Recommendations for simulating microparticle deposition at conditions similar to the upper airways with two-equation turbulence models

The development of a CFD model, from initial geometry to experimentally validated results with engineering insight, can be a time-consuming process that often requires several iterations of meshing and solver set-up. Applying a set of guidelines in the early stages can help to streamline the process...

Full description

Saved in:
Bibliographic Details
Published inJournal of aerosol science Vol. 119; pp. 31 - 50
Main Authors Bass, Karl, Worth Longest, P.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of a CFD model, from initial geometry to experimentally validated results with engineering insight, can be a time-consuming process that often requires several iterations of meshing and solver set-up. Applying a set of guidelines in the early stages can help to streamline the process and improve consistency between different models. The objective of this study was to determine both mesh and CFD solution parameters that enable the accurate simulation of microparticle deposition under flow conditions consistent with the upper respiratory airways including turbulent flow. A 90° bend geometry was used as a characteristic model that occurs throughout the airways and for which high-quality experimental aerosol deposition data is available in the transitional and turbulent flow regimes. Four meshes with varying degrees of near-wall resolution were compared, and key solver settings were applied to determine the parameters that minimize sensitivity to the near-wall (NW) mesh. The Low Reynolds number (LRN) k-ω model was used to resolve the turbulence field, which is a numerically efficient two-equation turbulence model, but has recently been considered overly simplistic. Some recent studies have used more complex turbulence models, such as Large Eddy Simulation (LES), to overcome the perceived weaknesses of two-equation models. Therefore, the secondary objective was to determine whether the more computationally efficient LRN k-ω model was capable of providing deposition results that were comparable to LES. Results show how NW mesh sensitivity is reduced through application of the Green-Gauss Node-based gradient discretization scheme and physically realistic near-wall corrections. Using the newly recommended meshing parameters and solution guidelines gives an excellent match to experimental data. Furthermore, deposition data from the LRN k-ω model compares favorably with LES results for the same characteristic geometry. In summary, this study provides a set of meshing and solution guidelines for simulating aerosol deposition in transitional and turbulent flows found in the upper respiratory airways using the numerically efficient LRN k-ω approach. [Display omitted] •Development and validation of CFD meshing/solution guidelines for aerosol deposition.•Sensitivity to near-wall mesh resolution is reduced with newly recommended parameters.•Numerical results compare well with experimental data for a characteristic geometry.•Computationally efficient LRN k-ω compares well with LES data for the same model.
AbstractList The development of a CFD model, from initial geometry to experimentally validated results with engineering insight, can be a time-consuming process that often requires several iterations of meshing and solver set-up. Applying a set of guidelines in the early stages can help to streamline the process and improve consistency between different models. The objective of this study was to determine both mesh and CFD solution parameters that enable the accurate simulation of microparticle deposition under flow conditions consistent with the upper respiratory airways including turbulent flow. A 90° bend geometry was used as a characteristic model that occurs throughout the airways and for which high-quality experimental aerosol deposition data is available in the transitional and turbulent flow regimes. Four meshes with varying degrees of near-wall resolution were compared, and key solver settings were applied to determine the parameters that minimize sensitivity to the near-wall (NW) mesh. The Low Reynolds number (LRN) k-ω model was used to resolve the turbulence field, which is a numerically efficient two-equation turbulence model, but has recently been considered overly simplistic. Some recent studies have used more complex turbulence models, such as Large Eddy Simulation (LES), to overcome the perceived weaknesses of two-equation models. Therefore, the secondary objective was to determine whether the more computationally efficient LRN k-ω model was capable of providing deposition results that were comparable to LES. Results show how NW mesh sensitivity is reduced through application of the Green-Gauss Node-based gradient discretization scheme and physically realistic near-wall corrections. Using the newly recommended meshing parameters and solution guidelines gives an excellent match to experimental data. Furthermore, deposition data from the LRN k-ω model compares favorably with LES results for the same characteristic geometry. In summary, this study provides a set of meshing and solution guidelines for simulating aerosol deposition in transitional and turbulent flows found in the upper respiratory airways using the numerically efficient LRN k-ω approach. [Display omitted] •Development and validation of CFD meshing/solution guidelines for aerosol deposition.•Sensitivity to near-wall mesh resolution is reduced with newly recommended parameters.•Numerical results compare well with experimental data for a characteristic geometry.•Computationally efficient LRN k-ω compares well with LES data for the same model.
The development of a CFD model, from initial geometry to experimentally validated result with engineering insight, can be a time-consuming process that often requires several iterations of meshing and solver set-up. Applying a set of guidelines in the early stages can help to streamline the process and improve consistency between different models. The objective of this study was to determine both mesh and CFD solution parameters that enable the accurate simulation of microparticle deposition under flow conditions consistent with the upper respiratory airways including turbulent flow. A 90° bend geometry was used as a characteristic model that occurs throughout the airways and for which high-quality experimental aerosol deposition data is available in the transitional and turbulent flow regimes. Four meshes with varying degrees of near-wall resolution were compared, and key solver settings were applied to determine the parameters that minimize sensitivity to the near-wall (NW) mesh. The Low Reynolds number (LRN) k-ω model was used to resolve the turbulence field, which is a numerically efficient two-equation turbulence model, but has recently been considered overly simplistic. Some recent studies have used more complex turbulence models, such as Large Eddy Simulation (LES), to overcome the perceived weaknesses of two-equation models. Therefore, the secondary objective was to determine whether the more computationally efficient LRN k-ω model was capable of providing deposition results that were comparable to LES. Results show how NW mesh sensitivity is reduced through application of the Green-Gauss Node-based gradient discretization scheme and physically realistic near-wall corrections. Using the newly recommended meshing parameters and solution guidelines gives an excellent match to experimental data. Furthermore, deposition data from the LRN k-ω model compares favorably with LES results for the same characteristic geometry. In summary, this study provides a set of meshing and solution guidelines for simulating aerosol deposition in transitional and turbulent flows found in the upper respiratory airways using the numerically efficient LRN k-ω approach.
Author Bass, Karl
Worth Longest, P.
AuthorAffiliation 1 Department of Mechanical Engineering, Virginia Commonwealth University, Richmond, VA
2 Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA
AuthorAffiliation_xml – name: 2 Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA
– name: 1 Department of Mechanical Engineering, Virginia Commonwealth University, Richmond, VA
Author_xml – sequence: 1
  givenname: Karl
  surname: Bass
  fullname: Bass, Karl
  email: bassk@vcu.edu
  organization: Department of Mechanical Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA 23284-3015, USA
– sequence: 2
  givenname: P.
  surname: Worth Longest
  fullname: Worth Longest, P.
