FHQ-RRT: An Improved Path Planning Algorithm for Mobile Robots to Acquire High-Quality Paths Faster

The Rapidly-exploring Random Tree Star (RRT*) algorithm, widely utilized for path planning, faces challenges, such as slow acquisition of feasible paths and high path costs. To address this issue, this paper presents an improved algorithm based on RRT* that can obtain high-quality paths faster, term...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 7; p. 2189
Main Authors Dong, Xingxiang, Wang, Yujun, Fang, Can, Ran, Kemeng, Liu, Guohui
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.03.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Rapidly-exploring Random Tree Star (RRT*) algorithm, widely utilized for path planning, faces challenges, such as slow acquisition of feasible paths and high path costs. To address this issue, this paper presents an improved algorithm based on RRT* that can obtain high-quality paths faster, termed Faster High-Quality RRT*(FHQ-RRT*). The proposed algorithm enhances the exploration efficiency and path quality of mobile robots through three key innovations: First, a dynamic sparse sampling strategy that adaptively adjusts the sampling density according to the growth rate of the random tree, thereby increasing the algorithm’s growth speed while maintaining adaptability to complex environments. Second, a new node creation method that combines the bisection method, triangle inequality, and the concept of KeyPoints to reduce the cost of creating new nodes. Third, a focused rewiring strategy that restricts the rewiring operation to valuable regions, thereby improving rewiring efficiency. The performance of FHQ-RRT* was validated in four simulation maps and compared with other algorithms. In all validated maps, FHQ-RRT* consistently achieved the lowest path cost. Regarding time cost, FHQ-RRT* reduced the planning time by over 40% in the circular-obstacle map, 77% in the simple maze map, 56% in the complex maze map, and 50% in the narrow map. The simulation results show that FHQ-RRT* can rapidly generate high-quality paths faster than other algorithms.
AbstractList The Rapidly-exploring Random Tree Star (RRT*) algorithm, widely utilized for path planning, faces challenges, such as slow acquisition of feasible paths and high path costs. To address this issue, this paper presents an improved algorithm based on RRT* that can obtain high-quality paths faster, termed Faster High-Quality RRT*(FHQ-RRT*). The proposed algorithm enhances the exploration efficiency and path quality of mobile robots through three key innovations: First, a dynamic sparse sampling strategy that adaptively adjusts the sampling density according to the growth rate of the random tree, thereby increasing the algorithm’s growth speed while maintaining adaptability to complex environments. Second, a new node creation method that combines the bisection method, triangle inequality, and the concept of KeyPoints to reduce the cost of creating new nodes. Third, a focused rewiring strategy that restricts the rewiring operation to valuable regions, thereby improving rewiring efficiency. The performance of FHQ-RRT* was validated in four simulation maps and compared with other algorithms. In all validated maps, FHQ-RRT* consistently achieved the lowest path cost. Regarding time cost, FHQ-RRT* reduced the planning time by over 40% in the circular-obstacle map, 77% in the simple maze map, 56% in the complex maze map, and 50% in the narrow map. The simulation results show that FHQ-RRT* can rapidly generate high-quality paths faster than other algorithms.
