nXZL4yKaVUpLUFxYXSbbiT3NE85yXTJPPE_74Zn3bhxkIgl8vvnJBzDsme8w4JOeZsxRlvP61Xdr1BY92wKhkXeblinL8hB7wTZdGVdbWX56pri4Y17T45jHHNMsia-h3ZLyWXjWDVAUlX84RhayMaOiIEZ90N3WC69SbSwQc6QZ5Hf2M1jBRCwmDzMM1jRHoPW6TGDgMGdMlCst59pif06vcFBWeowzlk2GG69-EuUpim4EHfvidvB8gGH57uI3L94_v16c_i_PLs1-nJeaFrwVOhhe5lWWL-DHRMt5KXQw0MWyEqBu0gOt5A0zOWD5geQNQSOyP7fuhN11VH5OPONr_6Z8aY1MZGjeMIDv0cFZeCt1IwuaDHT-jc51jVFOwGwoN6DioD7Q7QwccYcPiHcKaWRtRaPTeilkaWfW4kC7-8EGqbHpNKAez4uvzbTo45p63FoKK26HQmA-qkjLevW3x9YaFH65Y-7_Dhfwz-AoS-wwI |
CitedBy_id | crossref_primary_10_1111_exsy_12705 crossref_primary_10_1016_j_compbiolchem_2020_107315 crossref_primary_10_1080_08839514_2020_1790246 crossref_primary_10_1109_JBHI_2019_2909065 crossref_primary_10_1016_j_bbe_2019_05_010 crossref_primary_10_3390_s18030710 crossref_primary_10_3390_molecules24122210 crossref_primary_10_1109_ACCESS_2021_3128916 crossref_primary_10_1016_j_cmpb_2020_105321 crossref_primary_10_1016_j_bspc_2022_103616 crossref_primary_10_1038_s41746_019_0117_x crossref_primary_10_3390_electronics9040615 crossref_primary_10_1007_s13205_018_1368_y crossref_primary_10_1007_s11277_021_08411_5 crossref_primary_10_1155_2022_5111896 crossref_primary_10_1007_s13721_021_00290_x crossref_primary_10_1016_j_compchemeng_2020_107158 crossref_primary_10_1038_s41746_019_0207_9 crossref_primary_10_1162_dint_a_00198 crossref_primary_10_1007_s11042_020_09010_5 crossref_primary_10_1016_j_bspc_2021_103035 crossref_primary_10_1109_ACCESS_2022_3154405 crossref_primary_10_1016_j_bspc_2021_102834 crossref_primary_10_1007_s10489_019_01539_9 crossref_primary_10_1016_j_cmpb_2020_105409 crossref_primary_10_1038_s44172_024_00240_1 crossref_primary_10_1007_s13755_020_00112_w |
Cites_doi | 10.1016/j.ijmedinf.2012.12.005 10.1155/2012/586246 10.1038/srep32390 10.1007/s13239-013-0125-y 10.1088/0967-3334/31/4/006 10.1016/j.ijmedinf.2016.09.014 10.1016/j.artmed.2005.01.006 10.1161/01.CIR.0000105767.94169.E3 10.1161/01.HYP.33.6.1392 10.1155/2014/571623 10.1016/j.asoc.2016.08.013 10.1155/2013/603897 10.1016/j.ijmedinf.2016.03.001 10.1109/AHS.2014.6880185 10.1007/s40846-015-0086-8 10.1155/2013/261917 10.1186/1475-925X-13-160 10.1007/s10916-012-9828-0 10.1023/A:1012487302797 10.1155/2014/947254 10.2316/P.2012.764-152 10.1007/978-3-319-30285-0_19 10.1093/bioinformatics/btm036 10.1109/TITB.2008.923147 10.1016/j.ijcard.2014.10.050 10.1038/aps.2010.123 10.1007/s11517-015-1393-5 10.1016/j.medengphy.2011.11.009 10.1016/S0169-7439(97)00061-0 10.1088/0967-3334/31/5/006 10.1016/j.medengphy.2014.07.014 10.5121/ijdkp.2011.1501 10.1093/bioinformatics/btw498 10.1016/j.neucom.2013.02.010 10.1038/sj.jhh.1002120 10.1109/TBME.2007.897805 10.1016/j.jneumeth.2010.05.015 10.1161/01.STR.0000242289.20381.f4 10.1186/1471-2105-15-S13-S4 10.1161/01.CIR.102.11.1270 10.1080/08839514.2015.1051887 10.1016/j.artres.2014.09.107 10.1016/j.ijcha.2015.05.004 10.1016/j.cmpb.2015.05.012 10.1109/TNB.2005.853657 10.1136/ard.62.5.414 10.1016/j.patcog.2005.10.006 10.1088/0967-3334/31/1/R01 10.4236/jbise.2012.56041 10.1007/978-3-319-14063-6_31 10.1016/j.patcog.2009.09.003 10.1177/1358863X07081134 10.1007/s11517-008-0397-9 10.1007/s10044-006-0025-y 10.1016/j.jjcc.2011.11.005 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.ijmedinf.2017.10.011 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-8243 |
EndPage | 38 |
ExternalDocumentID | 29195703 10_1016_j_ijmedinf_2017_10_011 S1386505617303726 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABDPE ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACJTP ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXBA AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SEW SNG SPC SPCBC SSH SSV SSZ T5K UHS Z5R ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AISVY AJBFU AJOXV AMFUW EFLBG G8K LCYCR NAHTW RIG AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c471t-c7cb922e243a80c6912f4a0e67730a6f7815a5b00b00adbaa749e8d9bbfbd883 |
IEDL.DBID | .~1 |
ISSN | 1386-5056 1872-8243 |
IngestDate | Fri Jul 11 08:48:34 EDT 2025 Wed Feb 19 02:41:06 EST 2025 Tue Jul 01 02:50:21 EDT 2025 Thu Apr 24 22:59:30 EDT 2025 Fri Feb 23 02:22:42 EST 2024 Tue Aug 26 16:32:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Support vector machines Morphologic features Arterial pulse waveform Neural network Support vector machine recursive feature elimination |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-c7cb922e243a80c6912f4a0e67730a6f7815a5b00b00adbaa749e8d9bbfbd883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1386505617303726 |
PMID | 29195703 |
PQID | 1971697098 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1971697098 pubmed_primary_29195703 crossref_primary_10_1016_j_ijmedinf_2017_10_011 crossref_citationtrail_10_1016_j_ijmedinf_2017_10_011 elsevier_sciencedirect_doi_10_1016_j_ijmedinf_2017_10_011 elsevier_clinicalkey_doi_10_1016_j_ijmedinf_2017_10_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 2018-01-00 2018-Jan 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | International journal of medical informatics (Shannon, Ireland) |
PublicationTitleAlternate | Int J Med Inform |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Weber, Auer, O’Rourke, Kvas, Lassnig, Berent, Eber (bib0250) 2004; vol. 109 Olaniyi, Oyedotun, Adnan (bib0145) 2015; 7 Wilin (bib0345) 2002 Duan, Rajapakse, Wang, Azuaje (bib0315) 2005; 4 Mammadova, Keskin (bib0375) 2013; vol. 2013 Jia, Zhang, Li (bib0100) 2014; vol 2014 Huang, Kecman (bib0290) 2005; vol. 35 Marques (bib0330) 2001 Hejazi, Al-Haddad, Singh (bib0335) 2015; 29 Avolio, Butlin, Walsh (bib0015) 2010; vol. 31 B.C, Debatosh Guha (bib0380) 2017 Zheng, Xie, Xu, He, Zhang, You, Yang, Chen (bib0115) 2017; 97 Afifi, Gholam Hosseini, Sinha (bib0365) 2016; 9555 Yegnanarayana (bib0425) 2009 Lee, Mark (bib0035) 2010; vol. 9 Doupis, Papanas, Cohen, McFarlan, Horton (bib0215) 2016; 10 Cozma, Leucuţa, Pop, Tudor (bib0220) 2010; 27 Pereira, Pereira, Santos, Pereira, Correia, Cardoso (bib0075) 2014; vol. 8 Shirwany, Zou (bib0045) 2010; 31 Karpagachelvi, Arthanari, Sivakumar (bib0230) 2010; 8 Schlesinger, Hlavac (bib0350) 2017 De Gaetano, Panunzi, Rinaldi, Risi, Sciandrone (bib0150) 2009; vol. 213 Lee, Shin, Seo, Nam, Joo (bib0175) 2016; vol. 6 He, Li, Xiao, Yu, Lin (bib0275) 2012; 9 Wang, Tian (bib0310) 2012; vol 2012 Wang, Tian (bib0340) 2012; vol. 2012 Richard, Duda, Hart (bib0360) 2012 Prashanth, Dutta Roy, Mandal, Ghosh (bib0120) 2016; 90 Kips, Vanmolkot, Mahieu, Vermeersch, Fabry, de Hoon, Van Bortel, Segers (bib0260) 2010; 31 Pereira, Santos, Oliveira, Vaz, Pereira, Santos, Pereira, Correia, Cardoso (bib0200) 2014; 36 Pereira, Correia, Cardoso (bib0055) 2015; 35 Pereira, Paiva, Correia, Cardoso (bib0085) 2016; 54 De Melis, Morbiducci, Rietzschel, De Buyzere, Qasem, Van Bortel, Claessens, Montevecchi, Avolio, Segers (bib0255) 2009; vol. 47 Liu, Zheng (bib0305) 2006; 39 Svozil, Kvasnička, Pospíchal (bib0430) 1997; 39 Nguyen, de l aTorre (bib0285) 2010; 43 