  email: pwlongest@vcu.edu
  organization: Department of Mechanical Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA 23284-3015, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30349146$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1qFTEcxYNU7G31FUqWbmbMx3xlI0qpVigIouuQSf7pzWUmmSaZXvoCPre5vW3RlasQ8jvnhHPO0IkPHhC6oKSmhHYfdvVOQQxJu5oROtSE1YT0r9CGDr2oqOiaE7QhhNFqaAk7RWcp7UghBG3foFNOeCNo023Q7x-gwzyDNyq74BO2IeLk5nUqd3-LZ6djWFTMTk-ADSwhuQOIVcY6eOOOqqJwk4o4B5y3gNdlgYiVi3v1kPDe5S3O-1DB3fqYgvMax3UCrwHPwcCU3qLXVk0J3j2d5-jXl6ufl9fVzfev3y4_31S66WmuRtuLzigwumWWjHS0ALwZyGjGhhneEsqVFtTYoR0E9IL0rHBmsI3lg1Wan6OPR99lHediAz5HNcklulnFBxmUk_--eLeVt-FedlS0nA7F4P2TQQx3K6QsZ5c0TJPyENYkGWWdKL3zvqDdES0NphTBvsRQIg8jyp18HlEeRpSEyTJREV78_ckX2fNqBfh0BEpzcO8gymJxaNO4CDpLE9z_Mv4Aobi5zg
CitedBy_id crossref_primary_10_1007_s11095_020_02806_y
crossref_primary_10_1007_s11095_019_2644_1
crossref_primary_10_1016_j_cmpb_2020_105627
crossref_primary_10_1208_s12248_018_0281_y
crossref_primary_10_37394_232013_2020_15_22
crossref_primary_10_1016_j_addr_2020_09_007
crossref_primary_10_1063_5_0134611
crossref_primary_10_3389_fenrg_2024_1400763
crossref_primary_10_1016_j_jaerosci_2021_105844
crossref_primary_10_1016_j_jaerosci_2021_105801
crossref_primary_10_1115_1_4056967
crossref_primary_10_1016_j_jbiomech_2019_109434
crossref_primary_10_1208_s12249_019_1535_4
crossref_primary_10_1007_s11095_022_03180_7
crossref_primary_10_1016_j_jaerosci_2023_106262
crossref_primary_10_1089_jamp_2018_1490
crossref_primary_10_1016_j_medntd_2023_100240
crossref_primary_10_32604_cmes_2021_015549
crossref_primary_10_1016_j_jaerosci_2020_105692
crossref_primary_10_1208_s12249_020_01667_3
crossref_primary_10_1002_cjce_25250
crossref_primary_10_1016_j_powtec_2020_01_059
crossref_primary_10_1080_02786826_2021_2011830
crossref_primary_10_1208_s12249_022_02259_z
crossref_primary_10_1007_s11095_020_02923_8
crossref_primary_10_1016_j_jaerosci_2021_105851
crossref_primary_10_1016_j_partic_2024_04_006
crossref_primary_10_1080_17425247_2019_1551875
crossref_primary_10_1177_19458924221137982
crossref_primary_10_1080_10255842_2020_1819256
crossref_primary_10_1016_j_jaerosci_2024_106351
crossref_primary_10_1063_5_0169775
crossref_primary_10_1155_2021_6683828
crossref_primary_10_3390_pr10071230
crossref_primary_10_1007_s00707_022_03377_2
crossref_primary_10_1080_02786826_2019_1696014
crossref_primary_10_1007_s11095_020_02889_7
Cites_doi 10.1016/j.xphs.2015.11.027
10.1016/S0006-355X(99)80011-0
10.1016/S0021-8502(03)00381-1
10.1016/j.jaerosci.2003.09.002
10.1080/02786820701607027
10.1089/jamp.2015.1252
10.1016/j.jaerosci.2007.03.003
10.1145/800186.810616
10.1002/ppsc.19900070135
10.1016/S0301-9322(98)00053-6
10.1089/jamp.2012.0989
10.1016/j.jbiomech.2006.01.006
10.1016/0045-7930(94)90023-X
10.1152/japplphysiol.01233.2007
10.1016/j.medengphy.2006.05.012
10.1016/j.jaerosci.2008.06.002
10.1016/0021-9290(83)90096-9
10.1007/s10439-012-0603-7
10.1007/s11095-015-1695-1
10.1007/s11095-012-0691-y
10.1089/jam.2006.19.290
10.1089/jamp.2008.0692
10.1007/s10439-006-9245-y
10.1016/j.jaerosci.2006.01.013
10.1016/j.jaerosci.2013.01.008
10.1115/1.1798055
10.1016/j.compfluid.2007.05.001
10.1089/jamp.2015.1215
10.1115/1.4024630
10.1016/j.jaerosci.2011.07.005
10.1115/1.1589774
10.1016/0021-9290(84)90123-4
10.1016/j.jaerosci.2008.03.008
10.1016/0301-9322(82)90013-1
10.1080/02786820701203223
10.1115/1.3641728
10.1089/jamp.2008.0708
10.1007/BF00384062
10.1016/j.jaerosci.2014.08.003
10.1002/cnm.1447
10.1080/02786826.2012.708799
10.1089/jamp.2015.1281
10.1080/02786828708959166
10.1016/j.compfluid.2007.07.021
10.1016/j.resp.2007.02.006
10.1016/S0021-8502(99)00547-9
10.1002/lary.20585
10.1080/02786826.2010.517578
10.2514/2.2044
10.1016/0021-9290(83)90065-9
10.1016/j.jaerosci.2006.09.008
10.1080/089583798197637
10.1146/annurev.fl.28.010196.000303
10.1016/S0301-9322(02)00131-3
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.jaerosci.2018.02.007
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Engineering
EISSN 1879-1964
EndPage 50
ExternalDocumentID 10_1016_j_jaerosci_2018_02_007
30349146
S0021850217304627
Genre Journal Article
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD087339
– fundername: NHLBI NIH HHS
  grantid: R01 HL107333
GroupedDBID ---
--K
--M
-~X
.DC
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SPD
SSE
SSJ
SSZ
T5K
TN5
WUQ
ZMT
ZY4
~02
~G-
AAXKI
AFJKZ
AKRWK
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c471t-bf796daedc52f0b1bfee3480bdb42d35013ac91df8589e790722f0d8f4f38fac3
IEDL.DBID AIKHN
ISSN 0021-8502
IngestDate Tue Sep 17 21:15:09 EDT 2024
Fri Aug 16 23:25:08 EDT 2024
Thu Sep 26 19:21:39 EDT 2024
Sat Sep 28 08:39:36 EDT 2024
Fri Feb 23 02:29:00 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Meshing guidelines
Reynolds-averaged Navier Stokes (RANS) equations
Solution guidelines
Low Reynolds number (LRN) turbulence model
CFD modeling
Aerosol deposition
Large eddy simulation (LES)
Best practices
solution guidelines
aerosol deposition
meshing guidelines
best practices
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-bf796daedc52f0b1bfee3480bdb42d35013ac91df8589e790722f0d8f4f38fac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0021850217304627
PMID 30349146
PQID 2126900237
PQPubID 23479
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6195318
proquest_miscellaneous_2126900237
crossref_primary_10_1016_j_jaerosci_2018_02_007
pubmed_primary_30349146
elsevier_sciencedirect_doi_10_1016_j_jaerosci_2018_02_007
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of aerosol science
PublicationTitleAlternate J Aerosol Sci
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Stapleton, Guentsch, Hoskinson, Finlay (bib44) 2000
Ball, Uddin, Pollard (bib6) 2008
Walenga, Tian, Hindle, Yelverton, Dodson, Longest (bib52) 2014
Breuer, Baytekin, Matida (bib8) 2006
Zhang, Kleinstreuer (bib59) 2003
Pui, Romay-Novas, Liu (bib37) 1987
Ryval, Straatman, Steinman (bib39) 2004
Xi, Longest (bib58) 2007
Lee, Durst (bib22) 1982
Spalding (bib43) 1961
Varghese, Frankel (bib49) 2003
Longest, Tian, Khajeh-Hosseini-Dalasm, Hindle (bib29) 2016
Wilcox (bib55) 1998
Longest, Vinchurkar (bib31) 2007
Vinchurkar, Longest (bib50) 2008
Longest, Hindle, Das Choudhuri, Xi (bib27) 2008
Rygg, Longest (bib38) 2016
Xi, Longest, Martonen (bib56) 2008
Matida, Finlay, Grgic (bib36) 2004
Ahmed, Giddens (bib1) 1983
Crowe, Troutt, Chung (bib10) 1996
Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In
Lin, Tawhai, McLennan, Hoffman (bib23) 2007
.