The Rapidly-exploring Random Tree Star (RRT*) algorithm, widely utilized for path planning, faces challenges, such as slow acquisition of feasible paths and high path costs. To address this issue, this paper presents an improved algorithm based on RRT* that can obtain high-quality paths faster, termed Faster High-Quality RRT*(FHQ-RRT*). The proposed algorithm enhances the exploration efficiency and path quality of mobile robots through three key innovations: First, a dynamic sparse sampling strategy that adaptively adjusts the sampling density according to the growth rate of the random tree, thereby increasing the algorithm's growth speed while maintaining adaptability to complex environments. Second, a new node creation method that combines the bisection method, triangle inequality, and the concept of KeyPoints to reduce the cost of creating new nodes. Third, a focused rewiring strategy that restricts the rewiring operation to valuable regions, thereby improving rewiring efficiency. The performance of FHQ-RRT* was validated in four simulation maps and compared with other algorithms. In all validated maps, FHQ-RRT* consistently achieved the lowest path cost. Regarding time cost, FHQ-RRT* reduced the planning time by over 40% in the circular-obstacle map, 77% in the simple maze map, 56% in the complex maze map, and 50% in the narrow map. The simulation results show that FHQ-RRT* can rapidly generate high-quality paths faster than other algorithms.The Rapidly-exploring Random Tree Star (RRT*) algorithm, widely utilized for path planning, faces challenges, such as slow acquisition of feasible paths and high path costs. To address this issue, this paper presents an improved algorithm based on RRT* that can obtain high-quality paths faster, termed Faster High-Quality RRT*(FHQ-RRT*). The proposed algorithm enhances the exploration efficiency and path quality of mobile robots through three key innovations: First, a dynamic sparse sampling strategy that adaptively adjusts the sampling density according to the growth rate of the random tree, thereby increasing the algorithm's growth speed while maintaining adaptability to complex environments. Second, a new node creation method that combines the bisection method, triangle inequality, and the concept of KeyPoints to reduce the cost of creating new nodes. Third, a focused rewiring strategy that restricts the rewiring operation to valuable regions, thereby improving rewiring efficiency. The performance of FHQ-RRT* was validated in four simulation maps and compared with other algorithms. In all validated maps, FHQ-RRT* consistently achieved the lowest path cost. Regarding time cost, FHQ-RRT* reduced the planning time by over 40% in the circular-obstacle map, 77% in the simple maze map, 56% in the complex maze map, and 50% in the narrow map. The simulation results show that FHQ-RRT* can rapidly generate high-quality paths faster than other algorithms.
Audience Academic
Author Dong, Xingxiang
Ran, Kemeng
Liu, Guohui
Fang, Can
Wang, Yujun
AuthorAffiliation College of Computer and Information Science, Southwest University, Chongqing 400715, China; d13538@email.swu.edu.cn (X.D.); wangyjun@swu.edu.cn (Y.W.); rkm666@email.swu.edu.cn (K.R.); liu914904@email.swu.edu.cn (G.L.)
AuthorAffiliation_xml – name: College of Computer and Information Science, Southwest University, Chongqing 400715, China; d13538@email.swu.edu.cn (X.D.); wangyjun@swu.edu.cn (Y.W.); rkm666@email.swu.edu.cn (K.R.); liu914904@email.swu.edu.cn (G.L.)
Author_xml – sequence: 1
  givenname: Xingxiang
  orcidid: 0009-0003-9772-3431
  surname: Dong
  fullname: Dong, Xingxiang
– sequence: 2
  givenname: Yujun
  surname: Wang
  fullname: Wang, Yujun
– sequence: 3
  givenname: Can
  surname: Fang
  fullname: Fang, Can
– sequence: 4
  givenname: Kemeng
  orcidid: 0009-0007-5687-593X
  surname: Ran
  fullname: Ran, Kemeng
– sequence: 5
  givenname: Guohui
  surname: Liu
  fullname: Liu, Guohui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40218701$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v3CAQhlGVqvloD_0DFVIv7cEpXzaml8iKutmVUjVZpWeEAXtZ2WYDdqT8--JsskoqDiB4eGfmnTkFR4MfLACfMTqnVKAfkeSIE1yKd-AEM8KykhB09Op8DE5j3CJEKKXlB3DMUKI5widAL5a32Xp99xNWA1z1u-AfrIE3atzAm04NgxtaWHWtD27c9LDxAf72tessXPvajxGOHlb6fnLBwqVrN9ntpDo3Pj4pRLhQcbThI3jfqC7aT8_7Gfi7-HV3ucyu_1ytLqvrTDOOx0wjUxul0xKkLizHBlmCDEKGqLImNUZMGMFxTlmT55bzXHFrKVMWU4IFo2dgtdc1Xm3lLrhehUfplZNPFz60UoXR6c7KoiyYwEQXuiasNEwpwjjSghtMcqpQ0rrYa-2murdG22EMqnsj-vZlcBvZ-geJsRCY4Tmbb88Kwd9PNo6yd1HbLrlq_RQlTf1iBS04TujX_9Ctn8KQvJqpshQlLWfqfE-1KlXghsanwLNdxvZOp4loUl9kNbMoFUHShy-vazgk_9L9BHzfAzr4GINtDghGcp4seZgs-g_JLby8