Khalaf, Ibrahim, Hamed (bib0165) 2015; vol. 2015 Alty, Angarita-jaimes, Millasseau, Chowienczyk (bib0410) 2007; 54 Pachauri, Bhuyan (bib0265) 2012; vol. 6 Guyon, Isabelle, Weston, Barnhill, Vapnik (bib0320) 2002; 46 Jeon, Kim, Jeon, Lee (bib0395) 2014; vol. 13 Kim, Park, Park, Suh, Choi, Kim, Kim, Lim, Rha, Seo, Oh (bib0005) 2007; 21 Pereira, Pereira, Santos, Correia, Cardoso (bib0080) 2015; vol 179 Cogill (bib0370) 2016; 32 Sakr, Mokbel, Darwich (bib0385) 2016 Mandal, Sairam (bib0225) 2012; 36 Hu, Glenn, Scalzo, Bergsneider, Sarkiss, Martin, Vespa (bib0295) 2010; 31 Zuo, Zhang, Zhang, Zhang, Li (bib0095) 2010; vol. 2010 Mehran (bib0105) 2006 Nayak (bib0240) 2012; vol. 54 Melgani, Bazi (bib0405) 2008; 12 Kasprowicz, Asgari, Bergsneider, Czosnyka, Hamilton, Hu (bib0235) 2010; 190 Pereira, Paiva, Correia, Cardoso (bib0400) 2015 Guyon, Elisseeff (bib0300) 2003; 3 Rani, Liu, Sarkar, Vanman (bib0355) 2006; 9 Álvarez, Hornero, Marcos, Del Campo (bib0270) 2012; 34 Crilly, Coch, Bruce, Clark, Williams (bib0030) 2007; 12 Diez, Mut, Laciar, Torres, Avila (bib0245) 2009; vol 2009 Kotsiantis (bib0420) 2007; 31 Rani (bib0140) 2011; 1 Sueta, Yamamoto, Tanaka, Hirata, Sakamoto, Tsujita, Kojima, Nishiyama, Kaikita, Hokimoto, Jinnouchi, Ogawa (bib0205) 2015; vol. 8 Tanaka, Dinenno, Monahan, Clevenger, DeSouza, Seals (bib0020) 2000; vol. 102 Byrd, Steinhubl, Sun, Ebadollahi, Stewart (bib0110) 2014; 83 Frontzek, Lal, Eckmiller (bib0415) 2001 Atkov, Gorokhova, Sboev, Generozov, Muraseyeva, Moroshkina, Cherniy (bib0135) 2012; 59 Gargiulo, Fratini, Sansone, Sansone (bib0325) 2015; 121 Pereira, Santos, Oliveira, Vaz, Correia, Pereira, Santos, Pereira, Almeida, Cardoso, Correia (bib0060) 2013; 4 McVeigh, Bratteli, Morgan, Alinder, Glasser, Finkelstein, Cohn (bib0050) 1999; 33 Pereira, Santos, Oliveira, Vaz, Santos, Pereira, Almeida, Cardoso (bib0065) 2013; vol. 1 Janney, Sruthi P (bib0280) 2012; vol. 4 Hemphill, Lindsay, Lee, Măndoiu, Nelson (bib0125) 2014; vol. 15 Orjuela-Cañón, Posada-Quintero, Delisle-Rodríguez, Cuadra-Sanz, Fernández de la Vara-Prieto, López-Delis (bib0180) 2013; 3 Zhou, Tuck (bib0130) 2007; 23 Poungponsri, Yu (bib0160) 2013; 117 Salih, Abdallah, Qananwah, Bolz (bib0195) 2012; vol. 9 Pereira, Santos, Oliveira, Vaz, Pereira, Santos, Pereira, Correia, Cardoso (bib0070) 2014 Almási, Woźniak, Leblebici, Engbersen (bib0190) 2015; vol. 3 El-Khafif, El-Brawany (bib0155) 2013; vol 2013 Klocke, Cockcroft, Taylor, Hall, Blake (bib0025) 2003; 62 Hirata, Yaginuma, O’Rourke, Kawakami (bib0040) 2006; 37 Meyer, Tanaka, Palta, Patel, Camplain, Couper, Cheng, Al Qunaibet, Poon, Heiss (bib0210) 2015 Ribas Ripoll, Wojdel, Romero, Ramos, Brugada (bib0170) 2016; 49 Jallad, Mohammed (bib0390) 2014 Joshi (bib0090) 2012; 5 Ma (bib0010) 2014; vol 2014 Quinn, Kinsley, Whitaker, Seller (bib0185) 2012 Richard (10.1016/j.ijmedinf.2017.10.011_bib0360) 2012 Nguyen (10.1016/j.ijmedinf.2017.10.011_bib0285) 2010; 43 Pereira (10.1016/j.ijmedinf.2017.10.011_bib0080) 2015; vol 179 Quinn (10.1016/j.ijmedinf.2017.10.011_bib0185) 2012 Wang (10.1016/j.ijmedinf.2017.10.011_bib0340) 2012; vol. 2012 Almási (10.1016/j.ijmedinf.2017.10.011_bib0190) 2015; vol. 3 Rani (10.1016/j.ijmedinf.2017.10.011_bib0355) 2006; 9 Ma (10.1016/j.ijmedinf.2017.10.011_bib0010) 2014; vol 2014 Sakr (10.1016/j.ijmedinf.2017.10.011_bib0385) 2016 Weber (10.1016/j.ijmedinf.2017.10.011_bib0250) 2004; vol. 109 Marques (10.1016/j.ijmedinf.2017.10.011_bib0330) 2001 Hirata (10.1016/j.ijmedinf.2017.10.011_bib0040) 2006; 37 Pereira (10.1016/j.ijmedinf.2017.10.011_bib0055) 2015; 35 Ribas Ripoll (10.1016/j.ijmedinf.2017.10.011_bib0170) 2016; 49 Guyon (10.1016/j.ijmedinf.2017.10.011_bib0300) 2003; 3 Afifi (10.1016/j.ijmedinf.2017.10.011_bib0365) 2016; 9555 Kips (10.1016/j.ijmedinf.2017.10.011_bib0260) 2010; 31 Guyon (10.1016/j.ijmedinf.2017.10.011_bib0320) 2002; 46 Klocke (10.1016/j.ijmedinf.2017.10.011_bib0025) 2003; 62 De Melis (10.1016/j.ijmedinf.2017.10.011_bib0255) 2009; vol. 47 Jallad (10.1016/j.ijmedinf.2017.10.011_bib0390) 2014 El-Khafif (10.1016/j.ijmedinf.2017.10.011_bib0155) 2013; vol 2013 Mandal (10.1016/j.ijmedinf.2017.10.011_bib0225) 2012; 36 Salih (10.1016/j.ijmedinf.2017.10.011_bib0195) 2012; vol. 9 Sueta (10.1016/j.ijmedinf.2017.10.011_bib0205) 2015; vol. 8 Cogill (10.1016/j.ijmedinf.2017.10.011_bib0370) 2016; 32 Zuo (10.1016/j.ijmedinf.2017.10.011_bib0095) 2010; vol. 2010 Janney (10.1016/j.ijmedinf.2017.10.011_bib0280) 2012; vol. 4 B.C (10.1016/j.ijmedinf.2017.10.011_bib0380) 2017 Rani (10.1016/j.ijmedinf.2017.10.011_bib0140) 2011; 1 Diez (10.1016/j.ijmedinf.2017.10.011_bib0245) 2009; vol 2009 Álvarez (10.1016/j.ijmedinf.2017.10.011_bib0270) 2012; 34 Byrd (10.1016/j.ijmedinf.2017.10.011_bib0110) 2014; 83 Yegnanarayana (10.1016/j.ijmedinf.2017.10.011_bib0425) 2009 Pereira (10.1016/j.ijmedinf.2017.10.011_bib0400) 2015 Crilly (10.1016/j.ijmedinf.2017.10.011_bib0030) 2007; 12 Doupis (10.1016/j.ijmedinf.2017.10.011_bib0215) 2016; 10 Melgani (10.1016/j.ijmedinf.2017.10.011_bib0405) 2008; 12 Hejazi (10.1016/j.ijmedinf.2017.10.011_bib0335) 2015; 29 Meyer (10.1016/j.ijmedinf.2017.10.011_bib0210) 2015 McVeigh (10.1016/j.ijmedinf.2017.10.011_bib0050) 1999; 33 Mammadova (10.1016/j.ijmedinf.2017.10.011_bib0375) 2013; vol. 2013 Kotsiantis (10.1016/j.ijmedinf.2017.10.011_bib0420) 2007; 31 Mehran (10.1016/j.ijmedinf.2017.10.011_bib0105) 2006 Gargiulo (10.1016/j.ijmedinf.2017.10.011_bib0325) 2015; 121 Wilin (10.1016/j.ijmedinf.2017.10.011_bib0345) 2002 Alty (10.1016/j.ijmedinf.2017.10.011_bib0410) 2007; 54 Liu (10.1016/j.ijmedinf.2017.10.011_bib0305) 2006; 39 Pereira (10.1016/j.ijmedinf.2017.10.011_bib0075) 2014; vol. 8 Wang (10.1016/j.ijmedinf.2017.10.011_bib0310) 2012; vol 2012 Kasprowicz (10.1016/j.ijmedinf.2017.10.011_bib0235) 2010; 190 Zheng (10.1016/j.ijmedinf.2017.10.011_bib0115) 2017; 97 Huang (10.1016/j.ijmedinf.2017.10.011_bib0290) 2005; vol. 35 Jeon (10.1016/j.ijmedinf.2017.10.011_bib0395) 2014; vol. 13 Schlesinger (10.1016/j.ijmedinf.2017.10.011_bib0350) 2017 Frontzek (10.1016/j.ijmedinf.2017.10.011_bib0415) 2001 Pereira (10.1016/j.ijmedinf.2017.10.011_bib0085) 2016; 54 Jia (10.1016/j.ijmedinf.2017.10.011_bib0100) 2014; vol 2014 He (10.1016/j.ijmedinf.2017.10.011_bib0275) 2012; 9 Hu (10.1016/j.ijmedinf.2017.10.011_bib0295) 2010; 31 Joshi (10.1016/j.ijmedinf.2017.10.011_bib0090) 2012; 5 Pachauri (10.1016/j.ijmedinf.2017.10.011_bib0265) 2012; vol. 6 Pereira (10.1016/j.ijmedinf.2017.10.011_bib0070) 2014 Olaniyi (10.1016/j.ijmedinf.2017.10.011_bib0145) 2015; 7 Lee (10.1016/j.ijmedinf.2017.10.011_bib0175) 2016; vol. 6 Cozma (10.1016/j.ijmedinf.2017.10.011_bib0220) 2010; 27 Kim (10.1016/j.ijmedinf.2017.10.011_bib0005) 2007; 21 Nayak (10.1016/j.ijmedinf.2017.10.011_bib0240) 2012; vol. 54 Duan (10.1016/j.ijmedinf.2017.10.011_bib0315) 2005; 4 Zhou (10.1016/j.ijmedinf.2017.10.011_bib0130) 2007; 23 Hemphill (10.1016/j.ijmedinf.2017.10.011_bib0125) 2014; vol. 15 Avolio (10.1016/j.ijmedinf.2017.10.011_bib0015) 2010; vol. 31 Pereira (10.1016/j.ijmedinf.2017.10.011_bib0065) 2013; vol. 1 Khalaf (10.1016/j.ijmedinf.2017.10.011_bib0165) 2015; vol. 2015 Pereira (10.1016/j.ijmedinf.2017.10.011_bib0200) 2014; 36 Shirwany (10.1016/j.ijmedinf.2017.10.011_bib0045) 2010; 31 Pereira (10.1016/j.ijmedinf.2017.10.011_bib0060) 2013; 4 Prashanth (10.1016/j.ijmedinf.2017.10.011_bib0120) 2016; 90 Orjuela-Cañón (10.1016/j.ijmedinf.2017.10.011_bib0180) 2013; 3 Lee (10.1016/j.ijmedinf.2017.10.011_bib0035) 2010; vol. 9 Tanaka (10.1016/j.ijmedinf.2017.10.011_bib0020) 2000; vol. 102 Atkov (10.1016/j.ijmedinf.2017.10.011_bib0135) 2012; 59 Karpagachelvi (10.1016/j.ijmedinf.2017.10.011_bib0230) 2010; 8 Poungponsri (10.1016/j.ijmedinf.2017.10.011_bib0160) 2013; 117 De Gaetano (10.1016/j.ijmedinf.2017.10.011_bib0150) 2009; vol. 213 Svozil (10.1016/j.ijmedinf.2017.10.011_bib0430) 1997; 39 |
