Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach

•The arterial pulse pressure waveform (APW) provides an adequate description of the arterial system behaviour..•The development of techniques based on the automatic analysis of biomedical signals could be crucial for a reliable cardiovascular assessment.•An APW database comprising signals from 213 p...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of medical informatics (Shannon, Ireland) Vol. 109; pp. 30 - 38
Main Authors Paiva, Joana S., Cardoso, João, Pereira, Tânia
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The arterial pulse pressure waveform (APW) provides an adequate description of the arterial system behaviour..•The development of techniques based on the automatic analysis of biomedical signals could be crucial for a reliable cardiovascular assessment.•An APW database comprising signals from 213 patients acquired with a novel optical system was used here.•Support Vector Machines (SVM) and Neural Networks were compared for differentiating between noisy waveforms, healthy and pathologic APWs.•SVM showed a higher accuracy possibly due to its ability to deal with the non-linearity and high-dimensionality degree of APW signal. The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system. The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN). SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available. The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW.
AbstractList •The arterial pulse pressure waveform (APW) provides an adequate description of the arterial system behaviour..•The development of techniques based on the automatic analysis of biomedical signals could be crucial for a reliable cardiovascular assessment.•An APW database comprising signals from 213 patients acquired with a novel optical system was used here.•Support Vector Machines (SVM) and Neural Networks were compared for differentiating between noisy waveforms, healthy and pathologic APWs.•SVM showed a higher accuracy possibly due to its ability to deal with the non-linearity and high-dimensionality degree of APW signal. The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system. The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN). SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available. The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW.
The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system.OBJECTIVEThe main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system.The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN).MATERIALS AND METHODSThe APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN).SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available.RESULTS AND DISCUSSIONSVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available.The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW.CONCLUSIONThe comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW.
The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system. The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN). SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available. The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW.
Author Cardoso, João
Paiva, Joana S.
Pereira, Tânia
Author_xml – sequence: 1
  givenname: Joana S.
  surname: Paiva
  fullname: Paiva, Joana S.
  organization: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Rua Dr. Roberto Frias, 4200, Porto, Portugal
– sequence: 2
  givenname: João
  surname: Cardoso
  fullname: Cardoso, João
  organization: LIBPhys-UC, Physics Department, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
– sequence: 3
  givenname: Tânia
  surname: Pereira
  fullname: Pereira, Tânia
  email: taniapereira@lei.fis.uc.pt
  organization: LIBPhys-UC, Physics Department, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29195703$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1LHTEUxUOx1I_2X5Asu5nXZL4yKaVUpLUFxYXSbbiT3NE85yXTJPPE_74Zn3bhxkIgl8vvnJBzDsme8w4JOeZsxRlvP61Xdr1BY92wKhkXeblinL8hB7wTZdGVdbWX56pri4Y17T45jHHNMsia-h3ZLyWXjWDVAUlX84RhayMaOiIEZ90N3WC69SbSwQc6QZ5Hf2M1jBRCwmDzMM1jRHoPW6TGDgMGdMlCst59pif06vcFBWeowzlk2GG69-EuUpim4EHfvidvB8gGH57uI3L94_v16c_i_PLs1-nJeaFrwVOhhe5lWWL-DHRMt5KXQw0MWyEqBu0gOt5A0zOWD5geQNQSOyP7fuhN11VH5OPONr_6Z8aY1MZGjeMIDv0cFZeCt1IwuaDHT-jc51jVFOwGwoN6DioD7Q7QwccYcPiHcKaWRtRaPTeilkaWfW4kC7-8EGqbHpNKAez4uvzbTo45p63FoKK26HQmA-qkjLevW3x9YaFH65Y-7_Dhfwz-AoS-wwI
CitedBy_id crossref_primary_10_1111_exsy_12705
crossref_primary_10_1016_j_compbiolchem_2020_107315
crossref_primary_10_1080_08839514_2020_1790246
crossref_primary_10_1109_JBHI_2019_2909065
crossref_primary_10_1016_j_bbe_2019_05_010
crossref_primary_10_3390_s18030710
crossref_primary_10_3390_molecules24122210
crossref_primary_10_1109_ACCESS_2021_3128916
crossref_primary_10_1016_j_cmpb_2020_105321
crossref_primary_10_1016_j_bspc_2022_103616
crossref_primary_10_1038_s41746_019_0117_x
crossref_primary_10_3390_electronics9040615
crossref_primary_10_1007_s13205_018_1368_y
crossref_primary_10_1007_s11277_021_08411_5
crossref_primary_10_1155_2022_5111896
crossref_primary_10_1007_s13721_021_00290_x
crossref_primary_10_1016_j_compchemeng_2020_107158
crossref_primary_10_1038_s41746_019_0207_9
crossref_primary_10_1162_dint_a_00198
crossref_primary_10_1007_s11042_020_09010_5
crossref_primary_10_1016_j_bspc_2021_103035
crossref_primary_10_1109_ACCESS_2022_3154405
crossref_primary_10_1016_j_bspc_2021_102834
crossref_primary_10_1007_s10489_019_01539_9
crossref_primary_10_1016_j_cmpb_2020_105409
crossref_primary_10_1038_s44172_024_00240_1
crossref_primary_10_1007_s13755_020_00112_w
Cites_doi 10.1016/j.ijmedinf.2012.12.005
10.1155/2012/586246
10.1038/srep32390
10.1007/s13239-013-0125-y
10.1088/0967-3334/31/4/006
10.1016/j.ijmedinf.2016.09.014
10.1016/j.artmed.2005.01.006
10.1161/01.CIR.0000105767.94169.E3
10.1161/01.HYP.33.6.1392
10.1155/2014/571623
10.1016/j.asoc.2016.08.013
10.1155/2013/603897
10.1016/j.ijmedinf.2016.03.001
10.1109/AHS.2014.6880185
10.1007/s40846-015-0086-8
10.1155/2013/261917
10.1186/1475-925X-13-160
10.1007/s10916-012-9828-0
10.1023/A:1012487302797
10.1155/2014/947254
10.2316/P.2012.764-152
10.1007/978-3-319-30285-0_19
10.1093/bioinformatics/btm036
10.1109/TITB.2008.923147
10.1016/j.ijcard.2014.10.050
10.1038/aps.2010.123
10.1007/s11517-015-1393-5
10.1016/j.medengphy.2011.11.009
10.1016/S0169-7439(97)00061-0
10.1088/0967-3334/31/5/006
10.1016/j.medengphy.2014.07.014
10.5121/ijdkp.2011.1501
10.1093/bioinformatics/btw498
10.1016/j.neucom.2013.02.010
10.1038/sj.jhh.1002120
10.1109/TBME.2007.897805
10.1016/j.jneumeth.2010.05.015
10.1161/01.STR.0000242289.20381.f4
10.1186/1471-2105-15-S13-S4
10.1161/01.CIR.102.11.1270
10.1080/08839514.2015.1051887
10.1016/j.artres.2014.09.107
10.1016/j.ijcha.2015.05.004
10.1016/j.cmpb.2015.05.012
10.1109/TNB.2005.853657
10.1136/ard.62.5.414
10.1016/j.patcog.2005.10.006
10.1088/0967-3334/31/1/R01
10.4236/jbise.2012.56041
10.1007/978-3-319-14063-6_31
10.1016/j.patcog.2009.09.003
10.1177/1358863X07081134
10.1007/s11517-008-0397-9
10.1007/s10044-006-0025-y
10.1016/j.jjcc.2011.11.005
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.ijmedinf.2017.10.011
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8243
EndPage 38
ExternalDocumentID 29195703
10_1016_j_ijmedinf_2017_10_011
S1386505617303726
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABDPE
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACJTP
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXBA
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNG
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
Z5R
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AISVY
AJBFU
AJOXV
AMFUW
EFLBG
G8K
LCYCR
NAHTW
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c471t-c7cb922e243a80c6912f4a0e67730a6f7815a5b00b00adbaa749e8d9bbfbd883
IEDL.DBID .~1
ISSN 1386-5056
1872-8243
IngestDate Fri Jul 11 08:48:34 EDT 2025
Wed Feb 19 02:41:06 EST 2025
Tue Jul 01 02:50:21 EDT 2025
Thu Apr 24 22:59:30 EDT 2025
Fri Feb 23 02:22:42 EST 2024
Tue Aug 26 16:32:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Support vector machines
Morphologic features
Arterial pulse waveform
Neural network
Support vector machine recursive feature elimination
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-c7cb922e243a80c6912f4a0e67730a6f7815a5b00b00adbaa749e8d9bbfbd883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1386505617303726
PMID 29195703
PQID 1971697098
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1971697098
pubmed_primary_29195703
crossref_primary_10_1016_j_ijmedinf_2017_10_011
crossref_citationtrail_10_1016_j_ijmedinf_2017_10_011
elsevier_sciencedirect_doi_10_1016_j_ijmedinf_2017_10_011
elsevier_clinicalkey_doi_10_1016_j_ijmedinf_2017_10_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
2018-Jan
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle International journal of medical informatics (Shannon, Ireland)
PublicationTitleAlternate Int J Med Inform
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Weber, Auer, O’Rourke, Kvas, Lassnig, Berent, Eber (bib0250) 2004; vol. 109
Olaniyi, Oyedotun, Adnan (bib0145) 2015; 7
Wilin (bib0345) 2002
Duan, Rajapakse, Wang, Azuaje (bib0315) 2005; 4
Mammadova, Keskin (bib0375) 2013; vol. 2013
Jia, Zhang, Li (bib0100) 2014; vol 2014
Huang, Kecman (bib0290) 2005; vol. 35
Marques (bib0330) 2001
Hejazi, Al-Haddad, Singh (bib0335) 2015; 29
Avolio, Butlin, Walsh (bib0015) 2010; vol. 31
B.C, Debatosh Guha (bib0380) 2017
Zheng, Xie, Xu, He, Zhang, You, Yang, Chen (bib0115) 2017; 97
Afifi, Gholam Hosseini, Sinha (bib0365) 2016; 9555
Yegnanarayana (bib0425) 2009
Lee, Mark (bib0035) 2010; vol. 9
Doupis, Papanas, Cohen, McFarlan, Horton (bib0215) 2016; 10
Cozma, Leucuţa, Pop, Tudor (bib0220) 2010; 27
Pereira, Pereira, Santos, Pereira, Correia, Cardoso (bib0075) 2014; vol. 8
Shirwany, Zou (bib0045) 2010; 31
Karpagachelvi, Arthanari, Sivakumar (bib0230) 2010; 8
Schlesinger, Hlavac (bib0350) 2017
De Gaetano, Panunzi, Rinaldi, Risi, Sciandrone (bib0150) 2009; vol. 213
Lee, Shin, Seo, Nam, Joo (bib0175) 2016; vol. 6
He, Li, Xiao, Yu, Lin (bib0275) 2012; 9
Wang, Tian (bib0310) 2012; vol 2012
Wang, Tian (bib0340) 2012; vol. 2012
Richard, Duda, Hart (bib0360) 2012
Prashanth, Dutta Roy, Mandal, Ghosh (bib0120) 2016; 90
Kips, Vanmolkot, Mahieu, Vermeersch, Fabry, de Hoon, Van Bortel, Segers (bib0260) 2010; 31
Pereira, Santos, Oliveira, Vaz, Pereira, Santos, Pereira, Correia, Cardoso (bib0200) 2014; 36
Pereira, Correia, Cardoso (bib0055) 2015; 35
Pereira, Paiva, Correia, Cardoso (bib0085) 2016; 54
De Melis, Morbiducci, Rietzschel, De Buyzere, Qasem, Van Bortel, Claessens, Montevecchi, Avolio, Segers (bib0255) 2009; vol. 47
Liu, Zheng (bib0305) 2006; 39
Svozil, Kvasnička, Pospíchal (bib0430) 1997; 39
Nguyen, de l aTorre (bib0285) 2010; 43
Khalaf, Ibrahim, Hamed (bib0165) 2015; vol. 2015
Alty, Angarita-jaimes, Millasseau, Chowienczyk (bib0410) 2007; 54
Pachauri, Bhuyan (bib0265) 2012; vol. 6
Guyon, Isabelle, Weston, Barnhill, Vapnik (bib0320) 2002; 46
Jeon, Kim, Jeon, Lee (bib0395) 2014; vol. 13
Kim, Park, Park, Suh, Choi, Kim, Kim, Lim, Rha, Seo, Oh (bib0005) 2007; 21
Pereira, Pereira, Santos, Correia, Cardoso (bib0080) 2015; vol 179
Cogill (bib0370) 2016; 32
Sakr, Mokbel, Darwich (bib0385) 2016
Mandal, Sairam (bib0225) 2012; 36
Hu, Glenn, Scalzo, Bergsneider, Sarkiss, Martin, Vespa (bib0295) 2010; 31
Zuo, Zhang, Zhang, Zhang, Li (bib0095) 2010; vol. 2010
Mehran (bib0105) 2006
Nayak (bib0240) 2012; vol. 54
Melgani, Bazi (bib0405) 2008; 12
Kasprowicz, Asgari, Bergsneider, Czosnyka, Hamilton, Hu (bib0235) 2010; 190
Pereira, Paiva, Correia, Cardoso (bib0400) 2015
Guyon, Elisseeff (bib0300) 2003; 3
Rani, Liu, Sarkar, Vanman (bib0355) 2006; 9
Álvarez, Hornero, Marcos, Del Campo (bib0270) 2012; 34
Crilly, Coch, Bruce, Clark, Williams (bib0030) 2007; 12
Diez, Mut, Laciar, Torres, Avila (bib0245) 2009; vol 2009
Kotsiantis (bib0420) 2007; 31
Rani (bib0140) 2011; 1
Sueta, Yamamoto, Tanaka, Hirata, Sakamoto, Tsujita, Kojima, Nishiyama, Kaikita, Hokimoto, Jinnouchi, Ogawa (bib0205) 2015; vol. 8
Tanaka, Dinenno, Monahan, Clevenger, DeSouza, Seals (bib0020) 2000; vol. 102
Byrd, Steinhubl, Sun, Ebadollahi, Stewart (bib0110) 2014; 83
Frontzek, Lal, Eckmiller (bib0415) 2001
Atkov, Gorokhova, Sboev, Generozov, Muraseyeva, Moroshkina, Cherniy (bib0135) 2012; 59
Gargiulo, Fratini, Sansone, Sansone (bib0325) 2015; 121
Pereira, Santos, Oliveira, Vaz, Correia, Pereira, Santos, Pereira, Almeida, Cardoso, Correia (bib0060) 2013; 4
McVeigh, Bratteli, Morgan, Alinder, Glasser, Finkelstein, Cohn (bib0050) 1999; 33
Pereira, Santos, Oliveira, Vaz, Santos, Pereira, Almeida, Cardoso (bib0065) 2013; vol. 1
Janney, Sruthi P (bib0280) 2012; vol. 4
Hemphill, Lindsay, Lee, Măndoiu, Nelson (bib0125) 2014; vol. 15
Orjuela-Cañón, Posada-Quintero, Delisle-Rodríguez, Cuadra-Sanz, Fernández de la Vara-Prieto, López-Delis (bib0180) 2013; 3
Zhou, Tuck (bib0130) 2007; 23
Poungponsri, Yu (bib0160) 2013; 117
Salih, Abdallah, Qananwah, Bolz (bib0195) 2012; vol. 9
Pereira, Santos, Oliveira, Vaz, Pereira, Santos, Pereira, Correia, Cardoso (bib0070) 2014
Almási, Woźniak, Leblebici, Engbersen (bib0190) 2015; vol. 3
El-Khafif, El-Brawany (bib0155) 2013; vol 2013
Klocke, Cockcroft, Taylor, Hall, Blake (bib0025) 2003; 62
Hirata, Yaginuma, O’Rourke, Kawakami (bib0040) 2006; 37
Meyer, Tanaka, Palta, Patel, Camplain, Couper, Cheng, Al Qunaibet, Poon, Heiss (bib0210) 2015
Ribas Ripoll, Wojdel, Romero, Ramos, Brugada (bib0170) 2016; 49
Jallad, Mohammed (bib0390) 2014
Joshi (bib0090) 2012; 5
Ma (bib0010) 2014; vol 2014
Quinn, Kinsley, Whitaker, Seller (bib0185) 2012
Richard (10.1016/j.ijmedinf.2017.10.011_bib0360) 2012
Nguyen (10.1016/j.ijmedinf.2017.10.011_bib0285) 2010; 43
Pereira (10.1016/j.ijmedinf.2017.10.011_bib0080) 2015; vol 179
Quinn (10.1016/j.ijmedinf.2017.10.011_bib0185) 2012
Wang (10.1016/j.ijmedinf.2017.10.011_bib0340) 2012; vol. 2012
Almási (10.1016/j.ijmedinf.2017.10.011_bib0190) 2015; vol. 3
Rani (10.1016/j.ijmedinf.2017.10.011_bib0355) 2006; 9
Ma (10.1016/j.ijmedinf.2017.10.011_bib0010) 2014; vol 2014
Sakr (10.1016/j.ijmedinf.2017.10.011_bib0385) 2016
Weber (10.1016/j.ijmedinf.2017.10.011_bib0250) 2004; vol. 109
Marques (10.1016/j.ijmedinf.2017.10.011_bib0330) 2001
Hirata (10.1016/j.ijmedinf.2017.10.011_bib0040) 2006; 37
Pereira (10.1016/j.ijmedinf.2017.10.011_bib0055) 2015; 35
Ribas Ripoll (10.1016/j.ijmedinf.2017.10.011_bib0170) 2016; 49
Guyon (10.1016/j.ijmedinf.2017.10.011_bib0300) 2003; 3
Afifi (10.1016/j.ijmedinf.2017.10.011_bib0365) 2016; 9555
Kips (10.1016/j.ijmedinf.2017.10.011_bib0260) 2010; 31
Guyon (10.1016/j.ijmedinf.2017.10.011_bib0320) 2002; 46
Klocke (10.1016/j.ijmedinf.2017.10.011_bib0025) 2003; 62
De Melis (10.1016/j.ijmedinf.2017.10.011_bib0255) 2009; vol. 47
Jallad (10.1016/j.ijmedinf.2017.10.011_bib0390) 2014
El-Khafif (10.1016/j.ijmedinf.2017.10.011_bib0155) 2013; vol 2013
Mandal (10.1016/j.ijmedinf.2017.10.011_bib0225) 2012; 36
Salih (10.1016/j.ijmedinf.2017.10.011_bib0195) 2012; vol. 9
Sueta (10.1016/j.ijmedinf.2017.10.011_bib0205) 2015; vol. 8
Cogill (10.1016/j.ijmedinf.2017.10.011_bib0370) 2016; 32
Zuo (10.1016/j.ijmedinf.2017.10.011_bib0095) 2010; vol. 2010
Janney (10.1016/j.ijmedinf.2017.10.011_bib0280) 2012; vol. 4
B.C (10.1016/j.ijmedinf.2017.10.011_bib0380) 2017
Rani (10.1016/j.ijmedinf.2017.10.011_bib0140) 2011; 1
Diez (10.1016/j.ijmedinf.2017.10.011_bib0245) 2009; vol 2009
Álvarez (10.1016/j.ijmedinf.2017.10.011_bib0270) 2012; 34
Byrd (10.1016/j.ijmedinf.2017.10.011_bib0110) 2014; 83
Yegnanarayana (10.1016/j.ijmedinf.2017.10.011_bib0425) 2009
Pereira (10.1016/j.ijmedinf.2017.10.011_bib0400) 2015
Crilly (10.1016/j.ijmedinf.2017.10.011_bib0030) 2007; 12
Doupis (10.1016/j.ijmedinf.2017.10.011_bib0215) 2016; 10
Melgani (10.1016/j.ijmedinf.2017.10.011_bib0405) 2008; 12
Hejazi (10.1016/j.ijmedinf.2017.10.011_bib0335) 2015; 29
Meyer (10.1016/j.ijmedinf.2017.10.011_bib0210) 2015
McVeigh (10.1016/j.ijmedinf.2017.10.011_bib0050) 1999; 33
Mammadova (10.1016/j.ijmedinf.2017.10.011_bib0375) 2013; vol. 2013
Kotsiantis (10.1016/j.ijmedinf.2017.10.011_bib0420) 2007; 31
Mehran (10.1016/j.ijmedinf.2017.10.011_bib0105) 2006
Gargiulo (10.1016/j.ijmedinf.2017.10.011_bib0325) 2015; 121
Wilin (10.1016/j.ijmedinf.2017.10.011_bib0345) 2002
Alty (10.1016/j.ijmedinf.2017.10.011_bib0410) 2007; 54
Liu (10.1016/j.ijmedinf.2017.10.011_bib0305) 2006; 39
Pereira (10.1016/j.ijmedinf.2017.10.011_bib0075) 2014; vol. 8
Wang (10.1016/j.ijmedinf.2017.10.011_bib0310) 2012; vol 2012
Kasprowicz (10.1016/j.ijmedinf.2017.10.011_bib0235) 2010; 190
Zheng (10.1016/j.ijmedinf.2017.10.011_bib0115) 2017; 97
Huang (10.1016/j.ijmedinf.2017.10.011_bib0290) 2005; vol. 35
Jeon (10.1016/j.ijmedinf.2017.10.011_bib0395) 2014; vol. 13
Schlesinger (10.1016/j.ijmedinf.2017.10.011_bib0350) 2017
Frontzek (10.1016/j.ijmedinf.2017.10.011_bib0415) 2001
Pereira (10.1016/j.ijmedinf.2017.10.011_bib0085) 2016; 54
Jia (10.1016/j.ijmedinf.2017.10.011_bib0100) 2014; vol 2014
He (10.1016/j.ijmedinf.2017.10.011_bib0275) 2012; 9
Hu (10.1016/j.ijmedinf.2017.10.011_bib0295) 2010; 31
Joshi (10.1016/j.ijmedinf.2017.10.011_bib0090) 2012; 5
Pachauri (10.1016/j.ijmedinf.2017.10.011_bib0265) 2012; vol. 6
Pereira (10.1016/j.ijmedinf.2017.10.011_bib0070) 2014
Olaniyi (10.1016/j.ijmedinf.2017.10.011_bib0145) 2015; 7
Lee (10.1016/j.ijmedinf.2017.10.011_bib0175) 2016; vol. 6
Cozma (10.1016/j.ijmedinf.2017.10.011_bib0220) 2010; 27
Kim (10.1016/j.ijmedinf.2017.10.011_bib0005) 2007; 21
Nayak (10.1016/j.ijmedinf.2017.10.011_bib0240) 2012; vol. 54
Duan (10.1016/j.ijmedinf.2017.10.011_bib0315) 2005; 4
Zhou (10.1016/j.ijmedinf.2017.10.011_bib0130) 2007; 23
Hemphill (10.1016/j.ijmedinf.2017.10.011_bib0125) 2014; vol. 15
Avolio (10.1016/j.ijmedinf.2017.10.011_bib0015) 2010; vol. 31
Pereira (10.1016/j.ijmedinf.2017.10.011_bib0065) 2013; vol. 1
Khalaf (10.1016/j.ijmedinf.2017.10.011_bib0165) 2015; vol. 2015
Pereira (10.1016/j.ijmedinf.2017.10.011_bib0200) 2014; 36
Shirwany (10.1016/j.ijmedinf.2017.10.011_bib0045) 2010; 31
Pereira (10.1016/j.ijmedinf.2017.10.011_bib0060) 2013; 4
Prashanth (10.1016/j.ijmedinf.2017.10.011_bib0120) 2016; 90
Orjuela-Cañón (10.1016/j.ijmedinf.2017.10.011_bib0180) 2013; 3
Lee (10.1016/j.ijmedinf.2017.10.011_bib0035) 2010; vol. 9
Tanaka (10.1016/j.ijmedinf.2017.10.011_bib0020) 2000; vol. 102
Atkov (10.1016/j.ijmedinf.2017.10.011_bib0135) 2012; 59
Karpagachelvi (10.1016/j.ijmedinf.2017.10.011_bib0230) 2010; 8
Poungponsri (10.1016/j.ijmedinf.2017.10.011_bib0160) 2013; 117
De Gaetano (10.1016/j.ijmedinf.2017.10.011_bib0150) 2009; vol. 213
Svozil (10.1016/j.ijmedinf.2017.10.011_bib0430) 1997; 39
References_xml – volume: 29
  start-page: 660
  year: 2015
  end-page: 674
  ident: bib0335
  article-title: Multiclass support vector machines for classification of ECG data with missing values
  publication-title: Appl. Artif. Intell.
– volume: vol. 6
  start-page: 32390
  year: 2016
  ident: bib0175
  article-title: Prediction of ventricular tachycardia one hour before occurrence using artificial neural networks
  publication-title: Sci. Rep
– volume: vol 2009
  start-page: 2579
  year: 2009
  end-page: 2582
  ident: bib0245
  article-title: Application of the empirical mode decomposition to the extraction of features from EEG signals for mental task classification
  publication-title: Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Conf.
– volume: vol. 13
  start-page: 160
  year: 2014
  ident: bib0395
  article-title: Implementation of a portable device for real-time ECG signal analysis
  publication-title: Biomed. Eng. Online
– volume: vol 2014
  year: 2014
  ident: bib0100
  article-title: Pulse waveform classification using support vector machine with gaussian time warp edit distance kernel
  publication-title: Comput. Math. Methods Med.
– volume: 10
  start-page: 188
  year: 2016
  end-page: 195
  ident: bib0215
  article-title: Pulse wave analysis by applanation tonometry for the measurement of arterial stiffness, open cardiovasc
  publication-title: Med. J.
– volume: 32
  year: 2016
  ident: bib0370
  article-title: Support vector machine model of developmental brain gene expression data for prioritization of Autism risk gene candidates
  publication-title: Bioinformatics
– volume: vol 2014
  start-page: 7
  year: 2014
  ident: bib0010
  article-title: A blood pressure monitoring method for stroke management
  publication-title: Biomed Res. Int.
– volume: vol. 9
  year: 2012
  ident: bib0195
  article-title: Normalized area under catacrotic phase of the photoplethysmogram pulse for estimating vascular aging
  publication-title: J. Biomed. Eng.
– volume: vol. 4
  start-page: 2012
  year: 2012
  ident: bib0280
  article-title: Dicrotic notch detection and analysis of arterial pulse by using discrete wavelet
  publication-title: OSIET J. Commun. Electron.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib0300
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 97
  start-page: 120
  year: 2017
  end-page: 127
  ident: bib0115
  article-title: A machine learning-based framework to identify type 2 diabetes through electronic health records
  publication-title: Int. J. Med. Inform.
– volume: 12
  start-page: 667
  year: 2008
  end-page: 677
  ident: bib0405
  article-title: Classification of electrocardiogram signals with support vector machines and particle swarm optimization
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 7
  start-page: 75
  year: 2015
  end-page: 82
  ident: bib0145
  article-title: Heart diseases diagnosis using neural networks arbitration
  publication-title: Int. J. Intell. Syst. Appl.
– volume: 62
  start-page: 414
  year: 2003
  end-page: 418
  ident: bib0025
  article-title: Arterial stiffness and central blood pressure, as determined by pulse wave analysis, in rheumatoid arthritis
  publication-title: Ann. Rheum. Dis.
– start-page: 389
  year: 2002
  end-page: 422
  ident: bib0345
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– year: 2009
  ident: bib0425
  article-title: Artificial Neural Networks
– volume: 9
  start-page: 3379
  year: 2012
  end-page: 3389
  ident: bib0275
  article-title: An arterial elasticity index algorithm based on wavelet transform and curve fitting
  publication-title: J. Inf. Comput. Sci.
– volume: 49
  start-page: 399
  year: 2016
  end-page: 406
  ident: bib0170
  article-title: ECG assessment based on neural networks with pretraining
  publication-title: Appl. Soft Comput.
– volume: vol. 47
  start-page: 165
  year: 2009
  end-page: 173
  ident: bib0255
  article-title: Blood pressure waveform analysis by means of wavelet transform
  publication-title: Med. Biol. Eng. Comput.
– volume: vol. 35
  start-page: 185
  year: 2005
  end-page: 194
  ident: bib0290
  article-title: Gene extraction for cancer diagnosis by support vector machines an improvement and comparison with nearest
  publication-title: Artif. Intell. Med.
– volume: 9555
  start-page: 235
  year: 2016
  end-page: 245
  ident: bib0365
  article-title: Hardware acceleration of SVM-based classifier for melanoma images
  publication-title: Lect. Notes Comput. Sci
– start-page: 325
  year: 2017
  end-page: 330
  ident: bib0380
  article-title: Arrhythmia classification by nonlinear kernel-based ECG signal modeling
  publication-title: Comput. Commun. Electr. Technol.
– volume: 12
  start-page: 189
  year: 2007
  end-page: 197
  ident: bib0030
  article-title: Indices of cardiovascular function derived from peripheral pulse wave analysis using radial applanation tonometry: a measurement repeatability study
  publication-title: Vasc. Med.
– volume: vol. 2012
  year: 2012
  ident: bib0340
  article-title: A gene selection method for cancer classification
  publication-title: Comput. Math. Methods Med.
– volume: vol 2013
  start-page: 3
  year: 2013
  end-page: 6
  ident: bib0155
  article-title: Artificial neural network-Based automated ECG signal classifier
  publication-title: ISRN Biomed. Eng.
– volume: 9
  start-page: 58
  year: 2006
  end-page: 69
  ident: bib0355
  article-title: An empirical study of machine learning techniques for affect recognition in human-robot interaction
  publication-title: Pattern Anal Appl.
– start-page: 1492
  year: 2001
  end-page: 1497
  ident: bib0415
  article-title: Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels
  publication-title: Neural Networks, 2001. Proceedings. IJCNN ’01. International Joint Conference on
– volume: vol. 213
  start-page: 243
  year: 2009
  end-page: 249
  ident: bib0150
  article-title: A patient adaptable ECG beat classifier based on neural networks
  publication-title: Appl. Math. Comput.
– volume: vol. 3
  start-page: 367
  year: 2015
  end-page: 376
  ident: bib0190
  article-title: Review of advances in neural networks: neural design technology stack
  publication-title: Proc. ELM-2014, Vol. 1 SE – 31
– volume: 39
  start-page: 43
  year: 1997
  end-page: 62
  ident: bib0430
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 33
  start-page: 1392
  year: 1999
  end-page: 1398
  ident: bib0050
  article-title: Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: aging and arterial compliance
  publication-title: Hypertension
– volume: 59
  start-page: 190
  year: 2012
  end-page: 194
  ident: bib0135
  article-title: Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters
  publication-title: J. Cardiol.
– volume: vol. 6
  year: 2012
  ident: bib0265
  article-title: Wavelet transform based arterial blood pressure waveform delineator
  publication-title: Int. J. Biol. Biomed. Eng.
– start-page: 1515
  year: 2014
  end-page: 1520
  ident: bib0070
  article-title: Pulse pressure waveform estimation using distension profiling with contactless optical probe
  publication-title: Med. Eng. Phys.
– volume: 21
  start-page: 141
  year: 2007
  end-page: 148
  ident: bib0005
  article-title: Relationship between blood pressure parameters and pulse wave velocity in normotensive and hypertensive subjects: invasive study
  publication-title: J. Hum. Hypertens.
– volume: 39
  start-page: 1333
  year: 2006
  end-page: 1345
  ident: bib0305
  article-title: FS_SFS: A novel feature selection method for support vector machines
  publication-title: Pattern Recognit.
– volume: 34
  start-page: 1049
  year: 2012
  end-page: 1057
  ident: bib0270
  article-title: Feature selection from nocturnal oximetry using genetic algorithms to assist in obstructive sleep apnoea diagnosis
  publication-title: Med. Eng. Phys.
– volume: vol 2012
  start-page: 586246
  year: 2012
  ident: bib0310
  article-title: A gene selection method for cancer classification
  publication-title: Comput. Math. Methods Med.
– volume: 43
  start-page: 584
  year: 2010
  end-page: 591
  ident: bib0285
  article-title: Optimal feature selection for support vector machines
  publication-title: Pattern Recognit.
– volume: vol. 8
  start-page: 135
  year: 2014
  ident: bib0075
  article-title: Assessment of carotid distention waveform and local pulse wave velocity determination by a novel optical system
  publication-title: Artery Res.
– volume: 1
  start-page: 1
  year: 2011
  end-page: 8
  ident: bib0140
  article-title: Analysis of heart diseases dataset using neural network approach
  publication-title: Int. J. Data Min. Knowl. Manag. Process
– volume: 31
  start-page: 1267
  year: 2010
  end-page: 1276
  ident: bib0045
  article-title: Arterial stiffness: a brief review
  publication-title: Acta Pharmacol. Sin.
– volume: 31
  start-page: 679
  year: 2010
  end-page: 695
  ident: bib0295
  article-title: Intracranial pressure pulse morphological features improved detection of decreased cerebral blood flow
  publication-title: Physiol. Meas.
– volume: 36
  start-page: 3353
  year: 2012
  end-page: 3373
  ident: bib0225
  article-title: Accurate prediction of coronary artery disease using reliable diagnosis system
  publication-title: J. Med. Syst.
– volume: 90
  start-page: 13
  year: 2016
  end-page: 21
  ident: bib0120
  article-title: High-Accuracy detection of early parkinson’s disease through multimodal features and machine learning
  publication-title: Int. J. Med. Inform.
– volume: 190
  start-page: 310
  year: 2010
  end-page: 318
  ident: bib0235
  article-title: Pattern recognition of overnight intracranial pressure slow waves using morphological features of intracranial pressure pulse
  publication-title: J. Neurosci. Methods
– volume: 4
  start-page: 228
  year: 2005
  end-page: 233
  ident: bib0315
  article-title: Multiple SVM-RFE for gene selection in cancer classification with expression data
  publication-title: IEEE Trans. Nanobioscience
– volume: vol. 9
  year: 2010
  ident: bib0035
  article-title: An investigation of patterns in hemodynamic data indicative of impending hypotension in intensive care
  publication-title: Biomed. Eng. Online
– volume: vol. 2015
  start-page: 394
  year: 2015
  end-page: 401
  ident: bib0165
  article-title: Performance study of adaptive filtering and noise cancellation of artifacts in ECG signals 2015
  publication-title: 17th Int. Conf. Adv. Commun. Technol.
– year: 2001
  ident: bib0330
  article-title: Pattern Recognition: Concepts, Methods, and Applications, 1
– volume: vol. 2010
  year: 2010
  ident: bib0095
  article-title: Classification of pulse waveforms using edit distance with real penalty
  publication-title: EURASIP J. Adv. Signal Process.
– year: 2017
  ident: bib0350
  article-title: Statistical Pattern Recognition Toolbox
– volume: vol. 54
  start-page: 20
  year: 2012
  end-page: 23
  ident: bib0240
  article-title: Classification of ECG signals using ANN with resilient back propagation algorithm
  publication-title: Int. J. Comput. Appl.
– start-page: 448
  year: 2006
  end-page: 453
  ident: bib0105
  article-title: New application of wavelet transform in classification the arterial pulse signals
  publication-title: ICOSSE’06 Proceedings of the 5th WSEAS International Conference on System Science and Simulation in Engineering
– volume: 37
  start-page: 2552
  year: 2006
  end-page: 2556
  ident: bib0040
  article-title: Age-related changes in carotid artery flow and pressure pulses: possible implications for cerebral microvascular disease
  publication-title: Stroke
– year: 2012
  ident: bib0185
  article-title: Systems and Methods for Measuring Arterial Stiffness
– volume: 54
  start-page: 1049
  year: 2016
  end-page: 1059
  ident: bib0085
  article-title: An automatic method for arterial pulse waveform recognition using KNN and SVM classifiers
  publication-title: Med. Biol. Eng. Comput.
– volume: vol. 15
  start-page: S4
  year: 2014
  ident: bib0125
  article-title: Feature selection and classifier performance on diverse biological datasets
  publication-title: BMC Bioinf.
– volume: 36
  start-page: 1515
  year: 2014
  end-page: 1520
  ident: bib0200
  article-title: Pulse pressure waveform estimation using distension profiling with contactless optical probe
  publication-title: Med. Eng. Phys.
– volume: vol. 109
  start-page: 184
  year: 2004
  end-page: 189
  ident: bib0250
  article-title: Arterial stiffness, wave reflections, and the risk of coronary artery disease
  publication-title: Circulation
– volume: 3
  start-page: 133
  year: 2013
  end-page: 137
  ident: bib0180
  article-title: Onset and peak detection over pulse wave using supervised SOM network
  publication-title: Int. J. Biosci. Biochem. Bioinforma.
– volume: vol. 2013
  start-page: 603897
  year: 2013
  ident: bib0375
  article-title: Application of the support vector machine to predict subclinical mastitis in dairy cattle
  publication-title: ScientificWorldJournal
– start-page: 207
  year: 2016
  end-page: 212
  ident: bib0385
  article-title: Comparing deep learning and support vector machines for autonomous waste sorting, in Multidisciplinary Conference on Engineering Technology (IMCET)
  publication-title: IEEE Int.
– volume: 35
  start-page: 555
  year: 2015
  end-page: 565
  ident: bib0055
  article-title: Novel methods for pulse wave velocity measurement
  publication-title: J. Med. Biol. Eng.
– year: 2012
  ident: bib0360
  article-title: Pattern Classification
– volume: 31
  start-page: 249
  year: 2007
  end-page: 268
  ident: bib0420
  article-title: Supervised machine learning: a review of classification techniques
  publication-title: Informatica
– volume: 31
  start-page: 543
  year: 2010
  end-page: 553
  ident: bib0260
  article-title: The use of diameter distension waveforms as an alternative for tonometric pressure to assess carotid blood pressure
  publication-title: Physiol. Meas.
– volume: vol. 31
  start-page: 1
  year: 2010
  end-page: 47
  ident: bib0015
  article-title: Arterial blood pressure measurement and pulse wave analysis?their role in enhancing cardiovascular assessment
  publication-title: Physiol. Meas.
– volume: 117
  start-page: 206
  year: 2013
  end-page: 213
  ident: bib0160
  article-title: An adaptive filtering approach for electrocardiogram (ECG) signal noise reduction using neural networks
  publication-title: Neurocomputing
– volume: 23
  start-page: 1106
  year: 2007
  end-page: 1114
  ident: bib0130
  article-title: MSVM-RFE: Extensions of SVM-RFE for multiclass gene selection on DNA microarray data
  publication-title: Bioinformatics
– volume: 121
  start-page: 127
  year: 2015
  end-page: 136
  ident: bib0325
  article-title: Subject identification via ECG fiducial-based systems: influence of the type of QT interval correction
  publication-title: Comput. Methods Programs Biomed.
– volume: vol. 102
  start-page: 1270
  year: 2000
  end-page: 1275
  ident: bib0020
  article-title: Aging, habitual exercise, and dynamic arterial compliance
  publication-title: Circulation
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bib0320
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– volume: vol. 8
  start-page: 52
  year: 2015
  end-page: 54
  ident: bib0205
  article-title: Association of estimated central blood pressure measured non-invasively with pulse wave velocity in patients with coronary artery disease
  publication-title: IJC Hear. Vasc.
– volume: 8
  start-page: 76
  year: 2010
  end-page: 80
  ident: bib0230
  article-title: ECG feature extraction techniques - a survey approach
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– volume: 4
  start-page: 87
  year: 2013
  end-page: 97
  ident: bib0060
  article-title: Characterization of optical system for hemodynamic multi-Parameter assessment
  publication-title: Cardiovasc. Eng. Technol.
– volume: vol 179
  year: 2015
  ident: bib0080
  article-title: Arterial pulse pressure waveform monitoring by novel optical probe
  publication-title: Int. J. Cardiol.
– volume: 54
  start-page: 2268
  year: 2007
  end-page: 2275
  ident: bib0410
  article-title: Predicting arterial stiffness from the digital volume pulse waveform
  publication-title: Biomed. Eng. IEEE Trans.
– start-page: 1049
  year: 2015
  end-page: 1059
  ident: bib0400
  article-title: An automatic method for arterial pulse waveform recognition using KNN and SVM classifiers
  publication-title: Med. Biol. Eng. Comput.
– year: 2014
  ident: bib0390
  article-title: Hardware support vector machine (SVM) for satellite on-board applications
  publication-title: Adaptive Hardware and Systems (AHS) 2014 NASA/ESA Conference on
– volume: 83
  start-page: 983
  year: 2014
  end-page: 992
  ident: bib0110
  article-title: Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records
  publication-title: Int. J. Med. Inform.
– start-page: 470
  year: 2015
  end-page: 475
  ident: bib0210
  article-title: Repeatability of central and peripheral pulse wave velocity measures: the atherosclerosis risk in communities (ARIC) study
  publication-title: Am. J. Hypertens.
– volume: vol. 1
  start-page: 61
  year: 2013
  end-page: 69
  ident: bib0065
  article-title: Local PWV and other hemodynamic parameters assessment: validation of a new optical technique in an healthy population
  publication-title: BIOSIGNALS 2013-6th International Conference on Bio-inspired Systems and Signal Processing
– volume: 5
  start-page: 315
  year: 2012
  end-page: 322
  ident: bib0090
  article-title: Automatic detection of pulse morphology patterns & cardiac risks
  publication-title: J. Biomed. Sci. Eng.
– volume: 27
  start-page: 39
  year: 2010
  end-page: 46
  ident: bib0220
  article-title: Impact of the defining criteria and components of metabolic syndrome on arterial stiffness parameters
  publication-title: Appl. Med. Informatics
– volume: 83
  start-page: 983
  issue: no. 12
  year: 2014
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0110
  article-title: Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2012.12.005
– volume: vol 2012
  start-page: 586246
  year: 2012
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0310
  article-title: A gene selection method for cancer classification
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2012/586246
– start-page: 389
  issue: no. 46
  year: 2002
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0345
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– volume: vol. 6
  start-page: 32390
  issue: no. April
  year: 2016
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0175
  article-title: Prediction of ventricular tachycardia one hour before occurrence using artificial neural networks
  publication-title: Sci. Rep
  doi: 10.1038/srep32390
– volume: 4
  start-page: 87
  issue: no. 1
  year: 2013
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0060
  article-title: Characterization of optical system for hemodynamic multi-Parameter assessment
  publication-title: Cardiovasc. Eng. Technol.
  doi: 10.1007/s13239-013-0125-y
– volume: 31
  start-page: 543
  issue: no. 4
  year: 2010
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0260
  article-title: The use of diameter distension waveforms as an alternative for tonometric pressure to assess carotid blood pressure
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/31/4/006
– volume: 97
  start-page: 120
  year: 2017
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0115
  article-title: A machine learning-based framework to identify type 2 diabetes through electronic health records
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2016.09.014
– volume: vol. 35
  start-page: 185
  issue: no. 1
  year: 2005
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0290
  article-title: Gene extraction for cancer diagnosis by support vector machines an improvement and comparison with nearest
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2005.01.006
– volume: vol. 109
  start-page: 184
  issue: no. 2
  year: 2004
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0250
  article-title: Arterial stiffness, wave reflections, and the risk of coronary artery disease
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000105767.94169.E3
– volume: 33
  start-page: 1392
  issue: no. 6
  year: 1999
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0050
  article-title: Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: aging and arterial compliance
  publication-title: Hypertension
  doi: 10.1161/01.HYP.33.6.1392
– volume: vol. 4
  start-page: 2012
  issue: no. May
  year: 2012
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0280
  article-title: Dicrotic notch detection and analysis of arterial pulse by using discrete wavelet
  publication-title: OSIET J. Commun. Electron.
– volume: vol 2014
  start-page: 7
  year: 2014
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0010
  article-title: A blood pressure monitoring method for stroke management
  publication-title: Biomed Res. Int.
  doi: 10.1155/2014/571623
– volume: vol. 54
  start-page: 20
  issue: no. 6
  year: 2012
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0240
  article-title: Classification of ECG signals using ANN with resilient back propagation algorithm
  publication-title: Int. J. Comput. Appl.
– volume: 49
  start-page: 399
  year: 2016
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0170
  article-title: ECG assessment based on neural networks with pretraining
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.08.013
– volume: 10
  start-page: 188
  issue: no. 1
  year: 2016
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0215
  article-title: Pulse wave analysis by applanation tonometry for the measurement of arterial stiffness, open cardiovasc
  publication-title: Med. J.
– volume: vol. 2013
  start-page: 603897
  year: 2013
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0375
  article-title: Application of the support vector machine to predict subclinical mastitis in dairy cattle
  publication-title: ScientificWorldJournal
  doi: 10.1155/2013/603897
– volume: 90
  start-page: 13
  year: 2016
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0120
  article-title: High-Accuracy detection of early parkinson’s disease through multimodal features and machine learning
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2016.03.001
– year: 2014
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0390
  article-title: Hardware support vector machine (SVM) for satellite on-board applications
  publication-title: Adaptive Hardware and Systems (AHS) 2014 NASA/ESA Conference on
  doi: 10.1109/AHS.2014.6880185
– volume: 35
  start-page: 555
  issue: no. 5
  year: 2015
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0055
  article-title: Novel methods for pulse wave velocity measurement
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-015-0086-8
– volume: vol 2013
  start-page: 3
  year: 2013
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0155
  article-title: Artificial neural network-Based automated ECG signal classifier
  publication-title: ISRN Biomed. Eng.
  doi: 10.1155/2013/261917
– volume: vol. 13
  start-page: 160
  year: 2014
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0395
  article-title: Implementation of a portable device for real-time ECG signal analysis
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-13-160
– volume: 36
  start-page: 3353
  issue: no. 5
  year: 2012
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0225
  article-title: Accurate prediction of coronary artery disease using reliable diagnosis system
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-012-9828-0
– year: 2017
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0350
– volume: 46
  start-page: 389
  issue: no. 4
  year: 2002
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0320
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: vol 2014
  year: 2014
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0100
  article-title: Pulse waveform classification using support vector machine with gaussian time warp edit distance kernel
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2014/947254
– volume: vol. 9
  year: 2012
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0195
  article-title: Normalized area under catacrotic phase of the photoplethysmogram pulse for estimating vascular aging
  publication-title: J. Biomed. Eng.
  doi: 10.2316/P.2012.764-152
– volume: 8
  start-page: 76
  issue: no. 1
  year: 2010
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0230
  article-title: ECG feature extraction techniques - a survey approach
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– year: 2012
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0360
– volume: 9555
  start-page: 235
  year: 2016
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0365
  article-title: Hardware acceleration of SVM-based classifier for melanoma images
  publication-title: Lect. Notes Comput. Sci
  doi: 10.1007/978-3-319-30285-0_19
– volume: 23
  start-page: 1106
  issue: no. 9
  year: 2007
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0130
  article-title: MSVM-RFE: Extensions of SVM-RFE for multiclass gene selection on DNA microarray data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm036
– volume: 12
  start-page: 667
  issue: no. 5
  year: 2008
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0405
  article-title: Classification of electrocardiogram signals with support vector machines and particle swarm optimization
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2008.923147
– volume: vol 179
  year: 2015
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0080
  article-title: Arterial pulse pressure waveform monitoring by novel optical probe
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2014.10.050
– volume: 9
  start-page: 3379
  issue: no. 12
  year: 2012
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0275
  article-title: An arterial elasticity index algorithm based on wavelet transform and curve fitting
  publication-title: J. Inf. Comput. Sci.
– volume: 31
  start-page: 249
  year: 2007
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0420
  article-title: Supervised machine learning: a review of classification techniques
  publication-title: Informatica
– volume: 31
  start-page: 1267
  issue: no. 10
  year: 2010
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0045
  article-title: Arterial stiffness: a brief review
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2010.123
– start-page: 1049
  year: 2015
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0400
  article-title: An automatic method for arterial pulse waveform recognition using KNN and SVM classifiers
  publication-title: Med. Biol. Eng. Comput.
– volume: 54
  start-page: 1049
  issue: no. 7
  year: 2016
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0085
  article-title: An automatic method for arterial pulse waveform recognition using KNN and SVM classifiers
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-015-1393-5
– start-page: 448
  year: 2006
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0105
  article-title: New application of wavelet transform in classification the arterial pulse signals
  publication-title: ICOSSE’06 Proceedings of the 5th WSEAS International Conference on System Science and Simulation in Engineering
– start-page: 207
  year: 2016
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0385
  article-title: Comparing deep learning and support vector machines for autonomous waste sorting, in Multidisciplinary Conference on Engineering Technology (IMCET)
  publication-title: IEEE Int.
– volume: vol. 9
  issue: January (1)
  year: 2010
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0035
  article-title: An investigation of patterns in hemodynamic data indicative of impending hypotension in intensive care
  publication-title: Biomed. Eng. Online
– volume: vol. 213
  start-page: 243
  issue: no. 1
  year: 2009
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0150
  article-title: A patient adaptable ECG beat classifier based on neural networks
  publication-title: Appl. Math. Comput.
– start-page: 470
  year: 2015
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0210
  article-title: Repeatability of central and peripheral pulse wave velocity measures: the atherosclerosis risk in communities (ARIC) study
  publication-title: Am. J. Hypertens.
– volume: 34
  start-page: 1049
  issue: no. 8
  year: 2012
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0270
  article-title: Feature selection from nocturnal oximetry using genetic algorithms to assist in obstructive sleep apnoea diagnosis
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.11.009
– volume: 39
  start-page: 43
  issue: no. 1
  year: 1997
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0430
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00061-0
– volume: 31
  start-page: 679
  issue: no. 5
  year: 2010
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0295
  article-title: Intracranial pressure pulse morphological features improved detection of decreased cerebral blood flow
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/31/5/006
– volume: 36
  start-page: 1515
  issue: no. 11
  year: 2014
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0200
  article-title: Pulse pressure waveform estimation using distension profiling with contactless optical probe
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2014.07.014
– year: 2009
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0425
– volume: 1
  start-page: 1
  issue: no. 5
  year: 2011
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0140
  article-title: Analysis of heart diseases dataset using neural network approach
  publication-title: Int. J. Data Min. Knowl. Manag. Process
  doi: 10.5121/ijdkp.2011.1501
– volume: 32
  issue: no. 23
  year: 2016
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0370
  article-title: Support vector machine model of developmental brain gene expression data for prioritization of Autism risk gene candidates
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw498
– start-page: 325
  year: 2017
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0380
  article-title: Arrhythmia classification by nonlinear kernel-based ECG signal modeling
  publication-title: Comput. Commun. Electr. Technol.
– volume: vol. 1
  start-page: 61
  year: 2013
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0065
  article-title: Local PWV and other hemodynamic parameters assessment: validation of a new optical technique in an healthy population
– start-page: 1492
  year: 2001
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0415
  article-title: Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels
  publication-title: Neural Networks, 2001. Proceedings. IJCNN ’01. International Joint Conference on
– volume: 117
  start-page: 206
  year: 2013
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0160
  article-title: An adaptive filtering approach for electrocardiogram (ECG) signal noise reduction using neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.02.010
– volume: 21
  start-page: 141
  issue: no. 2
  year: 2007
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0005
  article-title: Relationship between blood pressure parameters and pulse wave velocity in normotensive and hypertensive subjects: invasive study
  publication-title: J. Hum. Hypertens.
  doi: 10.1038/sj.jhh.1002120
– volume: vol. 2015
  start-page: 394
  year: 2015
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0165
  article-title: Performance study of adaptive filtering and noise cancellation of artifacts in ECG signals 2015
  publication-title: 17th Int. Conf. Adv. Commun. Technol.
– volume: 54
  start-page: 2268
  issue: no. 12
  year: 2007
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0410
  article-title: Predicting arterial stiffness from the digital volume pulse waveform
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/TBME.2007.897805
– volume: vol. 2010
  year: 2010
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0095
  article-title: Classification of pulse waveforms using edit distance with real penalty
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 190
  start-page: 310
  issue: no. 2
  year: 2010
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0235
  article-title: Pattern recognition of overnight intracranial pressure slow waves using morphological features of intracranial pressure pulse
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.05.015
– volume: 37
  start-page: 2552
  issue: no. 10
  year: 2006
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0040
  article-title: Age-related changes in carotid artery flow and pressure pulses: possible implications for cerebral microvascular disease
  publication-title: Stroke
  doi: 10.1161/01.STR.0000242289.20381.f4
– volume: vol. 15
  start-page: S4
  issue: Suppl 1, no. 13
  year: 2014
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0125
  article-title: Feature selection and classifier performance on diverse biological datasets
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-15-S13-S4
– volume: vol. 102
  start-page: 1270
  issue: no. 11
  year: 2000
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0020
  article-title: Aging, habitual exercise, and dynamic arterial compliance
  publication-title: Circulation
  doi: 10.1161/01.CIR.102.11.1270
– volume: 27
  start-page: 39
  issue: no. 4
  year: 2010
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0220
  article-title: Impact of the defining criteria and components of metabolic syndrome on arterial stiffness parameters
  publication-title: Appl. Med. Informatics
– volume: 29
  start-page: 660
  year: 2015
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0335
  article-title: Multiclass support vector machines for classification of ECG data with missing values
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2015.1051887
– volume: vol. 8
  start-page: 135
  issue: no. 4
  year: 2014
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0075
  article-title: Assessment of carotid distention waveform and local pulse wave velocity determination by a novel optical system
  publication-title: Artery Res.
  doi: 10.1016/j.artres.2014.09.107
– volume: vol. 8
  start-page: 52
  year: 2015
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0205
  article-title: Association of estimated central blood pressure measured non-invasively with pulse wave velocity in patients with coronary artery disease
  publication-title: IJC Hear. Vasc.
  doi: 10.1016/j.ijcha.2015.05.004
– volume: 121
  start-page: 127
  issue: no. 3
  year: 2015
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0325
  article-title: Subject identification via ECG fiducial-based systems: influence of the type of QT interval correction
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2015.05.012
– year: 2012
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0185
– volume: 4
  start-page: 228
  issue: no. 3
  year: 2005
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0315
  article-title: Multiple SVM-RFE for gene selection in cancer classification with expression data
  publication-title: IEEE Trans. Nanobioscience
  doi: 10.1109/TNB.2005.853657
– volume: 62
  start-page: 414
  issue: no. 5
  year: 2003
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0025
  article-title: Arterial stiffness and central blood pressure, as determined by pulse wave analysis, in rheumatoid arthritis
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.62.5.414
– volume: 3
  start-page: 1157
  issue: no. 3
  year: 2003
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0300
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 39
  start-page: 1333
  issue: no. 7
  year: 2006
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0305
  article-title: FS_SFS: A novel feature selection method for support vector machines
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2005.10.006
– volume: vol. 31
  start-page: 1
  issue: no. 1
  year: 2010
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0015
  article-title: Arterial blood pressure measurement and pulse wave analysis?their role in enhancing cardiovascular assessment
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/31/1/R01
– volume: 5
  start-page: 315
  issue: no. 6
  year: 2012
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0090
  article-title: Automatic detection of pulse morphology patterns & cardiac risks
  publication-title: J. Biomed. Sci. Eng.
  doi: 10.4236/jbise.2012.56041
– volume: vol. 3
  start-page: 367
  year: 2015
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0190
  article-title: Review of advances in neural networks: neural design technology stack
  publication-title: Proc. ELM-2014, Vol. 1 SE – 31
  doi: 10.1007/978-3-319-14063-6_31
– volume: 43
  start-page: 584
  issue: no. 3
  year: 2010
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0285
  article-title: Optimal feature selection for support vector machines
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.09.003
– volume: 7
  start-page: 75
  issue: no. 12
  year: 2015
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0145
  article-title: Heart diseases diagnosis using neural networks arbitration
  publication-title: Int. J. Intell. Syst. Appl.
– volume: 3
  start-page: 133
  issue: no. 2
  year: 2013
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0180
  article-title: Onset and peak detection over pulse wave using supervised SOM network
  publication-title: Int. J. Biosci. Biochem. Bioinforma.
– volume: 12
  start-page: 189
  issue: no. 3
  year: 2007
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0030
  article-title: Indices of cardiovascular function derived from peripheral pulse wave analysis using radial applanation tonometry: a measurement repeatability study
  publication-title: Vasc. Med.
  doi: 10.1177/1358863X07081134
– volume: vol 2009
  start-page: 2579
  year: 2009
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0245
  article-title: Application of the empirical mode decomposition to the extraction of features from EEG signals for mental task classification
  publication-title: Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Conf.
– volume: vol. 2012
  year: 2012
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0340
  article-title: A gene selection method for cancer classification
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2012/586246
– year: 2001
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0330
– volume: vol. 47
  start-page: 165
  issue: no. 2
  year: 2009
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0255
  article-title: Blood pressure waveform analysis by means of wavelet transform
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-008-0397-9
– volume: 9
  start-page: 58
  issue: no. 1
  year: 2006
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0355
  article-title: An empirical study of machine learning techniques for affect recognition in human-robot interaction
  publication-title: Pattern Anal Appl.
  doi: 10.1007/s10044-006-0025-y
– volume: 59
  start-page: 190
  issue: no. 2
  year: 2012
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0135
  article-title: Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters
  publication-title: J. Cardiol.
  doi: 10.1016/j.jjcc.2011.11.005
– volume: vol. 6
  issue: no. 1
  year: 2012
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0265
  article-title: Wavelet transform based arterial blood pressure waveform delineator
  publication-title: Int. J. Biol. Biomed. Eng.
– start-page: 1515
  year: 2014
  ident: 10.1016/j.ijmedinf.2017.10.011_bib0070
  article-title: Pulse pressure waveform estimation using distension profiling with contactless optical probe
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2014.07.014
SSID ssj0017054
Score 2.3529305
Snippet •The arterial pulse pressure waveform (APW) provides an adequate description of the arterial system behaviour..•The development of techniques based on the...
The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 30
SubjectTerms Arterial pulse waveform
Morphologic features
Neural network
Support vector machine recursive feature elimination
Support vector machines
Title Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1386505617303726
https://dx.doi.org/10.1016/j.ijmedinf.2017.10.011
https://www.ncbi.nlm.nih.gov/pubmed/29195703
https://www.proquest.com/docview/1971697098
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhgdBLaZs-tmmDArnuw5JsSbktS8K2TULoJiE3o5fDLsVZut701t-eGcta2kNIoWAwFhosa0ajwTP6PkKOvOeVs5KD98M0I7PgB5nNketFcbiYqdoC2Ytiei2-3ua3W2SSzsJgWWXn-6NPb7111zLsZnO4nM-HswzpKjEABiPlkiHsthASrXzwe1PmgWgxkdhWFX3s_ccp4cVgvsAMdt1CecoBVnll2VMb1FMBaLsRnb4iL7sIko7jIF-TrVC_IbvnXY58jzSz9RIdwCp42nFC3NFIFL2iEKJSJCFOLo-2JZ1gg3S5hjHQX-Yh0ESa0kS1HdMxnd2cU1N7ivCX0LmOxeMrmiDJ35Kr05OrybTfcSv0HWxHTd9JZzVjgQlu1MgVOmOVMKNQSJhNU1RSZbnJQWNwGW-NkUIH5bW1lfVK8Xdku76vwwdCucyCE0KLynHBoXflBPdOjopQeMFCj-RpPkvX4Y4j_cWPMhWYLcqkhxL1gO2ghx4ZbuSWEXnjWQmZ1FWmc6XgCUvYHJ6V1BvJv6zvn2QPk2WUsDQx32LqcL9elRnCc2k50qpH3keT2XwJ05lG8LOP__HmffICnlT8IfSJbDc_1-EzhEiNPWjXwAHZGU--n13i_cu36cUjQwQT4Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBapA20voe86fanQq-NdSbuScjOhwWliX-yW3IReW2zKxtTr9u9ntJJMewgpFHTSalitZjQadkbfh9An52hjDafg_UKakRjwg8RUgetFUGhEN32B7LyefmVfrqvrA3SW78KEssrk-6NP77116hmn1RxvVqvxogx0lSEABiOlnNQP0GFAp6oG6HBycTmd75MJvKgit62oR0Hgj4vC65PVOiSx2x7Nk5-EQq-yvOuMuisG7c-i8yfoKAWReBLn-RQd-PYZejhLafLnqFvsNsEHbL3DiRbiO45c0VsMUSoOPMTZ6-G-qhPMEG92MAf8W__yOPOmdFFzp3iCF99mWLcOBwRMGNzG-vEtzqjkL9Dy_PPybDpK9AojCydSN7LcGkmIJ4xqUdhalqRhuvA1hwXVdcNFWekKlAZNO6M1Z9ILJ41pjBOCvkSD9qb1rxGmvPSWMckaSxmF0Y1l1Fle1L52jPghqvJ6KpugxwMDxg-Va8zWKutBBT2EftDDEI33cpsIvnGvBM_qUvlqKThDBefDvZJyL_mXAf6T7MdsGQp2Z0i56Nbf7LaqDAhdkhdSDNGraDL7LyGylAH_7Pg_3vwBPZouZ1fq6mJ--QY9hici_h96iwbdz51_BxFTZ96nHXEL_jcU_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+learning+methods+for+pathological+arterial+pulse+wave+differentiation%3A+A+SVM+and+neural+networks+approach&rft.jtitle=International+journal+of+medical+informatics+%28Shannon%2C+Ireland%29&rft.au=Paiva%2C+Joana+S.&rft.au=Cardoso%2C+Jo%C3%A3o&rft.au=Pereira%2C+T%C3%A2nia&rft.date=2018-01-01&rft.pub=Elsevier+B.V&rft.issn=1386-5056&rft.volume=109&rft.spage=30&rft.epage=38&rft_id=info:doi/10.1016%2Fj.ijmedinf.2017.10.011&rft.externalDocID=S1386505617303726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-5056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-5056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-5056&client=summon