Longest, Tian, Walenga, Hindle (bib30) 2012
Lambert, O'Shaughnessy, Tawhai, Hoffman, Lin (bib21) 2011
Kleinstreuer, Zhang (bib20) 2003
Sommerfeld (bib42) 1990
Blasius, H. (1913). Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten.
Longest, Hindle, Das Choudhuri, Byron (bib26) 2007
Chen, Lee, Chong, Wang (bib9) 2009
Walenga, Longest (bib51) 2016
Ahmed, Giddens (bib2) 1983
Delvadia, Wei, Longest, Venitz, Byron (bib13) 2016
Jayaraju, Brouns, Lacor, Belkassem, Verbanck (bib18) 2008
Longest, Hindle (bib24) 2009
(14.5ed.). Canonsburg, PA: ANSYS.
Tian, Longest, Su, Walenga, Hindle (bib48) 2011
Ghalichi, Deng, Champlain, Douville, King, Guidoin (bib14) 1998
Jin, Fan, Zeng, Cen (bib19) 2007
DeHaan, Finlay (bib11) 2004
Schlichting, H. (1987).
Xi, Berlinski, Zhou, Greenberg, Ou (bib57) 2012
Martonen, Musante, Segal, Schroeter, Hwang, Dolovich (bib34) 2000
Walenga, Tian, Longest (bib53) 2013
Subramaniam, Richardson, Morgan, Kimbell, Guilmette (bib45) 1998
Wang, James (bib54) 1999
ANSYS (2012). ANSYS FLUENT Theory
Longest, Vinchurkar (bib32) 2007
Jayaraju, Bronus, Verbanck, Lacor (bib17) 2007
Longest, Tian, Delvadia, Hindle (bib28) 2012
Delvadia, Longest, Hindle, Byron (bib12) 2013
Matida, Finlay, Breuer, Lange (bib35) 2006
Hjelmfelt, Mockros (bib15) 1966
Tian, Hindle, Lee, Longest (bib47) 2015
Zhang, Kleinstreuer (bib60) 2011
Longest, Hindle, Das Choudhuri (bib25) 2009
Longest, Xi (bib33) 2007
Anderson, Bonhaus (bib4) 1994
Ahmed, Giddens (bib3) 1984
Holbrook, Longest (bib16) 2013
Tennekes, Lumley (bib46) 1972
Jayaraju (10.1016/j.jaerosci.2018.02.007_bib18) 2008; 39
Anderson (10.1016/j.jaerosci.2018.02.007_bib4) 1994; 23
Hjelmfelt (10.1016/j.jaerosci.2018.02.007_bib15) 1966; 16
Longest (10.1016/j.jaerosci.2018.02.007_bib28) 2012; 46
Holbrook (10.1016/j.jaerosci.2018.02.007_bib16) 2013; 59
Longest (10.1016/j.jaerosci.2018.02.007_bib24) 2009; 22
Chen (10.1016/j.jaerosci.2018.02.007_bib9) 2009; 119
Tian (10.1016/j.jaerosci.2018.02.007_bib47) 2015; 32
Ahmed (10.1016/j.jaerosci.2018.02.007_bib2) 1983; 16
Matida (10.1016/j.jaerosci.2018.02.007_bib36) 2004; 35
Zhang (10.1016/j.jaerosci.2018.02.007_bib59) 2003; 41
Stapleton (10.1016/j.jaerosci.2018.02.007_bib44) 2000; 31
Walenga (10.1016/j.jaerosci.2018.02.007_bib52) 2014; 78
Sommerfeld (10.1016/j.jaerosci.2018.02.007_bib42) 1990; 7
Lambert (10.1016/j.jaerosci.2018.02.007_bib21) 2011; 45
Pui (10.1016/j.jaerosci.2018.02.007_bib37) 1987; 7
Lee (10.1016/j.jaerosci.2018.02.007_bib22) 1982; 8
Rygg (10.1016/j.jaerosci.2018.02.007_bib38) 2016; 29
Crowe (10.1016/j.jaerosci.2018.02.007_bib10) 1996; 28
Xi (10.1016/j.jaerosci.2018.02.007_bib58) 2007; 35
10.1016/j.jaerosci.2018.02.007_bib5
Ghalichi (10.1016/j.jaerosci.2018.02.007_bib14) 1998; 35
10.1016/j.jaerosci.2018.02.007_bib7
Longest (10.1016/j.jaerosci.2018.02.007_bib26) 2007; 41
Longest (10.1016/j.jaerosci.2018.02.007_bib29) 2016; 29
10.1016/j.jaerosci.2018.02.007_bib41
Walenga (10.1016/j.jaerosci.2018.02.007_bib53) 2013; 135
10.1016/j.jaerosci.2018.02.007_bib40
Vinchurkar (10.1016/j.jaerosci.2018.02.007_bib50) 2008; 37
Longest (10.1016/j.jaerosci.2018.02.007_bib30) 2012; 29
Tennekes (10.1016/j.jaerosci.2018.02.007_bib46) 1972
Walenga (10.1016/j.jaerosci.2018.02.007_bib51) 2016; 105
Xi (10.1016/j.jaerosci.2018.02.007_bib57) 2012; 40
Ahmed (10.1016/j.jaerosci.2018.02.007_bib1) 1983; 16
Spalding (10.1016/j.jaerosci.2018.02.007_bib43) 1961; 28
Longest (10.1016/j.jaerosci.2018.02.007_bib31) 2007; 29
Breuer (10.1016/j.jaerosci.2018.02.007_bib8) 2006; 37
Jin (10.1016/j.jaerosci.2018.02.007_bib19) 2007; 38
Ball (10.1016/j.jaerosci.2018.02.007_bib6) 2008; 37
Tian (10.1016/j.jaerosci.2018.02.007_bib48) 2011; 42
Longest (10.1016/j.jaerosci.2018.02.007_bib27) 2008; 39
Ryval (10.1016/j.jaerosci.2018.02.007_bib39) 2004; 126
Matida (10.1016/j.jaerosci.2018.02.007_bib35) 2006; 19
Longest (10.1016/j.jaerosci.2018.02.007_bib33) 2007; 41
Subramaniam (10.1016/j.jaerosci.2018.02.007_bib45) 1998; 10
Longest (10.1016/j.jaerosci.2018.02.007_bib32) 2007; 40
Ahmed (10.1016/j.jaerosci.2018.02.007_bib3) 1984; 17
Delvadia (10.1016/j.jaerosci.2018.02.007_bib12) 2013; 26
Martonen (10.1016/j.jaerosci.2018.02.007_bib34) 2000; 45
Wilcox (10.1016/j.jaerosci.2018.02.007_bib55) 1998
Wang (10.1016/j.jaerosci.2018.02.007_bib54) 1999; 22
Kleinstreuer (10.1016/j.jaerosci.2018.02.007_bib20) 2003; 29
DeHaan (10.1016/j.jaerosci.2018.02.007_bib11) 2004; 35
Delvadia (10.1016/j.jaerosci.2018.02.007_bib13) 2016; 29
Longest (10.1016/j.jaerosci.2018.02.007_bib25) 2009; 22
Jayaraju (10.1016/j.jaerosci.2018.02.007_bib17) 2007; 38
Zhang (10.1016/j.jaerosci.2018.02.007_bib60) 2011; 27
Lin (10.1016/j.jaerosci.2018.02.007_bib23) 2007; 157
Varghese (10.1016/j.jaerosci.2018.02.007_bib49) 2003; 125
Xi (10.1016/j.jaerosci.2018.02.007_bib56) 2008; 104
References_xml – start-page: 091010
  year: 2013
  ident: bib53
  article-title: Development of characteristic upper tracheobronchial airway models for testing pharmaceutical aerosol delivery
  publication-title: ASME Journal of Biomechanical Engineering
  contributor:
    fullname: Longest
– start-page: 1407
  year: 2006
  end-page: 1428
  ident: bib8
  article-title: Prediction of aerosol deposition in 90° bends using LES and an efficient Lagrangian tracking method
  publication-title: Journal of Aerosol Science
  contributor:
    fullname: Matida
– start-page: 301
  year: 1987
  end-page: 315
  ident: bib37
  article-title: Experimental study of particle deposition in bends of circular cross section
  publication-title: Aerosol Science and Technology
  contributor:
    fullname: Liu
– year: 1998
  ident: bib55
  publication-title: Turbulence modeling for CFD
  contributor:
    fullname: Wilcox
– start-page: 560
  year: 2007
  end-page: 581
  ident: bib58
  article-title: Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway
  publication-title: Annals of Biomedical Engineering
  contributor:
    fullname: Longest
– start-page: 1
  year: 2004
  end-page: 19
  ident: bib36
  article-title: Improved numerical simulation of aerosol deposition in an idealized mouth-throat
  publication-title: Journal of Aerosol Science
  contributor:
    fullname: Grgic
– start-page: 145
  year: 2013
  end-page: 156
  ident: bib12
  article-title: In vitro tests for aerosol deposition. III: Effect of inhaler insertion angle on aerosol deposition
  publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery
  contributor:
    fullname: Byron
– start-page: 572
  year: 2008
  end-page: 591
  ident: bib27