References_xml | – volume: 29 start-page: 660 year: 2015 end-page: 674 ident: bib0335 article-title: Multiclass support vector machines for classification of ECG data with missing values publication-title: Appl. Artif. Intell. – volume: vol. 6 start-page: 32390 year: 2016 ident: bib0175 article-title: Prediction of ventricular tachycardia one hour before occurrence using artificial neural networks publication-title: Sci. Rep – volume: vol 2009 start-page: 2579 year: 2009 end-page: 2582 ident: bib0245 article-title: Application of the empirical mode decomposition to the extraction of features from EEG signals for mental task classification publication-title: Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Conf. – volume: vol. 13 start-page: 160 year: 2014 ident: bib0395 article-title: Implementation of a portable device for real-time ECG signal analysis publication-title: Biomed. Eng. Online – volume: vol 2014 year: 2014 ident: bib0100 article-title: Pulse waveform classification using support vector machine with gaussian time warp edit distance kernel publication-title: Comput. Math. Methods Med. – volume: 10 start-page: 188 year: 2016 end-page: 195 ident: bib0215 article-title: Pulse wave analysis by applanation tonometry for the measurement of arterial stiffness, open cardiovasc publication-title: Med. J. – volume: 32 year: 2016 ident: bib0370 article-title: Support vector machine model of developmental brain gene expression data for prioritization of Autism risk gene candidates publication-title: Bioinformatics – volume: vol 2014 start-page: 7 year: 2014 ident: bib0010 article-title: A blood pressure monitoring method for stroke management publication-title: Biomed Res. Int. – volume: vol. 9 year: 2012 ident: bib0195 article-title: Normalized area under catacrotic phase of the photoplethysmogram pulse for estimating vascular aging publication-title: J. Biomed. Eng. – volume: vol. 4 start-page: 2012 year: 2012 ident: bib0280 article-title: Dicrotic notch detection and analysis of arterial pulse by using discrete wavelet publication-title: OSIET J. Commun. Electron. – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib0300 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 97 start-page: 120 year: 2017 end-page: 127 ident: bib0115 article-title: A machine learning-based framework to identify type 2 diabetes through electronic health records publication-title: Int. J. Med. Inform. – volume: 12 start-page: 667 year: 2008 end-page: 677 ident: bib0405 article-title: Classification of electrocardiogram signals with support vector machines and particle swarm optimization publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 7 start-page: 75 year: 2015 end-page: 82 ident: bib0145 article-title: Heart diseases diagnosis using neural networks arbitration publication-title: Int. J. Intell. Syst. Appl. – volume: 62 start-page: 414 year: 2003 end-page: 418 ident: bib0025 article-title: Arterial stiffness and central blood pressure, as determined by pulse wave analysis, in rheumatoid arthritis publication-title: Ann. Rheum. Dis. – start-page: 389 year: 2002 end-page: 422 ident: bib0345 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – year: 2009 ident: bib0425 article-title: Artificial Neural Networks – volume: 9 start-page: 3379 year: 2012 end-page: 3389 ident: bib0275 article-title: An arterial elasticity index algorithm based on wavelet transform and curve fitting publication-title: J. Inf. Comput. Sci. – volume: 49 start-page: 399 year: 2016 end-page: 406 ident: bib0170 article-title: ECG assessment based on neural networks with pretraining publication-title: Appl. Soft Comput. – volume: vol. 47 start-page: 165 year: 2009 end-page: 173 ident: bib0255 article-title: Blood pressure waveform analysis by means of wavelet transform publication-title: Med. Biol. Eng. Comput. – volume: vol. 35 start-page: 185 year: 2005 end-page: 194 ident: bib0290 article-title: Gene extraction for cancer diagnosis by support vector machines an improvement and comparison with nearest publication-title: Artif. Intell. Med. – volume: 9555 start-page: 235 year: 2016 end-page: 245 ident: bib0365 article-title: Hardware acceleration of SVM-based classifier for melanoma images publication-title: Lect. Notes Comput. Sci – start-page: 325 year: 2017 end-page: 330 ident: bib0380 article-title: Arrhythmia classification by nonlinear kernel-based ECG signal modeling publication-title: Comput. Commun. Electr. Technol. – volume: 12 start-page: 189 year: 2007 end-page: 197 ident: bib0030 article-title: Indices of cardiovascular function derived from peripheral pulse wave analysis using radial applanation tonometry: a measurement repeatability study publication-title: Vasc. Med. – volume: vol. 2012 year: 2012 ident: bib0340 article-title: A gene selection method for cancer classification publication-title: Comput. Math. Methods Med. – volume: vol 2013 start-page: 3 year: 2013 end-page: 6 ident: bib0155 article-title: Artificial neural network-Based automated ECG signal classifier publication-title: ISRN Biomed. Eng. – volume: 9 start-page: 58 year: 2006 end-page: 69 ident: bib0355 article-title: An empirical study of machine learning techniques for affect recognition in human-robot interaction publication-title: Pattern Anal Appl. – start-page: 1492 year: 2001 end-page: 1497 ident: bib0415 article-title: Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels publication-title: Neural Networks, 2001. Proceedings. IJCNN ’01. International Joint Conference on – volume: vol. 213 start-page: 243 year: 2009 end-page: 249 ident: bib0150 article-title: A patient adaptable ECG beat classifier based on neural networks publication-title: Appl. Math. Comput. – volume: vol. 3 start-page: 367 year: 2015 end-page: 376 ident: bib0190 article-title: Review of advances in neural networks: neural design technology stack publication-title: Proc. ELM-2014, Vol. 1 SE – 31 – volume: 39 start-page: 43 year: 1997 end-page: 62 ident: bib0430 