Cites_doi 10.1109/TSMC.2021.3050960
10.1109/AICIT55386.2022.9930180
10.1109/SAUPEC/RobMech/PRASA52254.2021.9377014
10.1109/TCSI.2018.2882818
10.1109/CONIT55038.2022.9847869
10.1109/ICTech55460.2022.00037
10.1029/2020EA001498
10.1016/j.eswa.2022.119137
10.1109/TSSC.1968.300136
10.1109/NNICE61279.2024.10499018
10.1109/ITOEC53115.2022.9734323
10.1177/0278364911406761
10.3390/s24237812
10.1016/j.jksuci.2024.102146
10.1145/3478586.3478588
10.1117/12.3017521
10.1016/j.comcom.2019.10.014
10.1080/01691864.2020.1850349
10.1109/IRCE53649.2021.9570910
10.1016/j.engappai.2024.108246
10.1002/tee.23502
10.1080/0951192X.2017.1307526
10.1109/ICRA48506.2021.9561433
10.1016/j.eswa.2021.115457
10.1007/978-981-19-9195-0_25
10.1145/3477314.3507052
10.1109/ITAIC54216.2022.9836572
10.1109/CCDC52312.2021.9602203
10.1109/CVPR46437.2021.01350
10.1109/70.508439
10.1109/AICIT55386.2022.9930235
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25072189
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Proquest Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database



PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_6864912c6cb248d4aa2470c97d1253a0
PMC11991414
A838102532
40218701
10_3390_s25072189
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c471t-c0dbdacaca92b6e71d0e20d00d2a8b2b1049d971534f55e775a7ee34ae1321943
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:29:42 EDT 2025
Thu Aug 21 18:33:00 EDT 2025
Fri Jul 11 19:03:10 EDT 2025
Fri Jul 25 20:56:29 EDT 2025
Tue Jun 10 20:58:31 EDT 2025
Tue Apr 15 01:23:26 EDT 2025
Tue Jul 01 05:14:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords optimal path planning
sampling-based algorithms
path planning
rapidly explored random tree
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-c0dbdacaca92b6e71d0e20d00d2a8b2b1049d971534f55e775a7ee34ae1321943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0003-9772-3431
0009-0007-5687-593X
OpenAccessLink https://doaj.org/article/6864912c6cb248d4aa2470c97d1253a0
PMID 40218701
PQID 3188898381
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_6864912c6cb248d4aa2470c97d1253a0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11991414
proquest_miscellaneous_3189463671
proquest_journals_3188898381
gale_infotracacademiconefile_A838102532
pubmed_primary_40218701
crossref_primary_10_3390_s25072189
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-30
PublicationDateYYYYMMDD 2025-03-30
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-30
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Pan (ref_6) 2021; 69
Fan (ref_2) 2023; 213
Mohammed (ref_31) 2021; 35
He (ref_8) 2021; 52
ref_14
ref_33
ref_10
ref_30
Karaman (ref_22) 2011; 30
Aggarwal (ref_1) 2020; 149
ref_19
ref_18
ref_17
ref_16
ref_15
Liao (ref_32) 2021; 184
Darko (ref_11) 2022; 9
Kavraki (ref_13) 1996; 12
Koul (ref_5) 2019; 66
Li (ref_27) 2022; 17
ref_25
Wang (ref_24) 2024; 36
ref_23
Cui (ref_34) 2024; 133
ref_21
ref_20
Hart (ref_12) 1968; 4
Jin (ref_3) 2017; 30
ref_29
ref_28
ref_26
ref_9
ref_4
ref_7
References_xml – volume: 52
  start-page: 2757
  year: 2021
  ident: ref_8
  article-title: Asynchronous multithreading reinforcement-learning-based path planning and tracking for unmanned underwater vehicle
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2021.3050960
– ident: ref_20
  doi: 10.1109/AICIT55386.2022.9930180
– ident: ref_10
  doi: 10.1109/SAUPEC/RobMech/PRASA52254.2021.9377014
– volume: 66
  start-page: 1544
  year: 2019
  ident: ref_5
  article-title: Waypoint path planning with synaptic-dependent spike latency
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2018.2882818
– ident: ref_15
  doi: 10.1109/CONIT55038.2022.9847869
– ident: ref_29
  doi: 10.1109/ICTech55460.2022.00037
– volume: 9
  start-page: e2020EA001498
  year: 2022
  ident: ref_11
  article-title: A sampling-based path planning algorithm for improving observations in tropical cyclones
  publication-title: Earth Space Sci.