  article-title: Comparison of ambient and spray aerosol deposition in a standard induction port and more realistic mouth-throat geometry
  publication-title: Journal of Aerosol Science
  contributor:
    fullname: Xi
– start-page: 551
  year: 1999
  end-page: 558
  ident: bib54
  article-title: On the effect of anisotropy on the turbulent dispersion and deposition of small particles
  publication-title: International Journal of Multiphase Flowing
  contributor:
    fullname: James
– start-page: 3170
  year: 2015
  end-page: 3187
  ident: bib47
  article-title: Validating CFD predictions of pharmaceutical aerosol deposition with in vivo data
  publication-title: Pharmaceutical Research
  contributor:
    fullname: Longest
– start-page: 831
  year: 2003
  end-page: 840
  ident: bib59
  article-title: Low-Reynolds-number turbulent flows in locally constricted conduits: A comparison study
  publication-title: AIAA Journal
  contributor:
    fullname: Kleinstreuer
– start-page: 1730
  year: 2009
  end-page: 1736
  ident: bib9
  article-title: Assessment of septal deviation effects on nasal air flow: A computational fluid dynamics model
  publication-title: Laryngoscope
  contributor:
    fullname: Wang
– start-page: 67
  year: 2009
  end-page: 84
  ident: bib25
  article-title: Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry
  publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery
  contributor:
    fullname: Das Choudhuri
– start-page: 196
  year: 2016
  end-page: 206
  ident: bib13
  article-title: In vitro tests for aerosol deposition. IV: Simulating variations in human breath profiles for realistic DPI testing
  publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery
  contributor:
    fullname: Byron
– start-page: 1930
  year: 2011
  end-page: 1950
  ident: bib60
  article-title: Laminar-to-turbulent fluid-nanoparticle dynamics simulations: Model comparisons and nanoparticle-deposition applications
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
  contributor:
    fullname: Kleinstreuer
– start-page: 309
  year: 2004
  end-page: 331
  ident: bib11
  article-title: Predicting extrathoracic deposition from dry powder inhalers
  publication-title: Journal of Aerosol Science
  contributor:
    fullname: Finlay
– start-page: 281
  year: 1998
  end-page: 294
  ident: bib14
  article-title: Low Reynolds number turbulence modeling of blood flow in arterial stenoses
  publication-title: Biorheology
  contributor:
    fullname: Guidoin
– start-page: 271
  year: 2003
  end-page: 289
  ident: bib20
  article-title: Laminar-to-turbulent fluid-particle flows in a human airway model
  publication-title: International Journal Of Multiphase Flowing
  contributor:
    fullname: Zhang
– start-page: 99
  year: 2009
  end-page: 112
  ident: bib24
  article-title: Evaluation of the Respimat Soft Mist inhaler using a concurrent CFD and in vitro approach
  publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery
  contributor:
    fullname: Hindle
– start-page: 416
  year: 2016
  end-page: 431
  ident: bib38
  article-title: Absorption and clearance of pharmaceutical aerosols in the human nose: Development of a CFD model
  publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery
  contributor:
    fullname: Longest
– start-page: 461
  year: 2016
  end-page: 481
  ident: bib29
  article-title: Validating whole-airway CFD predictions of DPI aerosol deposition at multiple flow rates
  publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery
  contributor:
    fullname: Hindle
– start-page: 955
  year: 1983
  end-page: 963
  ident: bib1
  article-title: Flow disturbance measurements through a constricted tube at moderate Reynolds-numbers
  publication-title: Journal of Biomechanics
  contributor:
    fullname: Giddens
– start-page: 11
  year: 2011
  end-page: 25
  ident: bib21
  article-title: Regional deposition of particles in an image-based airway model: Large-eddy simulation and left-right lung ventilation asymmetry
  publication-title: Aerosol Science and Technology
  contributor:
    fullname: Lin
– start-page: 11
  year: 2014
  end-page: 29
  ident: bib52
  article-title: Variability in nose-to-lung aerosol delivery
  publication-title: Journal of Aerosol Science
  contributor:
    fullname: Longest
– start-page: 1
  year: 1994
  end-page: 21
  ident: bib4
  article-title: An implicit upwind algorithm for computing turbulent flows on unstructured grids
  publication-title: Computers & Fluids
  contributor:
    fullname: Bonhaus
– start-page: 11
  year: 1996
  end-page: 43
  ident: bib10
  article-title: Numerical models for two-phase turbulent flows
  publication-title: Annual Review of Fluid Mechanics
  contributor:
    fullname: Chung
– start-page: 625
  year: 2004
  end-page: 635
  ident: bib39
  article-title: Two-equation turbulence modeling of pulsatile flow in a stenosed tube
  publication-title: Journal of Biomechanical Engineering-Transactions of the Asme
  contributor:
    fullname: Steinman
– start-page: 317
  year: 2008
  end-page: 331
  ident: bib50
  article-title: Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics
  publication-title: Computers and Fluids
  contributor:
    fullname: Longest
– start-page: 862
  year: 2008
  end-page: 875
  ident: bib18
  article-title: Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth-throat
  publication-title: Aerosol Science
  contributor:
    fullname: Verbanck
– start-page: 952
  year: 2007
  end-page: 973
  ident: bib26
  article-title: Numerical simulations of capillary aerosol generation: CFD model development and comparisons with experimental data
  publication-title: Aerosol Science and Technology
  contributor:
    fullname: Byron
– start-page: 6
  year: 2013
  end-page: 21
  ident: bib16
  article-title: Validating CFD predictions of highly localized aerosol deposition in airway models: In vitro data and effects of surface properties
  publication-title: Journal of Aerosol Science
  contributor:
    fullname: Longest
– start-page: 2579
  year: 2012
  end-page: 2595
  ident: bib57
  article-title: Breathing resistance and ultrafine particle deposition in nasal-laryngeal airways of a newborn, an infant, a child, and an adult
  publication-title: Annals of Biomedical Engineering
  contributor:
    fullname: Ou
– start-page: 781
  year: 2011
  end-page: 799
  ident: bib48
  article-title: Development of a stochastic individual path (SIP) model for predicting the tracheobronchial deposition of pharmaceutical aerosols: Effects of transient inhalation and sampling the airways