article-title: Introduction to multi-layer feed-forward neural networks publication-title: Chemom. Intell. Lab. Syst. – volume: 33 start-page: 1392 year: 1999 end-page: 1398 ident: bib0050 article-title: Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: aging and arterial compliance publication-title: Hypertension – volume: 59 start-page: 190 year: 2012 end-page: 194 ident: bib0135 article-title: Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters publication-title: J. Cardiol. – volume: vol. 6 year: 2012 ident: bib0265 article-title: Wavelet transform based arterial blood pressure waveform delineator publication-title: Int. J. Biol. Biomed. Eng. – start-page: 1515 year: 2014 end-page: 1520 ident: bib0070 article-title: Pulse pressure waveform estimation using distension profiling with contactless optical probe publication-title: Med. Eng. Phys. – volume: 21 start-page: 141 year: 2007 end-page: 148 ident: bib0005 article-title: Relationship between blood pressure parameters and pulse wave velocity in normotensive and hypertensive subjects: invasive study publication-title: J. Hum. Hypertens. – volume: 39 start-page: 1333 year: 2006 end-page: 1345 ident: bib0305 article-title: FS_SFS: A novel feature selection method for support vector machines publication-title: Pattern Recognit. – volume: 34 start-page: 1049 year: 2012 end-page: 1057 ident: bib0270 article-title: Feature selection from nocturnal oximetry using genetic algorithms to assist in obstructive sleep apnoea diagnosis publication-title: Med. Eng. Phys. – volume: vol 2012 start-page: 586246 year: 2012 ident: bib0310 article-title: A gene selection method for cancer classification publication-title: Comput. Math. Methods Med. – volume: 43 start-page: 584 year: 2010 end-page: 591 ident: bib0285 article-title: Optimal feature selection for support vector machines publication-title: Pattern Recognit. – volume: vol. 8 start-page: 135 year: 2014 ident: bib0075 article-title: Assessment of carotid distention waveform and local pulse wave velocity determination by a novel optical system publication-title: Artery Res. – volume: 1 start-page: 1 year: 2011 end-page: 8 ident: bib0140 article-title: Analysis of heart diseases dataset using neural network approach publication-title: Int. J. Data Min. Knowl. Manag. Process – volume: 31 start-page: 1267 year: 2010 end-page: 1276 ident: bib0045 article-title: Arterial stiffness: a brief review publication-title: Acta Pharmacol. Sin. – volume: 31 start-page: 679 year: 2010 end-page: 695 ident: bib0295 article-title: Intracranial pressure pulse morphological features improved detection of decreased cerebral blood flow publication-title: Physiol. Meas. – volume: 36 start-page: 3353 year: 2012 end-page: 3373 ident: bib0225 article-title: Accurate prediction of coronary artery disease using reliable diagnosis system publication-title: J. Med. Syst. – volume: 90 start-page: 13 year: 2016 end-page: 21 ident: bib0120 article-title: High-Accuracy detection of early parkinson’s disease through multimodal features and machine learning publication-title: Int. J. Med. Inform. – volume: 190 start-page: 310 year: 2010 end-page: 318 ident: bib0235 article-title: Pattern recognition of overnight intracranial pressure slow waves using morphological features of intracranial pressure pulse publication-title: J. Neurosci. Methods – volume: 4 start-page: 228 year: 2005 end-page: 233 ident: bib0315 article-title: Multiple SVM-RFE for gene selection in cancer classification with expression data publication-title: IEEE Trans. Nanobioscience – volume: vol. 9 year: 2010 ident: bib0035 article-title: An investigation of patterns in hemodynamic data indicative of impending hypotension in intensive care publication-title: Biomed. Eng. Online – volume: vol. 2015 start-page: 394 year: 2015 end-page: 401 ident: bib0165 article-title: Performance study of adaptive filtering and noise cancellation of artifacts in ECG signals 2015 publication-title: 17th Int. Conf. Adv. Commun. Technol. – year: 2001 ident: bib0330 article-title: Pattern Recognition: Concepts, Methods, and Applications, 1 – volume: vol. 2010 year: 2010 ident: bib0095 article-title: Classification of pulse waveforms using edit distance with real penalty publication-title: EURASIP J. Adv. Signal Process. – year: 2017 ident: bib0350 article-title: Statistical Pattern Recognition Toolbox – volume: vol. 54 start-page: 20 year: 2012 end-page: 23 ident: bib0240 article-title: Classification of ECG signals using ANN with resilient back propagation algorithm publication-title: Int. J. Comput. Appl. – start-page: 448 year: 2006 end-page: 453 ident: bib0105 article-title: New application of wavelet transform in classification the arterial pulse signals publication-title: ICOSSE’06 Proceedings of the 5th WSEAS International Conference on System Science and Simulation in Engineering – volume: 37 start-page: 2552 year: 2006 end-page: 2556 ident: bib0040 article-title: Age-related changes in carotid artery flow and pressure pulses: possible implications for cerebral microvascular disease publication-title: Stroke – year: 2012 ident: bib0185 article-title: Systems and Methods for Measuring Arterial Stiffness – volume: 54 start-page: 1049 year: 2016 end-page: 1059 ident: bib0085 article-title: An automatic method for arterial pulse waveform recognition using KNN and SVM classifiers publication-title: Med. Biol. Eng. Comput. – volume: vol. 15 start-page: S4 year: 2014 ident: bib0125 article-title: Feature selection and classifier performance on diverse biological datasets publication-title: BMC Bioinf. – volume: 36 start-page: 1515 year: 2014 end-page: 1520 ident: bib0200 article-title: Pulse pressure waveform estimation using distension profiling with contactless optical probe publication-title: Med. Eng. Phys. – volume: vol. 109 start-page: 184 year: 2004 end-page: 189 ident: bib0250 article-title: Arterial stiffness, wave reflections, and the risk of coronary artery disease publication-title: Circulation – volume: 3 start-page: 133 year: 2013 end-page: 137 ident: bib0180 article-title: Onset and peak detection over pulse wave using supervised SOM network publication-title: Int. J. Biosci. Biochem. Bioinforma. – volume: vol. 2013 start-page: 603897 year: 2013 ident: bib0375 article-title: Application of the support vector machine to predict subclinical mastitis in dairy cattle publication-title: ScientificWorldJournal – start-page: 207 year: 2016 end-page: 212 ident: bib0385 article-title: Comparing deep learning and support vector machines for autonomous waste sorting, in Multidisciplinary Conference on Engineering Technology (IMCET) publication-title: IEEE Int. – volume: 35 start-page: 555 year: 2015 end-page: 565 ident: bib0055 article-title: Novel methods for pulse wave velocity measurement publication-title: J. Med. Biol. Eng. – year: 2012 ident: bib0360 article-title: Pattern Classification – volume: 31 start-page: 249 year: 2007 end-page: 268 ident: bib0420 article-title: Supervised machine learning: a review of classification techniques publication-title: Informatica – volume: 31 start-page: 543 year: 2010 end-page: 553 ident: bib0260 article-title: The use of diameter distension waveforms as an alternative for tonometric pressure to assess carotid blood pressure publication-title: Physiol. Meas. – volume: vol. 31 start-page: 1 year: 2010 end-page: 47 ident: bib0015 article-title: Arterial blood pressure measurement and pulse wave analysis?their role in enhancing cardiovascular assessment publication-title: Physiol. Meas. – volume: 117 start-page: 206 year: 2013 end-page: 213 ident: bib0160 article-title: An adaptive filtering approach for electrocardiogram (ECG) signal noise reduction using neural networks publication-title: Neurocomputing – volume: 23 start-page: 1106 year: 2007 end-page: 1114 ident: bib0130 article-title: MSVM-RFE: Extensions of SVM-RFE for multiclass gene selection on DNA microarray data publication-title: Bioinformatics – volume: 121 start-page: 127 year: 2015 end-page: 136 ident: bib0325 article-title: Subject identification via ECG fiducial-based systems: influence of the type of QT interval correction publication-title: Comput. Methods Programs Biomed. – volume: vol. 102 start-page: 1270 year: 2000 end-page: 1275 ident: bib0020 article-title: Aging, habitual exercise, and dynamic arterial compliance publication-title: Circulation – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: bib0320 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – volume: vol. 8 start-page: 52 year: 2015 end-page: 54 ident: bib0205 article-title: Association of estimated central blood pressure measured non-invasively with pulse wave velocity in patients with coronary artery disease publication-title: IJC Hear. Vasc. – volume: 8 start-page: 76 year: 2010 end-page: 80 ident: bib0230 article-title: ECG feature extraction techniques - a survey approach publication-title: Int. J. Comput. Sci. Inf. Secur. – volume: 4 start-page: 87 year: 2013 end-page: 97 ident: bib0060 article-title: Characterization of optical system for hemodynamic multi-Parameter assessment publication-title: Cardiovasc. Eng. Technol. – volume: vol 179 year: 2015 ident: bib0080 article-title: Arterial pulse pressure waveform monitoring by novel optical probe publication-title: Int. J. Cardiol. – volume: 54 start-page: 2268 year: 2007 end-page: 2275 ident: bib0410 article-title: Predicting arterial stiffness from the digital volume pulse waveform publication-title: Biomed. Eng. IEEE Trans. – start-page: 1049 year: 2015 end-page: 1059 ident: bib0400 article-title: An automatic method for arterial pulse waveform recognition using KNN and SVM classifiers publication-title: Med. Biol. Eng. Comput. – year: 2014 ident: bib0390 article-title: Hardware support vector machine (SVM) for satellite on-board applications publication-title: Adaptive Hardware and Systems (AHS) 2014 NASA/ESA Conference on – volume: 83 start-page: 983 year: 2014 end-page: 992 ident: bib0110 article-title: Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records publication-title: Int. J. Med. Inform. – start-page: 470 year: 2015 end-page: 475 ident: bib0210 article-title: Repeatability of central and peripheral pulse wave velocity measures: the atherosclerosis risk in communities (ARIC) study publication-title: Am. J. Hypertens. – volume: vol. 1 start-page: 61 year: 2013 end-page: 69 ident: bib0065 article-title: Local PWV and other hemodynamic parameters assessment: validation of a new optical technique in an healthy population publication-title: BIOSIGNALS 2013-6th International Conference on Bio-inspired Systems and Signal Processing – volume: 5 start-page: 315 year: 2012 end-page: 322 ident: bib0090 article-title: Automatic detection of pulse morphology patterns & cardiac risks publication-title: J. Biomed. Sci. Eng. – volume: 27 start-page: 39 year: 2010 end-page: 46 ident: bib0220 article-title: Impact of the defining criteria and components of metabolic syndrome on arterial stiffness parameters publication-title: Appl. Med. Informatics – volume: 83 start-page: 983 issue: no. 12 year: 2014 ident: 10.1016/j.ijmedinf.2017.10.011_bib0110 article-title: Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2012.12.005 – volume: vol 2012 start-page: 586246 year: 2012 ident: 10.1016/j.ijmedinf.2017.10.011_bib0310 article-title: A gene selection method for cancer classification publication-title: Comput. Math. Methods Med. doi: 10.1155/2012/586246 – start-page: 389 issue: no. 46 year: 2002 ident: 10.1016/j.ijmedinf.2017.10.011_bib0345 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – volume: vol. 6 start-page: 32390 issue: no. April year: 2016 ident: 10.1016/j.ijmedinf.2017.10.011_bib0175 article-title: Prediction of ventricular tachycardia one hour before occurrence using artificial neural networks publication-title: Sci. Rep doi: 10.1038/srep32390 – volume: 4 start-page: 87 issue: no. 1 year: 2013 ident: 10.1016/j.ijmedinf.2017.10.011_bib0060 article-title: Characterization of optical system for hemodynamic multi-Parameter assessment publication-title: Cardiovasc. Eng. Technol. doi: 10.1007/s13239-013-0125-y – volume: 31 start-page: 543 issue: no. 4 year: 2010 ident: 10.1016/j.ijmedinf.2017.10.011_bib0260 article-title: The use of diameter distension waveforms as an alternative for tonometric pressure to assess carotid blood pressure publication-title: Physiol. Meas. doi: 10.1088/0967-3334/31/4/006 – volume: 97 start-page: 120 year: 2017 ident: 10.1016/j.ijmedinf.2017.10.011_bib0115 article-title: A machine learning-based framework to identify type 2 diabetes through electronic health records publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2016.09.014 – volume: vol. 35 start-page: 185 issue: no. 1 year: 2005 ident: 10.1016/j.ijmedinf.2017.10.011_bib0290 article-title: Gene extraction for cancer diagnosis by support vector machines an improvement and comparison with nearest publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2005.01.006 – volume: vol. 109 start-page: 184 issue: no. 2 year: 2004 ident: 10.1016/j.ijmedinf.2017.10.011_bib0250 article-title: Arterial stiffness, wave reflections, and the risk of coronary artery disease publication-title: Circulation doi: 10.1161/01.CIR.0000105767.94169.E3 – volume: 33 start-page: 1392 issue: no. 6 year: 1999 ident: 10.1016/j.ijmedinf.2017.10.011_bib0050 article-title: Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: aging and arterial compliance publication-title: Hypertension doi: 10.1161/01.HYP.33.6.1392 – volume: vol. 4 start-page: 2012 issue: no. May year: 2012 ident: 10.1016/j.ijmedinf.2017.10.011_bib0280 article-title: Dicrotic notch detection and analysis of arterial pulse by using discrete wavelet publication-title: OSIET