  doi: 10.1029/2020EA001498
– volume: 213
  start-page: 119137
  year: 2023
  ident: ref_2
  article-title: UAV trajectory planning based on bi-directional APF-RRT* algorithm with goal-biased
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119137
– volume: 4
  start-page: 100
  year: 1968
  ident: ref_12
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
  doi: 10.1109/TSSC.1968.300136
– ident: ref_17
  doi: 10.1109/NNICE61279.2024.10499018
– ident: ref_14
  doi: 10.1109/ITOEC53115.2022.9734323
– volume: 30
  start-page: 846
  year: 2011
  ident: ref_22
  article-title: Sampling-based algorithms for optimal motion planning
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364911406761
– ident: ref_23
  doi: 10.3390/s24237812
– ident: ref_18
– ident: ref_21
– volume: 36
  start-page: 102146
  year: 2024
  ident: ref_24
  article-title: IBPF-RRT*: An improved path planning algorithm with Ultra-low number of iterations and stabilized optimal path quality
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2024.102146
– ident: ref_25
  doi: 10.1145/3478586.3478588
– ident: ref_33
  doi: 10.1117/12.3017521
– volume: 149
  start-page: 270
  year: 2020
  ident: ref_1
  article-title: Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.10.014
– volume: 35
  start-page: 168
  year: 2021
  ident: ref_31
  article-title: RRT* N: An efficient approach to path planning in 3D for Static and Dynamic Environments
  publication-title: Adv. Robot.
  doi: 10.1080/01691864.2020.1850349
– ident: ref_28
  doi: 10.1109/IRCE53649.2021.9570910
– volume: 133
  start-page: 108246
  year: 2024
  ident: ref_34
  article-title: More Quickly-RRT*: Improved Quick Rapidly-exploring Random Tree Star algorithm based on optimized sampling point with better initial solution and convergence rate
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108246
– volume: 17
  start-page: 200
  year: 2022
  ident: ref_27
  article-title: Fast-RRT*: An improved motion planner for mobile robot in two-dimensional space
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.23502
– volume: 30
  start-page: 1301
  year: 2017
  ident: ref_3
  article-title: A novel path planning methodology for extrusion-based additive manufacturing of thin-walled parts
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2017.1307526
– ident: ref_7
  doi: 10.1109/ICRA48506.2021.9561433
– volume: 184
  start-page: 115457
  year: 2021
  ident: ref_32
  article-title: F-RRT*: An improved path planning algorithm with improved initial solution and convergence rate
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115457
– ident: ref_26
  doi: 10.1007/978-981-19-9195-0_25
– volume: 69
  start-page: 1129
  year: 2021
  ident: ref_6
  article-title: An improved artificial potential field method for path planning and formation control of the multi-UAV systems