  publication-title: Journal of Aerosol Science
  contributor:
    fullname: Hindle
– start-page: 1761
  year: 2008
  end-page: 1777
  ident: bib56
  article-title: Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways
  publication-title: Journal of Applied Physiology
  contributor:
    fullname: Martonen
– start-page: 350
  year: 2007
  end-page: 366
  ident: bib31
  article-title: Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data
  publication-title: Medical Engineering and Physics
  contributor:
    fullname: Vinchurkar
– start-page: 473
  year: 1998
  end-page: 502
  ident: bib45
  article-title: Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx
  publication-title: Inhalation Toxicology
  contributor:
    fullname: Guilmette
– start-page: 695
  year: 1984
  ident: bib3
  article-title: Pulsatile poststenotic flow studies with laser doppler anemometry
  publication-title: Journal of Biomechanics
  contributor:
    fullname: Giddens
– start-page: 455
  year: 1961
  end-page: 458
  ident: bib43
  article-title: A single formula for the “Law of the Wall”
  publication-title: Journal of Applied Mechanics
  contributor:
    fullname: Spalding
– start-page: 380
  year: 2007
  end-page: 397
  ident: bib33
  article-title: Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways
  publication-title: Aerosol Science and Technology
  contributor:
    fullname: Xi
– start-page: 125
  year: 1982
  end-page: 146
  ident: bib22
  article-title: On the motion of particles in turbulent duct flows
  publication-title: International Journal of Multiphase Flowing
  contributor:
    fullname: Durst
– start-page: 739
  year: 2000
  end-page: 749
  ident: bib44
  article-title: On the suitability of k-epsilon turbulence modeling for aerosol deposition in the mouth and throat: A comparison with experiment
  publication-title: Journal of Aerosol Science
  contributor:
    fullname: Finlay
– start-page: 1670
  year: 2012
  end-page: 1688
  ident: bib30
  article-title: Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways
  publication-title: Pharmaceutical Research
  contributor:
    fullname: Hindle
– start-page: 505
  year: 1983
  ident: bib2
  article-title: Velocity-measurements in steady flow through axisymmetric stenoses at moderate Reynolds-numbers
  publication-title: Journal of Biomechanics
  contributor:
    fullname: Giddens
– start-page: 257
  year: 2007
  end-page: 268
  ident: bib19
  article-title: Large eddy simulation of inhaled particle deposition within the human upper respiratory tract
  publication-title: Aerosol Science
  contributor:
    fullname: Cen
– start-page: 445
  year: 2003
  end-page: 460
  ident: bib49
  article-title: Numerical modeling of pulsatile turbulent flow in stenotic vessels
  publication-title: Journal of Biomechanical Engineering-Transactions of the ASME
  contributor:
    fullname: Frankel
– start-page: 290
  year: 2006
  end-page: 300
  ident: bib35
  article-title: Improving prediction of aerosol deposition in an idealized mouth using large-eddy simulation
  publication-title: Journal of Aerosol Medicine
  contributor:
    fullname: Lange
– start-page: 209
  year: 1990
  end-page: 220
  ident: bib42
  article-title: Particle dispersion in turbulent-flow - The effect of particle-size distribution
  publication-title: Particle & Particle Systems Characterization
  contributor:
    fullname: Sommerfeld
– start-page: 147
  year: 2016
  end-page: 159
  ident: bib51
  article-title: Current inhalers deliver very small doses to the lower tracheobronchial airways: Assessment of healthy and constricted lungs
  publication-title: Journal of Pharmaceutical Sciences
  contributor:
    fullname: Longest
– start-page: 305
  year: 2007
  end-page: 316
  ident: bib32
  article-title: Validating CFD predictions of respiratory aerosol deposition: Effects of upstream transition and turbulence
  publication-title: Journal of Biomechanics
  contributor:
    fullname: Vinchurkar
– start-page: 712
  year: 2000
  end-page: 736
  ident: bib34
  article-title: Lung models: Strengths and limitations
  publication-title: Respiratory Care
  contributor:
    fullname: Dolovich
– start-page: 943
  year: 2008
  end-page: 964
  ident: bib6
  article-title: High resolution turbulence modelling of airflow in an idealised human extra-thoracic airway
  publication-title: Computers & Fluids
  contributor:
    fullname: Pollard
– start-page: 494
  year: 2007
  end-page: 508
  ident: bib17
  article-title: Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids
  publication-title: Journal of Aerosol Science
  contributor:
    fullname: Lacor
– start-page: 149
  year: 1966
  ident: bib15
  article-title: Motion of discrete particles in a turbulent fluid
  publication-title: Applied Scientific Research
  contributor:
    fullname: Mockros
– year: 1972
  ident: bib46
  article-title: A first course in Turbulence
  contributor:
    fullname: Lumley
– start-page: 1271
  year: 2012
  end-page: 1285
  ident: bib28
  article-title: Development of a stochastic individual path (SIP) model for predicting the deposition of pharmaceutical aerosols: Effects of turbulence, polydisperse aerosol size, and evaluation of multiple lung lobes
  publication-title: Aerosol Science and Technology
  contributor:
    fullname: Hindle
– start-page: 295
  year: 2007
  end-page: 309
  ident: bib23
  article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways
  publication-title: Respiratory Physiology and Neurobiology
  contributor:
    fullname: Hoffman
– volume: 105
  start-page: 147
  issue: 1
  year: 2016
  ident: 10.1016/j.jaerosci.2018.02.007_bib51
  article-title: Current inhalers deliver very small doses to the lower tracheobronchial airways: Assessment of healthy and constricted lungs
  publication-title: Journal of Pharmaceutical Sciences
  doi: 10.1016/j.xphs.2015.11.027
  contributor:
    fullname: Walenga
– volume: 35
  start-page: 281
  issue: 4&5
  year: 1998
  ident: 10.1016/j.jaerosci.2018.02.007_bib14
  article-title: Low Reynolds number turbulence modeling of blood flow in arterial stenoses
  publication-title: Biorheology
  doi: 10.1016/S0006-355X(99)80011-0
  contributor:
    fullname: Ghalichi
– volume: 35
  start-page: 1
  year: 2004
  ident: 10.1016/j.jaerosci.2018.02.007_bib36
  article-title: Improved numerical simulation of aerosol deposition in an idealized mouth-throat
  publication-title: Journal of Aerosol Science