J. Commun. Electron. – volume: vol 2014 start-page: 7 year: 2014 ident: 10.1016/j.ijmedinf.2017.10.011_bib0010 article-title: A blood pressure monitoring method for stroke management publication-title: Biomed Res. Int. doi: 10.1155/2014/571623 – volume: vol. 54 start-page: 20 issue: no. 6 year: 2012 ident: 10.1016/j.ijmedinf.2017.10.011_bib0240 article-title: Classification of ECG signals using ANN with resilient back propagation algorithm publication-title: Int. J. Comput. Appl. – volume: 49 start-page: 399 year: 2016 ident: 10.1016/j.ijmedinf.2017.10.011_bib0170 article-title: ECG assessment based on neural networks with pretraining publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.08.013 – volume: 10 start-page: 188 issue: no. 1 year: 2016 ident: 10.1016/j.ijmedinf.2017.10.011_bib0215 article-title: Pulse wave analysis by applanation tonometry for the measurement of arterial stiffness, open cardiovasc publication-title: Med. J. – volume: vol. 2013 start-page: 603897 year: 2013 ident: 10.1016/j.ijmedinf.2017.10.011_bib0375 article-title: Application of the support vector machine to predict subclinical mastitis in dairy cattle publication-title: ScientificWorldJournal doi: 10.1155/2013/603897 – volume: 90 start-page: 13 year: 2016 ident: 10.1016/j.ijmedinf.2017.10.011_bib0120 article-title: High-Accuracy detection of early parkinson’s disease through multimodal features and machine learning publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2016.03.001 – year: 2014 ident: 10.1016/j.ijmedinf.2017.10.011_bib0390 article-title: Hardware support vector machine (SVM) for satellite on-board applications publication-title: Adaptive Hardware and Systems (AHS) 2014 NASA/ESA Conference on doi: 10.1109/AHS.2014.6880185 – volume: 35 start-page: 555 issue: no. 5 year: 2015 ident: 10.1016/j.ijmedinf.2017.10.011_bib0055 article-title: Novel methods for pulse wave velocity measurement publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-015-0086-8 – volume: vol 2013 start-page: 3 year: 2013 ident: 10.1016/j.ijmedinf.2017.10.011_bib0155 article-title: Artificial neural network-Based automated ECG signal classifier publication-title: ISRN Biomed. Eng. doi: 10.1155/2013/261917 – volume: vol. 13 start-page: 160 year: 2014 ident: 10.1016/j.ijmedinf.2017.10.011_bib0395 article-title: Implementation of a portable device for real-time ECG signal analysis publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-13-160 – volume: 36 start-page: 3353 issue: no. 5 year: 2012 ident: 10.1016/j.ijmedinf.2017.10.011_bib0225 article-title: Accurate prediction of coronary artery disease using reliable diagnosis system publication-title: J. Med. Syst. doi: 10.1007/s10916-012-9828-0 – year: 2017 ident: 10.1016/j.ijmedinf.2017.10.011_bib0350 – volume: 46 start-page: 389 issue: no. 4 year: 2002 ident: 10.1016/j.ijmedinf.2017.10.011_bib0320 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: vol 2014 year: 2014 ident: 10.1016/j.ijmedinf.2017.10.011_bib0100 article-title: Pulse waveform classification using support vector machine with gaussian time warp edit distance kernel publication-title: Comput. Math. Methods Med. doi: 10.1155/2014/947254 – volume: vol. 9 year: 2012 ident: 10.1016/j.ijmedinf.2017.10.011_bib0195 article-title: Normalized area under catacrotic phase of the photoplethysmogram pulse for estimating vascular aging publication-title: J. Biomed. Eng. doi: 10.2316/P.2012.764-152 – volume: 8 start-page: 76 issue: no. 1 year: 2010 ident: 10.1016/j.ijmedinf.2017.10.011_bib0230 article-title: ECG feature extraction techniques - a survey approach publication-title: Int. J. Comput. Sci. Inf. Secur. – year: 2012 ident: 10.1016/j.ijmedinf.2017.10.011_bib0360 – volume: 9555 start-page: 235 year: 2016 ident: 10.1016/j.ijmedinf.2017.10.011_bib0365 article-title: Hardware acceleration of SVM-based classifier for melanoma images publication-title: Lect. Notes Comput. Sci doi: 10.1007/978-3-319-30285-0_19 – volume: 23 start-page: 1106 issue: no. 9 year: 2007 ident: 10.1016/j.ijmedinf.2017.10.011_bib0130 article-title: MSVM-RFE: Extensions of SVM-RFE for multiclass gene selection on DNA microarray data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm036 – volume: 12 start-page: 667 issue: no. 5 year: 2008 ident: 10.1016/j.ijmedinf.2017.10.011_bib0405 article-title: Classification of electrocardiogram signals with support vector machines and particle swarm optimization publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2008.923147 – volume: vol 179 year: 2015 ident: 10.1016/j.ijmedinf.2017.10.011_bib0080 article-title: Arterial pulse pressure waveform monitoring by novel optical probe publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2014.10.050 – volume: 9 start-page: 3379 issue: no. 12 year: 2012 ident: 10.1016/j.ijmedinf.2017.10.011_bib0275 article-title: An arterial elasticity index algorithm based on wavelet transform and curve fitting publication-title: J. Inf. Comput. Sci. – volume: 31 start-page: 249 year: 2007 ident: 10.1016/j.ijmedinf.2017.10.011_bib0420 article-title: Supervised machine learning: a review of classification techniques publication-title: Informatica – volume: 31 start-page: 1267 issue: no. 10 year: 2010 ident: 10.1016/j.ijmedinf.2017.10.011_bib0045 article-title: Arterial stiffness: a brief review publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2010.123 – start-page: 1049 year: 2015 ident: 10.1016/j.ijmedinf.2017.10.011_bib0400 article-title: An automatic method for arterial pulse waveform recognition using KNN and SVM classifiers publication-title: Med. Biol. Eng. Comput. – volume: 54 start-page: 1049 issue: no. 7 year: 2016 ident: 10.1016/j.ijmedinf.2017.10.011_bib0085 article-title: An automatic method for arterial pulse waveform recognition using KNN and SVM classifiers publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-015-1393-5 – start-page: 448 year: 2006 ident: 10.1016/j.ijmedinf.2017.10.011_bib0105 article-title: New application of wavelet transform in classification the arterial pulse signals publication-title: ICOSSE’06 Proceedings of the 5th WSEAS International Conference on System Science and Simulation in Engineering – start-page: 207 year: 2016 ident: 10.1016/j.ijmedinf.2017.10.011_bib0385 article-title: Comparing deep learning and support vector machines for autonomous waste sorting, in Multidisciplinary Conference on Engineering Technology (IMCET) publication-title: IEEE Int. – volume: vol. 9 issue: January (1) year: 2010 ident: 10.1016/j.ijmedinf.2017.10.011_bib0035 article-title: An investigation of patterns in hemodynamic data indicative of impending hypotension in intensive care publication-title: Biomed. Eng. Online – volume: vol. 213 start-page: 243 issue: no. 1 year: 2009 ident: 10.1016/j.ijmedinf.2017.10.011_bib0150 article-title: A patient adaptable ECG beat classifier based on neural networks publication-title: Appl. Math. Comput. – start-page: 470 year: 2015 ident: 10.1016/j.ijmedinf.2017.10.011_bib0210 article-title: Repeatability of central and peripheral pulse wave velocity measures: the atherosclerosis risk in communities (ARIC) study publication-title: Am. J. Hypertens. – volume: 34 start-page: 1049 issue: no. 8 year: 2012 ident: 10.1016/j.ijmedinf.2017.10.011_bib0270 article-title: Feature selection from nocturnal oximetry using genetic algorithms to assist in obstructive sleep apnoea diagnosis publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.11.009 – volume: 39 start-page: 43 issue: no. 1 year: 1997 ident: 10.1016/j.ijmedinf.2017.10.011_bib0430 article-title: Introduction to multi-layer feed-forward neural networks publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(97)00061-0 – volume: 31 start-page: 679 issue: no. 5 year: 2010 ident: 10.1016/j.ijmedinf.2017.10.011_bib0295 article-title: Intracranial pressure pulse morphological features improved detection of decreased cerebral blood flow publication-title: Physiol. Meas. doi: 10.1088/0967-3334/31/5/006 – volume: 36 start-page: 1515 issue: no. 11 year: 2014 ident: 10.1016/j.ijmedinf.2017.10.011_bib0200 article-title: Pulse pressure waveform estimation using distension profiling with contactless optical probe publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2014.07.014 – year: 2009 ident: 10.1016/j.ijmedinf.2017.10.011_bib0425 – volume: 1 start-page: 1 issue: no. 5 year: 2011 ident: 10.1016/j.ijmedinf.2017.10.011_bib0140 article-title: Analysis of heart diseases dataset using neural network approach publication-title: Int. J. Data Min. Knowl. Manag. Process doi: 10.5121/ijdkp.2011.1501 – volume: 32 issue: no. 23 year: 2016 ident: 10.1016/j.ijmedinf.2017.10.011_bib0370 article-title: Support vector machine model of developmental brain gene expression data for prioritization of Autism risk gene candidates publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw498 – start-page: 325 year: 2017 ident: 10.1016/j.ijmedinf.2017.10.011_bib0380 article-title: Arrhythmia classification by nonlinear kernel-based ECG signal modeling publication-title: Comput. Commun. Electr. Technol. – volume: vol. 1 start-page: 61 year: 2013 ident: 10.1016/j.ijmedinf.2017.10.011_bib0065 article-title: Local PWV and other hemodynamic parameters assessment: validation of a new optical technique in an healthy population – start-page: 1492 year: 2001 ident: 10.1016/j.ijmedinf.2017.10.011_bib0415 article-title: Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels publication-title: Neural Networks, 2001. Proceedings. IJCNN ’01. International Joint Conference on – volume: 117 start-page: 206 year: 2013 ident: 10.1016/j.ijmedinf.2017.10.011_bib0160 article-title: An adaptive filtering approach for electrocardiogram (ECG) signal noise reduction using neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.02.010 – volume: 21 start-page: 141 issue: no. 2 year: 2007 ident: 10.1016/j.ijmedinf.2017.10.011_bib0005 article-title: Relationship between blood pressure parameters and pulse wave velocity in normotensive and hypertensive subjects: invasive study publication-title: J. Hum. Hypertens. doi: 10.1038/sj.jhh.1002120 – volume: vol. 2015 start-page: 394 year: 2015 ident: 10.1016/j.ijmedinf.2017.10.011_bib0165 article-title: Performance study of adaptive filtering and noise cancellation of artifacts in ECG signals 2015 publication-title: 17th Int. Conf. Adv. Commun. Technol. – volume: 54 start-page: 2268 issue: no. 12 year: 2007 ident: 10.1016/j.ijmedinf.2017.10.011_bib0410 article-title: Predicting arterial stiffness from the digital volume pulse waveform publication-title: Biomed. Eng. IEEE Trans. doi: 10.1109/TBME.2007.897805 – volume: vol. 2010 year: 2010 ident: 10.1016/j.ijmedinf.2017.10.011_bib0095 article-title: Classification of pulse waveforms using edit distance with real penalty publication-title: EURASIP J. Adv. Signal Process. – volume: 190 start-page: 310 issue: no. 2 year: 2010 ident: 10.1016/j.ijmedinf.2017.10.011_bib0235 article-title: Pattern recognition of overnight intracranial pressure slow waves using morphological features of intracranial pressure pulse publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.05.015 – volume: 37 start-page: 2552 issue: no. 10 year: 2006 ident: 10.1016/j.ijmedinf.2017.10.011_bib0040 article-title: Age-related changes in carotid artery flow and pressure pulses: possible implications for cerebral microvascular disease publication-title: Stroke doi: 10.1161/01.STR.0000242289.20381.f4 – volume: vol. 15 start-page: S4 issue: Suppl 1, no. 13 year: 2014 ident: 10.1016/j.ijmedinf.2017.10.011_bib0125 article-title: Feature selection and classifier performance on diverse biological datasets publication-title: BMC Bioinf. doi: 10.1186/1471-2105-15-S13-S4 – volume: vol. 102 start-page: 1270 issue: no. 11 year: 2000 ident: 10.1016/j.ijmedinf.2017.10.011_bib0020 article-title: Aging, habitual exercise, and dynamic arterial compliance publication-title: Circulation doi: 10.1161/01.CIR.102.11.1270 – volume: 27 start-page: 39 issue: no. 4 year: 2010 ident: 10.1016/j.ijmedinf.2017.10.011_bib0220 article-title: Impact of the defining criteria and components of metabolic syndrome on arterial stiffness parameters publication-title: Appl. Med. Informatics – volume: 29 start-page: 660 year: 2015 ident: 10.1016/j.ijmedinf.2017.10.011_bib0335 article-title: Multiclass support vector machines for classification of ECG data with missing values publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2015.1051887 – volume: vol. 8 start-page: 135 issue: no. 4 year: 2014 ident: 10.1016/j.ijmedinf.2017.10.011_bib0075 article-title: Assessment of carotid distention waveform and local pulse wave velocity determination by a novel optical system publication-title: Artery Res. doi: 10.1016/j.artres.2014.09.107 – volume: vol. 8 start-page: 52 year: 2015 ident: 10.1016/j.ijmedinf.2017.10.011_bib0205 article-title: Association of estimated central blood pressure measured non-invasively with pulse wave velocity in patients with coronary artery disease publication-title: IJC Hear. Vasc. doi: 10.1016/j.ijcha.2015.05.004 – volume: 121 start-page: 127 issue: no. 3 year: 2015 ident: 10.1016/j.ijmedinf.2017.10.011_bib0325 article-title: Subject identification via ECG fiducial-based systems: influence of the type of QT interval correction publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2015.05.012 – year: 2012 ident: 10.1016/j.ijmedinf.2017.10.011_bib0185 – volume: 4 start-page: 228 issue: no. 3 year: 2005 ident: 10.1016/j.ijmedinf.2017.10.011_bib0315 article-title: Multiple SVM-RFE for gene selection in cancer classification with expression data publication-title: IEEE Trans. Nanobioscience doi: 10.1109/TNB.2005.853657 – volume: 62 start-page: 414 issue: no. 5 year: 2003 ident: 10.1016/j.ijmedinf.2017.10.011_bib0025 article-title: Arterial stiffness and central blood pressure, as determined by pulse wave analysis, in rheumatoid arthritis publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.62.5.414 – volume: 3 start-page: 1157 issue: no. 3 year: 2003 ident: 10.1016/j.ijmedinf.2017.10.011_bib0300 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 39 start-page: 1333 issue: no. 7 year: 2006 ident: 10.1016/j.ijmedinf.2017.10.011_bib0305 article-title: FS_SFS: A novel feature selection method for support vector machines publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.10.006 – volume: vol. 31 start-page: 1 issue: no. 1 year: 2010 ident: 10.1016/j.ijmedinf.2017.10.011_bib0015 article-title: Arterial blood pressure measurement and pulse wave analysis?their role in enhancing cardiovascular assessment publication-title: Physiol. Meas. doi: 10.1088/0967-3334/31/1/R01 – volume: 5 start-page: 315 issue: no. 6 year: 2012 ident: 10.1016/j.ijmedinf.2017.10.011_bib0090 article-title: Automatic detection of pulse morphology patterns & cardiac risks publication-title: J. Biomed. Sci. Eng. doi: 10.4236/jbise.2012.56041 – volume: vol. 3 start-page: 367 year: 2015 ident: 10.1016/j.ijmedinf.2017.10.011_bib0190 article-title: Review of advances in neural networks: neural design technology stack publication-title: Proc. ELM-2014, Vol. 1 SE – 31 doi: 10.1007/978-3-319-14063-6_31 – volume: 43 start-page: 584 issue: no. 3 year: 2010 ident: 10.1016/j.ijmedinf.2017.10.011_bib0285 article-title: Optimal feature selection for support vector machines publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.09.003 – volume: 7 start-page: 75 issue: no. 12 year: 2015 ident: 10.1016/j.ijmedinf.2017.10.011_bib0145 article-title: Heart diseases diagnosis using neural networks arbitration publication-title: Int. J. Intell. Syst. Appl. – volume: 3 start-page: 133 issue: no. 2 year: 2013 ident: 10.1016/j.ijmedinf.2017.10.011_bib0180 article-title: Onset and peak detection over pulse wave using supervised SOM network publication-title: Int. J. Biosci. Biochem. Bioinforma. – volume: 12 start-page: 189 issue: no. 3 year: 2007 ident: 10.1016/j.ijmedinf.2017.10.011_bib0030 article-title: Indices of cardiovascular function derived from peripheral pulse wave analysis using radial applanation tonometry: a measurement repeatability study publication-title: Vasc. Med. doi: 10.1177/1358863X07081134 – volume: vol 2009 start-page: 2579 year: 2009 ident: 10.1016/j.ijmedinf.2017.10.011_bib0245 article-title: Application of the empirical mode decomposition to the extraction of features from EEG signals for mental task classification publication-title: Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Conf. – volume: vol. 2012 year: 2012 ident: 10.1016/j.ijmedinf.2017.10.011_bib0340 article-title: A gene selection method for cancer classification publication-title: Comput. Math. Methods Med. doi: 10.1155/2012/586246 – year: 2001 ident: 10.1016/j.ijmedinf.2017.10.011_bib0330 – volume: vol. 47 start-page: 165 issue: no. 2 year: 2009 ident: 10.1016/j.ijmedinf.2017.10.011_bib0255 article-title: Blood pressure waveform analysis by means of wavelet transform publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-008-0397-9 – volume: 9 start-page: 58 issue: no. 1 year: 2006 ident: 10.1016/j.ijmedinf.2017.10.011_bib0355 article-title: An empirical study of machine learning techniques for affect recognition in human-robot interaction publication-title: Pattern Anal Appl. doi: 10.1007/s10044-006-0025-y – volume: 59 start-page: 190 issue: no. 2 year: 2012 ident: 10.1016/j.ijmedinf.2017.10.011_bib0135 article-title: Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters publication-title: J. Cardiol. doi: 10.1016/j.jjcc.2011.11.005 – volume: vol. 6 issue: no. 1 year: 2012 ident: 10.1016/j.ijmedinf.2017.10.011_bib0265 article-title: Wavelet transform based arterial blood pressure waveform delineator publication-title: Int. J. Biol. Biomed. Eng. – start-page: 1515 year: 2014 ident: 10.1016/j.ijmedinf.2017.10.011_bib0070 article-title: Pulse pressure waveform estimation using distension profiling with contactless optical probe publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2014.07.014 |
SSID | ssj0017054 |
Score | 2.3529305 |
Snippet | •The arterial pulse pressure waveform (APW) provides an adequate description of the arterial system behaviour..•The development of techniques based on the... The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 30 |
SubjectTerms | Arterial pulse waveform Morphologic features Neural network Support vector machine recursive feature elimination Support vector machines |
Title | Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1386505617303726 https://dx.doi.org/10.1016/j.ijmedinf.2017.10.011 https://www.ncbi.nlm.nih.gov/pubmed/29195703 https://www.proquest.com/docview/1971697098 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhgdBLaZs-tmmDArnuw5JsSbktS8K2TULoJiE3o5fDLsVZut701t-eGcta2kNIoWAwFhosa0ajwTP6PkKOvOeVs5KD98M0I7PgB5nNketFcbiYqdoC2Ytiei2-3ua3W2SSzsJgWWXn-6NPb7111zLsZnO4nM-HswzpKjEABiPlkiHsthASrXzwe1PmgWgxkdhWFX3s_ccp4cVgvsAMdt1CecoBVnll2VMb1FMBaLsRnb4iL7sIko7jIF-TrVC_IbvnXY58jzSz9RIdwCp42nFC3NFIFL2iEKJSJCFOLo-2JZ1gg3S5hjHQX-Yh0ESa0kS1HdMxnd2cU1N7ivCX0LmOxeMrmiDJ35Kr05OrybTfcSv0HWxHTd9JZzVjgQlu1MgVOmOVMKNQSJhNU1RSZbnJQWNwGW-NkUIH5bW1lfVK8Xdku76vwwdCucyCE0KLynHBoXflBPdOjopQeMFCj-RpPkvX4Y4j_cWPMhWYLcqkhxL1gO2ghx4ZbuSWEXnjWQmZ1FWmc6XgCUvYHJ6V1BvJv6zvn2QPk2WUsDQx32LqcL9elRnCc2k50qpH3keT2XwJ05lG8LOP__HmffICnlT8IfSJbDc_1-EzhEiNPWjXwAHZGU--n13i_cu36cUjQwQT4Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBapA20voe86fanQq-NdSbuScjOhwWliX-yW3IReW2zKxtTr9u9ntJJMewgpFHTSalitZjQadkbfh9An52hjDafg_UKakRjwg8RUgetFUGhEN32B7LyefmVfrqvrA3SW78KEssrk-6NP77116hmn1RxvVqvxogx0lSEABiOlnNQP0GFAp6oG6HBycTmd75MJvKgit62oR0Hgj4vC65PVOiSx2x7Nk5-EQq-yvOuMuisG7c-i8yfoKAWReBLn-RQd-PYZejhLafLnqFvsNsEHbL3DiRbiO45c0VsMUSoOPMTZ6-G-qhPMEG92MAf8W__yOPOmdFFzp3iCF99mWLcOBwRMGNzG-vEtzqjkL9Dy_PPybDpK9AojCydSN7LcGkmIJ4xqUdhalqRhuvA1hwXVdcNFWekKlAZNO6M1Z9ILJ41pjBOCvkSD9qb1rxGmvPSWMckaSxmF0Y1l1Fle1L52jPghqvJ6KpugxwMDxg-Va8zWKutBBT2EftDDEI33cpsIvnGvBM_qUvlqKThDBefDvZJyL_mXAf6T7MdsGQp2Z0i56Nbf7LaqDAhdkhdSDNGraDL7LyGylAH_7Pg_3vwBPZouZ1fq6mJ--QY9hici_h96iwbdz51_BxFTZ96nHXEL_jcU_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+learning+methods+for+pathological+arterial+pulse+wave+differentiation%3A+A+SVM+and+neural+networks+approach&rft.jtitle=International+journal+of+medical+informatics+%28Shannon%2C+Ireland%29&rft.au=Paiva%2C+Joana+S.&rft.au=Cardoso%2C+Jo%C3%A3o&rft.au=Pereira%2C+T%C3%A2nia&rft.date=2018-01-01&rft.pub=Elsevier+B.V&rft.issn=1386-5056&rft.volume=109&rft.spage=30&rft.epage=38&rft_id=info:doi/10.1016%2Fj.ijmedinf.2017.10.011&rft.externalDocID=S1386505617303726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-5056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-5056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-5056&client=summon |