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– ident: ref_9
  doi: 10.1145/3477314.3507052
– ident: ref_19
  doi: 10.1109/ITAIC54216.2022.9836572
– ident: ref_30
  doi: 10.1109/CCDC52312.2021.9602203
– ident: ref_4
  doi: 10.1109/CVPR46437.2021.01350
– volume: 12
  start-page: 566
  year: 1996
  ident: ref_13
  article-title: Probabilistic roadmaps for path planning in high-dimensional configuration spaces
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.508439
– ident: ref_16
  doi: 10.1109/AICIT55386.2022.9930235
SSID ssj0023338
Score 2.4434605
Snippet The Rapidly-exploring Random Tree Star (RRT*) algorithm, widely utilized for path planning, faces challenges, such as slow acquisition of feasible paths and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2189
SubjectTerms Autonomous vehicles
Efficiency
Genetic algorithms
Methods
optimal path planning
Optimization
path planning
Planning
rapidly explored random tree
Robots
sampling-based algorithms
Sensors
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAKM-FggxC4mTVr8RxL1WoWK2QimDVSnuL_EpbCZLSpAf-PTNJdrsrJJTb2trYnvHMN874G0I-ZhY5WYxlKricgb_WzMcoWfAm1HnttRsuhZ1-yxfn-usqW00Hbt2UVrm2iYOhjm3AM_JD0L2isAU4mOPr3wyrRuHX1amExn3yAKnLMKXLrO4CLgXx18gmpCC0P-zA3UPAgxXdt3zQQNX_r0He8ki72ZJb7mf-hDyecCMtR0Hvk3upeUoebbEJPiNhvvjBlsuzI1o2dDwsSJF-B4hH16WJaPnzAibVX_6iAFbpaevBKNBl69u-o31Ly4CJwYli9gcb6TX-DP_Q0blDSoXn5Hz-5exkwaYaCiyA2-lZ4NFHF-Cx0ufJiMiT5JHzKF3hpYdozEZrwO7pOsuSMZkzKSntEoSpwmr1guw1bZNeESqcEqIuRLIaYIdMzhkAa1H52rssSj4jH9arWl2PVBkVhBi49NVm6WfkM673pgOyWw8_tDcX1bRZqrzItRUy5MFLXUTtnNSGB2siwDHl4E2fUFoV7kEQCc5uuEoA40Q2q6pENQEwp-SMHKwFWk2bs6vuVGlG3m-aYVvhtxLXpPZ26GORS81An5ej_Ddj1oiLDIeWYkczdia129JcXQ7U3QIzzbTQr_8_rjfkocQ6w3j3kR-Qvf7mNr0F8NP7d4OG_wWNlQOn
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_n-aIP4vetnhJF8CmapmnTCCJVXBZhRZdbuLeQr94dnK3u9sD7751pt2WLPkrfmqFtZjJfzeQ3hLzKNGKyKM1Sb3MG_loyF4Jg3ilf5ZWTtjsUtvyaL9byy2l2ekCGHps7Bm7_mdphP6n15vLN71_XH0Dh32PGCSn72y24cUhkCn2D3ASHpFA_l3LcTBAppGE9qNCUfOKKOsT-v-3ynmOaFk3ueaH5XXJnFz7Sspf3PXIQ6_vk9h6o4APi54vvbLU6eUfLmvb_DGKg3yDSo0OHIlpenjWbi_b8B4WYlS4bB7aBrhrXtFvaNrT0WB8cKRaBsB5l47p7wpbOLSIrPCTr-eeTTwu2a6XAPHiflnkeXLAeLi1cHlUSeBQ8cB6ELZxwkJTpoBWYP1llWVQqsyrGVNoI2WqiZfqIHNZNHY8ITWyaJFWRRC0h-hDRWgUxW0hd5WwWBJ-RlwNXzc8eMcNApoGsNyPrZ-Qj8nskQJDr7kazOTM7nTF5kUudCJ97J2QRpLVCKu61ChCVpRbe9BqlZXBxgEhwdt2JAvhOBLUyZYHwZUAqZuR4EKgZlpgBa1YUGmlm5MU4DNqFWya2js1VR6MRUk0BzeNe_uM3SwyPFIeRYrIyJpOajtQX5x2Cd4IFZzKRT_4HG56SWwKbEuNBSX5MDtvNVXwGkVLrnnd68Adh4hFq
  priority: 102
  providerName: Scholars Portal
Title FHQ-RRT: An Improved Path Planning Algorithm for Mobile Robots to Acquire High-Quality Paths Faster
URI https://www.ncbi.nlm.nih.gov/pubmed/40218701
https://www.proquest.com/docview/3188898381
https://www.proquest.com/docview/3189463671
https://pubmed.ncbi.nlm.nih.gov/PMC11991414
https://doaj.org/article/6864912c6cb248d4aa2470c97d1253a0