  doi: 10.1016/S0021-8502(03)00381-1
  contributor:
    fullname: Matida
– volume: 35
  start-page: 309
  year: 2004
  ident: 10.1016/j.jaerosci.2018.02.007_bib11
  article-title: Predicting extrathoracic deposition from dry powder inhalers
  publication-title: Journal of Aerosol Science
  doi: 10.1016/j.jaerosci.2003.09.002
  contributor:
    fullname: DeHaan
– volume: 41
  start-page: 952
  issue: 10
  year: 2007
  ident: 10.1016/j.jaerosci.2018.02.007_bib26
  article-title: Numerical simulations of capillary aerosol generation: CFD model development and comparisons with experimental data
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786820701607027
  contributor:
    fullname: Longest
– year: 1972
  ident: 10.1016/j.jaerosci.2018.02.007_bib46
  contributor:
    fullname: Tennekes
– volume: 29
  start-page: 416
  issue: 5
  year: 2016
  ident: 10.1016/j.jaerosci.2018.02.007_bib38
  article-title: Absorption and clearance of pharmaceutical aerosols in the human nose: Development of a CFD model
  publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery
  doi: 10.1089/jamp.2015.1252
  contributor:
    fullname: Rygg
– volume: 38
  start-page: 494
  year: 2007
  ident: 10.1016/j.jaerosci.2018.02.007_bib17
  article-title: Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids
  publication-title: Journal of Aerosol Science
  doi: 10.1016/j.jaerosci.2007.03.003
  contributor:
    fullname: Jayaraju
– ident: 10.1016/j.jaerosci.2018.02.007_bib41
  doi: 10.1145/800186.810616
– volume: 7
  start-page: 209
  issue: 4
  year: 1990
  ident: 10.1016/j.jaerosci.2018.02.007_bib42
  article-title: Particle dispersion in turbulent-flow - The effect of particle-size distribution
  publication-title: Particle & Particle Systems Characterization
  doi: 10.1002/ppsc.19900070135
  contributor:
    fullname: Sommerfeld
– volume: 22
  start-page: 551
  year: 1999
  ident: 10.1016/j.jaerosci.2018.02.007_bib54
  article-title: On the effect of anisotropy on the turbulent dispersion and deposition of small particles
  publication-title: International Journal of Multiphase Flowing
  doi: 10.1016/S0301-9322(98)00053-6
  contributor:
    fullname: Wang
– volume: 26
  start-page: 145
  issue: 3
  year: 2013
  ident: 10.1016/j.jaerosci.2018.02.007_bib12
  article-title: In vitro tests for aerosol deposition. III: Effect of inhaler insertion angle on aerosol deposition
  publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery
  doi: 10.1089/jamp.2012.0989
  contributor:
    fullname: Delvadia
– volume: 45
  start-page: 712
  issue: 6
  year: 2000
  ident: 10.1016/j.jaerosci.2018.02.007_bib34
  article-title: Lung models: Strengths and limitations
  publication-title: Respiratory Care
  contributor:
    fullname: Martonen
– ident: 10.1016/j.jaerosci.2018.02.007_bib5
– volume: 40
  start-page: 305
  issue: 2
  year: 2007
  ident: 10.1016/j.jaerosci.2018.02.007_bib32
  article-title: Validating CFD predictions of respiratory aerosol deposition: Effects of upstream transition and turbulence
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2006.01.006
  contributor:
    fullname: Longest
– ident: 10.1016/j.jaerosci.2018.02.007_bib40
– volume: 23
  start-page: 1
  issue: 1
  year: 1994
  ident: 10.1016/j.jaerosci.2018.02.007_bib4
  article-title: An implicit upwind algorithm for computing turbulent flows on unstructured grids
  publication-title: Computers & Fluids
  doi: 10.1016/0045-7930(94)90023-X
  contributor:
    fullname: Anderson
– volume: 104
  start-page: 1761
  issue: 6
  year: 2008
  ident: 10.1016/j.jaerosci.2018.02.007_bib56
  article-title: Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.01233.2007
  contributor:
    fullname: Xi
– volume: 29
  start-page: 350
  issue: 3
  year: 2007
  ident: 10.1016/j.jaerosci.2018.02.007_bib31
  article-title: Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data
  publication-title: Medical Engineering and Physics
  doi: 10.1016/j.medengphy.2006.05.012
  contributor:
    fullname: Longest
– volume: 39
  start-page: 862
  year: 2008
  ident: 10.1016/j.jaerosci.2018.02.007_bib18
  article-title: Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth-throat
  publication-title: Aerosol Science
  doi: 10.1016/j.jaerosci.2008.06.002
  contributor:
    fullname: Jayaraju
– volume: 16
  start-page: 955
  issue: 12
  year: 1983
  ident: 10.1016/j.jaerosci.2018.02.007_bib1
  article-title: Flow disturbance measurements through a constricted tube at moderate Reynolds-numbers
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(83)90096-9
  contributor:
    fullname: Ahmed
– volume: 40
  start-page: 2579
  issue: 12
  year: 2012
  ident: 10.1016/j.jaerosci.2018.02.007_bib57
  article-title: Breathing resistance and ultrafine particle deposition in nasal-laryngeal airways of a newborn, an infant, a child, and an adult
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-012-0603-7
  contributor:
    fullname: Xi
– volume: 32
  start-page: 3170
  issue: 10
  year: 2015
  ident: 10.1016/j.jaerosci.2018.02.007_bib47
  article-title: Validating CFD predictions of pharmaceutical aerosol deposition with in vivo data
  publication-title: Pharmaceutical Research
  doi: 10.1007/s11095-015-1695-1
  contributor:
    fullname: Tian
– volume: 29
  start-page: 1670
  issue: 6
  year: 2012
  ident: 10.1016/j.jaerosci.2018.02.007_bib30
  article-title: Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways
  publication-title: Pharmaceutical Research
  doi: 10.1007/s11095-012-0691-y
  contributor:
    fullname: Longest
– volume: 19
  start-page: 290
  issue: 3
  year: 2006
  ident: 10.1016/j.jaerosci.2018.02.007_bib35
  article-title: Improving prediction of aerosol deposition in an idealized mouth using large-eddy simulation
  publication-title: Journal of Aerosol Medicine
  doi: 10.1089/jam.2006.19.290
  contributor:
    fullname: Matida
– volume: 22
  start-page: 67
  issue: 3
  year: 2009
  ident: 10.1016/j.jaerosci.2018.02.007_bib25
  article-title: Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry
  publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery
  doi: 10.1089/jamp.2008.0692
  contributor:
    fullname: Longest
– volume: 35
  start-page: 560
  issue: 4
  year: 2007
  ident: 10.1016/j.jaerosci.2018.02.007_bib58
  article-title: Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-006-9245-y
  contributor:
    fullname: Xi
– volume: 37
  start-page: 1407
  year: 2006
  ident: 10.1016/j.jaerosci.2018.02.007_bib8
  article-title: Prediction of aerosol deposition in 90° bends using LES and an efficient Lagrangian tracking method
  publication-title: Journal of Aerosol Science
  doi: 10.1016/j.jaerosci.2006.01.013
  contributor:
    fullname: Breuer
– volume: 59
  start-page: 6
  year: 2013
  ident: 10.1016/j.jaerosci.2018.02.007_bib16
  article-title: Validating CFD predictions of highly localized aerosol deposition in airway models: In vitro data and effects of surface properties
  publication-title: Journal of Aerosol Science
  doi: 10.1016/j.jaerosci.2013.01.008
  contributor:
    fullname: Holbrook
– volume: 126
  start-page: 625
  issue: 5
  year: 2004
  ident: 10.1016/j.jaerosci.2018.02.007_bib39
  article-title: Two-equation turbulence modeling of pulsatile flow in a stenosed tube
  publication-title: Journal of Biomechanical Engineering-Transactions of the Asme
  doi: 10.1115/1.1798055
  contributor:
    fullname: Ryval
– volume: 37
  start-page: 317
  issue: 3
  year: 2008
  ident: 10.1016/j.jaerosci.2018.02.007_bib50
  article-title: Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics
  publication-title: Computers and Fluids
  doi: 10.1016/j.compfluid.2007.05.001
  contributor:
    fullname: Vinchurkar
– volume: 29
  start-page: 196
  issue: 2
  year: 2016
  ident: 10.1016/j.jaerosci.2018.02.007_bib13
  article-title: In vitro tests for aerosol deposition. IV: Simulating variations in human breath profiles for realistic DPI testing
  publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery
  doi: 10.1089/jamp.2015.1215
  contributor:
    fullname: Delvadia
– volume: 135
  start-page: 091010
  issue: 9
  year: 2013
  ident: 10.1016/j.jaerosci.2018.02.007_bib53
  article-title: Development of characteristic upper tracheobronchial airway models for testing pharmaceutical aerosol delivery
  publication-title: ASME Journal of Biomechanical Engineering
  doi: 10.1115/1.4024630
  contributor:
    fullname: Walenga
– volume: 42
  start-page: 781
  year: 2011
  ident: 10.1016/j.jaerosci.2018.02.007_bib48
  article-title: Development of a stochastic individual path (SIP) model for predicting the tracheobronchial deposition of pharmaceutical aerosols: Effects of transient inhalation and sampling the airways
  publication-title: Journal of Aerosol Science
  doi: 10.1016/j.jaerosci.2011.07.005
  contributor:
    fullname: Tian
– volume: 125
  start-page: 445
  issue: 4
  year: 2003
  ident: 10.1016/j.jaerosci.2018.02.007_bib49
  article-title: Numerical modeling of pulsatile turbulent flow in stenotic vessels
  publication-title: Journal of Biomechanical Engineering-Transactions of the ASME
  doi: 10.1115/1.1589774
  contributor:
    fullname: Varghese
– volume: 17
  start-page: 695
  issue: 9
  year: 1984
  ident: 10.1016/j.jaerosci.2018.02.007_bib3
  article-title: Pulsatile poststenotic flow studies with laser doppler anemometry
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(84)90123-4
  contributor:
    fullname: Ahmed
– volume: 39
  start-page: 572
  issue: 7
  year: 2008
  ident: 10.1016/j.jaerosci.2018.02.007_bib27
  article-title: Comparison of ambient and spray aerosol deposition in a standard induction port and more realistic mouth-throat geometry
  publication-title: Journal of Aerosol Science
  doi: 10.1016/j.jaerosci.2008.03.008
  contributor:
    fullname: Longest
– year: 1998
  ident: 10.1016/j.jaerosci.2018.02.007_bib55
  contributor:
    fullname: Wilcox
– volume: 8
  start-page: 125
  issue: 2
  year: 1982
  ident: 10.1016/j.jaerosci.2018.02.007_bib22
  article-title: On the motion of particles in turbulent duct flows
  publication-title: International Journal of Multiphase Flowing
  doi: 10.1016/0301-9322(82)90013-1
  contributor:
    fullname: Lee
– volume: 41
  start-page: 380
  issue: 4
  year: 2007
  ident: 10.1016/j.jaerosci.2018.02.007_bib33
  article-title: Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786820701203223
  contributor:
    fullname: Longest
– volume: 28
  start-page: 455
  issue: 3
  year: 1961
  ident: 10.1016/j.jaerosci.2018.02.007_bib43
  article-title: A single formula for the “Law of the Wall”
  publication-title: Journal of Applied Mechanics
  doi: 10.1115/1.3641728
  contributor:
    fullname: Spalding
– volume: 22
  start-page: 99
  issue: 2
  year: 2009
  ident: 10.1016/j.jaerosci.2018.02.007_bib24
  article-title: Evaluation of the Respimat Soft Mist inhaler using a concurrent CFD and in vitro approach
  publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery
  doi: 10.1089/jamp.2008.0708
  contributor:
    fullname: Longest
– volume: 16
  start-page: 149
  issue: 2
  year: 1966
  ident: 10.1016/j.jaerosci.2018.02.007_bib15
  article-title: Motion of discrete particles in a turbulent fluid
  publication-title: Applied Scientific Research
  doi: 10.1007/BF00384062
  contributor:
    fullname: Hjelmfelt
– volume: 78
  start-page: 11
  year: 2014
  ident: 10.1016/j.jaerosci.2018.02.007_bib52
  article-title: Variability in nose-to-lung aerosol delivery
  publication-title: Journal of Aerosol Science
  doi: 10.1016/j.jaerosci.2014.08.003
  contributor:
    fullname: Walenga
– volume: 27
  start-page: 1930
  issue: 12
  year: 2011
  ident: 10.1016/j.jaerosci.2018.02.007_bib60
  article-title: Laminar-to-turbulent fluid-nanoparticle dynamics simulations: Model comparisons and nanoparticle-deposition applications
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
  doi: 10.1002/cnm.1447
  contributor:
    fullname: Zhang
– volume: 46
  start-page: 1271
  issue: 12
  year: 2012
  ident: 10.1016/j.jaerosci.2018.02.007_bib28
  article-title: Development of a stochastic individual path (SIP) model for predicting the deposition of pharmaceutical aerosols: Effects of turbulence, polydisperse aerosol size, and evaluation of multiple lung lobes
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2012.708799
  contributor:
    fullname: Longest
– volume: 29
  start-page: 461
  issue: 6
  year: 2016
  ident: 10.1016/j.jaerosci.2018.02.007_bib29
  article-title: Validating whole-airway CFD predictions of DPI aerosol deposition at multiple flow rates
  publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery
  doi: 10.1089/jamp.2015.1281
  contributor:
    fullname: Longest
– volume: 7
  start-page: 301
  year: 1987
  ident: 10.1016/j.jaerosci.2018.02.007_bib37
  article-title: Experimental study of particle deposition in bends of circular cross section
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786828708959166
  contributor:
    fullname: Pui
– volume: 37
  start-page: 943
  issue: 8
  year: 2008
  ident: 10.1016/j.jaerosci.2018.02.007_bib6
  article-title: High resolution turbulence modelling of airflow in an idealised human extra-thoracic airway
  publication-title: Computers & Fluids
  doi: 10.1016/j.compfluid.2007.07.021
  contributor:
    fullname: Ball
– volume: 157
  start-page: 295
  year: 2007
  ident: 10.1016/j.jaerosci.2018.02.007_bib23
  article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways
  publication-title: Respiratory Physiology and Neurobiology
  doi: 10.1016/j.resp.2007.02.006
  contributor:
    fullname: Lin
– volume: 31
  start-page: 739
  issue: 6
  year: 2000
  ident: 10.1016/j.jaerosci.2018.02.007_bib44
  article-title: On the suitability of k-epsilon turbulence modeling for aerosol deposition in the mouth and throat: A comparison with experiment
  publication-title: Journal of Aerosol Science
  doi: 10.1016/S0021-8502(99)00547-9
  contributor:
    fullname: Stapleton
– ident: 10.1016/j.jaerosci.2018.02.007_bib7
– volume: 119
  start-page: 1730
  issue: 9
  year: 2009
  ident: 10.1016/j.jaerosci.2018.02.007_bib9
  article-title: Assessment of septal deviation effects on nasal air flow: A computational fluid dynamics model
  publication-title: Laryngoscope
  doi: 10.1002/lary.20585
  contributor:
    fullname: Chen
– volume: 45
  start-page: 11
  year: 2011
  ident: 10.1016/j.jaerosci.2018.02.007_bib21
  article-title: Regional deposition of particles in an image-based airway model: Large-eddy simulation and left-right lung ventilation asymmetry
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2010.517578
  contributor:
    fullname: Lambert
– volume: 41
  start-page: 831
  issue: 5
  year: 2003
  ident: 10.1016/j.jaerosci.2018.02.007_bib59
  article-title: Low-Reynolds-number turbulent flows in locally constricted conduits: A comparison study
  publication-title: AIAA Journal
  doi: 10.2514/2.2044
  contributor:
    fullname: Zhang
– volume: 16
  start-page: 505
  issue: 7
  year: 1983
  ident: 10.1016/j.jaerosci.2018.02.007_bib2
  article-title: Velocity-measurements in steady flow through axisymmetric stenoses at moderate Reynolds-numbers
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(83)90065-9
  contributor:
    fullname: Ahmed
– volume: 38
  start-page: 257
  year: 2007
  ident: 10.1016/j.jaerosci.2018.02.007_bib19
  article-title: Large eddy simulation of inhaled particle deposition within the human upper respiratory tract
  publication-title: Aerosol Science
  doi: 10.1016/j.jaerosci.2006.09.008
  contributor:
    fullname: Jin
– volume: 10
  start-page: 473
  issue: 5
  year: 1998
  ident: 10.1016/j.jaerosci.2018.02.007_bib45
  article-title: Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx
  publication-title: Inhalation Toxicology
  doi: 10.1080/089583798197637
  contributor:
    fullname: Subramaniam
– volume: 28
  start-page: 11
  year: 1996
  ident: 10.1016/j.jaerosci.2018.02.007_bib10
  article-title: Numerical models for two-phase turbulent flows
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev.fl.28.010196.000303
  contributor:
    fullname: Crowe
– volume: 29
  start-page: 271
  issue: 2
  year: 2003
  ident: 10.1016/j.jaerosci.2018.02.007_bib20
  article-title: Laminar-to-turbulent fluid-particle flows in a human airway model
  publication-title: International Journal Of Multiphase Flowing
  doi: 10.1016/S0301-9322(02)00131-3
  contributor:
    fullname: Kleinstreuer
SSID ssj0007915
Score 2.447178
Snippet The development of a CFD model, from initial geometry to experimentally validated results with engineering insight, can be a time-consuming process that often...
The development of a CFD model, from initial geometry to experimentally validated result with engineering insight, can be a time-consuming process that often...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 31
SubjectTerms Aerosol deposition
Best practices
CFD modeling
Large eddy simulation (LES)
Low Reynolds number (LRN) turbulence model
Meshing guidelines
Reynolds-averaged Navier Stokes (RANS) equations
Solution guidelines
Title Recommendations for simulating microparticle deposition at conditions similar to the upper airways with two-equation turbulence models
URI https://dx.doi.org/10.1016/j.jaerosci.2018.02.007
https://www.ncbi.nlm.nih.gov/pubmed/30349146
https://search.proquest.com/docview/2126900237
https://pubmed.ncbi.nlm.nih.gov/PMC6195318
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB612wscEJTXFqiMhLilm4c3to_VimoBtScq9WY5sQ1ZdZNlk1XFpUd-NzN5rHZBiANHJ3bkZGx_n-OZbwDeJUryyMciQDZuA654GBiTkup-anF4JF6lFCh8eZXOr_mnm-nNAcyGWBhyq-zX_m5Nb1fr_sqk_5qTVVFQjC_C05Q4NZ3uxeIQjhCOOB_B0fnHz_Or7YIsVJ_III4CarATKLw4WxjXykaSl5fs5DvF3zDqTw76uyvlDjZdPIZHPalk512_n8CBK4_h4Y7U4DGML5EdV-v2Jzp7z2a3BVLVtvQUftIedLl0fX6lmiGRZXWxbDN7lV_Zkpz2Vv1XYdYNjl7MNAy307bz-qIWBe6TWVMxZJVss1q5NTPF-s78qBn972XNXRW47524OEOsyzZtyBNr0_HUz-D64sOX2Tzo8zMEOUJaE2ReqNQafPlp7MMsyrxzCZdhZjMeWzqxTEyuIuvlVConcBseYz0rPfeJ9CZPnsOorEr3EpgwObbmMs9Syn-SSy8zIWwSto9T4Rgmg0X0qpPh0IN_2kIPNtRkQx3GGm04BjUYTu8NKI1Y8c-2bwdLa5xtdIRiSldtao1AnyriOVjnRWf5bX8SkvpB4BmD2BsT2wqk5L1_pyy-tYreKR1mRvLkP_r8Ch5QqfPFfA2jZr1xb5AvNdkpHJ7dR6f9rPgFoCQb5A
link.rule.ids 230,315,786,790,891,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOQCHCsprKQ8jIW7p5rWxfUQrqgW6PbVSb5Yd2zQrNkk3WVW9cOzv7oyTlF0Q4sAxsR05GdvzOf7mG0I-JIKnkYtZAGjcBKlIw0CpDFX3MwPDI3Eiw0Dh-Uk2O0u_nk_Od8h0iIVBWmW_9ndrul-t-zvj_muO66LAGF9wTxPE1Hi6F7N75D6iAeR1Hf78xfNgok9jEEcBVt8IE14cLpT1opHI8eKdeCf7m4f6E4H-TqTc8ExHj8leDynpp67XT8iOLffJow2hwX0ymgM2rlb-Fzr9SKc_CgCq_uopucEd6HJp--xKDQUYS5ti6fN6ld_pEil7df9NqLEDzYuqlsJm2nScL2xRwC6ZthUFTEnXdW1XVBWrK3XdUPzbS9urKrCXnbQ4BU-n1z7gifpkPM0zcnb0-XQ6C_rsDEEODq0NtGMiMwpefhK7UEfaWZukPNRGp7HB88pE5SIyjk-4sAw24THUM9ylLuFO5clzsltWpX1JKFM5tE55rjPMfpJzxzVjJgn940Q4IuPBIrLuRDjkwE5byMGGEm0ow1iCDUdEDIaTW8NJgqf4Z9v3g6UlzDU8QFGlrdaNBDefCUQ5UOdFZ_m7_iQo9ANuZ0TY1pi4q4A63tslZXHh9bwzPMqM-Kv_6PM78mB2Oj-Wx19Ovh2Qh1jSsTJfk912tbZvADm1-q2fGbc5cRy5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recommendations+for+simulating+microparticle+deposition+at+conditions+similar+to+the+upper+airways+with+two-equation+turbulence+models&rft.jtitle=Journal+of+aerosol+science&rft.au=Bass%2C+Karl&rft.au=Worth+Longest%2C+P.&rft.date=2018-05-01&rft.pub=Elsevier+Ltd&rft.issn=0021-8502&rft.eissn=1879-1964&rft.volume=119&rft.spage=31&rft.epage=50&rft_id=info:doi/10.1016%2Fj.jaerosci.2018.02.007&rft.externalDocID=S0021850217304627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8502&client=summon