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtemkPoenTabKopdCTiS3LltSbU-IuhQ3pksDehF5OAq1dss6h_74ztnfx0kMuwaCDNRhpxtLMZ4--IeRzrpCTRag4c6aIwV_z2HrPYmeFq4vactMfClucF_Mr_mOVryalvjAnbKAHHhR3UsiCq5S5wlnGpefGMC4Sp4QH15yZHq2Dz9uAqRFqZYC8Bh6hDED9yRocPUAdrOU-8T49Sf__W_HEF-3mSU4cT_WS7I8RIy2HkR6QJ6F5RV5MeARfE1fNf8bL5eVXWjZ0-EwQPL2A4I5uihLR8td1e3fb3fymEKbSRWthO6DL1rbdmnYtLR2mBAeKeR_xQKzxt3_CmlYGyRTekKvq7PLbPB6rJ8QOHE4Xu8RbbxxcitkiiNQngSU-STwz0jILOEx5JWDH43WeByFyI0LIuAkAUFPFs7dkr2mb8J7Q1GRpWss0KA4BBwvGCAjTfGZra3LPkoh82mhV_xlIMjSAC1S93qo-Iqeo760A8lr3N8DaerS2fsjaEfmC1tK4-sAkOLv-EAGME3msdCmRsQxEWUSONgbV47Jca9jApFQoE5GP225YUPiXxDShve9lFLKoCZB5N9h_O2aOEZFIoEfuvBk7k9rtaW5vetLuFHPMeMoPH0MNH8hzhnWI8WxkckT2urv7cAzBUWdn5KlYCWhl9X1Gnp2enV8sZ_3agHbB5T83aw8v
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeAAeEN8UBhgE4sma4zhxjIRQ-ag6tk5QdVLfgr-yTRrJWDKh_VP8jdwlTdcKibepb7GVOnfnu98l598R8jrRyMmiNIudSRnEa8ms94I5q1yRFlaa9lDYZD8dH8iv82S-Qf70Z2GwrLL3ia2j9pXDd-TbYHtZpjMIMB9OfzHsGoVfV_sWGp1Z7IaL35Cy1e93PoN-3wgx-jL7NGaLrgLMgSNumOPeeuPgp4VNg4o8D4J7zr0wmRUW8hPttQJPIIskCUolRoUQSxMgcYOUP4b7XiPXIfBy3FFqfpngxZDvdexFcaz5dg3wAhIs7CC_EvPa1gD_BoCVCLhenbkS7kZ3yO0FTqXDzrDuko1Q3iO3VtgL7xM3Gn9n0-nsHR2WtHs5ETz9BpCS9q2Q6PDkEITYHP2kAI7ppLLghOi0slVT06aiQ4eFyIFitQnr6Dwu2jvUdGSQwuEBObgS6T4km2VVhseERiaOoiKLgpYAc0QwRgE49LEtrEm84APyqpdqftpRc-SQ0qDo86XoB-Qjyns5Adm02wvV2WG-2Jx5mqVSR8KlzgqZeWmMkIo7rTzAv9jAP71FbeW450El-HTt0QVYJ7Jn5UM0SwCPsRiQrV6h-cIZ1Pml6Q7Iy-UwbGP8NmPKUJ23czRytymY86jT_3LNEnGY4jCSrVnG2kOtj5THRy1VeISVbTKST_6_rhfkxng22cv3dvZ3n5KbAnsc47lLvkU2m7Pz8AyAV2Oft9ZOyY-r3l5_AfbAQMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5qBdEH8e5q1VEUn8ImM5NMRhCJ1mVrbalLC_uWzi2t0Ca1SZH-NX-d5-Sy3UXwrexbZshOzpzLd5Iz3yHkbayQk0WqgFudBBCvRWCcY4E10hZJYYRuD4Xt7CbTA_FtHs_XyJ_hLAyWVQ4-sXXUrrL4jnwMupemKoUAMy76soi9zcmns18BdpDCL61DO41ORbb95W9I3-qPW5uw1-8Ym3zd_zIN-g4DgQWn3AQ2dMZpCz_FTOJl5ELPQheGjunUMAO5inJKglcQRRx7KWMtvedCe0jiIP3ncN8b5KbkcYQ2JudXyR6H3K9jMuJcheMaoAYkW9hNfin-tW0C_g0GS9FwtVJzKfRN7pG7PWalWadk98maLx-QO0tMhg-JnUx_BLPZ_gealbR7UeEd3QN4SYe2SDQ7OQIhNsenFIAy3akMOCQ6q0zV1LSpaGaxKNlTrDwJOmqPy_YONZ1opHN4RA6uRbqPyXpZlf4poZHmUVSkkVcCIA_zWksAio6bwujYsXBE3gxSzc86mo4c0hsUfb4Q_Yh8RnkvJiCzdnuhOj_Ke0PNkzQRKmI2sYaJ1AmtmZChVdIBFOQa_uk97laO9g9bgk_XHmOAdSKTVp6higKQ5GxENoYNzXvHUOdXajwirxfDYNL4nUaXvrpo5yjkcZMw50m3_4s1C8RkMoSRdEUzVh5qdaT8edzShkdY5SYi8ez_63pFboFh5d-3drefk9sM2x3jEcxwg6w35xf-BWCwxrxslZ2Sw-u2rr_OjkT6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FHQ-RRT%3A+An+Improved+Path+Planning+Algorithm+for+Mobile+Robots+to+Acquire+High-Quality+Paths+Faster&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xingxiang+Dong&rft.au=Yujun+Wang&rft.au=Can+Fang&rft.au=Kemeng+Ran&rft.date=2025-03-30&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=7&rft.spage=2189&rft_id=info:doi/10.3390%2Fs25072189&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6864912c6cb248d4aa2470c97d1253a0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon